1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12
13 #define BIO_MAX_VECS 256U
14 #define BIO_MAX_INLINE_VECS UIO_MAXIOV
15
16 struct queue_limits;
17
bio_max_segs(unsigned int nr_segs)18 static inline unsigned int bio_max_segs(unsigned int nr_segs)
19 {
20 return min(nr_segs, BIO_MAX_VECS);
21 }
22
23 #define bio_iter_iovec(bio, iter) \
24 bvec_iter_bvec((bio)->bi_io_vec, (iter))
25
26 #define bio_iter_page(bio, iter) \
27 bvec_iter_page((bio)->bi_io_vec, (iter))
28 #define bio_iter_len(bio, iter) \
29 bvec_iter_len((bio)->bi_io_vec, (iter))
30 #define bio_iter_offset(bio, iter) \
31 bvec_iter_offset((bio)->bi_io_vec, (iter))
32
33 #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter)
34 #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter)
35 #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter)
36
37 #define bvec_iter_sectors(iter) ((iter).bi_size >> 9)
38 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
39
40 #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter)
41 #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter)
42
43 /*
44 * Return the data direction, READ or WRITE.
45 */
46 #define bio_data_dir(bio) \
47 (op_is_write(bio_op(bio)) ? WRITE : READ)
48
49 /*
50 * Check whether this bio carries any data or not. A NULL bio is allowed.
51 */
bio_has_data(struct bio * bio)52 static inline bool bio_has_data(struct bio *bio)
53 {
54 if (bio &&
55 bio->bi_iter.bi_size &&
56 bio_op(bio) != REQ_OP_DISCARD &&
57 bio_op(bio) != REQ_OP_SECURE_ERASE &&
58 bio_op(bio) != REQ_OP_WRITE_ZEROES)
59 return true;
60
61 return false;
62 }
63
bio_no_advance_iter(const struct bio * bio)64 static inline bool bio_no_advance_iter(const struct bio *bio)
65 {
66 return bio_op(bio) == REQ_OP_DISCARD ||
67 bio_op(bio) == REQ_OP_SECURE_ERASE ||
68 bio_op(bio) == REQ_OP_WRITE_ZEROES;
69 }
70
bio_data(struct bio * bio)71 static inline void *bio_data(struct bio *bio)
72 {
73 if (bio_has_data(bio))
74 return page_address(bio_page(bio)) + bio_offset(bio);
75
76 return NULL;
77 }
78
bio_next_segment(const struct bio * bio,struct bvec_iter_all * iter)79 static inline bool bio_next_segment(const struct bio *bio,
80 struct bvec_iter_all *iter)
81 {
82 if (iter->idx >= bio->bi_vcnt)
83 return false;
84
85 bvec_advance(&bio->bi_io_vec[iter->idx], iter);
86 return true;
87 }
88
89 /*
90 * drivers should _never_ use the all version - the bio may have been split
91 * before it got to the driver and the driver won't own all of it
92 */
93 #define bio_for_each_segment_all(bvl, bio, iter) \
94 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
95
bio_advance_iter(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)96 static inline void bio_advance_iter(const struct bio *bio,
97 struct bvec_iter *iter, unsigned int bytes)
98 {
99 iter->bi_sector += bytes >> 9;
100
101 if (bio_no_advance_iter(bio))
102 iter->bi_size -= bytes;
103 else
104 bvec_iter_advance(bio->bi_io_vec, iter, bytes);
105 /* TODO: It is reasonable to complete bio with error here. */
106 }
107
108 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
bio_advance_iter_single(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)109 static inline void bio_advance_iter_single(const struct bio *bio,
110 struct bvec_iter *iter,
111 unsigned int bytes)
112 {
113 iter->bi_sector += bytes >> 9;
114
115 if (bio_no_advance_iter(bio))
116 iter->bi_size -= bytes;
117 else
118 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
119 }
120
121 void __bio_advance(struct bio *, unsigned bytes);
122
123 /**
124 * bio_advance - increment/complete a bio by some number of bytes
125 * @bio: bio to advance
126 * @nbytes: number of bytes to complete
127 *
128 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
129 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
130 * be updated on the last bvec as well.
131 *
132 * @bio will then represent the remaining, uncompleted portion of the io.
133 */
bio_advance(struct bio * bio,unsigned int nbytes)134 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
135 {
136 if (nbytes == bio->bi_iter.bi_size) {
137 bio->bi_iter.bi_size = 0;
138 return;
139 }
140 __bio_advance(bio, nbytes);
141 }
142
143 #define __bio_for_each_segment(bvl, bio, iter, start) \
144 for (iter = (start); \
145 (iter).bi_size && \
146 ((bvl = bio_iter_iovec((bio), (iter))), 1); \
147 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
148
149 #define bio_for_each_segment(bvl, bio, iter) \
150 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
151
152 #define __bio_for_each_bvec(bvl, bio, iter, start) \
153 for (iter = (start); \
154 (iter).bi_size && \
155 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
156 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
157
158 /* iterate over multi-page bvec */
159 #define bio_for_each_bvec(bvl, bio, iter) \
160 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
161
162 /*
163 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
164 * same reasons as bio_for_each_segment_all().
165 */
166 #define bio_for_each_bvec_all(bvl, bio, i) \
167 for (i = 0, bvl = bio_first_bvec_all(bio); \
168 i < (bio)->bi_vcnt; i++, bvl++)
169
170 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
171
bio_segments(struct bio * bio)172 static inline unsigned bio_segments(struct bio *bio)
173 {
174 unsigned segs = 0;
175 struct bio_vec bv;
176 struct bvec_iter iter;
177
178 /*
179 * We special case discard/write same/write zeroes, because they
180 * interpret bi_size differently:
181 */
182
183 switch (bio_op(bio)) {
184 case REQ_OP_DISCARD:
185 case REQ_OP_SECURE_ERASE:
186 case REQ_OP_WRITE_ZEROES:
187 return 0;
188 default:
189 break;
190 }
191
192 bio_for_each_segment(bv, bio, iter)
193 segs++;
194
195 return segs;
196 }
197
198 /*
199 * get a reference to a bio, so it won't disappear. the intended use is
200 * something like:
201 *
202 * bio_get(bio);
203 * submit_bio(rw, bio);
204 * if (bio->bi_flags ...)
205 * do_something
206 * bio_put(bio);
207 *
208 * without the bio_get(), it could potentially complete I/O before submit_bio
209 * returns. and then bio would be freed memory when if (bio->bi_flags ...)
210 * runs
211 */
bio_get(struct bio * bio)212 static inline void bio_get(struct bio *bio)
213 {
214 bio->bi_flags |= (1 << BIO_REFFED);
215 smp_mb__before_atomic();
216 atomic_inc(&bio->__bi_cnt);
217 }
218
bio_cnt_set(struct bio * bio,unsigned int count)219 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
220 {
221 if (count != 1) {
222 bio->bi_flags |= (1 << BIO_REFFED);
223 smp_mb();
224 }
225 atomic_set(&bio->__bi_cnt, count);
226 }
227
bio_flagged(struct bio * bio,unsigned int bit)228 static inline bool bio_flagged(struct bio *bio, unsigned int bit)
229 {
230 return bio->bi_flags & (1U << bit);
231 }
232
bio_set_flag(struct bio * bio,unsigned int bit)233 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
234 {
235 bio->bi_flags |= (1U << bit);
236 }
237
bio_clear_flag(struct bio * bio,unsigned int bit)238 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
239 {
240 bio->bi_flags &= ~(1U << bit);
241 }
242
bio_first_bvec_all(struct bio * bio)243 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
244 {
245 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
246 return bio->bi_io_vec;
247 }
248
bio_first_page_all(struct bio * bio)249 static inline struct page *bio_first_page_all(struct bio *bio)
250 {
251 return bio_first_bvec_all(bio)->bv_page;
252 }
253
bio_first_folio_all(struct bio * bio)254 static inline struct folio *bio_first_folio_all(struct bio *bio)
255 {
256 return page_folio(bio_first_page_all(bio));
257 }
258
bio_last_bvec_all(struct bio * bio)259 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
260 {
261 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
262 return &bio->bi_io_vec[bio->bi_vcnt - 1];
263 }
264
265 /**
266 * struct folio_iter - State for iterating all folios in a bio.
267 * @folio: The current folio we're iterating. NULL after the last folio.
268 * @offset: The byte offset within the current folio.
269 * @length: The number of bytes in this iteration (will not cross folio
270 * boundary).
271 */
272 struct folio_iter {
273 struct folio *folio;
274 size_t offset;
275 size_t length;
276 /* private: for use by the iterator */
277 struct folio *_next;
278 size_t _seg_count;
279 int _i;
280 };
281
bio_first_folio(struct folio_iter * fi,struct bio * bio,int i)282 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
283 int i)
284 {
285 struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
286
287 if (unlikely(i >= bio->bi_vcnt)) {
288 fi->folio = NULL;
289 return;
290 }
291
292 fi->folio = page_folio(bvec->bv_page);
293 fi->offset = bvec->bv_offset +
294 PAGE_SIZE * folio_page_idx(fi->folio, bvec->bv_page);
295 fi->_seg_count = bvec->bv_len;
296 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
297 fi->_next = folio_next(fi->folio);
298 fi->_i = i;
299 }
300
bio_next_folio(struct folio_iter * fi,struct bio * bio)301 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
302 {
303 fi->_seg_count -= fi->length;
304 if (fi->_seg_count) {
305 fi->folio = fi->_next;
306 fi->offset = 0;
307 fi->length = min(folio_size(fi->folio), fi->_seg_count);
308 fi->_next = folio_next(fi->folio);
309 } else {
310 bio_first_folio(fi, bio, fi->_i + 1);
311 }
312 }
313
314 /**
315 * bio_for_each_folio_all - Iterate over each folio in a bio.
316 * @fi: struct folio_iter which is updated for each folio.
317 * @bio: struct bio to iterate over.
318 */
319 #define bio_for_each_folio_all(fi, bio) \
320 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
321
322 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
323 extern struct bio *bio_split(struct bio *bio, int sectors,
324 gfp_t gfp, struct bio_set *bs);
325 int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
326 unsigned *segs, unsigned max_bytes);
327
328 /**
329 * bio_next_split - get next @sectors from a bio, splitting if necessary
330 * @bio: bio to split
331 * @sectors: number of sectors to split from the front of @bio
332 * @gfp: gfp mask
333 * @bs: bio set to allocate from
334 *
335 * Return: a bio representing the next @sectors of @bio - if the bio is smaller
336 * than @sectors, returns the original bio unchanged.
337 */
bio_next_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)338 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
339 gfp_t gfp, struct bio_set *bs)
340 {
341 if (sectors >= bio_sectors(bio))
342 return bio;
343
344 return bio_split(bio, sectors, gfp, bs);
345 }
346
347 enum {
348 BIOSET_NEED_BVECS = BIT(0),
349 BIOSET_NEED_RESCUER = BIT(1),
350 BIOSET_PERCPU_CACHE = BIT(2),
351 };
352 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
353 extern void bioset_exit(struct bio_set *);
354 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
355
356 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
357 blk_opf_t opf, gfp_t gfp_mask,
358 struct bio_set *bs);
359 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
360 extern void bio_put(struct bio *);
361
362 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
363 gfp_t gfp, struct bio_set *bs);
364 int bio_init_clone(struct block_device *bdev, struct bio *bio,
365 struct bio *bio_src, gfp_t gfp);
366
367 extern struct bio_set fs_bio_set;
368
bio_alloc(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask)369 static inline struct bio *bio_alloc(struct block_device *bdev,
370 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
371 {
372 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
373 }
374
375 void submit_bio(struct bio *bio);
376
377 extern void bio_endio(struct bio *);
378
bio_io_error(struct bio * bio)379 static inline void bio_io_error(struct bio *bio)
380 {
381 bio->bi_status = BLK_STS_IOERR;
382 bio_endio(bio);
383 }
384
bio_wouldblock_error(struct bio * bio)385 static inline void bio_wouldblock_error(struct bio *bio)
386 {
387 bio_set_flag(bio, BIO_QUIET);
388 bio->bi_status = BLK_STS_AGAIN;
389 bio_endio(bio);
390 }
391
392 /*
393 * Calculate number of bvec segments that should be allocated to fit data
394 * pointed by @iter. If @iter is backed by bvec it's going to be reused
395 * instead of allocating a new one.
396 */
bio_iov_vecs_to_alloc(struct iov_iter * iter,int max_segs)397 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
398 {
399 if (iov_iter_is_bvec(iter))
400 return 0;
401 return iov_iter_npages(iter, max_segs);
402 }
403
404 struct request_queue;
405
406 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
407 unsigned short max_vecs, blk_opf_t opf);
408 extern void bio_uninit(struct bio *);
409 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
410 void bio_chain(struct bio *, struct bio *);
411
412 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
413 unsigned off);
414 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
415 size_t len, size_t off);
416 void __bio_add_page(struct bio *bio, struct page *page,
417 unsigned int len, unsigned int off);
418 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
419 size_t off);
420 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len);
421
422 /**
423 * bio_add_max_vecs - number of bio_vecs needed to add data to a bio
424 * @kaddr: kernel virtual address to add
425 * @len: length in bytes to add
426 *
427 * Calculate how many bio_vecs need to be allocated to add the kernel virtual
428 * address range in [@kaddr:@len] in the worse case.
429 */
bio_add_max_vecs(void * kaddr,unsigned int len)430 static inline unsigned int bio_add_max_vecs(void *kaddr, unsigned int len)
431 {
432 if (is_vmalloc_addr(kaddr))
433 return DIV_ROUND_UP(offset_in_page(kaddr) + len, PAGE_SIZE);
434 return 1;
435 }
436
437 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len);
438 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len);
439
440 int submit_bio_wait(struct bio *bio);
441 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
442 size_t len, enum req_op op);
443
444 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
445 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter);
446 void __bio_release_pages(struct bio *bio, bool mark_dirty);
447 extern void bio_set_pages_dirty(struct bio *bio);
448 extern void bio_check_pages_dirty(struct bio *bio);
449
450 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
451 struct bio *src, struct bvec_iter *src_iter);
452 extern void bio_copy_data(struct bio *dst, struct bio *src);
453 extern void bio_free_pages(struct bio *bio);
454 void guard_bio_eod(struct bio *bio);
455 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
456
zero_fill_bio(struct bio * bio)457 static inline void zero_fill_bio(struct bio *bio)
458 {
459 zero_fill_bio_iter(bio, bio->bi_iter);
460 }
461
bio_release_pages(struct bio * bio,bool mark_dirty)462 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
463 {
464 if (bio_flagged(bio, BIO_PAGE_PINNED))
465 __bio_release_pages(bio, mark_dirty);
466 }
467
468 #define bio_dev(bio) \
469 disk_devt((bio)->bi_bdev->bd_disk)
470
471 #ifdef CONFIG_BLK_CGROUP
472 void bio_associate_blkg(struct bio *bio);
473 void bio_associate_blkg_from_css(struct bio *bio,
474 struct cgroup_subsys_state *css);
475 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
476 void blkcg_punt_bio_submit(struct bio *bio);
477 #else /* CONFIG_BLK_CGROUP */
bio_associate_blkg(struct bio * bio)478 static inline void bio_associate_blkg(struct bio *bio) { }
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)479 static inline void bio_associate_blkg_from_css(struct bio *bio,
480 struct cgroup_subsys_state *css)
481 { }
bio_clone_blkg_association(struct bio * dst,struct bio * src)482 static inline void bio_clone_blkg_association(struct bio *dst,
483 struct bio *src) { }
blkcg_punt_bio_submit(struct bio * bio)484 static inline void blkcg_punt_bio_submit(struct bio *bio)
485 {
486 submit_bio(bio);
487 }
488 #endif /* CONFIG_BLK_CGROUP */
489
bio_set_dev(struct bio * bio,struct block_device * bdev)490 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
491 {
492 bio_clear_flag(bio, BIO_REMAPPED);
493 if (bio->bi_bdev != bdev)
494 bio_clear_flag(bio, BIO_BPS_THROTTLED);
495 bio->bi_bdev = bdev;
496 bio_associate_blkg(bio);
497 }
498
499 /*
500 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
501 *
502 * A bio_list anchors a singly-linked list of bios chained through the bi_next
503 * member of the bio. The bio_list also caches the last list member to allow
504 * fast access to the tail.
505 */
506 struct bio_list {
507 struct bio *head;
508 struct bio *tail;
509 };
510
bio_list_empty(const struct bio_list * bl)511 static inline int bio_list_empty(const struct bio_list *bl)
512 {
513 return bl->head == NULL;
514 }
515
bio_list_init(struct bio_list * bl)516 static inline void bio_list_init(struct bio_list *bl)
517 {
518 bl->head = bl->tail = NULL;
519 }
520
521 #define BIO_EMPTY_LIST { NULL, NULL }
522
523 #define bio_list_for_each(bio, bl) \
524 for (bio = (bl)->head; bio; bio = bio->bi_next)
525
bio_list_size(const struct bio_list * bl)526 static inline unsigned bio_list_size(const struct bio_list *bl)
527 {
528 unsigned sz = 0;
529 struct bio *bio;
530
531 bio_list_for_each(bio, bl)
532 sz++;
533
534 return sz;
535 }
536
bio_list_add(struct bio_list * bl,struct bio * bio)537 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
538 {
539 bio->bi_next = NULL;
540
541 if (bl->tail)
542 bl->tail->bi_next = bio;
543 else
544 bl->head = bio;
545
546 bl->tail = bio;
547 }
548
bio_list_add_head(struct bio_list * bl,struct bio * bio)549 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
550 {
551 bio->bi_next = bl->head;
552
553 bl->head = bio;
554
555 if (!bl->tail)
556 bl->tail = bio;
557 }
558
bio_list_merge(struct bio_list * bl,struct bio_list * bl2)559 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
560 {
561 if (!bl2->head)
562 return;
563
564 if (bl->tail)
565 bl->tail->bi_next = bl2->head;
566 else
567 bl->head = bl2->head;
568
569 bl->tail = bl2->tail;
570 }
571
bio_list_merge_init(struct bio_list * bl,struct bio_list * bl2)572 static inline void bio_list_merge_init(struct bio_list *bl,
573 struct bio_list *bl2)
574 {
575 bio_list_merge(bl, bl2);
576 bio_list_init(bl2);
577 }
578
bio_list_merge_head(struct bio_list * bl,struct bio_list * bl2)579 static inline void bio_list_merge_head(struct bio_list *bl,
580 struct bio_list *bl2)
581 {
582 if (!bl2->head)
583 return;
584
585 if (bl->head)
586 bl2->tail->bi_next = bl->head;
587 else
588 bl->tail = bl2->tail;
589
590 bl->head = bl2->head;
591 }
592
bio_list_peek(struct bio_list * bl)593 static inline struct bio *bio_list_peek(struct bio_list *bl)
594 {
595 return bl->head;
596 }
597
bio_list_pop(struct bio_list * bl)598 static inline struct bio *bio_list_pop(struct bio_list *bl)
599 {
600 struct bio *bio = bl->head;
601
602 if (bio) {
603 bl->head = bl->head->bi_next;
604 if (!bl->head)
605 bl->tail = NULL;
606
607 bio->bi_next = NULL;
608 }
609
610 return bio;
611 }
612
bio_list_get(struct bio_list * bl)613 static inline struct bio *bio_list_get(struct bio_list *bl)
614 {
615 struct bio *bio = bl->head;
616
617 bl->head = bl->tail = NULL;
618
619 return bio;
620 }
621
622 /*
623 * Increment chain count for the bio. Make sure the CHAIN flag update
624 * is visible before the raised count.
625 */
bio_inc_remaining(struct bio * bio)626 static inline void bio_inc_remaining(struct bio *bio)
627 {
628 bio_set_flag(bio, BIO_CHAIN);
629 smp_mb__before_atomic();
630 atomic_inc(&bio->__bi_remaining);
631 }
632
633 /*
634 * bio_set is used to allow other portions of the IO system to
635 * allocate their own private memory pools for bio and iovec structures.
636 * These memory pools in turn all allocate from the bio_slab
637 * and the bvec_slabs[].
638 */
639 #define BIO_POOL_SIZE 2
640
641 struct bio_set {
642 struct kmem_cache *bio_slab;
643 unsigned int front_pad;
644
645 /*
646 * per-cpu bio alloc cache
647 */
648 struct bio_alloc_cache __percpu *cache;
649
650 mempool_t bio_pool;
651 mempool_t bvec_pool;
652
653 unsigned int back_pad;
654 /*
655 * Deadlock avoidance for stacking block drivers: see comments in
656 * bio_alloc_bioset() for details
657 */
658 spinlock_t rescue_lock;
659 struct bio_list rescue_list;
660 struct work_struct rescue_work;
661 struct workqueue_struct *rescue_workqueue;
662
663 /*
664 * Hot un-plug notifier for the per-cpu cache, if used
665 */
666 struct hlist_node cpuhp_dead;
667 };
668
bioset_initialized(struct bio_set * bs)669 static inline bool bioset_initialized(struct bio_set *bs)
670 {
671 return bs->bio_slab != NULL;
672 }
673
674 /*
675 * Mark a bio as polled. Note that for async polled IO, the caller must
676 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
677 * We cannot block waiting for requests on polled IO, as those completions
678 * must be found by the caller. This is different than IRQ driven IO, where
679 * it's safe to wait for IO to complete.
680 */
bio_set_polled(struct bio * bio,struct kiocb * kiocb)681 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
682 {
683 bio->bi_opf |= REQ_POLLED;
684 if (kiocb->ki_flags & IOCB_NOWAIT)
685 bio->bi_opf |= REQ_NOWAIT;
686 }
687
bio_clear_polled(struct bio * bio)688 static inline void bio_clear_polled(struct bio *bio)
689 {
690 bio->bi_opf &= ~REQ_POLLED;
691 }
692
693 /**
694 * bio_is_zone_append - is this a zone append bio?
695 * @bio: bio to check
696 *
697 * Check if @bio is a zone append operation. Core block layer code and end_io
698 * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check
699 * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if
700 * it is not natively supported.
701 */
bio_is_zone_append(struct bio * bio)702 static inline bool bio_is_zone_append(struct bio *bio)
703 {
704 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED))
705 return false;
706 return bio_op(bio) == REQ_OP_ZONE_APPEND ||
707 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
708 }
709
710 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
711 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
712 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);
713
714 struct bio *blk_alloc_discard_bio(struct block_device *bdev,
715 sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);
716
717 #endif /* __LINUX_BIO_H */
718