xref: /linux/fs/f2fs/segment.c (revision 86d563ac5fb0c6f404e82692581bb67a6f35e5de)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	if (clean)
196 		truncate_inode_pages_final(inode->i_mapping);
197 
198 	release_atomic_write_cnt(inode);
199 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 		clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 		/*
205 		 * The vfs inode keeps clean during commit, but the f2fs inode
206 		 * doesn't. So clear the dirty state after commit and let
207 		 * f2fs_mark_inode_dirty_sync ensure a consistent dirty state.
208 		 */
209 		f2fs_inode_synced(inode);
210 		f2fs_mark_inode_dirty_sync(inode, true);
211 	}
212 	stat_dec_atomic_inode(inode);
213 
214 	F2FS_I(inode)->atomic_write_task = NULL;
215 
216 	if (clean) {
217 		f2fs_i_size_write(inode, fi->original_i_size);
218 		fi->original_i_size = 0;
219 	}
220 	/* avoid stale dirty inode during eviction */
221 	sync_inode_metadata(inode, 0);
222 }
223 
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)224 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
225 			block_t new_addr, block_t *old_addr, bool recover)
226 {
227 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
228 	struct dnode_of_data dn;
229 	struct node_info ni;
230 	int err;
231 
232 retry:
233 	set_new_dnode(&dn, inode, NULL, NULL, 0);
234 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
235 	if (err) {
236 		if (err == -ENOMEM) {
237 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
238 			goto retry;
239 		}
240 		return err;
241 	}
242 
243 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
244 	if (err) {
245 		f2fs_put_dnode(&dn);
246 		return err;
247 	}
248 
249 	if (recover) {
250 		/* dn.data_blkaddr is always valid */
251 		if (!__is_valid_data_blkaddr(new_addr)) {
252 			if (new_addr == NULL_ADDR)
253 				dec_valid_block_count(sbi, inode, 1);
254 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr, 1);
255 			f2fs_update_data_blkaddr(&dn, new_addr);
256 		} else {
257 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
258 				new_addr, ni.version, true, true);
259 		}
260 	} else {
261 		blkcnt_t count = 1;
262 
263 		err = inc_valid_block_count(sbi, inode, &count, true);
264 		if (err) {
265 			f2fs_put_dnode(&dn);
266 			return err;
267 		}
268 
269 		*old_addr = dn.data_blkaddr;
270 		f2fs_truncate_data_blocks_range(&dn, 1);
271 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
272 
273 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
274 					ni.version, true, false);
275 	}
276 
277 	f2fs_put_dnode(&dn);
278 
279 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
280 			index, old_addr ? *old_addr : 0, new_addr, recover);
281 	return 0;
282 }
283 
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)284 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
285 					bool revoke)
286 {
287 	struct revoke_entry *cur, *tmp;
288 	pgoff_t start_index = 0;
289 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
290 
291 	list_for_each_entry_safe(cur, tmp, head, list) {
292 		if (revoke) {
293 			__replace_atomic_write_block(inode, cur->index,
294 						cur->old_addr, NULL, true);
295 		} else if (truncate) {
296 			f2fs_truncate_hole(inode, start_index, cur->index);
297 			start_index = cur->index + 1;
298 		}
299 
300 		list_del(&cur->list);
301 		kmem_cache_free(revoke_entry_slab, cur);
302 	}
303 
304 	if (!revoke && truncate)
305 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
306 }
307 
__f2fs_commit_atomic_write(struct inode * inode)308 static int __f2fs_commit_atomic_write(struct inode *inode)
309 {
310 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
311 	struct f2fs_inode_info *fi = F2FS_I(inode);
312 	struct inode *cow_inode = fi->cow_inode;
313 	struct revoke_entry *new;
314 	struct list_head revoke_list;
315 	block_t blkaddr;
316 	struct dnode_of_data dn;
317 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
318 	pgoff_t off = 0, blen, index;
319 	int ret = 0, i;
320 
321 	INIT_LIST_HEAD(&revoke_list);
322 
323 	while (len) {
324 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
325 
326 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
327 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
328 		if (ret && ret != -ENOENT) {
329 			goto out;
330 		} else if (ret == -ENOENT) {
331 			ret = 0;
332 			if (dn.max_level == 0)
333 				goto out;
334 			goto next;
335 		}
336 
337 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_folio, cow_inode),
338 				len);
339 		index = off;
340 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
341 			blkaddr = f2fs_data_blkaddr(&dn);
342 
343 			if (!__is_valid_data_blkaddr(blkaddr)) {
344 				continue;
345 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
346 					DATA_GENERIC_ENHANCE)) {
347 				f2fs_put_dnode(&dn);
348 				ret = -EFSCORRUPTED;
349 				goto out;
350 			}
351 
352 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
353 							true, NULL);
354 
355 			ret = __replace_atomic_write_block(inode, index, blkaddr,
356 							&new->old_addr, false);
357 			if (ret) {
358 				f2fs_put_dnode(&dn);
359 				kmem_cache_free(revoke_entry_slab, new);
360 				goto out;
361 			}
362 
363 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
364 			new->index = index;
365 			list_add_tail(&new->list, &revoke_list);
366 		}
367 		f2fs_put_dnode(&dn);
368 next:
369 		off += blen;
370 		len -= blen;
371 	}
372 
373 out:
374 	if (time_to_inject(sbi, FAULT_TIMEOUT))
375 		f2fs_io_schedule_timeout_killable(DEFAULT_FAULT_TIMEOUT);
376 
377 	if (ret) {
378 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
379 	} else {
380 		sbi->committed_atomic_block += fi->atomic_write_cnt;
381 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
382 
383 		/*
384 		 * inode may has no FI_ATOMIC_DIRTIED flag due to no write
385 		 * before commit.
386 		 */
387 		if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
388 			/* clear atomic dirty status and set vfs dirty status */
389 			clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
390 			f2fs_mark_inode_dirty_sync(inode, true);
391 		}
392 	}
393 
394 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
395 
396 	return ret;
397 }
398 
f2fs_commit_atomic_write(struct inode * inode)399 int f2fs_commit_atomic_write(struct inode *inode)
400 {
401 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
402 	struct f2fs_inode_info *fi = F2FS_I(inode);
403 	int err;
404 
405 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
406 	if (err)
407 		return err;
408 
409 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
410 	f2fs_lock_op(sbi);
411 
412 	err = __f2fs_commit_atomic_write(inode);
413 
414 	f2fs_unlock_op(sbi);
415 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
416 
417 	return err;
418 }
419 
420 /*
421  * This function balances dirty node and dentry pages.
422  * In addition, it controls garbage collection.
423  */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)424 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
425 {
426 	if (f2fs_cp_error(sbi))
427 		return;
428 
429 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
430 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
431 
432 	/* balance_fs_bg is able to be pending */
433 	if (need && excess_cached_nats(sbi))
434 		f2fs_balance_fs_bg(sbi, false);
435 
436 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
437 		return;
438 
439 	/*
440 	 * We should do GC or end up with checkpoint, if there are so many dirty
441 	 * dir/node pages without enough free segments.
442 	 */
443 	if (has_enough_free_secs(sbi, 0, 0))
444 		return;
445 
446 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
447 				sbi->gc_thread->f2fs_gc_task) {
448 		DEFINE_WAIT(wait);
449 
450 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
451 					TASK_UNINTERRUPTIBLE);
452 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
453 		io_schedule();
454 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
455 	} else {
456 		struct f2fs_gc_control gc_control = {
457 			.victim_segno = NULL_SEGNO,
458 			.init_gc_type = f2fs_sb_has_blkzoned(sbi) ?
459 				FG_GC : BG_GC,
460 			.no_bg_gc = true,
461 			.should_migrate_blocks = false,
462 			.err_gc_skipped = false,
463 			.nr_free_secs = 1 };
464 		f2fs_down_write(&sbi->gc_lock);
465 		stat_inc_gc_call_count(sbi, FOREGROUND);
466 		f2fs_gc(sbi, &gc_control);
467 	}
468 }
469 
excess_dirty_threshold(struct f2fs_sb_info * sbi)470 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
471 {
472 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
473 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
474 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
475 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
476 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
477 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
478 	unsigned int threshold =
479 		SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
480 	unsigned int global_threshold = threshold * 3 / 2;
481 
482 	if (dents >= threshold || qdata >= threshold ||
483 		nodes >= threshold || meta >= threshold ||
484 		imeta >= threshold)
485 		return true;
486 	return dents + qdata + nodes + meta + imeta >  global_threshold;
487 }
488 
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)489 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
490 {
491 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
492 		return;
493 
494 	/* try to shrink extent cache when there is no enough memory */
495 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
496 		f2fs_shrink_read_extent_tree(sbi,
497 				READ_EXTENT_CACHE_SHRINK_NUMBER);
498 
499 	/* try to shrink age extent cache when there is no enough memory */
500 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
501 		f2fs_shrink_age_extent_tree(sbi,
502 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
503 
504 	/* check the # of cached NAT entries */
505 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
506 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
507 
508 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
509 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
510 	else
511 		f2fs_build_free_nids(sbi, false, false);
512 
513 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
514 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
515 		goto do_sync;
516 
517 	/* there is background inflight IO or foreground operation recently */
518 	if (is_inflight_io(sbi, REQ_TIME) ||
519 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
520 		return;
521 
522 	/* exceed periodical checkpoint timeout threshold */
523 	if (f2fs_time_over(sbi, CP_TIME))
524 		goto do_sync;
525 
526 	/* checkpoint is the only way to shrink partial cached entries */
527 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
528 		f2fs_available_free_memory(sbi, INO_ENTRIES))
529 		return;
530 
531 do_sync:
532 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
533 		struct blk_plug plug;
534 
535 		mutex_lock(&sbi->flush_lock);
536 
537 		blk_start_plug(&plug);
538 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
539 		blk_finish_plug(&plug);
540 
541 		mutex_unlock(&sbi->flush_lock);
542 	}
543 	stat_inc_cp_call_count(sbi, BACKGROUND);
544 	f2fs_sync_fs(sbi->sb, 1);
545 }
546 
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)547 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
548 				struct block_device *bdev)
549 {
550 	int ret = blkdev_issue_flush(bdev);
551 
552 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
553 				test_opt(sbi, FLUSH_MERGE), ret);
554 	if (!ret)
555 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
556 	return ret;
557 }
558 
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)559 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
560 {
561 	int ret = 0;
562 	int i;
563 
564 	if (!f2fs_is_multi_device(sbi))
565 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
566 
567 	for (i = 0; i < sbi->s_ndevs; i++) {
568 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
569 			continue;
570 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
571 		if (ret)
572 			break;
573 	}
574 	return ret;
575 }
576 
issue_flush_thread(void * data)577 static int issue_flush_thread(void *data)
578 {
579 	struct f2fs_sb_info *sbi = data;
580 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
581 	wait_queue_head_t *q = &fcc->flush_wait_queue;
582 repeat:
583 	if (kthread_should_stop())
584 		return 0;
585 
586 	if (!llist_empty(&fcc->issue_list)) {
587 		struct flush_cmd *cmd, *next;
588 		int ret;
589 
590 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
591 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
592 
593 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
594 
595 		ret = submit_flush_wait(sbi, cmd->ino);
596 		atomic_inc(&fcc->issued_flush);
597 
598 		llist_for_each_entry_safe(cmd, next,
599 					  fcc->dispatch_list, llnode) {
600 			cmd->ret = ret;
601 			complete(&cmd->wait);
602 		}
603 		fcc->dispatch_list = NULL;
604 	}
605 
606 	wait_event_interruptible(*q,
607 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
608 	goto repeat;
609 }
610 
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)611 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
612 {
613 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
614 	struct flush_cmd cmd;
615 	int ret;
616 
617 	if (test_opt(sbi, NOBARRIER))
618 		return 0;
619 
620 	if (!test_opt(sbi, FLUSH_MERGE)) {
621 		atomic_inc(&fcc->queued_flush);
622 		ret = submit_flush_wait(sbi, ino);
623 		atomic_dec(&fcc->queued_flush);
624 		atomic_inc(&fcc->issued_flush);
625 		return ret;
626 	}
627 
628 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
629 	    f2fs_is_multi_device(sbi)) {
630 		ret = submit_flush_wait(sbi, ino);
631 		atomic_dec(&fcc->queued_flush);
632 
633 		atomic_inc(&fcc->issued_flush);
634 		return ret;
635 	}
636 
637 	cmd.ino = ino;
638 	init_completion(&cmd.wait);
639 
640 	llist_add(&cmd.llnode, &fcc->issue_list);
641 
642 	/*
643 	 * update issue_list before we wake up issue_flush thread, this
644 	 * smp_mb() pairs with another barrier in ___wait_event(), see
645 	 * more details in comments of waitqueue_active().
646 	 */
647 	smp_mb();
648 
649 	if (waitqueue_active(&fcc->flush_wait_queue))
650 		wake_up(&fcc->flush_wait_queue);
651 
652 	if (fcc->f2fs_issue_flush) {
653 		wait_for_completion(&cmd.wait);
654 		atomic_dec(&fcc->queued_flush);
655 	} else {
656 		struct llist_node *list;
657 
658 		list = llist_del_all(&fcc->issue_list);
659 		if (!list) {
660 			wait_for_completion(&cmd.wait);
661 			atomic_dec(&fcc->queued_flush);
662 		} else {
663 			struct flush_cmd *tmp, *next;
664 
665 			ret = submit_flush_wait(sbi, ino);
666 
667 			llist_for_each_entry_safe(tmp, next, list, llnode) {
668 				if (tmp == &cmd) {
669 					cmd.ret = ret;
670 					atomic_dec(&fcc->queued_flush);
671 					continue;
672 				}
673 				tmp->ret = ret;
674 				complete(&tmp->wait);
675 			}
676 		}
677 	}
678 
679 	return cmd.ret;
680 }
681 
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)682 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
683 {
684 	dev_t dev = sbi->sb->s_bdev->bd_dev;
685 	struct flush_cmd_control *fcc;
686 
687 	if (SM_I(sbi)->fcc_info) {
688 		fcc = SM_I(sbi)->fcc_info;
689 		if (fcc->f2fs_issue_flush)
690 			return 0;
691 		goto init_thread;
692 	}
693 
694 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
695 	if (!fcc)
696 		return -ENOMEM;
697 	atomic_set(&fcc->issued_flush, 0);
698 	atomic_set(&fcc->queued_flush, 0);
699 	init_waitqueue_head(&fcc->flush_wait_queue);
700 	init_llist_head(&fcc->issue_list);
701 	SM_I(sbi)->fcc_info = fcc;
702 	if (!test_opt(sbi, FLUSH_MERGE))
703 		return 0;
704 
705 init_thread:
706 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
707 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
708 	if (IS_ERR(fcc->f2fs_issue_flush)) {
709 		int err = PTR_ERR(fcc->f2fs_issue_flush);
710 
711 		fcc->f2fs_issue_flush = NULL;
712 		return err;
713 	}
714 
715 	return 0;
716 }
717 
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)718 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
719 {
720 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
721 
722 	if (fcc && fcc->f2fs_issue_flush) {
723 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
724 
725 		fcc->f2fs_issue_flush = NULL;
726 		kthread_stop(flush_thread);
727 	}
728 	if (free) {
729 		kfree(fcc);
730 		SM_I(sbi)->fcc_info = NULL;
731 	}
732 }
733 
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)734 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
735 {
736 	int ret = 0, i;
737 
738 	if (!f2fs_is_multi_device(sbi))
739 		return 0;
740 
741 	if (test_opt(sbi, NOBARRIER))
742 		return 0;
743 
744 	for (i = 1; i < sbi->s_ndevs; i++) {
745 		int count = DEFAULT_RETRY_IO_COUNT;
746 
747 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
748 			continue;
749 
750 		do {
751 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
752 			if (ret)
753 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
754 		} while (ret && --count);
755 
756 		if (ret) {
757 			f2fs_stop_checkpoint(sbi, false,
758 					STOP_CP_REASON_FLUSH_FAIL);
759 			break;
760 		}
761 
762 		spin_lock(&sbi->dev_lock);
763 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
764 		spin_unlock(&sbi->dev_lock);
765 	}
766 
767 	return ret;
768 }
769 
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)770 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
771 		enum dirty_type dirty_type)
772 {
773 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
774 
775 	/* need not be added */
776 	if (is_curseg(sbi, segno))
777 		return;
778 
779 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
780 		dirty_i->nr_dirty[dirty_type]++;
781 
782 	if (dirty_type == DIRTY) {
783 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
784 		enum dirty_type t = sentry->type;
785 
786 		if (unlikely(t >= DIRTY)) {
787 			f2fs_bug_on(sbi, 1);
788 			return;
789 		}
790 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
791 			dirty_i->nr_dirty[t]++;
792 
793 		if (__is_large_section(sbi)) {
794 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
795 			block_t valid_blocks =
796 				get_valid_blocks(sbi, segno, true);
797 
798 			f2fs_bug_on(sbi,
799 				(!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
800 				!valid_blocks) ||
801 				valid_blocks == CAP_BLKS_PER_SEC(sbi));
802 
803 			if (!is_cursec(sbi, secno))
804 				set_bit(secno, dirty_i->dirty_secmap);
805 		}
806 	}
807 }
808 
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)809 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
810 		enum dirty_type dirty_type)
811 {
812 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
813 	block_t valid_blocks;
814 
815 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
816 		dirty_i->nr_dirty[dirty_type]--;
817 
818 	if (dirty_type == DIRTY) {
819 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
820 		enum dirty_type t = sentry->type;
821 
822 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
823 			dirty_i->nr_dirty[t]--;
824 
825 		valid_blocks = get_valid_blocks(sbi, segno, true);
826 		if (valid_blocks == 0) {
827 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
828 						dirty_i->victim_secmap);
829 #ifdef CONFIG_F2FS_CHECK_FS
830 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
831 #endif
832 		}
833 		if (__is_large_section(sbi)) {
834 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
835 
836 			if (!valid_blocks ||
837 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
838 				clear_bit(secno, dirty_i->dirty_secmap);
839 				return;
840 			}
841 
842 			if (!is_cursec(sbi, secno))
843 				set_bit(secno, dirty_i->dirty_secmap);
844 		}
845 	}
846 }
847 
848 /*
849  * Should not occur error such as -ENOMEM.
850  * Adding dirty entry into seglist is not critical operation.
851  * If a given segment is one of current working segments, it won't be added.
852  */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)853 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
854 {
855 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
856 	unsigned short valid_blocks, ckpt_valid_blocks;
857 	unsigned int usable_blocks;
858 
859 	if (segno == NULL_SEGNO || is_curseg(sbi, segno))
860 		return;
861 
862 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
863 	mutex_lock(&dirty_i->seglist_lock);
864 
865 	valid_blocks = get_valid_blocks(sbi, segno, false);
866 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
867 
868 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
869 		ckpt_valid_blocks == usable_blocks)) {
870 		__locate_dirty_segment(sbi, segno, PRE);
871 		__remove_dirty_segment(sbi, segno, DIRTY);
872 	} else if (valid_blocks < usable_blocks) {
873 		__locate_dirty_segment(sbi, segno, DIRTY);
874 	} else {
875 		/* Recovery routine with SSR needs this */
876 		__remove_dirty_segment(sbi, segno, DIRTY);
877 	}
878 
879 	mutex_unlock(&dirty_i->seglist_lock);
880 }
881 
882 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)883 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
884 {
885 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
886 	unsigned int segno;
887 
888 	mutex_lock(&dirty_i->seglist_lock);
889 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
890 		if (get_valid_blocks(sbi, segno, false))
891 			continue;
892 		if (is_curseg(sbi, segno))
893 			continue;
894 		__locate_dirty_segment(sbi, segno, PRE);
895 		__remove_dirty_segment(sbi, segno, DIRTY);
896 	}
897 	mutex_unlock(&dirty_i->seglist_lock);
898 }
899 
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)900 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
901 {
902 	int ovp_hole_segs =
903 		(overprovision_segments(sbi) - reserved_segments(sbi));
904 	block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
905 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
906 	block_t holes[2] = {0, 0};	/* DATA and NODE */
907 	block_t unusable;
908 	struct seg_entry *se;
909 	unsigned int segno;
910 
911 	mutex_lock(&dirty_i->seglist_lock);
912 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
913 		se = get_seg_entry(sbi, segno);
914 		if (IS_NODESEG(se->type))
915 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
916 							se->valid_blocks;
917 		else
918 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
919 							se->valid_blocks;
920 	}
921 	mutex_unlock(&dirty_i->seglist_lock);
922 
923 	unusable = max(holes[DATA], holes[NODE]);
924 	if (unusable > ovp_holes)
925 		return unusable - ovp_holes;
926 	return 0;
927 }
928 
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)929 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
930 {
931 	int ovp_hole_segs =
932 		(overprovision_segments(sbi) - reserved_segments(sbi));
933 
934 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
935 		return 0;
936 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
937 		return -EAGAIN;
938 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
939 		dirty_segments(sbi) > ovp_hole_segs)
940 		return -EAGAIN;
941 	if (has_not_enough_free_secs(sbi, 0, 0))
942 		return -EAGAIN;
943 	return 0;
944 }
945 
946 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)947 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
948 {
949 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
950 	unsigned int segno = 0;
951 
952 	mutex_lock(&dirty_i->seglist_lock);
953 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
954 		if (get_valid_blocks(sbi, segno, false))
955 			continue;
956 		if (get_ckpt_valid_blocks(sbi, segno, false))
957 			continue;
958 		mutex_unlock(&dirty_i->seglist_lock);
959 		return segno;
960 	}
961 	mutex_unlock(&dirty_i->seglist_lock);
962 	return NULL_SEGNO;
963 }
964 
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)965 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
966 		struct block_device *bdev, block_t lstart,
967 		block_t start, block_t len)
968 {
969 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
970 	struct list_head *pend_list;
971 	struct discard_cmd *dc;
972 
973 	f2fs_bug_on(sbi, !len);
974 
975 	pend_list = &dcc->pend_list[plist_idx(len)];
976 
977 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
978 	INIT_LIST_HEAD(&dc->list);
979 	dc->bdev = bdev;
980 	dc->di.lstart = lstart;
981 	dc->di.start = start;
982 	dc->di.len = len;
983 	dc->ref = 0;
984 	dc->state = D_PREP;
985 	dc->queued = 0;
986 	dc->error = 0;
987 	init_completion(&dc->wait);
988 	list_add_tail(&dc->list, pend_list);
989 	spin_lock_init(&dc->lock);
990 	dc->bio_ref = 0;
991 	atomic_inc(&dcc->discard_cmd_cnt);
992 	dcc->undiscard_blks += len;
993 
994 	return dc;
995 }
996 
f2fs_check_discard_tree(struct f2fs_sb_info * sbi)997 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
998 {
999 #ifdef CONFIG_F2FS_CHECK_FS
1000 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1001 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
1002 	struct discard_cmd *cur_dc, *next_dc;
1003 
1004 	while (cur) {
1005 		next = rb_next(cur);
1006 		if (!next)
1007 			return true;
1008 
1009 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
1010 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
1011 
1012 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
1013 			f2fs_info(sbi, "broken discard_rbtree, "
1014 				"cur(%u, %u) next(%u, %u)",
1015 				cur_dc->di.lstart, cur_dc->di.len,
1016 				next_dc->di.lstart, next_dc->di.len);
1017 			return false;
1018 		}
1019 		cur = next;
1020 	}
1021 #endif
1022 	return true;
1023 }
1024 
__lookup_discard_cmd(struct f2fs_sb_info * sbi,block_t blkaddr)1025 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1026 						block_t blkaddr)
1027 {
1028 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1029 	struct rb_node *node = dcc->root.rb_root.rb_node;
1030 	struct discard_cmd *dc;
1031 
1032 	while (node) {
1033 		dc = rb_entry(node, struct discard_cmd, rb_node);
1034 
1035 		if (blkaddr < dc->di.lstart)
1036 			node = node->rb_left;
1037 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1038 			node = node->rb_right;
1039 		else
1040 			return dc;
1041 	}
1042 	return NULL;
1043 }
1044 
__lookup_discard_cmd_ret(struct rb_root_cached * root,block_t blkaddr,struct discard_cmd ** prev_entry,struct discard_cmd ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent)1045 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1046 				block_t blkaddr,
1047 				struct discard_cmd **prev_entry,
1048 				struct discard_cmd **next_entry,
1049 				struct rb_node ***insert_p,
1050 				struct rb_node **insert_parent)
1051 {
1052 	struct rb_node **pnode = &root->rb_root.rb_node;
1053 	struct rb_node *parent = NULL, *tmp_node;
1054 	struct discard_cmd *dc;
1055 
1056 	*insert_p = NULL;
1057 	*insert_parent = NULL;
1058 	*prev_entry = NULL;
1059 	*next_entry = NULL;
1060 
1061 	if (RB_EMPTY_ROOT(&root->rb_root))
1062 		return NULL;
1063 
1064 	while (*pnode) {
1065 		parent = *pnode;
1066 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1067 
1068 		if (blkaddr < dc->di.lstart)
1069 			pnode = &(*pnode)->rb_left;
1070 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1071 			pnode = &(*pnode)->rb_right;
1072 		else
1073 			goto lookup_neighbors;
1074 	}
1075 
1076 	*insert_p = pnode;
1077 	*insert_parent = parent;
1078 
1079 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1080 	tmp_node = parent;
1081 	if (parent && blkaddr > dc->di.lstart)
1082 		tmp_node = rb_next(parent);
1083 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1084 
1085 	tmp_node = parent;
1086 	if (parent && blkaddr < dc->di.lstart)
1087 		tmp_node = rb_prev(parent);
1088 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1089 	return NULL;
1090 
1091 lookup_neighbors:
1092 	/* lookup prev node for merging backward later */
1093 	tmp_node = rb_prev(&dc->rb_node);
1094 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1095 
1096 	/* lookup next node for merging frontward later */
1097 	tmp_node = rb_next(&dc->rb_node);
1098 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1099 	return dc;
1100 }
1101 
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1102 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1103 							struct discard_cmd *dc)
1104 {
1105 	if (dc->state == D_DONE)
1106 		atomic_sub(dc->queued, &dcc->queued_discard);
1107 
1108 	list_del(&dc->list);
1109 	rb_erase_cached(&dc->rb_node, &dcc->root);
1110 	dcc->undiscard_blks -= dc->di.len;
1111 
1112 	kmem_cache_free(discard_cmd_slab, dc);
1113 
1114 	atomic_dec(&dcc->discard_cmd_cnt);
1115 }
1116 
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1117 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1118 							struct discard_cmd *dc)
1119 {
1120 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1121 	unsigned long flags;
1122 
1123 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1124 
1125 	spin_lock_irqsave(&dc->lock, flags);
1126 	if (dc->bio_ref) {
1127 		spin_unlock_irqrestore(&dc->lock, flags);
1128 		return;
1129 	}
1130 	spin_unlock_irqrestore(&dc->lock, flags);
1131 
1132 	f2fs_bug_on(sbi, dc->ref);
1133 
1134 	if (dc->error == -EOPNOTSUPP)
1135 		dc->error = 0;
1136 
1137 	if (dc->error)
1138 		f2fs_info_ratelimited(sbi,
1139 			"Issue discard(%u, %u, %u) failed, ret: %d",
1140 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1141 	__detach_discard_cmd(dcc, dc);
1142 }
1143 
f2fs_submit_discard_endio(struct bio * bio)1144 static void f2fs_submit_discard_endio(struct bio *bio)
1145 {
1146 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1147 	unsigned long flags;
1148 
1149 	spin_lock_irqsave(&dc->lock, flags);
1150 	if (!dc->error)
1151 		dc->error = blk_status_to_errno(bio->bi_status);
1152 	dc->bio_ref--;
1153 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1154 		dc->state = D_DONE;
1155 		complete_all(&dc->wait);
1156 	}
1157 	spin_unlock_irqrestore(&dc->lock, flags);
1158 	bio_put(bio);
1159 }
1160 
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1161 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1162 				block_t start, block_t end)
1163 {
1164 #ifdef CONFIG_F2FS_CHECK_FS
1165 	struct seg_entry *sentry;
1166 	unsigned int segno;
1167 	block_t blk = start;
1168 	unsigned long offset, size, *map;
1169 
1170 	while (blk < end) {
1171 		segno = GET_SEGNO(sbi, blk);
1172 		sentry = get_seg_entry(sbi, segno);
1173 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1174 
1175 		if (end < START_BLOCK(sbi, segno + 1))
1176 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1177 		else
1178 			size = BLKS_PER_SEG(sbi);
1179 		map = (unsigned long *)(sentry->cur_valid_map);
1180 		offset = __find_rev_next_bit(map, size, offset);
1181 		f2fs_bug_on(sbi, offset != size);
1182 		blk = START_BLOCK(sbi, segno + 1);
1183 	}
1184 #endif
1185 }
1186 
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1187 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1188 				struct discard_policy *dpolicy,
1189 				int discard_type, unsigned int granularity)
1190 {
1191 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1192 
1193 	/* common policy */
1194 	dpolicy->type = discard_type;
1195 	dpolicy->sync = true;
1196 	dpolicy->ordered = false;
1197 	dpolicy->granularity = granularity;
1198 
1199 	dpolicy->max_requests = dcc->max_discard_request;
1200 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1201 	dpolicy->timeout = false;
1202 
1203 	if (discard_type == DPOLICY_BG) {
1204 		dpolicy->min_interval = dcc->min_discard_issue_time;
1205 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1206 		dpolicy->max_interval = dcc->max_discard_issue_time;
1207 		if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1208 			dpolicy->io_aware = true;
1209 		else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1210 			dpolicy->io_aware = false;
1211 		dpolicy->sync = false;
1212 		dpolicy->ordered = true;
1213 		if (utilization(sbi) > dcc->discard_urgent_util) {
1214 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1215 			if (atomic_read(&dcc->discard_cmd_cnt))
1216 				dpolicy->max_interval =
1217 					dcc->min_discard_issue_time;
1218 		}
1219 	} else if (discard_type == DPOLICY_FORCE) {
1220 		dpolicy->min_interval = dcc->min_discard_issue_time;
1221 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1222 		dpolicy->max_interval = dcc->max_discard_issue_time;
1223 		dpolicy->io_aware = false;
1224 	} else if (discard_type == DPOLICY_FSTRIM) {
1225 		dpolicy->io_aware = false;
1226 	} else if (discard_type == DPOLICY_UMOUNT) {
1227 		dpolicy->io_aware = false;
1228 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1229 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1230 		dpolicy->timeout = true;
1231 	}
1232 }
1233 
1234 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1235 				struct block_device *bdev, block_t lstart,
1236 				block_t start, block_t len);
1237 
1238 #ifdef CONFIG_BLK_DEV_ZONED
__submit_zone_reset_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,blk_opf_t flag,struct list_head * wait_list,unsigned int * issued)1239 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1240 				   struct discard_cmd *dc, blk_opf_t flag,
1241 				   struct list_head *wait_list,
1242 				   unsigned int *issued)
1243 {
1244 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1245 	struct block_device *bdev = dc->bdev;
1246 	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1247 	unsigned long flags;
1248 
1249 	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1250 
1251 	spin_lock_irqsave(&dc->lock, flags);
1252 	dc->state = D_SUBMIT;
1253 	dc->bio_ref++;
1254 	spin_unlock_irqrestore(&dc->lock, flags);
1255 
1256 	if (issued)
1257 		(*issued)++;
1258 
1259 	atomic_inc(&dcc->queued_discard);
1260 	dc->queued++;
1261 	list_move_tail(&dc->list, wait_list);
1262 
1263 	/* sanity check on discard range */
1264 	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1265 
1266 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1267 	bio->bi_private = dc;
1268 	bio->bi_end_io = f2fs_submit_discard_endio;
1269 	submit_bio(bio);
1270 
1271 	atomic_inc(&dcc->issued_discard);
1272 	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1273 }
1274 #endif
1275 
1276 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,int * issued)1277 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1278 				struct discard_policy *dpolicy,
1279 				struct discard_cmd *dc, int *issued)
1280 {
1281 	struct block_device *bdev = dc->bdev;
1282 	unsigned int max_discard_blocks =
1283 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1284 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1285 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1286 					&(dcc->fstrim_list) : &(dcc->wait_list);
1287 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1288 	block_t lstart, start, len, total_len;
1289 	int err = 0;
1290 
1291 	if (dc->state != D_PREP)
1292 		return 0;
1293 
1294 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1295 		return 0;
1296 
1297 #ifdef CONFIG_BLK_DEV_ZONED
1298 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1299 		int devi = f2fs_bdev_index(sbi, bdev);
1300 
1301 		if (devi < 0)
1302 			return -EINVAL;
1303 
1304 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1305 			__submit_zone_reset_cmd(sbi, dc, flag,
1306 						wait_list, issued);
1307 			return 0;
1308 		}
1309 	}
1310 #endif
1311 
1312 	/*
1313 	 * stop issuing discard for any of below cases:
1314 	 * 1. device is conventional zone, but it doesn't support discard.
1315 	 * 2. device is regulare device, after snapshot it doesn't support
1316 	 * discard.
1317 	 */
1318 	if (!bdev_max_discard_sectors(bdev))
1319 		return -EOPNOTSUPP;
1320 
1321 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1322 
1323 	lstart = dc->di.lstart;
1324 	start = dc->di.start;
1325 	len = dc->di.len;
1326 	total_len = len;
1327 
1328 	dc->di.len = 0;
1329 
1330 	while (total_len && *issued < dpolicy->max_requests && !err) {
1331 		struct bio *bio = NULL;
1332 		unsigned long flags;
1333 		bool last = true;
1334 
1335 		if (len > max_discard_blocks) {
1336 			len = max_discard_blocks;
1337 			last = false;
1338 		}
1339 
1340 		(*issued)++;
1341 		if (*issued == dpolicy->max_requests)
1342 			last = true;
1343 
1344 		dc->di.len += len;
1345 
1346 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1347 			err = -EIO;
1348 		} else {
1349 			err = __blkdev_issue_discard(bdev,
1350 					SECTOR_FROM_BLOCK(start),
1351 					SECTOR_FROM_BLOCK(len),
1352 					GFP_NOFS, &bio);
1353 		}
1354 		if (err) {
1355 			spin_lock_irqsave(&dc->lock, flags);
1356 			if (dc->state == D_PARTIAL)
1357 				dc->state = D_SUBMIT;
1358 			spin_unlock_irqrestore(&dc->lock, flags);
1359 
1360 			break;
1361 		}
1362 
1363 		f2fs_bug_on(sbi, !bio);
1364 
1365 		/*
1366 		 * should keep before submission to avoid D_DONE
1367 		 * right away
1368 		 */
1369 		spin_lock_irqsave(&dc->lock, flags);
1370 		if (last)
1371 			dc->state = D_SUBMIT;
1372 		else
1373 			dc->state = D_PARTIAL;
1374 		dc->bio_ref++;
1375 		spin_unlock_irqrestore(&dc->lock, flags);
1376 
1377 		atomic_inc(&dcc->queued_discard);
1378 		dc->queued++;
1379 		list_move_tail(&dc->list, wait_list);
1380 
1381 		/* sanity check on discard range */
1382 		__check_sit_bitmap(sbi, lstart, lstart + len);
1383 
1384 		bio->bi_private = dc;
1385 		bio->bi_end_io = f2fs_submit_discard_endio;
1386 		bio->bi_opf |= flag;
1387 		submit_bio(bio);
1388 
1389 		atomic_inc(&dcc->issued_discard);
1390 
1391 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1392 
1393 		lstart += len;
1394 		start += len;
1395 		total_len -= len;
1396 		len = total_len;
1397 	}
1398 
1399 	if (!err && len) {
1400 		dcc->undiscard_blks -= len;
1401 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1402 	}
1403 	return err;
1404 }
1405 
__insert_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1406 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1407 				struct block_device *bdev, block_t lstart,
1408 				block_t start, block_t len)
1409 {
1410 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1411 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1412 	struct rb_node *parent = NULL;
1413 	struct discard_cmd *dc;
1414 	bool leftmost = true;
1415 
1416 	/* look up rb tree to find parent node */
1417 	while (*p) {
1418 		parent = *p;
1419 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1420 
1421 		if (lstart < dc->di.lstart) {
1422 			p = &(*p)->rb_left;
1423 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1424 			p = &(*p)->rb_right;
1425 			leftmost = false;
1426 		} else {
1427 			/* Let's skip to add, if exists */
1428 			return;
1429 		}
1430 	}
1431 
1432 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1433 
1434 	rb_link_node(&dc->rb_node, parent, p);
1435 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1436 }
1437 
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1438 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1439 						struct discard_cmd *dc)
1440 {
1441 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1442 }
1443 
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1444 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1445 				struct discard_cmd *dc, block_t blkaddr)
1446 {
1447 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1448 	struct discard_info di = dc->di;
1449 	bool modified = false;
1450 
1451 	if (dc->state == D_DONE || dc->di.len == 1) {
1452 		__remove_discard_cmd(sbi, dc);
1453 		return;
1454 	}
1455 
1456 	dcc->undiscard_blks -= di.len;
1457 
1458 	if (blkaddr > di.lstart) {
1459 		dc->di.len = blkaddr - dc->di.lstart;
1460 		dcc->undiscard_blks += dc->di.len;
1461 		__relocate_discard_cmd(dcc, dc);
1462 		modified = true;
1463 	}
1464 
1465 	if (blkaddr < di.lstart + di.len - 1) {
1466 		if (modified) {
1467 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1468 					di.start + blkaddr + 1 - di.lstart,
1469 					di.lstart + di.len - 1 - blkaddr);
1470 		} else {
1471 			dc->di.lstart++;
1472 			dc->di.len--;
1473 			dc->di.start++;
1474 			dcc->undiscard_blks += dc->di.len;
1475 			__relocate_discard_cmd(dcc, dc);
1476 		}
1477 	}
1478 }
1479 
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1480 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1481 				struct block_device *bdev, block_t lstart,
1482 				block_t start, block_t len)
1483 {
1484 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1485 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1486 	struct discard_cmd *dc;
1487 	struct discard_info di = {0};
1488 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1489 	unsigned int max_discard_blocks =
1490 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1491 	block_t end = lstart + len;
1492 
1493 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1494 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1495 	if (dc)
1496 		prev_dc = dc;
1497 
1498 	if (!prev_dc) {
1499 		di.lstart = lstart;
1500 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1501 		di.len = min(di.len, len);
1502 		di.start = start;
1503 	}
1504 
1505 	while (1) {
1506 		struct rb_node *node;
1507 		bool merged = false;
1508 		struct discard_cmd *tdc = NULL;
1509 
1510 		if (prev_dc) {
1511 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1512 			if (di.lstart < lstart)
1513 				di.lstart = lstart;
1514 			if (di.lstart >= end)
1515 				break;
1516 
1517 			if (!next_dc || next_dc->di.lstart > end)
1518 				di.len = end - di.lstart;
1519 			else
1520 				di.len = next_dc->di.lstart - di.lstart;
1521 			di.start = start + di.lstart - lstart;
1522 		}
1523 
1524 		if (!di.len)
1525 			goto next;
1526 
1527 		if (prev_dc && prev_dc->state == D_PREP &&
1528 			prev_dc->bdev == bdev &&
1529 			__is_discard_back_mergeable(&di, &prev_dc->di,
1530 							max_discard_blocks)) {
1531 			prev_dc->di.len += di.len;
1532 			dcc->undiscard_blks += di.len;
1533 			__relocate_discard_cmd(dcc, prev_dc);
1534 			di = prev_dc->di;
1535 			tdc = prev_dc;
1536 			merged = true;
1537 		}
1538 
1539 		if (next_dc && next_dc->state == D_PREP &&
1540 			next_dc->bdev == bdev &&
1541 			__is_discard_front_mergeable(&di, &next_dc->di,
1542 							max_discard_blocks)) {
1543 			next_dc->di.lstart = di.lstart;
1544 			next_dc->di.len += di.len;
1545 			next_dc->di.start = di.start;
1546 			dcc->undiscard_blks += di.len;
1547 			__relocate_discard_cmd(dcc, next_dc);
1548 			if (tdc)
1549 				__remove_discard_cmd(sbi, tdc);
1550 			merged = true;
1551 		}
1552 
1553 		if (!merged)
1554 			__insert_discard_cmd(sbi, bdev,
1555 						di.lstart, di.start, di.len);
1556  next:
1557 		prev_dc = next_dc;
1558 		if (!prev_dc)
1559 			break;
1560 
1561 		node = rb_next(&prev_dc->rb_node);
1562 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1563 	}
1564 }
1565 
1566 #ifdef CONFIG_BLK_DEV_ZONED
__queue_zone_reset_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t lblkstart,block_t blklen)1567 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1568 		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1569 		block_t blklen)
1570 {
1571 	trace_f2fs_queue_reset_zone(bdev, blkstart);
1572 
1573 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1574 	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1575 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1576 }
1577 #endif
1578 
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1579 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1580 		struct block_device *bdev, block_t blkstart, block_t blklen)
1581 {
1582 	block_t lblkstart = blkstart;
1583 
1584 	if (!f2fs_bdev_support_discard(bdev))
1585 		return;
1586 
1587 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1588 
1589 	if (f2fs_is_multi_device(sbi)) {
1590 		int devi = f2fs_target_device_index(sbi, blkstart);
1591 
1592 		blkstart -= FDEV(devi).start_blk;
1593 	}
1594 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1595 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1596 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1597 }
1598 
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int * issued)1599 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1600 		struct discard_policy *dpolicy, int *issued)
1601 {
1602 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1603 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1604 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1605 	struct discard_cmd *dc;
1606 	struct blk_plug plug;
1607 	bool io_interrupted = false;
1608 
1609 	mutex_lock(&dcc->cmd_lock);
1610 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1611 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1612 	if (!dc)
1613 		dc = next_dc;
1614 
1615 	blk_start_plug(&plug);
1616 
1617 	while (dc) {
1618 		struct rb_node *node;
1619 		int err = 0;
1620 
1621 		if (dc->state != D_PREP)
1622 			goto next;
1623 
1624 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1625 			io_interrupted = true;
1626 			break;
1627 		}
1628 
1629 		dcc->next_pos = dc->di.lstart + dc->di.len;
1630 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1631 
1632 		if (*issued >= dpolicy->max_requests)
1633 			break;
1634 next:
1635 		node = rb_next(&dc->rb_node);
1636 		if (err)
1637 			__remove_discard_cmd(sbi, dc);
1638 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1639 	}
1640 
1641 	blk_finish_plug(&plug);
1642 
1643 	if (!dc)
1644 		dcc->next_pos = 0;
1645 
1646 	mutex_unlock(&dcc->cmd_lock);
1647 
1648 	if (!(*issued) && io_interrupted)
1649 		*issued = -1;
1650 }
1651 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1652 					struct discard_policy *dpolicy);
1653 
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1654 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1655 					struct discard_policy *dpolicy)
1656 {
1657 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1658 	struct list_head *pend_list;
1659 	struct discard_cmd *dc, *tmp;
1660 	struct blk_plug plug;
1661 	int i, issued;
1662 	bool io_interrupted = false;
1663 
1664 	if (dpolicy->timeout)
1665 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1666 
1667 retry:
1668 	issued = 0;
1669 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1670 		if (dpolicy->timeout &&
1671 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1672 			break;
1673 
1674 		if (i + 1 < dpolicy->granularity)
1675 			break;
1676 
1677 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1678 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1679 			return issued;
1680 		}
1681 
1682 		pend_list = &dcc->pend_list[i];
1683 
1684 		mutex_lock(&dcc->cmd_lock);
1685 		if (list_empty(pend_list))
1686 			goto next;
1687 		if (unlikely(dcc->rbtree_check))
1688 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1689 		blk_start_plug(&plug);
1690 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1691 			f2fs_bug_on(sbi, dc->state != D_PREP);
1692 
1693 			if (dpolicy->timeout &&
1694 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1695 				break;
1696 
1697 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1698 						!is_idle(sbi, DISCARD_TIME)) {
1699 				io_interrupted = true;
1700 				break;
1701 			}
1702 
1703 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1704 
1705 			if (issued >= dpolicy->max_requests)
1706 				break;
1707 		}
1708 		blk_finish_plug(&plug);
1709 next:
1710 		mutex_unlock(&dcc->cmd_lock);
1711 
1712 		if (issued >= dpolicy->max_requests || io_interrupted)
1713 			break;
1714 	}
1715 
1716 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1717 		__wait_all_discard_cmd(sbi, dpolicy);
1718 		goto retry;
1719 	}
1720 
1721 	if (!issued && io_interrupted)
1722 		issued = -1;
1723 
1724 	return issued;
1725 }
1726 
__drop_discard_cmd(struct f2fs_sb_info * sbi)1727 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1728 {
1729 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1730 	struct list_head *pend_list;
1731 	struct discard_cmd *dc, *tmp;
1732 	int i;
1733 	bool dropped = false;
1734 
1735 	mutex_lock(&dcc->cmd_lock);
1736 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1737 		pend_list = &dcc->pend_list[i];
1738 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1739 			f2fs_bug_on(sbi, dc->state != D_PREP);
1740 			__remove_discard_cmd(sbi, dc);
1741 			dropped = true;
1742 		}
1743 	}
1744 	mutex_unlock(&dcc->cmd_lock);
1745 
1746 	return dropped;
1747 }
1748 
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1749 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1750 {
1751 	__drop_discard_cmd(sbi);
1752 }
1753 
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1754 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1755 							struct discard_cmd *dc)
1756 {
1757 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1758 	unsigned int len = 0;
1759 
1760 	wait_for_completion_io(&dc->wait);
1761 	mutex_lock(&dcc->cmd_lock);
1762 	f2fs_bug_on(sbi, dc->state != D_DONE);
1763 	dc->ref--;
1764 	if (!dc->ref) {
1765 		if (!dc->error)
1766 			len = dc->di.len;
1767 		__remove_discard_cmd(sbi, dc);
1768 	}
1769 	mutex_unlock(&dcc->cmd_lock);
1770 
1771 	return len;
1772 }
1773 
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1774 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1775 						struct discard_policy *dpolicy,
1776 						block_t start, block_t end)
1777 {
1778 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1779 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1780 					&(dcc->fstrim_list) : &(dcc->wait_list);
1781 	struct discard_cmd *dc = NULL, *iter, *tmp;
1782 	unsigned int trimmed = 0;
1783 
1784 next:
1785 	dc = NULL;
1786 
1787 	mutex_lock(&dcc->cmd_lock);
1788 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1789 		if (iter->di.lstart + iter->di.len <= start ||
1790 					end <= iter->di.lstart)
1791 			continue;
1792 		if (iter->di.len < dpolicy->granularity)
1793 			continue;
1794 		if (iter->state == D_DONE && !iter->ref) {
1795 			wait_for_completion_io(&iter->wait);
1796 			if (!iter->error)
1797 				trimmed += iter->di.len;
1798 			__remove_discard_cmd(sbi, iter);
1799 		} else {
1800 			iter->ref++;
1801 			dc = iter;
1802 			break;
1803 		}
1804 	}
1805 	mutex_unlock(&dcc->cmd_lock);
1806 
1807 	if (dc) {
1808 		trimmed += __wait_one_discard_bio(sbi, dc);
1809 		goto next;
1810 	}
1811 
1812 	return trimmed;
1813 }
1814 
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1815 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1816 						struct discard_policy *dpolicy)
1817 {
1818 	struct discard_policy dp;
1819 	unsigned int discard_blks;
1820 
1821 	if (dpolicy)
1822 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1823 
1824 	/* wait all */
1825 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1826 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1827 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1828 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1829 
1830 	return discard_blks;
1831 }
1832 
1833 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1834 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1835 {
1836 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1837 	struct discard_cmd *dc;
1838 	bool need_wait = false;
1839 
1840 	mutex_lock(&dcc->cmd_lock);
1841 	dc = __lookup_discard_cmd(sbi, blkaddr);
1842 #ifdef CONFIG_BLK_DEV_ZONED
1843 	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1844 		int devi = f2fs_bdev_index(sbi, dc->bdev);
1845 
1846 		if (devi < 0) {
1847 			mutex_unlock(&dcc->cmd_lock);
1848 			return;
1849 		}
1850 
1851 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1852 			/* force submit zone reset */
1853 			if (dc->state == D_PREP)
1854 				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1855 							&dcc->wait_list, NULL);
1856 			dc->ref++;
1857 			mutex_unlock(&dcc->cmd_lock);
1858 			/* wait zone reset */
1859 			__wait_one_discard_bio(sbi, dc);
1860 			return;
1861 		}
1862 	}
1863 #endif
1864 	if (dc) {
1865 		if (dc->state == D_PREP) {
1866 			__punch_discard_cmd(sbi, dc, blkaddr);
1867 		} else {
1868 			dc->ref++;
1869 			need_wait = true;
1870 		}
1871 	}
1872 	mutex_unlock(&dcc->cmd_lock);
1873 
1874 	if (need_wait)
1875 		__wait_one_discard_bio(sbi, dc);
1876 }
1877 
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1878 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1879 {
1880 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1881 
1882 	if (dcc && dcc->f2fs_issue_discard) {
1883 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1884 
1885 		dcc->f2fs_issue_discard = NULL;
1886 		kthread_stop(discard_thread);
1887 	}
1888 }
1889 
1890 /**
1891  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1892  * @sbi: the f2fs_sb_info data for discard cmd to issue
1893  *
1894  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1895  *
1896  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1897  */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1898 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1899 {
1900 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1901 	struct discard_policy dpolicy;
1902 	bool dropped;
1903 
1904 	if (!atomic_read(&dcc->discard_cmd_cnt))
1905 		return true;
1906 
1907 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1908 					dcc->discard_granularity);
1909 	__issue_discard_cmd(sbi, &dpolicy);
1910 	dropped = __drop_discard_cmd(sbi);
1911 
1912 	/* just to make sure there is no pending discard commands */
1913 	__wait_all_discard_cmd(sbi, NULL);
1914 
1915 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1916 	return !dropped;
1917 }
1918 
issue_discard_thread(void * data)1919 static int issue_discard_thread(void *data)
1920 {
1921 	struct f2fs_sb_info *sbi = data;
1922 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1923 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1924 	struct discard_policy dpolicy;
1925 	unsigned int wait_ms = dcc->min_discard_issue_time;
1926 	int issued;
1927 
1928 	set_freezable();
1929 
1930 	do {
1931 		wait_event_freezable_timeout(*q,
1932 				kthread_should_stop() || dcc->discard_wake,
1933 				msecs_to_jiffies(wait_ms));
1934 
1935 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1936 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1937 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1938 						MIN_DISCARD_GRANULARITY);
1939 		else
1940 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1941 						dcc->discard_granularity);
1942 
1943 		if (dcc->discard_wake)
1944 			dcc->discard_wake = false;
1945 
1946 		/* clean up pending candidates before going to sleep */
1947 		if (atomic_read(&dcc->queued_discard))
1948 			__wait_all_discard_cmd(sbi, NULL);
1949 
1950 		if (f2fs_readonly(sbi->sb))
1951 			continue;
1952 		if (kthread_should_stop())
1953 			return 0;
1954 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1955 			!atomic_read(&dcc->discard_cmd_cnt)) {
1956 			wait_ms = dpolicy.max_interval;
1957 			continue;
1958 		}
1959 
1960 		sb_start_intwrite(sbi->sb);
1961 
1962 		issued = __issue_discard_cmd(sbi, &dpolicy);
1963 		if (issued > 0) {
1964 			__wait_all_discard_cmd(sbi, &dpolicy);
1965 			wait_ms = dpolicy.min_interval;
1966 		} else if (issued == -1) {
1967 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1968 			if (!wait_ms)
1969 				wait_ms = dpolicy.mid_interval;
1970 		} else {
1971 			wait_ms = dpolicy.max_interval;
1972 		}
1973 		if (!atomic_read(&dcc->discard_cmd_cnt))
1974 			wait_ms = dpolicy.max_interval;
1975 
1976 		sb_end_intwrite(sbi->sb);
1977 
1978 	} while (!kthread_should_stop());
1979 	return 0;
1980 }
1981 
1982 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1983 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1984 		struct block_device *bdev, block_t blkstart, block_t blklen)
1985 {
1986 	sector_t sector, nr_sects;
1987 	block_t lblkstart = blkstart;
1988 	int devi = 0;
1989 	u64 remainder = 0;
1990 
1991 	if (f2fs_is_multi_device(sbi)) {
1992 		devi = f2fs_target_device_index(sbi, blkstart);
1993 		if (blkstart < FDEV(devi).start_blk ||
1994 		    blkstart > FDEV(devi).end_blk) {
1995 			f2fs_err(sbi, "Invalid block %x", blkstart);
1996 			return -EIO;
1997 		}
1998 		blkstart -= FDEV(devi).start_blk;
1999 	}
2000 
2001 	/* For sequential zones, reset the zone write pointer */
2002 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
2003 		sector = SECTOR_FROM_BLOCK(blkstart);
2004 		nr_sects = SECTOR_FROM_BLOCK(blklen);
2005 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
2006 
2007 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
2008 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
2009 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
2010 				 blkstart, blklen);
2011 			return -EIO;
2012 		}
2013 
2014 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
2015 			unsigned int nofs_flags;
2016 			int ret;
2017 
2018 			trace_f2fs_issue_reset_zone(bdev, blkstart);
2019 			nofs_flags = memalloc_nofs_save();
2020 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2021 						sector, nr_sects);
2022 			memalloc_nofs_restore(nofs_flags);
2023 			return ret;
2024 		}
2025 
2026 		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2027 		return 0;
2028 	}
2029 
2030 	/* For conventional zones, use regular discard if supported */
2031 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2032 	return 0;
2033 }
2034 #endif
2035 
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)2036 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2037 		struct block_device *bdev, block_t blkstart, block_t blklen)
2038 {
2039 #ifdef CONFIG_BLK_DEV_ZONED
2040 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2041 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2042 #endif
2043 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
2044 	return 0;
2045 }
2046 
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)2047 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2048 				block_t blkstart, block_t blklen)
2049 {
2050 	sector_t start = blkstart, len = 0;
2051 	struct block_device *bdev;
2052 	struct seg_entry *se;
2053 	unsigned int offset;
2054 	block_t i;
2055 	int err = 0;
2056 
2057 	bdev = f2fs_target_device(sbi, blkstart, NULL);
2058 
2059 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2060 		if (i != start) {
2061 			struct block_device *bdev2 =
2062 				f2fs_target_device(sbi, i, NULL);
2063 
2064 			if (bdev2 != bdev) {
2065 				err = __issue_discard_async(sbi, bdev,
2066 						start, len);
2067 				if (err)
2068 					return err;
2069 				bdev = bdev2;
2070 				start = i;
2071 				len = 0;
2072 			}
2073 		}
2074 
2075 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2076 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2077 
2078 		if (f2fs_block_unit_discard(sbi) &&
2079 				!f2fs_test_and_set_bit(offset, se->discard_map))
2080 			sbi->discard_blks--;
2081 	}
2082 
2083 	if (len)
2084 		err = __issue_discard_async(sbi, bdev, start, len);
2085 	return err;
2086 }
2087 
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2088 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2089 							bool check_only)
2090 {
2091 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2092 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2093 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2094 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2095 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2096 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2097 	unsigned int start = 0, end = -1;
2098 	bool force = (cpc->reason & CP_DISCARD);
2099 	struct discard_entry *de = NULL;
2100 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2101 	int i;
2102 
2103 	if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2104 	    !f2fs_hw_support_discard(sbi) ||
2105 	    !f2fs_block_unit_discard(sbi))
2106 		return false;
2107 
2108 	if (!force) {
2109 		if (!f2fs_realtime_discard_enable(sbi) ||
2110 			(!se->valid_blocks &&
2111 				!is_curseg(sbi, cpc->trim_start)) ||
2112 			SM_I(sbi)->dcc_info->nr_discards >=
2113 				SM_I(sbi)->dcc_info->max_discards)
2114 			return false;
2115 	}
2116 
2117 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2118 	for (i = 0; i < entries; i++)
2119 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2120 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2121 
2122 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2123 				SM_I(sbi)->dcc_info->max_discards) {
2124 		start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2125 		if (start >= BLKS_PER_SEG(sbi))
2126 			break;
2127 
2128 		end = __find_rev_next_zero_bit(dmap,
2129 						BLKS_PER_SEG(sbi), start + 1);
2130 		if (force && start && end != BLKS_PER_SEG(sbi) &&
2131 		    (end - start) < cpc->trim_minlen)
2132 			continue;
2133 
2134 		if (check_only)
2135 			return true;
2136 
2137 		if (!de) {
2138 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2139 						GFP_F2FS_ZERO, true, NULL);
2140 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2141 			list_add_tail(&de->list, head);
2142 		}
2143 
2144 		for (i = start; i < end; i++)
2145 			__set_bit_le(i, (void *)de->discard_map);
2146 
2147 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2148 	}
2149 	return false;
2150 }
2151 
release_discard_addr(struct discard_entry * entry)2152 static void release_discard_addr(struct discard_entry *entry)
2153 {
2154 	list_del(&entry->list);
2155 	kmem_cache_free(discard_entry_slab, entry);
2156 }
2157 
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2158 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2159 {
2160 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2161 	struct discard_entry *entry, *this;
2162 
2163 	/* drop caches */
2164 	list_for_each_entry_safe(entry, this, head, list)
2165 		release_discard_addr(entry);
2166 }
2167 
2168 /*
2169  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2170  */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2171 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2172 {
2173 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2174 	unsigned int segno;
2175 
2176 	mutex_lock(&dirty_i->seglist_lock);
2177 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2178 		__set_test_and_free(sbi, segno, false);
2179 	mutex_unlock(&dirty_i->seglist_lock);
2180 }
2181 
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2182 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2183 						struct cp_control *cpc)
2184 {
2185 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2186 	struct list_head *head = &dcc->entry_list;
2187 	struct discard_entry *entry, *this;
2188 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2189 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2190 	unsigned int start = 0, end = -1;
2191 	unsigned int secno, start_segno;
2192 	bool force = (cpc->reason & CP_DISCARD);
2193 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2194 						DISCARD_UNIT_SECTION;
2195 
2196 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2197 		section_alignment = true;
2198 
2199 	mutex_lock(&dirty_i->seglist_lock);
2200 
2201 	while (1) {
2202 		int i;
2203 
2204 		if (section_alignment && end != -1)
2205 			end--;
2206 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2207 		if (start >= MAIN_SEGS(sbi))
2208 			break;
2209 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2210 								start + 1);
2211 
2212 		if (section_alignment) {
2213 			start = rounddown(start, SEGS_PER_SEC(sbi));
2214 			end = roundup(end, SEGS_PER_SEC(sbi));
2215 		}
2216 
2217 		for (i = start; i < end; i++) {
2218 			if (test_and_clear_bit(i, prefree_map))
2219 				dirty_i->nr_dirty[PRE]--;
2220 		}
2221 
2222 		if (!f2fs_realtime_discard_enable(sbi))
2223 			continue;
2224 
2225 		if (force && start >= cpc->trim_start &&
2226 					(end - 1) <= cpc->trim_end)
2227 			continue;
2228 
2229 		/* Should cover 2MB zoned device for zone-based reset */
2230 		if (!f2fs_sb_has_blkzoned(sbi) &&
2231 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2232 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2233 				SEGS_TO_BLKS(sbi, end - start));
2234 			continue;
2235 		}
2236 next:
2237 		secno = GET_SEC_FROM_SEG(sbi, start);
2238 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2239 		if (!is_cursec(sbi, secno) &&
2240 			!get_valid_blocks(sbi, start, true))
2241 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2242 						BLKS_PER_SEC(sbi));
2243 
2244 		start = start_segno + SEGS_PER_SEC(sbi);
2245 		if (start < end)
2246 			goto next;
2247 		else
2248 			end = start - 1;
2249 	}
2250 	mutex_unlock(&dirty_i->seglist_lock);
2251 
2252 	if (!f2fs_block_unit_discard(sbi))
2253 		goto wakeup;
2254 
2255 	/* send small discards */
2256 	list_for_each_entry_safe(entry, this, head, list) {
2257 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2258 		bool is_valid = test_bit_le(0, entry->discard_map);
2259 
2260 find_next:
2261 		if (is_valid) {
2262 			next_pos = find_next_zero_bit_le(entry->discard_map,
2263 						BLKS_PER_SEG(sbi), cur_pos);
2264 			len = next_pos - cur_pos;
2265 
2266 			if (f2fs_sb_has_blkzoned(sbi) ||
2267 			    (force && len < cpc->trim_minlen))
2268 				goto skip;
2269 
2270 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2271 									len);
2272 			total_len += len;
2273 		} else {
2274 			next_pos = find_next_bit_le(entry->discard_map,
2275 						BLKS_PER_SEG(sbi), cur_pos);
2276 		}
2277 skip:
2278 		cur_pos = next_pos;
2279 		is_valid = !is_valid;
2280 
2281 		if (cur_pos < BLKS_PER_SEG(sbi))
2282 			goto find_next;
2283 
2284 		release_discard_addr(entry);
2285 		dcc->nr_discards -= total_len;
2286 	}
2287 
2288 wakeup:
2289 	wake_up_discard_thread(sbi, false);
2290 }
2291 
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2292 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2293 {
2294 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2295 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2296 	int err = 0;
2297 
2298 	if (f2fs_sb_has_readonly(sbi)) {
2299 		f2fs_info(sbi,
2300 			"Skip to start discard thread for readonly image");
2301 		return 0;
2302 	}
2303 
2304 	if (!f2fs_realtime_discard_enable(sbi))
2305 		return 0;
2306 
2307 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2308 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2309 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2310 		err = PTR_ERR(dcc->f2fs_issue_discard);
2311 		dcc->f2fs_issue_discard = NULL;
2312 	}
2313 
2314 	return err;
2315 }
2316 
create_discard_cmd_control(struct f2fs_sb_info * sbi)2317 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2318 {
2319 	struct discard_cmd_control *dcc;
2320 	int err = 0, i;
2321 
2322 	if (SM_I(sbi)->dcc_info) {
2323 		dcc = SM_I(sbi)->dcc_info;
2324 		goto init_thread;
2325 	}
2326 
2327 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2328 	if (!dcc)
2329 		return -ENOMEM;
2330 
2331 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2332 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2333 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2334 	dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2335 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT ||
2336 		F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2337 		dcc->discard_granularity = BLKS_PER_SEG(sbi);
2338 
2339 	INIT_LIST_HEAD(&dcc->entry_list);
2340 	for (i = 0; i < MAX_PLIST_NUM; i++)
2341 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2342 	INIT_LIST_HEAD(&dcc->wait_list);
2343 	INIT_LIST_HEAD(&dcc->fstrim_list);
2344 	mutex_init(&dcc->cmd_lock);
2345 	atomic_set(&dcc->issued_discard, 0);
2346 	atomic_set(&dcc->queued_discard, 0);
2347 	atomic_set(&dcc->discard_cmd_cnt, 0);
2348 	dcc->nr_discards = 0;
2349 	dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2350 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2351 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2352 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2353 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2354 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2355 	dcc->undiscard_blks = 0;
2356 	dcc->next_pos = 0;
2357 	dcc->root = RB_ROOT_CACHED;
2358 	dcc->rbtree_check = false;
2359 
2360 	init_waitqueue_head(&dcc->discard_wait_queue);
2361 	SM_I(sbi)->dcc_info = dcc;
2362 init_thread:
2363 	err = f2fs_start_discard_thread(sbi);
2364 	if (err) {
2365 		kfree(dcc);
2366 		SM_I(sbi)->dcc_info = NULL;
2367 	}
2368 
2369 	return err;
2370 }
2371 
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2372 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2373 {
2374 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2375 
2376 	if (!dcc)
2377 		return;
2378 
2379 	f2fs_stop_discard_thread(sbi);
2380 
2381 	/*
2382 	 * Recovery can cache discard commands, so in error path of
2383 	 * fill_super(), it needs to give a chance to handle them.
2384 	 */
2385 	f2fs_issue_discard_timeout(sbi);
2386 
2387 	kfree(dcc);
2388 	SM_I(sbi)->dcc_info = NULL;
2389 }
2390 
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2391 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2392 {
2393 	struct sit_info *sit_i = SIT_I(sbi);
2394 
2395 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2396 		sit_i->dirty_sentries++;
2397 		return false;
2398 	}
2399 
2400 	return true;
2401 }
2402 
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2403 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2404 					unsigned int segno, int modified)
2405 {
2406 	struct seg_entry *se = get_seg_entry(sbi, segno);
2407 
2408 	se->type = type;
2409 	if (modified)
2410 		__mark_sit_entry_dirty(sbi, segno);
2411 }
2412 
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2413 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2414 								block_t blkaddr)
2415 {
2416 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2417 
2418 	if (segno == NULL_SEGNO)
2419 		return 0;
2420 	return get_seg_entry(sbi, segno)->mtime;
2421 }
2422 
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2423 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2424 						unsigned long long old_mtime)
2425 {
2426 	struct seg_entry *se;
2427 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2428 	unsigned long long ctime = get_mtime(sbi, false);
2429 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2430 
2431 	if (segno == NULL_SEGNO)
2432 		return;
2433 
2434 	se = get_seg_entry(sbi, segno);
2435 
2436 	if (!se->mtime)
2437 		se->mtime = mtime;
2438 	else
2439 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2440 						se->valid_blocks + 1);
2441 
2442 	if (ctime > SIT_I(sbi)->max_mtime)
2443 		SIT_I(sbi)->max_mtime = ctime;
2444 }
2445 
2446 /*
2447  * NOTE: when updating multiple blocks at the same time, please ensure
2448  * that the consecutive input blocks belong to the same segment.
2449  */
update_sit_entry_for_release(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2450 static int update_sit_entry_for_release(struct f2fs_sb_info *sbi, struct seg_entry *se,
2451 				unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2452 {
2453 	bool exist;
2454 #ifdef CONFIG_F2FS_CHECK_FS
2455 	bool mir_exist;
2456 #endif
2457 	int i;
2458 	int del_count = -del;
2459 
2460 	f2fs_bug_on(sbi, GET_SEGNO(sbi, blkaddr) != GET_SEGNO(sbi, blkaddr + del_count - 1));
2461 
2462 	for (i = 0; i < del_count; i++) {
2463 		exist = f2fs_test_and_clear_bit(offset + i, se->cur_valid_map);
2464 #ifdef CONFIG_F2FS_CHECK_FS
2465 		mir_exist = f2fs_test_and_clear_bit(offset + i,
2466 						se->cur_valid_map_mir);
2467 		if (unlikely(exist != mir_exist)) {
2468 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2469 				blkaddr + i, exist);
2470 			f2fs_bug_on(sbi, 1);
2471 		}
2472 #endif
2473 		if (unlikely(!exist)) {
2474 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", blkaddr + i);
2475 			f2fs_bug_on(sbi, 1);
2476 			se->valid_blocks++;
2477 			del += 1;
2478 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2479 			/*
2480 			 * If checkpoints are off, we must not reuse data that
2481 			 * was used in the previous checkpoint. If it was used
2482 			 * before, we must track that to know how much space we
2483 			 * really have.
2484 			 */
2485 			if (f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2486 				spin_lock(&sbi->stat_lock);
2487 				sbi->unusable_block_count++;
2488 				spin_unlock(&sbi->stat_lock);
2489 			}
2490 		}
2491 
2492 		if (f2fs_block_unit_discard(sbi) &&
2493 				f2fs_test_and_clear_bit(offset + i, se->discard_map))
2494 			sbi->discard_blks++;
2495 
2496 		if (!f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2497 			se->ckpt_valid_blocks -= 1;
2498 			if (__is_large_section(sbi))
2499 				get_sec_entry(sbi, segno)->ckpt_valid_blocks -= 1;
2500 		}
2501 	}
2502 
2503 	if (__is_large_section(sbi))
2504 		sanity_check_valid_blocks(sbi, segno);
2505 
2506 	return del;
2507 }
2508 
update_sit_entry_for_alloc(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2509 static int update_sit_entry_for_alloc(struct f2fs_sb_info *sbi, struct seg_entry *se,
2510 				unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2511 {
2512 	bool exist;
2513 #ifdef CONFIG_F2FS_CHECK_FS
2514 	bool mir_exist;
2515 #endif
2516 
2517 	exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2518 #ifdef CONFIG_F2FS_CHECK_FS
2519 	mir_exist = f2fs_test_and_set_bit(offset,
2520 					se->cur_valid_map_mir);
2521 	if (unlikely(exist != mir_exist)) {
2522 		f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2523 			blkaddr, exist);
2524 		f2fs_bug_on(sbi, 1);
2525 	}
2526 #endif
2527 	if (unlikely(exist)) {
2528 		f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", blkaddr);
2529 		f2fs_bug_on(sbi, 1);
2530 		se->valid_blocks--;
2531 		del = 0;
2532 	}
2533 
2534 	if (f2fs_block_unit_discard(sbi) &&
2535 			!f2fs_test_and_set_bit(offset, se->discard_map))
2536 		sbi->discard_blks--;
2537 
2538 	/*
2539 	 * SSR should never reuse block which is checkpointed
2540 	 * or newly invalidated.
2541 	 */
2542 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2543 		if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) {
2544 			se->ckpt_valid_blocks++;
2545 			if (__is_large_section(sbi))
2546 				get_sec_entry(sbi, segno)->ckpt_valid_blocks++;
2547 		}
2548 	}
2549 
2550 	if (!f2fs_test_bit(offset, se->ckpt_valid_map)) {
2551 		se->ckpt_valid_blocks += del;
2552 		if (__is_large_section(sbi))
2553 			get_sec_entry(sbi, segno)->ckpt_valid_blocks += del;
2554 	}
2555 
2556 	if (__is_large_section(sbi))
2557 		sanity_check_valid_blocks(sbi, segno);
2558 
2559 	return del;
2560 }
2561 
2562 /*
2563  * If releasing blocks, this function supports updating multiple consecutive blocks
2564  * at one time, but please note that these consecutive blocks need to belong to the
2565  * same segment.
2566  */
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2567 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2568 {
2569 	struct seg_entry *se;
2570 	unsigned int segno, offset;
2571 	long int new_vblocks;
2572 
2573 	segno = GET_SEGNO(sbi, blkaddr);
2574 	if (segno == NULL_SEGNO)
2575 		return;
2576 
2577 	se = get_seg_entry(sbi, segno);
2578 	new_vblocks = se->valid_blocks + del;
2579 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2580 
2581 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2582 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2583 
2584 	se->valid_blocks = new_vblocks;
2585 
2586 	/* Update valid block bitmap */
2587 	if (del > 0) {
2588 		del = update_sit_entry_for_alloc(sbi, se, segno, blkaddr, offset, del);
2589 	} else {
2590 		del = update_sit_entry_for_release(sbi, se, segno, blkaddr, offset, del);
2591 	}
2592 
2593 	__mark_sit_entry_dirty(sbi, segno);
2594 
2595 	/* update total number of valid blocks to be written in ckpt area */
2596 	SIT_I(sbi)->written_valid_blocks += del;
2597 
2598 	if (__is_large_section(sbi))
2599 		get_sec_entry(sbi, segno)->valid_blocks += del;
2600 }
2601 
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr,unsigned int len)2602 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
2603 				unsigned int len)
2604 {
2605 	unsigned int segno = GET_SEGNO(sbi, addr);
2606 	struct sit_info *sit_i = SIT_I(sbi);
2607 	block_t addr_start = addr, addr_end = addr + len - 1;
2608 	unsigned int seg_num = GET_SEGNO(sbi, addr_end) - segno + 1;
2609 	unsigned int i = 1, max_blocks = sbi->blocks_per_seg, cnt;
2610 
2611 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2612 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2613 		return;
2614 
2615 	f2fs_invalidate_internal_cache(sbi, addr, len);
2616 
2617 	/* add it into sit main buffer */
2618 	down_write(&sit_i->sentry_lock);
2619 
2620 	if (seg_num == 1)
2621 		cnt = len;
2622 	else
2623 		cnt = max_blocks - GET_BLKOFF_FROM_SEG0(sbi, addr);
2624 
2625 	do {
2626 		update_segment_mtime(sbi, addr_start, 0);
2627 		update_sit_entry(sbi, addr_start, -cnt);
2628 
2629 		/* add it into dirty seglist */
2630 		locate_dirty_segment(sbi, segno);
2631 
2632 		/* update @addr_start and @cnt and @segno */
2633 		addr_start = START_BLOCK(sbi, ++segno);
2634 		if (++i == seg_num)
2635 			cnt = GET_BLKOFF_FROM_SEG0(sbi, addr_end) + 1;
2636 		else
2637 			cnt = max_blocks;
2638 	} while (i <= seg_num);
2639 
2640 	up_write(&sit_i->sentry_lock);
2641 }
2642 
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2643 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2644 {
2645 	struct sit_info *sit_i = SIT_I(sbi);
2646 	unsigned int segno, offset;
2647 	struct seg_entry *se;
2648 	bool is_cp = false;
2649 
2650 	if (!__is_valid_data_blkaddr(blkaddr))
2651 		return true;
2652 
2653 	down_read(&sit_i->sentry_lock);
2654 
2655 	segno = GET_SEGNO(sbi, blkaddr);
2656 	se = get_seg_entry(sbi, segno);
2657 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2658 
2659 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2660 		is_cp = true;
2661 
2662 	up_read(&sit_i->sentry_lock);
2663 
2664 	return is_cp;
2665 }
2666 
f2fs_curseg_valid_blocks(struct f2fs_sb_info * sbi,int type)2667 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2668 {
2669 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2670 
2671 	if (sbi->ckpt->alloc_type[type] == SSR)
2672 		return BLKS_PER_SEG(sbi);
2673 	return curseg->next_blkoff;
2674 }
2675 
2676 /*
2677  * Calculate the number of current summary pages for writing
2678  */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2679 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2680 {
2681 	int valid_sum_count = 0;
2682 	int i, sum_in_page;
2683 
2684 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2685 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2686 			valid_sum_count +=
2687 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2688 		else
2689 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2690 	}
2691 
2692 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2693 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2694 	if (valid_sum_count <= sum_in_page)
2695 		return 1;
2696 	else if ((valid_sum_count - sum_in_page) <=
2697 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2698 		return 2;
2699 	return 3;
2700 }
2701 
2702 /*
2703  * Caller should put this summary folio
2704  */
f2fs_get_sum_folio(struct f2fs_sb_info * sbi,unsigned int segno)2705 struct folio *f2fs_get_sum_folio(struct f2fs_sb_info *sbi, unsigned int segno)
2706 {
2707 	if (unlikely(f2fs_cp_error(sbi)))
2708 		return ERR_PTR(-EIO);
2709 	return f2fs_get_meta_folio_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2710 }
2711 
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2712 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2713 					void *src, block_t blk_addr)
2714 {
2715 	struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr);
2716 
2717 	memcpy(folio_address(folio), src, PAGE_SIZE);
2718 	folio_mark_dirty(folio);
2719 	f2fs_folio_put(folio, true);
2720 }
2721 
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2722 static void write_sum_page(struct f2fs_sb_info *sbi,
2723 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2724 {
2725 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2726 }
2727 
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2728 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2729 						int type, block_t blk_addr)
2730 {
2731 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2732 	struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr);
2733 	struct f2fs_summary_block *src = curseg->sum_blk;
2734 	struct f2fs_summary_block *dst;
2735 
2736 	dst = folio_address(folio);
2737 	memset(dst, 0, PAGE_SIZE);
2738 
2739 	mutex_lock(&curseg->curseg_mutex);
2740 
2741 	down_read(&curseg->journal_rwsem);
2742 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2743 	up_read(&curseg->journal_rwsem);
2744 
2745 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2746 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2747 
2748 	mutex_unlock(&curseg->curseg_mutex);
2749 
2750 	folio_mark_dirty(folio);
2751 	f2fs_folio_put(folio, true);
2752 }
2753 
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg)2754 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2755 				struct curseg_info *curseg)
2756 {
2757 	unsigned int segno = curseg->segno + 1;
2758 	struct free_segmap_info *free_i = FREE_I(sbi);
2759 
2760 	if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2761 		return !test_bit(segno, free_i->free_segmap);
2762 	return 0;
2763 }
2764 
2765 /*
2766  * Find a new segment from the free segments bitmap to right order
2767  * This function should be returned with success, otherwise BUG
2768  */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,bool pinning)2769 static int get_new_segment(struct f2fs_sb_info *sbi,
2770 			unsigned int *newseg, bool new_sec, bool pinning)
2771 {
2772 	struct free_segmap_info *free_i = FREE_I(sbi);
2773 	unsigned int segno, secno, zoneno;
2774 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2775 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2776 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2777 	unsigned int alloc_policy = sbi->allocate_section_policy;
2778 	unsigned int alloc_hint = sbi->allocate_section_hint;
2779 	bool init = true;
2780 	int i;
2781 	int ret = 0;
2782 
2783 	spin_lock(&free_i->segmap_lock);
2784 
2785 	if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2786 		ret = -ENOSPC;
2787 		goto out_unlock;
2788 	}
2789 
2790 	if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2791 		segno = find_next_zero_bit(free_i->free_segmap,
2792 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2793 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2794 			goto got_it;
2795 	}
2796 
2797 #ifdef CONFIG_BLK_DEV_ZONED
2798 	/*
2799 	 * If we format f2fs on zoned storage, let's try to get pinned sections
2800 	 * from beginning of the storage, which should be a conventional one.
2801 	 */
2802 	if (f2fs_sb_has_blkzoned(sbi)) {
2803 		/* Prioritize writing to conventional zones */
2804 		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2805 			segno = 0;
2806 		else
2807 			segno = max(sbi->first_seq_zone_segno, *newseg);
2808 		hint = GET_SEC_FROM_SEG(sbi, segno);
2809 	}
2810 #endif
2811 
2812 	/*
2813 	 * Prevent allocate_section_hint from exceeding MAIN_SECS()
2814 	 * due to desynchronization.
2815 	 */
2816 	if (alloc_policy != ALLOCATE_FORWARD_NOHINT &&
2817 		alloc_hint > MAIN_SECS(sbi))
2818 		alloc_hint = MAIN_SECS(sbi);
2819 
2820 	if (alloc_policy == ALLOCATE_FORWARD_FROM_HINT &&
2821 		hint < alloc_hint)
2822 		hint = alloc_hint;
2823 	else if (alloc_policy == ALLOCATE_FORWARD_WITHIN_HINT &&
2824 			hint >= alloc_hint)
2825 		hint = 0;
2826 
2827 find_other_zone:
2828 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2829 
2830 #ifdef CONFIG_BLK_DEV_ZONED
2831 	if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2832 		/* Write only to sequential zones */
2833 		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2834 			hint = GET_SEC_FROM_SEG(sbi, sbi->first_seq_zone_segno);
2835 			secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2836 		} else
2837 			secno = find_first_zero_bit(free_i->free_secmap,
2838 								MAIN_SECS(sbi));
2839 		if (secno >= MAIN_SECS(sbi)) {
2840 			ret = -ENOSPC;
2841 			f2fs_bug_on(sbi, 1);
2842 			goto out_unlock;
2843 		}
2844 	}
2845 #endif
2846 
2847 	if (secno >= MAIN_SECS(sbi)) {
2848 		secno = find_first_zero_bit(free_i->free_secmap,
2849 							MAIN_SECS(sbi));
2850 		if (secno >= MAIN_SECS(sbi)) {
2851 			ret = -ENOSPC;
2852 			f2fs_bug_on(sbi, !pinning);
2853 			goto out_unlock;
2854 		}
2855 	}
2856 	segno = GET_SEG_FROM_SEC(sbi, secno);
2857 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2858 
2859 	/* give up on finding another zone */
2860 	if (!init)
2861 		goto got_it;
2862 	if (sbi->secs_per_zone == 1)
2863 		goto got_it;
2864 	if (zoneno == old_zoneno)
2865 		goto got_it;
2866 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2867 		if (CURSEG_I(sbi, i)->zone == zoneno)
2868 			break;
2869 
2870 	if (i < NR_CURSEG_TYPE) {
2871 		/* zone is in user, try another */
2872 		if (zoneno + 1 >= total_zones)
2873 			hint = 0;
2874 		else
2875 			hint = (zoneno + 1) * sbi->secs_per_zone;
2876 		init = false;
2877 		goto find_other_zone;
2878 	}
2879 got_it:
2880 	/* set it as dirty segment in free segmap */
2881 	if (test_bit(segno, free_i->free_segmap)) {
2882 		ret = -EFSCORRUPTED;
2883 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_CORRUPTED_FREE_BITMAP);
2884 		goto out_unlock;
2885 	}
2886 
2887 	/* no free section in conventional device or conventional zone */
2888 	if (new_sec && pinning &&
2889 		f2fs_is_sequential_zone_area(sbi, START_BLOCK(sbi, segno))) {
2890 		ret = -EAGAIN;
2891 		goto out_unlock;
2892 	}
2893 	__set_inuse(sbi, segno);
2894 	*newseg = segno;
2895 out_unlock:
2896 	spin_unlock(&free_i->segmap_lock);
2897 
2898 	if (ret == -ENOSPC && !pinning)
2899 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2900 	return ret;
2901 }
2902 
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2903 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2904 {
2905 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2906 	struct summary_footer *sum_footer;
2907 	unsigned short seg_type = curseg->seg_type;
2908 
2909 	/* only happen when get_new_segment() fails */
2910 	if (curseg->next_segno == NULL_SEGNO)
2911 		return;
2912 
2913 	curseg->inited = true;
2914 	curseg->segno = curseg->next_segno;
2915 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2916 	curseg->next_blkoff = 0;
2917 	curseg->next_segno = NULL_SEGNO;
2918 
2919 	sum_footer = &(curseg->sum_blk->footer);
2920 	memset(sum_footer, 0, sizeof(struct summary_footer));
2921 
2922 	sanity_check_seg_type(sbi, seg_type);
2923 
2924 	if (IS_DATASEG(seg_type))
2925 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2926 	if (IS_NODESEG(seg_type))
2927 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2928 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2929 }
2930 
__get_next_segno(struct f2fs_sb_info * sbi,int type)2931 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2932 {
2933 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2934 	unsigned short seg_type = curseg->seg_type;
2935 
2936 	sanity_check_seg_type(sbi, seg_type);
2937 	if (__is_large_section(sbi)) {
2938 		if (f2fs_need_rand_seg(sbi)) {
2939 			unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2940 
2941 			if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2942 				return curseg->segno;
2943 			return get_random_u32_inclusive(curseg->segno + 1,
2944 					GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2945 		}
2946 		return curseg->segno;
2947 	} else if (f2fs_need_rand_seg(sbi)) {
2948 		return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2949 	}
2950 
2951 	/* inmem log may not locate on any segment after mount */
2952 	if (!curseg->inited)
2953 		return 0;
2954 
2955 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2956 		return 0;
2957 
2958 	if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2959 		return 0;
2960 
2961 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2962 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2963 
2964 	/* find segments from 0 to reuse freed segments */
2965 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2966 		return 0;
2967 
2968 	return curseg->segno;
2969 }
2970 
reset_curseg_fields(struct curseg_info * curseg)2971 static void reset_curseg_fields(struct curseg_info *curseg)
2972 {
2973 	curseg->inited = false;
2974 	curseg->segno = NULL_SEGNO;
2975 	curseg->next_segno = 0;
2976 }
2977 
2978 /*
2979  * Allocate a current working segment.
2980  * This function always allocates a free segment in LFS manner.
2981  */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2982 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2983 {
2984 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2985 	unsigned int segno = curseg->segno;
2986 	bool pinning = type == CURSEG_COLD_DATA_PINNED;
2987 	int ret;
2988 
2989 	if (curseg->inited)
2990 		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2991 
2992 	segno = __get_next_segno(sbi, type);
2993 	ret = get_new_segment(sbi, &segno, new_sec, pinning);
2994 	if (ret) {
2995 		if (ret == -ENOSPC)
2996 			reset_curseg_fields(curseg);
2997 		return ret;
2998 	}
2999 
3000 	curseg->next_segno = segno;
3001 	reset_curseg(sbi, type, 1);
3002 	curseg->alloc_type = LFS;
3003 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3004 		curseg->fragment_remained_chunk =
3005 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3006 	return 0;
3007 }
3008 
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)3009 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
3010 					int segno, block_t start)
3011 {
3012 	struct seg_entry *se = get_seg_entry(sbi, segno);
3013 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
3014 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
3015 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
3016 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
3017 	int i;
3018 
3019 	for (i = 0; i < entries; i++)
3020 		target_map[i] = ckpt_map[i] | cur_map[i];
3021 
3022 	return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
3023 }
3024 
f2fs_find_next_ssr_block(struct f2fs_sb_info * sbi,struct curseg_info * seg)3025 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
3026 		struct curseg_info *seg)
3027 {
3028 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
3029 }
3030 
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)3031 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
3032 {
3033 	return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
3034 }
3035 
3036 /*
3037  * This function always allocates a used segment(from dirty seglist) by SSR
3038  * manner, so it should recover the existing segment information of valid blocks
3039  */
change_curseg(struct f2fs_sb_info * sbi,int type)3040 static int change_curseg(struct f2fs_sb_info *sbi, int type)
3041 {
3042 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3043 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3044 	unsigned int new_segno = curseg->next_segno;
3045 	struct f2fs_summary_block *sum_node;
3046 	struct folio *sum_folio;
3047 
3048 	if (curseg->inited)
3049 		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
3050 
3051 	__set_test_and_inuse(sbi, new_segno);
3052 
3053 	mutex_lock(&dirty_i->seglist_lock);
3054 	__remove_dirty_segment(sbi, new_segno, PRE);
3055 	__remove_dirty_segment(sbi, new_segno, DIRTY);
3056 	mutex_unlock(&dirty_i->seglist_lock);
3057 
3058 	reset_curseg(sbi, type, 1);
3059 	curseg->alloc_type = SSR;
3060 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
3061 
3062 	sum_folio = f2fs_get_sum_folio(sbi, new_segno);
3063 	if (IS_ERR(sum_folio)) {
3064 		/* GC won't be able to use stale summary pages by cp_error */
3065 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
3066 		return PTR_ERR(sum_folio);
3067 	}
3068 	sum_node = folio_address(sum_folio);
3069 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
3070 	f2fs_folio_put(sum_folio, true);
3071 	return 0;
3072 }
3073 
3074 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3075 				int alloc_mode, unsigned long long age);
3076 
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)3077 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
3078 					int target_type, int alloc_mode,
3079 					unsigned long long age)
3080 {
3081 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3082 	int ret = 0;
3083 
3084 	curseg->seg_type = target_type;
3085 
3086 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
3087 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
3088 
3089 		curseg->seg_type = se->type;
3090 		ret = change_curseg(sbi, type);
3091 	} else {
3092 		/* allocate cold segment by default */
3093 		curseg->seg_type = CURSEG_COLD_DATA;
3094 		ret = new_curseg(sbi, type, true);
3095 	}
3096 	stat_inc_seg_type(sbi, curseg);
3097 	return ret;
3098 }
3099 
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi,bool force)3100 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
3101 {
3102 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
3103 	int ret = 0;
3104 
3105 	if (!sbi->am.atgc_enabled && !force)
3106 		return 0;
3107 
3108 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3109 
3110 	mutex_lock(&curseg->curseg_mutex);
3111 	down_write(&SIT_I(sbi)->sentry_lock);
3112 
3113 	ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
3114 					CURSEG_COLD_DATA, SSR, 0);
3115 
3116 	up_write(&SIT_I(sbi)->sentry_lock);
3117 	mutex_unlock(&curseg->curseg_mutex);
3118 
3119 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3120 	return ret;
3121 }
3122 
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)3123 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3124 {
3125 	return __f2fs_init_atgc_curseg(sbi, false);
3126 }
3127 
f2fs_reinit_atgc_curseg(struct f2fs_sb_info * sbi)3128 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3129 {
3130 	int ret;
3131 
3132 	if (!test_opt(sbi, ATGC))
3133 		return 0;
3134 	if (sbi->am.atgc_enabled)
3135 		return 0;
3136 	if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3137 			sbi->am.age_threshold)
3138 		return 0;
3139 
3140 	ret = __f2fs_init_atgc_curseg(sbi, true);
3141 	if (!ret) {
3142 		sbi->am.atgc_enabled = true;
3143 		f2fs_info(sbi, "reenabled age threshold GC");
3144 	}
3145 	return ret;
3146 }
3147 
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)3148 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3149 {
3150 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3151 
3152 	mutex_lock(&curseg->curseg_mutex);
3153 	if (!curseg->inited)
3154 		goto out;
3155 
3156 	if (get_valid_blocks(sbi, curseg->segno, false)) {
3157 		write_sum_page(sbi, curseg->sum_blk,
3158 				GET_SUM_BLOCK(sbi, curseg->segno));
3159 	} else {
3160 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3161 		__set_test_and_free(sbi, curseg->segno, true);
3162 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3163 	}
3164 out:
3165 	mutex_unlock(&curseg->curseg_mutex);
3166 }
3167 
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)3168 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3169 {
3170 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3171 
3172 	if (sbi->am.atgc_enabled)
3173 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3174 }
3175 
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)3176 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3177 {
3178 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3179 
3180 	mutex_lock(&curseg->curseg_mutex);
3181 	if (!curseg->inited)
3182 		goto out;
3183 	if (get_valid_blocks(sbi, curseg->segno, false))
3184 		goto out;
3185 
3186 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3187 	__set_test_and_inuse(sbi, curseg->segno);
3188 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3189 out:
3190 	mutex_unlock(&curseg->curseg_mutex);
3191 }
3192 
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)3193 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3194 {
3195 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3196 
3197 	if (sbi->am.atgc_enabled)
3198 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3199 }
3200 
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)3201 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3202 				int alloc_mode, unsigned long long age)
3203 {
3204 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3205 	unsigned segno = NULL_SEGNO;
3206 	unsigned short seg_type = curseg->seg_type;
3207 	int i, cnt;
3208 	bool reversed = false;
3209 
3210 	sanity_check_seg_type(sbi, seg_type);
3211 
3212 	/* f2fs_need_SSR() already forces to do this */
3213 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3214 				alloc_mode, age, false)) {
3215 		curseg->next_segno = segno;
3216 		return 1;
3217 	}
3218 
3219 	/* For node segments, let's do SSR more intensively */
3220 	if (IS_NODESEG(seg_type)) {
3221 		if (seg_type >= CURSEG_WARM_NODE) {
3222 			reversed = true;
3223 			i = CURSEG_COLD_NODE;
3224 		} else {
3225 			i = CURSEG_HOT_NODE;
3226 		}
3227 		cnt = NR_CURSEG_NODE_TYPE;
3228 	} else {
3229 		if (seg_type >= CURSEG_WARM_DATA) {
3230 			reversed = true;
3231 			i = CURSEG_COLD_DATA;
3232 		} else {
3233 			i = CURSEG_HOT_DATA;
3234 		}
3235 		cnt = NR_CURSEG_DATA_TYPE;
3236 	}
3237 
3238 	for (; cnt-- > 0; reversed ? i-- : i++) {
3239 		if (i == seg_type)
3240 			continue;
3241 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3242 					alloc_mode, age, false)) {
3243 			curseg->next_segno = segno;
3244 			return 1;
3245 		}
3246 	}
3247 
3248 	/* find valid_blocks=0 in dirty list */
3249 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3250 		segno = get_free_segment(sbi);
3251 		if (segno != NULL_SEGNO) {
3252 			curseg->next_segno = segno;
3253 			return 1;
3254 		}
3255 	}
3256 	return 0;
3257 }
3258 
need_new_seg(struct f2fs_sb_info * sbi,int type)3259 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3260 {
3261 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3262 
3263 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3264 	    curseg->seg_type == CURSEG_WARM_NODE)
3265 		return true;
3266 	if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3267 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3268 		return true;
3269 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3270 		return true;
3271 	return false;
3272 }
3273 
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3274 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3275 					unsigned int start, unsigned int end)
3276 {
3277 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3278 	unsigned int segno;
3279 	int ret = 0;
3280 
3281 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3282 	mutex_lock(&curseg->curseg_mutex);
3283 	down_write(&SIT_I(sbi)->sentry_lock);
3284 
3285 	segno = CURSEG_I(sbi, type)->segno;
3286 	if (segno < start || segno > end)
3287 		goto unlock;
3288 
3289 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3290 		ret = change_curseg(sbi, type);
3291 	else
3292 		ret = new_curseg(sbi, type, true);
3293 
3294 	stat_inc_seg_type(sbi, curseg);
3295 
3296 	locate_dirty_segment(sbi, segno);
3297 unlock:
3298 	up_write(&SIT_I(sbi)->sentry_lock);
3299 
3300 	if (segno != curseg->segno)
3301 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3302 			    type, segno, curseg->segno);
3303 
3304 	mutex_unlock(&curseg->curseg_mutex);
3305 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3306 	return ret;
3307 }
3308 
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)3309 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3310 						bool new_sec, bool force)
3311 {
3312 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3313 	unsigned int old_segno;
3314 	int err = 0;
3315 
3316 	if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3317 		goto allocate;
3318 
3319 	if (!force && curseg->inited &&
3320 	    !curseg->next_blkoff &&
3321 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3322 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3323 		return 0;
3324 
3325 allocate:
3326 	old_segno = curseg->segno;
3327 	err = new_curseg(sbi, type, true);
3328 	if (err)
3329 		return err;
3330 	stat_inc_seg_type(sbi, curseg);
3331 	locate_dirty_segment(sbi, old_segno);
3332 	return 0;
3333 }
3334 
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3335 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3336 {
3337 	int ret;
3338 
3339 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3340 	down_write(&SIT_I(sbi)->sentry_lock);
3341 	ret = __allocate_new_segment(sbi, type, true, force);
3342 	up_write(&SIT_I(sbi)->sentry_lock);
3343 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3344 
3345 	return ret;
3346 }
3347 
f2fs_allocate_pinning_section(struct f2fs_sb_info * sbi)3348 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3349 {
3350 	int err;
3351 	bool gc_required = true;
3352 
3353 retry:
3354 	f2fs_lock_op(sbi);
3355 	err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3356 	f2fs_unlock_op(sbi);
3357 
3358 	if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3359 		f2fs_down_write(&sbi->gc_lock);
3360 		err = f2fs_gc_range(sbi, 0, sbi->first_seq_zone_segno - 1,
3361 				true, ZONED_PIN_SEC_REQUIRED_COUNT);
3362 		f2fs_up_write(&sbi->gc_lock);
3363 
3364 		gc_required = false;
3365 		if (!err)
3366 			goto retry;
3367 	}
3368 
3369 	return err;
3370 }
3371 
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3372 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3373 {
3374 	int i;
3375 	int err = 0;
3376 
3377 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3378 	down_write(&SIT_I(sbi)->sentry_lock);
3379 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3380 		err += __allocate_new_segment(sbi, i, false, false);
3381 	up_write(&SIT_I(sbi)->sentry_lock);
3382 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3383 
3384 	return err;
3385 }
3386 
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3387 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3388 						struct cp_control *cpc)
3389 {
3390 	__u64 trim_start = cpc->trim_start;
3391 	bool has_candidate = false;
3392 
3393 	down_write(&SIT_I(sbi)->sentry_lock);
3394 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3395 		if (add_discard_addrs(sbi, cpc, true)) {
3396 			has_candidate = true;
3397 			break;
3398 		}
3399 	}
3400 	up_write(&SIT_I(sbi)->sentry_lock);
3401 
3402 	cpc->trim_start = trim_start;
3403 	return has_candidate;
3404 }
3405 
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3406 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3407 					struct discard_policy *dpolicy,
3408 					unsigned int start, unsigned int end)
3409 {
3410 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3411 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3412 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3413 	struct discard_cmd *dc;
3414 	struct blk_plug plug;
3415 	int issued;
3416 	unsigned int trimmed = 0;
3417 
3418 next:
3419 	issued = 0;
3420 
3421 	mutex_lock(&dcc->cmd_lock);
3422 	if (unlikely(dcc->rbtree_check))
3423 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3424 
3425 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3426 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3427 	if (!dc)
3428 		dc = next_dc;
3429 
3430 	blk_start_plug(&plug);
3431 
3432 	while (dc && dc->di.lstart <= end) {
3433 		struct rb_node *node;
3434 		int err = 0;
3435 
3436 		if (dc->di.len < dpolicy->granularity)
3437 			goto skip;
3438 
3439 		if (dc->state != D_PREP) {
3440 			list_move_tail(&dc->list, &dcc->fstrim_list);
3441 			goto skip;
3442 		}
3443 
3444 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3445 
3446 		if (issued >= dpolicy->max_requests) {
3447 			start = dc->di.lstart + dc->di.len;
3448 
3449 			if (err)
3450 				__remove_discard_cmd(sbi, dc);
3451 
3452 			blk_finish_plug(&plug);
3453 			mutex_unlock(&dcc->cmd_lock);
3454 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3455 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3456 			goto next;
3457 		}
3458 skip:
3459 		node = rb_next(&dc->rb_node);
3460 		if (err)
3461 			__remove_discard_cmd(sbi, dc);
3462 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3463 
3464 		if (fatal_signal_pending(current))
3465 			break;
3466 	}
3467 
3468 	blk_finish_plug(&plug);
3469 	mutex_unlock(&dcc->cmd_lock);
3470 
3471 	return trimmed;
3472 }
3473 
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3474 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3475 {
3476 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3477 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3478 	unsigned int start_segno, end_segno;
3479 	block_t start_block, end_block;
3480 	struct cp_control cpc;
3481 	struct discard_policy dpolicy;
3482 	unsigned long long trimmed = 0;
3483 	int err = 0;
3484 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3485 
3486 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3487 		return -EINVAL;
3488 
3489 	if (end < MAIN_BLKADDR(sbi))
3490 		goto out;
3491 
3492 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3493 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3494 		return -EFSCORRUPTED;
3495 	}
3496 
3497 	/* start/end segment number in main_area */
3498 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3499 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3500 						GET_SEGNO(sbi, end);
3501 	if (need_align) {
3502 		start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3503 		end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3504 	}
3505 
3506 	cpc.reason = CP_DISCARD;
3507 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3508 	cpc.trim_start = start_segno;
3509 	cpc.trim_end = end_segno;
3510 
3511 	if (sbi->discard_blks == 0)
3512 		goto out;
3513 
3514 	f2fs_down_write(&sbi->gc_lock);
3515 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3516 	err = f2fs_write_checkpoint(sbi, &cpc);
3517 	f2fs_up_write(&sbi->gc_lock);
3518 	if (err)
3519 		goto out;
3520 
3521 	/*
3522 	 * We filed discard candidates, but actually we don't need to wait for
3523 	 * all of them, since they'll be issued in idle time along with runtime
3524 	 * discard option. User configuration looks like using runtime discard
3525 	 * or periodic fstrim instead of it.
3526 	 */
3527 	if (f2fs_realtime_discard_enable(sbi))
3528 		goto out;
3529 
3530 	start_block = START_BLOCK(sbi, start_segno);
3531 	end_block = START_BLOCK(sbi, end_segno + 1);
3532 
3533 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3534 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3535 					start_block, end_block);
3536 
3537 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3538 					start_block, end_block);
3539 out:
3540 	if (!err)
3541 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3542 	return err;
3543 }
3544 
f2fs_rw_hint_to_seg_type(struct f2fs_sb_info * sbi,enum rw_hint hint)3545 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3546 {
3547 	if (F2FS_OPTION(sbi).active_logs == 2)
3548 		return CURSEG_HOT_DATA;
3549 	else if (F2FS_OPTION(sbi).active_logs == 4)
3550 		return CURSEG_COLD_DATA;
3551 
3552 	/* active_log == 6 */
3553 	switch (hint) {
3554 	case WRITE_LIFE_SHORT:
3555 		return CURSEG_HOT_DATA;
3556 	case WRITE_LIFE_EXTREME:
3557 		return CURSEG_COLD_DATA;
3558 	default:
3559 		return CURSEG_WARM_DATA;
3560 	}
3561 }
3562 
3563 /*
3564  * This returns write hints for each segment type. This hints will be
3565  * passed down to block layer as below by default.
3566  *
3567  * User                  F2FS                     Block
3568  * ----                  ----                     -----
3569  *                       META                     WRITE_LIFE_NONE|REQ_META
3570  *                       HOT_NODE                 WRITE_LIFE_NONE
3571  *                       WARM_NODE                WRITE_LIFE_MEDIUM
3572  *                       COLD_NODE                WRITE_LIFE_LONG
3573  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3574  * extension list        "                        "
3575  *
3576  * -- buffered io
3577  *                       COLD_DATA                WRITE_LIFE_EXTREME
3578  *                       HOT_DATA                 WRITE_LIFE_SHORT
3579  *                       WARM_DATA                WRITE_LIFE_NOT_SET
3580  *
3581  * -- direct io
3582  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3583  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3584  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3585  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3586  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3587  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3588  */
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3589 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3590 				enum page_type type, enum temp_type temp)
3591 {
3592 	switch (type) {
3593 	case DATA:
3594 		switch (temp) {
3595 		case WARM:
3596 			return WRITE_LIFE_NOT_SET;
3597 		case HOT:
3598 			return WRITE_LIFE_SHORT;
3599 		case COLD:
3600 			return WRITE_LIFE_EXTREME;
3601 		default:
3602 			return WRITE_LIFE_NONE;
3603 		}
3604 	case NODE:
3605 		switch (temp) {
3606 		case WARM:
3607 			return WRITE_LIFE_MEDIUM;
3608 		case HOT:
3609 			return WRITE_LIFE_NONE;
3610 		case COLD:
3611 			return WRITE_LIFE_LONG;
3612 		default:
3613 			return WRITE_LIFE_NONE;
3614 		}
3615 	case META:
3616 		return WRITE_LIFE_NONE;
3617 	default:
3618 		return WRITE_LIFE_NONE;
3619 	}
3620 }
3621 
__get_segment_type_2(struct f2fs_io_info * fio)3622 static int __get_segment_type_2(struct f2fs_io_info *fio)
3623 {
3624 	if (fio->type == DATA)
3625 		return CURSEG_HOT_DATA;
3626 	else
3627 		return CURSEG_HOT_NODE;
3628 }
3629 
__get_segment_type_4(struct f2fs_io_info * fio)3630 static int __get_segment_type_4(struct f2fs_io_info *fio)
3631 {
3632 	if (fio->type == DATA) {
3633 		struct inode *inode = fio_inode(fio);
3634 
3635 		if (S_ISDIR(inode->i_mode))
3636 			return CURSEG_HOT_DATA;
3637 		else
3638 			return CURSEG_COLD_DATA;
3639 	} else {
3640 		if (IS_DNODE(fio->folio) && is_cold_node(fio->folio))
3641 			return CURSEG_WARM_NODE;
3642 		else
3643 			return CURSEG_COLD_NODE;
3644 	}
3645 }
3646 
__get_age_segment_type(struct inode * inode,pgoff_t pgofs)3647 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3648 {
3649 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3650 	struct extent_info ei = {};
3651 
3652 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3653 		if (!ei.age)
3654 			return NO_CHECK_TYPE;
3655 		if (ei.age <= sbi->hot_data_age_threshold)
3656 			return CURSEG_HOT_DATA;
3657 		if (ei.age <= sbi->warm_data_age_threshold)
3658 			return CURSEG_WARM_DATA;
3659 		return CURSEG_COLD_DATA;
3660 	}
3661 	return NO_CHECK_TYPE;
3662 }
3663 
__get_segment_type_6(struct f2fs_io_info * fio)3664 static int __get_segment_type_6(struct f2fs_io_info *fio)
3665 {
3666 	if (fio->type == DATA) {
3667 		struct inode *inode = fio_inode(fio);
3668 		int type;
3669 
3670 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3671 			return CURSEG_COLD_DATA_PINNED;
3672 
3673 		if (page_private_gcing(fio->page)) {
3674 			if (fio->sbi->am.atgc_enabled &&
3675 				(fio->io_type == FS_DATA_IO) &&
3676 				(fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3677 				__is_valid_data_blkaddr(fio->old_blkaddr) &&
3678 				!is_inode_flag_set(inode, FI_OPU_WRITE))
3679 				return CURSEG_ALL_DATA_ATGC;
3680 			else
3681 				return CURSEG_COLD_DATA;
3682 		}
3683 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3684 			return CURSEG_COLD_DATA;
3685 
3686 		type = __get_age_segment_type(inode, fio->folio->index);
3687 		if (type != NO_CHECK_TYPE)
3688 			return type;
3689 
3690 		if (file_is_hot(inode) ||
3691 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3692 				f2fs_is_cow_file(inode) ||
3693 				is_inode_flag_set(inode, FI_NEED_IPU))
3694 			return CURSEG_HOT_DATA;
3695 		return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3696 						inode->i_write_hint);
3697 	} else {
3698 		if (IS_DNODE(fio->folio))
3699 			return is_cold_node(fio->folio) ? CURSEG_WARM_NODE :
3700 						CURSEG_HOT_NODE;
3701 		return CURSEG_COLD_NODE;
3702 	}
3703 }
3704 
f2fs_get_segment_temp(struct f2fs_sb_info * sbi,enum log_type type)3705 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3706 						enum log_type type)
3707 {
3708 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3709 	enum temp_type temp = COLD;
3710 
3711 	switch (curseg->seg_type) {
3712 	case CURSEG_HOT_NODE:
3713 	case CURSEG_HOT_DATA:
3714 		temp = HOT;
3715 		break;
3716 	case CURSEG_WARM_NODE:
3717 	case CURSEG_WARM_DATA:
3718 		temp = WARM;
3719 		break;
3720 	case CURSEG_COLD_NODE:
3721 	case CURSEG_COLD_DATA:
3722 		temp = COLD;
3723 		break;
3724 	default:
3725 		f2fs_bug_on(sbi, 1);
3726 	}
3727 
3728 	return temp;
3729 }
3730 
__get_segment_type(struct f2fs_io_info * fio)3731 static int __get_segment_type(struct f2fs_io_info *fio)
3732 {
3733 	enum log_type type = CURSEG_HOT_DATA;
3734 
3735 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3736 	case 2:
3737 		type = __get_segment_type_2(fio);
3738 		break;
3739 	case 4:
3740 		type = __get_segment_type_4(fio);
3741 		break;
3742 	case 6:
3743 		type = __get_segment_type_6(fio);
3744 		break;
3745 	default:
3746 		f2fs_bug_on(fio->sbi, true);
3747 	}
3748 
3749 	fio->temp = f2fs_get_segment_temp(fio->sbi, type);
3750 
3751 	return type;
3752 }
3753 
f2fs_randomize_chunk(struct f2fs_sb_info * sbi,struct curseg_info * seg)3754 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3755 		struct curseg_info *seg)
3756 {
3757 	/* To allocate block chunks in different sizes, use random number */
3758 	if (--seg->fragment_remained_chunk > 0)
3759 		return;
3760 
3761 	seg->fragment_remained_chunk =
3762 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3763 	seg->next_blkoff +=
3764 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3765 }
3766 
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct folio * folio,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3767 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct folio *folio,
3768 		block_t old_blkaddr, block_t *new_blkaddr,
3769 		struct f2fs_summary *sum, int type,
3770 		struct f2fs_io_info *fio)
3771 {
3772 	struct sit_info *sit_i = SIT_I(sbi);
3773 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3774 	unsigned long long old_mtime;
3775 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3776 	struct seg_entry *se = NULL;
3777 	bool segment_full = false;
3778 	int ret = 0;
3779 
3780 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3781 
3782 	mutex_lock(&curseg->curseg_mutex);
3783 	down_write(&sit_i->sentry_lock);
3784 
3785 	if (curseg->segno == NULL_SEGNO) {
3786 		ret = -ENOSPC;
3787 		goto out_err;
3788 	}
3789 
3790 	if (from_gc) {
3791 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3792 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3793 		sanity_check_seg_type(sbi, se->type);
3794 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3795 	}
3796 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3797 
3798 	f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3799 
3800 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3801 
3802 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3803 	if (curseg->alloc_type == SSR) {
3804 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3805 	} else {
3806 		curseg->next_blkoff++;
3807 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3808 			f2fs_randomize_chunk(sbi, curseg);
3809 	}
3810 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3811 		segment_full = true;
3812 	stat_inc_block_count(sbi, curseg);
3813 
3814 	if (from_gc) {
3815 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3816 	} else {
3817 		update_segment_mtime(sbi, old_blkaddr, 0);
3818 		old_mtime = 0;
3819 	}
3820 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3821 
3822 	/*
3823 	 * SIT information should be updated before segment allocation,
3824 	 * since SSR needs latest valid block information.
3825 	 */
3826 	update_sit_entry(sbi, *new_blkaddr, 1);
3827 	update_sit_entry(sbi, old_blkaddr, -1);
3828 
3829 	/*
3830 	 * If the current segment is full, flush it out and replace it with a
3831 	 * new segment.
3832 	 */
3833 	if (segment_full) {
3834 		if (type == CURSEG_COLD_DATA_PINNED &&
3835 		    !((curseg->segno + 1) % sbi->segs_per_sec)) {
3836 			write_sum_page(sbi, curseg->sum_blk,
3837 					GET_SUM_BLOCK(sbi, curseg->segno));
3838 			reset_curseg_fields(curseg);
3839 			goto skip_new_segment;
3840 		}
3841 
3842 		if (from_gc) {
3843 			ret = get_atssr_segment(sbi, type, se->type,
3844 						AT_SSR, se->mtime);
3845 		} else {
3846 			if (need_new_seg(sbi, type))
3847 				ret = new_curseg(sbi, type, false);
3848 			else
3849 				ret = change_curseg(sbi, type);
3850 			stat_inc_seg_type(sbi, curseg);
3851 		}
3852 
3853 		if (ret)
3854 			goto out_err;
3855 	}
3856 
3857 skip_new_segment:
3858 	/*
3859 	 * segment dirty status should be updated after segment allocation,
3860 	 * so we just need to update status only one time after previous
3861 	 * segment being closed.
3862 	 */
3863 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3864 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3865 
3866 	if (IS_DATASEG(curseg->seg_type))
3867 		atomic64_inc(&sbi->allocated_data_blocks);
3868 
3869 	up_write(&sit_i->sentry_lock);
3870 
3871 	if (folio && IS_NODESEG(curseg->seg_type)) {
3872 		fill_node_footer_blkaddr(folio, NEXT_FREE_BLKADDR(sbi, curseg));
3873 
3874 		f2fs_inode_chksum_set(sbi, folio);
3875 	}
3876 
3877 	if (fio) {
3878 		struct f2fs_bio_info *io;
3879 
3880 		INIT_LIST_HEAD(&fio->list);
3881 		fio->in_list = 1;
3882 		io = sbi->write_io[fio->type] + fio->temp;
3883 		spin_lock(&io->io_lock);
3884 		list_add_tail(&fio->list, &io->io_list);
3885 		spin_unlock(&io->io_lock);
3886 	}
3887 
3888 	mutex_unlock(&curseg->curseg_mutex);
3889 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3890 	return 0;
3891 
3892 out_err:
3893 	*new_blkaddr = NULL_ADDR;
3894 	up_write(&sit_i->sentry_lock);
3895 	mutex_unlock(&curseg->curseg_mutex);
3896 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3897 	return ret;
3898 }
3899 
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3900 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3901 					block_t blkaddr, unsigned int blkcnt)
3902 {
3903 	if (!f2fs_is_multi_device(sbi))
3904 		return;
3905 
3906 	while (1) {
3907 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3908 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3909 
3910 		/* update device state for fsync */
3911 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3912 
3913 		/* update device state for checkpoint */
3914 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3915 			spin_lock(&sbi->dev_lock);
3916 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3917 			spin_unlock(&sbi->dev_lock);
3918 		}
3919 
3920 		if (blkcnt <= blks)
3921 			break;
3922 		blkcnt -= blks;
3923 		blkaddr += blks;
3924 	}
3925 }
3926 
log_type_to_seg_type(enum log_type type)3927 static int log_type_to_seg_type(enum log_type type)
3928 {
3929 	int seg_type = CURSEG_COLD_DATA;
3930 
3931 	switch (type) {
3932 	case CURSEG_HOT_DATA:
3933 	case CURSEG_WARM_DATA:
3934 	case CURSEG_COLD_DATA:
3935 	case CURSEG_HOT_NODE:
3936 	case CURSEG_WARM_NODE:
3937 	case CURSEG_COLD_NODE:
3938 		seg_type = (int)type;
3939 		break;
3940 	case CURSEG_COLD_DATA_PINNED:
3941 	case CURSEG_ALL_DATA_ATGC:
3942 		seg_type = CURSEG_COLD_DATA;
3943 		break;
3944 	default:
3945 		break;
3946 	}
3947 	return seg_type;
3948 }
3949 
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3950 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3951 {
3952 	struct folio *folio = fio->folio;
3953 	enum log_type type = __get_segment_type(fio);
3954 	int seg_type = log_type_to_seg_type(type);
3955 	bool keep_order = (f2fs_lfs_mode(fio->sbi) &&
3956 				seg_type == CURSEG_COLD_DATA);
3957 	int err;
3958 
3959 	if (keep_order)
3960 		f2fs_down_read(&fio->sbi->io_order_lock);
3961 
3962 	err = f2fs_allocate_data_block(fio->sbi, folio, fio->old_blkaddr,
3963 			&fio->new_blkaddr, sum, type, fio);
3964 	if (unlikely(err)) {
3965 		f2fs_err_ratelimited(fio->sbi,
3966 			"%s Failed to allocate data block, ino:%u, index:%lu, type:%d, old_blkaddr:0x%x, new_blkaddr:0x%x, err:%d",
3967 			__func__, fio->ino, folio->index, type,
3968 			fio->old_blkaddr, fio->new_blkaddr, err);
3969 		if (fscrypt_inode_uses_fs_layer_crypto(folio->mapping->host))
3970 			fscrypt_finalize_bounce_page(&fio->encrypted_page);
3971 		folio_end_writeback(folio);
3972 		if (f2fs_in_warm_node_list(fio->sbi, folio))
3973 			f2fs_del_fsync_node_entry(fio->sbi, folio);
3974 		f2fs_bug_on(fio->sbi, !is_set_ckpt_flags(fio->sbi,
3975 							CP_ERROR_FLAG));
3976 		goto out;
3977 	}
3978 
3979 	f2fs_bug_on(fio->sbi, !f2fs_is_valid_blkaddr_raw(fio->sbi,
3980 				fio->new_blkaddr, DATA_GENERIC_ENHANCE));
3981 
3982 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3983 		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr, 1);
3984 
3985 	/* writeout dirty page into bdev */
3986 	f2fs_submit_page_write(fio);
3987 
3988 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3989 out:
3990 	if (keep_order)
3991 		f2fs_up_read(&fio->sbi->io_order_lock);
3992 }
3993 
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct folio * folio,enum iostat_type io_type)3994 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3995 					enum iostat_type io_type)
3996 {
3997 	struct f2fs_io_info fio = {
3998 		.sbi = sbi,
3999 		.type = META,
4000 		.temp = HOT,
4001 		.op = REQ_OP_WRITE,
4002 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
4003 		.old_blkaddr = folio->index,
4004 		.new_blkaddr = folio->index,
4005 		.folio = folio,
4006 		.encrypted_page = NULL,
4007 		.in_list = 0,
4008 	};
4009 
4010 	if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
4011 		fio.op_flags &= ~REQ_META;
4012 
4013 	folio_start_writeback(folio);
4014 	f2fs_submit_page_write(&fio);
4015 
4016 	stat_inc_meta_count(sbi, folio->index);
4017 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
4018 }
4019 
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)4020 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
4021 {
4022 	struct f2fs_summary sum;
4023 
4024 	set_summary(&sum, nid, 0, 0);
4025 	do_write_page(&sum, fio);
4026 
4027 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
4028 }
4029 
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)4030 void f2fs_outplace_write_data(struct dnode_of_data *dn,
4031 					struct f2fs_io_info *fio)
4032 {
4033 	struct f2fs_sb_info *sbi = fio->sbi;
4034 	struct f2fs_summary sum;
4035 
4036 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
4037 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
4038 		f2fs_update_age_extent_cache(dn);
4039 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
4040 	do_write_page(&sum, fio);
4041 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
4042 
4043 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
4044 }
4045 
f2fs_inplace_write_data(struct f2fs_io_info * fio)4046 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
4047 {
4048 	int err;
4049 	struct f2fs_sb_info *sbi = fio->sbi;
4050 	unsigned int segno;
4051 
4052 	fio->new_blkaddr = fio->old_blkaddr;
4053 	/* i/o temperature is needed for passing down write hints */
4054 	__get_segment_type(fio);
4055 
4056 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
4057 
4058 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
4059 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4060 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
4061 			  __func__, segno);
4062 		err = -EFSCORRUPTED;
4063 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4064 		goto drop_bio;
4065 	}
4066 
4067 	if (f2fs_cp_error(sbi)) {
4068 		err = -EIO;
4069 		goto drop_bio;
4070 	}
4071 
4072 	if (fio->meta_gc)
4073 		f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
4074 
4075 	stat_inc_inplace_blocks(fio->sbi);
4076 
4077 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
4078 		err = f2fs_merge_page_bio(fio);
4079 	else
4080 		err = f2fs_submit_page_bio(fio);
4081 	if (!err) {
4082 		f2fs_update_device_state(fio->sbi, fio->ino,
4083 						fio->new_blkaddr, 1);
4084 		f2fs_update_iostat(fio->sbi, fio_inode(fio),
4085 						fio->io_type, F2FS_BLKSIZE);
4086 	}
4087 
4088 	return err;
4089 drop_bio:
4090 	if (fio->bio && *(fio->bio)) {
4091 		struct bio *bio = *(fio->bio);
4092 
4093 		bio->bi_status = BLK_STS_IOERR;
4094 		bio_endio(bio);
4095 		*(fio->bio) = NULL;
4096 	}
4097 	return err;
4098 }
4099 
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)4100 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
4101 						unsigned int segno)
4102 {
4103 	int i;
4104 
4105 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
4106 		if (CURSEG_I(sbi, i)->segno == segno)
4107 			break;
4108 	}
4109 	return i;
4110 }
4111 
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)4112 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
4113 				block_t old_blkaddr, block_t new_blkaddr,
4114 				bool recover_curseg, bool recover_newaddr,
4115 				bool from_gc)
4116 {
4117 	struct sit_info *sit_i = SIT_I(sbi);
4118 	struct curseg_info *curseg;
4119 	unsigned int segno, old_cursegno;
4120 	struct seg_entry *se;
4121 	int type;
4122 	unsigned short old_blkoff;
4123 	unsigned char old_alloc_type;
4124 
4125 	segno = GET_SEGNO(sbi, new_blkaddr);
4126 	se = get_seg_entry(sbi, segno);
4127 	type = se->type;
4128 
4129 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
4130 
4131 	if (!recover_curseg) {
4132 		/* for recovery flow */
4133 		if (se->valid_blocks == 0 && !is_curseg(sbi, segno)) {
4134 			if (old_blkaddr == NULL_ADDR)
4135 				type = CURSEG_COLD_DATA;
4136 			else
4137 				type = CURSEG_WARM_DATA;
4138 		}
4139 	} else {
4140 		if (is_curseg(sbi, segno)) {
4141 			/* se->type is volatile as SSR allocation */
4142 			type = __f2fs_get_curseg(sbi, segno);
4143 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
4144 		} else {
4145 			type = CURSEG_WARM_DATA;
4146 		}
4147 	}
4148 
4149 	curseg = CURSEG_I(sbi, type);
4150 	f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
4151 
4152 	mutex_lock(&curseg->curseg_mutex);
4153 	down_write(&sit_i->sentry_lock);
4154 
4155 	old_cursegno = curseg->segno;
4156 	old_blkoff = curseg->next_blkoff;
4157 	old_alloc_type = curseg->alloc_type;
4158 
4159 	/* change the current segment */
4160 	if (segno != curseg->segno) {
4161 		curseg->next_segno = segno;
4162 		if (change_curseg(sbi, type))
4163 			goto out_unlock;
4164 	}
4165 
4166 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
4167 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
4168 
4169 	if (!recover_curseg || recover_newaddr) {
4170 		if (!from_gc)
4171 			update_segment_mtime(sbi, new_blkaddr, 0);
4172 		update_sit_entry(sbi, new_blkaddr, 1);
4173 	}
4174 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4175 		f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
4176 		if (!from_gc)
4177 			update_segment_mtime(sbi, old_blkaddr, 0);
4178 		update_sit_entry(sbi, old_blkaddr, -1);
4179 	}
4180 
4181 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4182 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4183 
4184 	locate_dirty_segment(sbi, old_cursegno);
4185 
4186 	if (recover_curseg) {
4187 		if (old_cursegno != curseg->segno) {
4188 			curseg->next_segno = old_cursegno;
4189 			if (change_curseg(sbi, type))
4190 				goto out_unlock;
4191 		}
4192 		curseg->next_blkoff = old_blkoff;
4193 		curseg->alloc_type = old_alloc_type;
4194 	}
4195 
4196 out_unlock:
4197 	up_write(&sit_i->sentry_lock);
4198 	mutex_unlock(&curseg->curseg_mutex);
4199 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
4200 }
4201 
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)4202 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4203 				block_t old_addr, block_t new_addr,
4204 				unsigned char version, bool recover_curseg,
4205 				bool recover_newaddr)
4206 {
4207 	struct f2fs_summary sum;
4208 
4209 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4210 
4211 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4212 					recover_curseg, recover_newaddr, false);
4213 
4214 	f2fs_update_data_blkaddr(dn, new_addr);
4215 }
4216 
f2fs_folio_wait_writeback(struct folio * folio,enum page_type type,bool ordered,bool locked)4217 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
4218 		bool ordered, bool locked)
4219 {
4220 	if (folio_test_writeback(folio)) {
4221 		struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
4222 
4223 		/* submit cached LFS IO */
4224 		f2fs_submit_merged_write_cond(sbi, NULL, folio, 0, type);
4225 		/* submit cached IPU IO */
4226 		f2fs_submit_merged_ipu_write(sbi, NULL, folio);
4227 		if (ordered) {
4228 			folio_wait_writeback(folio);
4229 			f2fs_bug_on(sbi, locked && folio_test_writeback(folio));
4230 		} else {
4231 			folio_wait_stable(folio);
4232 		}
4233 	}
4234 }
4235 
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)4236 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4237 {
4238 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4239 	struct folio *cfolio;
4240 
4241 	if (!f2fs_meta_inode_gc_required(inode))
4242 		return;
4243 
4244 	if (!__is_valid_data_blkaddr(blkaddr))
4245 		return;
4246 
4247 	cfolio = filemap_lock_folio(META_MAPPING(sbi), blkaddr);
4248 	if (!IS_ERR(cfolio)) {
4249 		f2fs_folio_wait_writeback(cfolio, DATA, true, true);
4250 		f2fs_folio_put(cfolio, true);
4251 	}
4252 }
4253 
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)4254 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4255 								block_t len)
4256 {
4257 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4258 	block_t i;
4259 
4260 	if (!f2fs_meta_inode_gc_required(inode))
4261 		return;
4262 
4263 	for (i = 0; i < len; i++)
4264 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
4265 
4266 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4267 }
4268 
read_compacted_summaries(struct f2fs_sb_info * sbi)4269 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4270 {
4271 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4272 	struct curseg_info *seg_i;
4273 	unsigned char *kaddr;
4274 	struct folio *folio;
4275 	block_t start;
4276 	int i, j, offset;
4277 
4278 	start = start_sum_block(sbi);
4279 
4280 	folio = f2fs_get_meta_folio(sbi, start++);
4281 	if (IS_ERR(folio))
4282 		return PTR_ERR(folio);
4283 	kaddr = folio_address(folio);
4284 
4285 	/* Step 1: restore nat cache */
4286 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4287 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4288 
4289 	/* Step 2: restore sit cache */
4290 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4291 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4292 	offset = 2 * SUM_JOURNAL_SIZE;
4293 
4294 	/* Step 3: restore summary entries */
4295 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4296 		unsigned short blk_off;
4297 		unsigned int segno;
4298 
4299 		seg_i = CURSEG_I(sbi, i);
4300 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4301 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4302 		seg_i->next_segno = segno;
4303 		reset_curseg(sbi, i, 0);
4304 		seg_i->alloc_type = ckpt->alloc_type[i];
4305 		seg_i->next_blkoff = blk_off;
4306 
4307 		if (seg_i->alloc_type == SSR)
4308 			blk_off = BLKS_PER_SEG(sbi);
4309 
4310 		for (j = 0; j < blk_off; j++) {
4311 			struct f2fs_summary *s;
4312 
4313 			s = (struct f2fs_summary *)(kaddr + offset);
4314 			seg_i->sum_blk->entries[j] = *s;
4315 			offset += SUMMARY_SIZE;
4316 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4317 						SUM_FOOTER_SIZE)
4318 				continue;
4319 
4320 			f2fs_folio_put(folio, true);
4321 
4322 			folio = f2fs_get_meta_folio(sbi, start++);
4323 			if (IS_ERR(folio))
4324 				return PTR_ERR(folio);
4325 			kaddr = folio_address(folio);
4326 			offset = 0;
4327 		}
4328 	}
4329 	f2fs_folio_put(folio, true);
4330 	return 0;
4331 }
4332 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)4333 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4334 {
4335 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4336 	struct f2fs_summary_block *sum;
4337 	struct curseg_info *curseg;
4338 	struct folio *new;
4339 	unsigned short blk_off;
4340 	unsigned int segno = 0;
4341 	block_t blk_addr = 0;
4342 	int err = 0;
4343 
4344 	/* get segment number and block addr */
4345 	if (IS_DATASEG(type)) {
4346 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4347 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4348 							CURSEG_HOT_DATA]);
4349 		if (__exist_node_summaries(sbi))
4350 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4351 		else
4352 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4353 	} else {
4354 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
4355 							CURSEG_HOT_NODE]);
4356 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4357 							CURSEG_HOT_NODE]);
4358 		if (__exist_node_summaries(sbi))
4359 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4360 							type - CURSEG_HOT_NODE);
4361 		else
4362 			blk_addr = GET_SUM_BLOCK(sbi, segno);
4363 	}
4364 
4365 	new = f2fs_get_meta_folio(sbi, blk_addr);
4366 	if (IS_ERR(new))
4367 		return PTR_ERR(new);
4368 	sum = folio_address(new);
4369 
4370 	if (IS_NODESEG(type)) {
4371 		if (__exist_node_summaries(sbi)) {
4372 			struct f2fs_summary *ns = &sum->entries[0];
4373 			int i;
4374 
4375 			for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4376 				ns->version = 0;
4377 				ns->ofs_in_node = 0;
4378 			}
4379 		} else {
4380 			err = f2fs_restore_node_summary(sbi, segno, sum);
4381 			if (err)
4382 				goto out;
4383 		}
4384 	}
4385 
4386 	/* set uncompleted segment to curseg */
4387 	curseg = CURSEG_I(sbi, type);
4388 	mutex_lock(&curseg->curseg_mutex);
4389 
4390 	/* update journal info */
4391 	down_write(&curseg->journal_rwsem);
4392 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4393 	up_write(&curseg->journal_rwsem);
4394 
4395 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4396 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4397 	curseg->next_segno = segno;
4398 	reset_curseg(sbi, type, 0);
4399 	curseg->alloc_type = ckpt->alloc_type[type];
4400 	curseg->next_blkoff = blk_off;
4401 	mutex_unlock(&curseg->curseg_mutex);
4402 out:
4403 	f2fs_folio_put(new, true);
4404 	return err;
4405 }
4406 
restore_curseg_summaries(struct f2fs_sb_info * sbi)4407 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4408 {
4409 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4410 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4411 	int type = CURSEG_HOT_DATA;
4412 	int err;
4413 
4414 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4415 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4416 
4417 		if (npages >= 2)
4418 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4419 							META_CP, true);
4420 
4421 		/* restore for compacted data summary */
4422 		err = read_compacted_summaries(sbi);
4423 		if (err)
4424 			return err;
4425 		type = CURSEG_HOT_NODE;
4426 	}
4427 
4428 	if (__exist_node_summaries(sbi))
4429 		f2fs_ra_meta_pages(sbi,
4430 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4431 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4432 
4433 	for (; type <= CURSEG_COLD_NODE; type++) {
4434 		err = read_normal_summaries(sbi, type);
4435 		if (err)
4436 			return err;
4437 	}
4438 
4439 	/* sanity check for summary blocks */
4440 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4441 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4442 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4443 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4444 		return -EINVAL;
4445 	}
4446 
4447 	return 0;
4448 }
4449 
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4450 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4451 {
4452 	struct folio *folio;
4453 	unsigned char *kaddr;
4454 	struct f2fs_summary *summary;
4455 	struct curseg_info *seg_i;
4456 	int written_size = 0;
4457 	int i, j;
4458 
4459 	folio = f2fs_grab_meta_folio(sbi, blkaddr++);
4460 	kaddr = folio_address(folio);
4461 	memset(kaddr, 0, PAGE_SIZE);
4462 
4463 	/* Step 1: write nat cache */
4464 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4465 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4466 	written_size += SUM_JOURNAL_SIZE;
4467 
4468 	/* Step 2: write sit cache */
4469 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4470 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4471 	written_size += SUM_JOURNAL_SIZE;
4472 
4473 	/* Step 3: write summary entries */
4474 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4475 		seg_i = CURSEG_I(sbi, i);
4476 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4477 			if (!folio) {
4478 				folio = f2fs_grab_meta_folio(sbi, blkaddr++);
4479 				kaddr = folio_address(folio);
4480 				memset(kaddr, 0, PAGE_SIZE);
4481 				written_size = 0;
4482 			}
4483 			summary = (struct f2fs_summary *)(kaddr + written_size);
4484 			*summary = seg_i->sum_blk->entries[j];
4485 			written_size += SUMMARY_SIZE;
4486 
4487 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4488 							SUM_FOOTER_SIZE)
4489 				continue;
4490 
4491 			folio_mark_dirty(folio);
4492 			f2fs_folio_put(folio, true);
4493 			folio = NULL;
4494 		}
4495 	}
4496 	if (folio) {
4497 		folio_mark_dirty(folio);
4498 		f2fs_folio_put(folio, true);
4499 	}
4500 }
4501 
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4502 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4503 					block_t blkaddr, int type)
4504 {
4505 	int i, end;
4506 
4507 	if (IS_DATASEG(type))
4508 		end = type + NR_CURSEG_DATA_TYPE;
4509 	else
4510 		end = type + NR_CURSEG_NODE_TYPE;
4511 
4512 	for (i = type; i < end; i++)
4513 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4514 }
4515 
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4516 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4517 {
4518 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4519 		write_compacted_summaries(sbi, start_blk);
4520 	else
4521 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4522 }
4523 
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4524 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4525 {
4526 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4527 }
4528 
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4529 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4530 					unsigned int val, int alloc)
4531 {
4532 	int i;
4533 
4534 	if (type == NAT_JOURNAL) {
4535 		for (i = 0; i < nats_in_cursum(journal); i++) {
4536 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4537 				return i;
4538 		}
4539 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4540 			return update_nats_in_cursum(journal, 1);
4541 	} else if (type == SIT_JOURNAL) {
4542 		for (i = 0; i < sits_in_cursum(journal); i++)
4543 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4544 				return i;
4545 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4546 			return update_sits_in_cursum(journal, 1);
4547 	}
4548 	return -1;
4549 }
4550 
get_current_sit_folio(struct f2fs_sb_info * sbi,unsigned int segno)4551 static struct folio *get_current_sit_folio(struct f2fs_sb_info *sbi,
4552 					unsigned int segno)
4553 {
4554 	return f2fs_get_meta_folio(sbi, current_sit_addr(sbi, segno));
4555 }
4556 
get_next_sit_folio(struct f2fs_sb_info * sbi,unsigned int start)4557 static struct folio *get_next_sit_folio(struct f2fs_sb_info *sbi,
4558 					unsigned int start)
4559 {
4560 	struct sit_info *sit_i = SIT_I(sbi);
4561 	struct folio *folio;
4562 	pgoff_t src_off, dst_off;
4563 
4564 	src_off = current_sit_addr(sbi, start);
4565 	dst_off = next_sit_addr(sbi, src_off);
4566 
4567 	folio = f2fs_grab_meta_folio(sbi, dst_off);
4568 	seg_info_to_sit_folio(sbi, folio, start);
4569 
4570 	folio_mark_dirty(folio);
4571 	set_to_next_sit(sit_i, start);
4572 
4573 	return folio;
4574 }
4575 
grab_sit_entry_set(void)4576 static struct sit_entry_set *grab_sit_entry_set(void)
4577 {
4578 	struct sit_entry_set *ses =
4579 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4580 						GFP_NOFS, true, NULL);
4581 
4582 	ses->entry_cnt = 0;
4583 	INIT_LIST_HEAD(&ses->set_list);
4584 	return ses;
4585 }
4586 
release_sit_entry_set(struct sit_entry_set * ses)4587 static void release_sit_entry_set(struct sit_entry_set *ses)
4588 {
4589 	list_del(&ses->set_list);
4590 	kmem_cache_free(sit_entry_set_slab, ses);
4591 }
4592 
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4593 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4594 						struct list_head *head)
4595 {
4596 	struct sit_entry_set *next = ses;
4597 
4598 	if (list_is_last(&ses->set_list, head))
4599 		return;
4600 
4601 	list_for_each_entry_continue(next, head, set_list)
4602 		if (ses->entry_cnt <= next->entry_cnt) {
4603 			list_move_tail(&ses->set_list, &next->set_list);
4604 			return;
4605 		}
4606 
4607 	list_move_tail(&ses->set_list, head);
4608 }
4609 
add_sit_entry(unsigned int segno,struct list_head * head)4610 static void add_sit_entry(unsigned int segno, struct list_head *head)
4611 {
4612 	struct sit_entry_set *ses;
4613 	unsigned int start_segno = START_SEGNO(segno);
4614 
4615 	list_for_each_entry(ses, head, set_list) {
4616 		if (ses->start_segno == start_segno) {
4617 			ses->entry_cnt++;
4618 			adjust_sit_entry_set(ses, head);
4619 			return;
4620 		}
4621 	}
4622 
4623 	ses = grab_sit_entry_set();
4624 
4625 	ses->start_segno = start_segno;
4626 	ses->entry_cnt++;
4627 	list_add(&ses->set_list, head);
4628 }
4629 
add_sits_in_set(struct f2fs_sb_info * sbi)4630 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4631 {
4632 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4633 	struct list_head *set_list = &sm_info->sit_entry_set;
4634 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4635 	unsigned int segno;
4636 
4637 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4638 		add_sit_entry(segno, set_list);
4639 }
4640 
remove_sits_in_journal(struct f2fs_sb_info * sbi)4641 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4642 {
4643 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4644 	struct f2fs_journal *journal = curseg->journal;
4645 	int i;
4646 
4647 	down_write(&curseg->journal_rwsem);
4648 	for (i = 0; i < sits_in_cursum(journal); i++) {
4649 		unsigned int segno;
4650 		bool dirtied;
4651 
4652 		segno = le32_to_cpu(segno_in_journal(journal, i));
4653 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4654 
4655 		if (!dirtied)
4656 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4657 	}
4658 	update_sits_in_cursum(journal, -i);
4659 	up_write(&curseg->journal_rwsem);
4660 }
4661 
4662 /*
4663  * CP calls this function, which flushes SIT entries including sit_journal,
4664  * and moves prefree segs to free segs.
4665  */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4666 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4667 {
4668 	struct sit_info *sit_i = SIT_I(sbi);
4669 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4670 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4671 	struct f2fs_journal *journal = curseg->journal;
4672 	struct sit_entry_set *ses, *tmp;
4673 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4674 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4675 	struct seg_entry *se;
4676 
4677 	down_write(&sit_i->sentry_lock);
4678 
4679 	if (!sit_i->dirty_sentries)
4680 		goto out;
4681 
4682 	/*
4683 	 * add and account sit entries of dirty bitmap in sit entry
4684 	 * set temporarily
4685 	 */
4686 	add_sits_in_set(sbi);
4687 
4688 	/*
4689 	 * if there are no enough space in journal to store dirty sit
4690 	 * entries, remove all entries from journal and add and account
4691 	 * them in sit entry set.
4692 	 */
4693 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4694 								!to_journal)
4695 		remove_sits_in_journal(sbi);
4696 
4697 	/*
4698 	 * there are two steps to flush sit entries:
4699 	 * #1, flush sit entries to journal in current cold data summary block.
4700 	 * #2, flush sit entries to sit page.
4701 	 */
4702 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4703 		struct folio *folio = NULL;
4704 		struct f2fs_sit_block *raw_sit = NULL;
4705 		unsigned int start_segno = ses->start_segno;
4706 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4707 						(unsigned long)MAIN_SEGS(sbi));
4708 		unsigned int segno = start_segno;
4709 
4710 		if (to_journal &&
4711 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4712 			to_journal = false;
4713 
4714 		if (to_journal) {
4715 			down_write(&curseg->journal_rwsem);
4716 		} else {
4717 			folio = get_next_sit_folio(sbi, start_segno);
4718 			raw_sit = folio_address(folio);
4719 		}
4720 
4721 		/* flush dirty sit entries in region of current sit set */
4722 		for_each_set_bit_from(segno, bitmap, end) {
4723 			int offset, sit_offset;
4724 
4725 			se = get_seg_entry(sbi, segno);
4726 #ifdef CONFIG_F2FS_CHECK_FS
4727 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4728 						SIT_VBLOCK_MAP_SIZE))
4729 				f2fs_bug_on(sbi, 1);
4730 #endif
4731 
4732 			/* add discard candidates */
4733 			if (!(cpc->reason & CP_DISCARD)) {
4734 				cpc->trim_start = segno;
4735 				add_discard_addrs(sbi, cpc, false);
4736 			}
4737 
4738 			if (to_journal) {
4739 				offset = f2fs_lookup_journal_in_cursum(journal,
4740 							SIT_JOURNAL, segno, 1);
4741 				f2fs_bug_on(sbi, offset < 0);
4742 				segno_in_journal(journal, offset) =
4743 							cpu_to_le32(segno);
4744 				seg_info_to_raw_sit(se,
4745 					&sit_in_journal(journal, offset));
4746 				check_block_count(sbi, segno,
4747 					&sit_in_journal(journal, offset));
4748 			} else {
4749 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4750 				seg_info_to_raw_sit(se,
4751 						&raw_sit->entries[sit_offset]);
4752 				check_block_count(sbi, segno,
4753 						&raw_sit->entries[sit_offset]);
4754 			}
4755 
4756 			/* update ckpt_valid_block */
4757 			if (__is_large_section(sbi)) {
4758 				set_ckpt_valid_blocks(sbi, segno);
4759 				sanity_check_valid_blocks(sbi, segno);
4760 			}
4761 
4762 			__clear_bit(segno, bitmap);
4763 			sit_i->dirty_sentries--;
4764 			ses->entry_cnt--;
4765 		}
4766 
4767 		if (to_journal)
4768 			up_write(&curseg->journal_rwsem);
4769 		else
4770 			f2fs_folio_put(folio, true);
4771 
4772 		f2fs_bug_on(sbi, ses->entry_cnt);
4773 		release_sit_entry_set(ses);
4774 	}
4775 
4776 	f2fs_bug_on(sbi, !list_empty(head));
4777 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4778 out:
4779 	if (cpc->reason & CP_DISCARD) {
4780 		__u64 trim_start = cpc->trim_start;
4781 
4782 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4783 			add_discard_addrs(sbi, cpc, false);
4784 
4785 		cpc->trim_start = trim_start;
4786 	}
4787 	up_write(&sit_i->sentry_lock);
4788 
4789 	set_prefree_as_free_segments(sbi);
4790 }
4791 
build_sit_info(struct f2fs_sb_info * sbi)4792 static int build_sit_info(struct f2fs_sb_info *sbi)
4793 {
4794 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4795 	struct sit_info *sit_i;
4796 	unsigned int sit_segs, start;
4797 	char *src_bitmap, *bitmap;
4798 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4799 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4800 
4801 	/* allocate memory for SIT information */
4802 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4803 	if (!sit_i)
4804 		return -ENOMEM;
4805 
4806 	SM_I(sbi)->sit_info = sit_i;
4807 
4808 	sit_i->sentries =
4809 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4810 					      MAIN_SEGS(sbi)),
4811 			      GFP_KERNEL);
4812 	if (!sit_i->sentries)
4813 		return -ENOMEM;
4814 
4815 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4816 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4817 								GFP_KERNEL);
4818 	if (!sit_i->dirty_sentries_bitmap)
4819 		return -ENOMEM;
4820 
4821 #ifdef CONFIG_F2FS_CHECK_FS
4822 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4823 #else
4824 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4825 #endif
4826 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4827 	if (!sit_i->bitmap)
4828 		return -ENOMEM;
4829 
4830 	bitmap = sit_i->bitmap;
4831 
4832 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4833 		sit_i->sentries[start].cur_valid_map = bitmap;
4834 		bitmap += SIT_VBLOCK_MAP_SIZE;
4835 
4836 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4837 		bitmap += SIT_VBLOCK_MAP_SIZE;
4838 
4839 #ifdef CONFIG_F2FS_CHECK_FS
4840 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4841 		bitmap += SIT_VBLOCK_MAP_SIZE;
4842 #endif
4843 
4844 		if (discard_map) {
4845 			sit_i->sentries[start].discard_map = bitmap;
4846 			bitmap += SIT_VBLOCK_MAP_SIZE;
4847 		}
4848 	}
4849 
4850 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4851 	if (!sit_i->tmp_map)
4852 		return -ENOMEM;
4853 
4854 	if (__is_large_section(sbi)) {
4855 		sit_i->sec_entries =
4856 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4857 						      MAIN_SECS(sbi)),
4858 				      GFP_KERNEL);
4859 		if (!sit_i->sec_entries)
4860 			return -ENOMEM;
4861 	}
4862 
4863 	/* get information related with SIT */
4864 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4865 
4866 	/* setup SIT bitmap from ckeckpoint pack */
4867 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4868 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4869 
4870 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4871 	if (!sit_i->sit_bitmap)
4872 		return -ENOMEM;
4873 
4874 #ifdef CONFIG_F2FS_CHECK_FS
4875 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4876 					sit_bitmap_size, GFP_KERNEL);
4877 	if (!sit_i->sit_bitmap_mir)
4878 		return -ENOMEM;
4879 
4880 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4881 					main_bitmap_size, GFP_KERNEL);
4882 	if (!sit_i->invalid_segmap)
4883 		return -ENOMEM;
4884 #endif
4885 
4886 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4887 	sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4888 	sit_i->written_valid_blocks = 0;
4889 	sit_i->bitmap_size = sit_bitmap_size;
4890 	sit_i->dirty_sentries = 0;
4891 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4892 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4893 	sit_i->mounted_time = ktime_get_boottime_seconds();
4894 	init_rwsem(&sit_i->sentry_lock);
4895 	return 0;
4896 }
4897 
build_free_segmap(struct f2fs_sb_info * sbi)4898 static int build_free_segmap(struct f2fs_sb_info *sbi)
4899 {
4900 	struct free_segmap_info *free_i;
4901 	unsigned int bitmap_size, sec_bitmap_size;
4902 
4903 	/* allocate memory for free segmap information */
4904 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4905 	if (!free_i)
4906 		return -ENOMEM;
4907 
4908 	SM_I(sbi)->free_info = free_i;
4909 
4910 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4911 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4912 	if (!free_i->free_segmap)
4913 		return -ENOMEM;
4914 
4915 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4916 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4917 	if (!free_i->free_secmap)
4918 		return -ENOMEM;
4919 
4920 	/* set all segments as dirty temporarily */
4921 	memset(free_i->free_segmap, 0xff, bitmap_size);
4922 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4923 
4924 	/* init free segmap information */
4925 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4926 	free_i->free_segments = 0;
4927 	free_i->free_sections = 0;
4928 	spin_lock_init(&free_i->segmap_lock);
4929 	return 0;
4930 }
4931 
build_curseg(struct f2fs_sb_info * sbi)4932 static int build_curseg(struct f2fs_sb_info *sbi)
4933 {
4934 	struct curseg_info *array;
4935 	int i;
4936 
4937 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4938 					sizeof(*array)), GFP_KERNEL);
4939 	if (!array)
4940 		return -ENOMEM;
4941 
4942 	SM_I(sbi)->curseg_array = array;
4943 
4944 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4945 		mutex_init(&array[i].curseg_mutex);
4946 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4947 		if (!array[i].sum_blk)
4948 			return -ENOMEM;
4949 		init_rwsem(&array[i].journal_rwsem);
4950 		array[i].journal = f2fs_kzalloc(sbi,
4951 				sizeof(struct f2fs_journal), GFP_KERNEL);
4952 		if (!array[i].journal)
4953 			return -ENOMEM;
4954 		array[i].seg_type = log_type_to_seg_type(i);
4955 		reset_curseg_fields(&array[i]);
4956 	}
4957 	return restore_curseg_summaries(sbi);
4958 }
4959 
build_sit_entries(struct f2fs_sb_info * sbi)4960 static int build_sit_entries(struct f2fs_sb_info *sbi)
4961 {
4962 	struct sit_info *sit_i = SIT_I(sbi);
4963 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4964 	struct f2fs_journal *journal = curseg->journal;
4965 	struct seg_entry *se;
4966 	struct f2fs_sit_entry sit;
4967 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4968 	unsigned int i, start, end;
4969 	unsigned int readed, start_blk = 0;
4970 	int err = 0;
4971 	block_t sit_valid_blocks[2] = {0, 0};
4972 
4973 	do {
4974 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4975 							META_SIT, true);
4976 
4977 		start = start_blk * sit_i->sents_per_block;
4978 		end = (start_blk + readed) * sit_i->sents_per_block;
4979 
4980 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4981 			struct f2fs_sit_block *sit_blk;
4982 			struct folio *folio;
4983 
4984 			se = &sit_i->sentries[start];
4985 			folio = get_current_sit_folio(sbi, start);
4986 			if (IS_ERR(folio))
4987 				return PTR_ERR(folio);
4988 			sit_blk = folio_address(folio);
4989 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4990 			f2fs_folio_put(folio, true);
4991 
4992 			err = check_block_count(sbi, start, &sit);
4993 			if (err)
4994 				return err;
4995 			seg_info_from_raw_sit(se, &sit);
4996 
4997 			if (se->type >= NR_PERSISTENT_LOG) {
4998 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4999 							se->type, start);
5000 				f2fs_handle_error(sbi,
5001 						ERROR_INCONSISTENT_SUM_TYPE);
5002 				return -EFSCORRUPTED;
5003 			}
5004 
5005 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
5006 
5007 			if (!f2fs_block_unit_discard(sbi))
5008 				goto init_discard_map_done;
5009 
5010 			/* build discard map only one time */
5011 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
5012 				memset(se->discard_map, 0xff,
5013 						SIT_VBLOCK_MAP_SIZE);
5014 				goto init_discard_map_done;
5015 			}
5016 			memcpy(se->discard_map, se->cur_valid_map,
5017 						SIT_VBLOCK_MAP_SIZE);
5018 			sbi->discard_blks += BLKS_PER_SEG(sbi) -
5019 						se->valid_blocks;
5020 init_discard_map_done:
5021 			if (__is_large_section(sbi))
5022 				get_sec_entry(sbi, start)->valid_blocks +=
5023 							se->valid_blocks;
5024 		}
5025 		start_blk += readed;
5026 	} while (start_blk < sit_blk_cnt);
5027 
5028 	down_read(&curseg->journal_rwsem);
5029 	for (i = 0; i < sits_in_cursum(journal); i++) {
5030 		unsigned int old_valid_blocks;
5031 
5032 		start = le32_to_cpu(segno_in_journal(journal, i));
5033 		if (start >= MAIN_SEGS(sbi)) {
5034 			f2fs_err(sbi, "Wrong journal entry on segno %u",
5035 				 start);
5036 			err = -EFSCORRUPTED;
5037 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
5038 			break;
5039 		}
5040 
5041 		se = &sit_i->sentries[start];
5042 		sit = sit_in_journal(journal, i);
5043 
5044 		old_valid_blocks = se->valid_blocks;
5045 
5046 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
5047 
5048 		err = check_block_count(sbi, start, &sit);
5049 		if (err)
5050 			break;
5051 		seg_info_from_raw_sit(se, &sit);
5052 
5053 		if (se->type >= NR_PERSISTENT_LOG) {
5054 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
5055 							se->type, start);
5056 			err = -EFSCORRUPTED;
5057 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
5058 			break;
5059 		}
5060 
5061 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
5062 
5063 		if (f2fs_block_unit_discard(sbi)) {
5064 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
5065 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
5066 			} else {
5067 				memcpy(se->discard_map, se->cur_valid_map,
5068 							SIT_VBLOCK_MAP_SIZE);
5069 				sbi->discard_blks += old_valid_blocks;
5070 				sbi->discard_blks -= se->valid_blocks;
5071 			}
5072 		}
5073 
5074 		if (__is_large_section(sbi)) {
5075 			get_sec_entry(sbi, start)->valid_blocks +=
5076 							se->valid_blocks;
5077 			get_sec_entry(sbi, start)->valid_blocks -=
5078 							old_valid_blocks;
5079 		}
5080 	}
5081 	up_read(&curseg->journal_rwsem);
5082 
5083 	/* update ckpt_valid_block */
5084 	if (__is_large_section(sbi)) {
5085 		unsigned int segno;
5086 
5087 		for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5088 			set_ckpt_valid_blocks(sbi, segno);
5089 			sanity_check_valid_blocks(sbi, segno);
5090 		}
5091 	}
5092 
5093 	if (err)
5094 		return err;
5095 
5096 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
5097 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
5098 			 sit_valid_blocks[NODE], valid_node_count(sbi));
5099 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
5100 		return -EFSCORRUPTED;
5101 	}
5102 
5103 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
5104 				valid_user_blocks(sbi)) {
5105 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
5106 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
5107 			 valid_user_blocks(sbi));
5108 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
5109 		return -EFSCORRUPTED;
5110 	}
5111 
5112 	return 0;
5113 }
5114 
init_free_segmap(struct f2fs_sb_info * sbi)5115 static void init_free_segmap(struct f2fs_sb_info *sbi)
5116 {
5117 	unsigned int start;
5118 	int type;
5119 	struct seg_entry *sentry;
5120 
5121 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
5122 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
5123 			continue;
5124 		sentry = get_seg_entry(sbi, start);
5125 		if (!sentry->valid_blocks)
5126 			__set_free(sbi, start);
5127 		else
5128 			SIT_I(sbi)->written_valid_blocks +=
5129 						sentry->valid_blocks;
5130 	}
5131 
5132 	/* set use the current segments */
5133 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
5134 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
5135 
5136 		__set_test_and_inuse(sbi, curseg_t->segno);
5137 	}
5138 }
5139 
init_dirty_segmap(struct f2fs_sb_info * sbi)5140 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
5141 {
5142 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5143 	struct free_segmap_info *free_i = FREE_I(sbi);
5144 	unsigned int segno = 0, offset = 0, secno;
5145 	block_t valid_blocks, usable_blks_in_seg;
5146 
5147 	while (1) {
5148 		/* find dirty segment based on free segmap */
5149 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
5150 		if (segno >= MAIN_SEGS(sbi))
5151 			break;
5152 		offset = segno + 1;
5153 		valid_blocks = get_valid_blocks(sbi, segno, false);
5154 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
5155 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
5156 			continue;
5157 		if (valid_blocks > usable_blks_in_seg) {
5158 			f2fs_bug_on(sbi, 1);
5159 			continue;
5160 		}
5161 		mutex_lock(&dirty_i->seglist_lock);
5162 		__locate_dirty_segment(sbi, segno, DIRTY);
5163 		mutex_unlock(&dirty_i->seglist_lock);
5164 	}
5165 
5166 	if (!__is_large_section(sbi))
5167 		return;
5168 
5169 	mutex_lock(&dirty_i->seglist_lock);
5170 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5171 		valid_blocks = get_valid_blocks(sbi, segno, true);
5172 		secno = GET_SEC_FROM_SEG(sbi, segno);
5173 
5174 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
5175 			continue;
5176 		if (is_cursec(sbi, secno))
5177 			continue;
5178 		set_bit(secno, dirty_i->dirty_secmap);
5179 	}
5180 	mutex_unlock(&dirty_i->seglist_lock);
5181 }
5182 
init_victim_secmap(struct f2fs_sb_info * sbi)5183 static int init_victim_secmap(struct f2fs_sb_info *sbi)
5184 {
5185 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5186 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5187 
5188 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5189 	if (!dirty_i->victim_secmap)
5190 		return -ENOMEM;
5191 
5192 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5193 	if (!dirty_i->pinned_secmap)
5194 		return -ENOMEM;
5195 
5196 	dirty_i->pinned_secmap_cnt = 0;
5197 	dirty_i->enable_pin_section = true;
5198 	return 0;
5199 }
5200 
build_dirty_segmap(struct f2fs_sb_info * sbi)5201 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5202 {
5203 	struct dirty_seglist_info *dirty_i;
5204 	unsigned int bitmap_size, i;
5205 
5206 	/* allocate memory for dirty segments list information */
5207 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5208 								GFP_KERNEL);
5209 	if (!dirty_i)
5210 		return -ENOMEM;
5211 
5212 	SM_I(sbi)->dirty_info = dirty_i;
5213 	mutex_init(&dirty_i->seglist_lock);
5214 
5215 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5216 
5217 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
5218 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5219 								GFP_KERNEL);
5220 		if (!dirty_i->dirty_segmap[i])
5221 			return -ENOMEM;
5222 	}
5223 
5224 	if (__is_large_section(sbi)) {
5225 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5226 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5227 						bitmap_size, GFP_KERNEL);
5228 		if (!dirty_i->dirty_secmap)
5229 			return -ENOMEM;
5230 	}
5231 
5232 	init_dirty_segmap(sbi);
5233 	return init_victim_secmap(sbi);
5234 }
5235 
sanity_check_curseg(struct f2fs_sb_info * sbi)5236 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5237 {
5238 	int i;
5239 
5240 	/*
5241 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5242 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5243 	 */
5244 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5245 		struct curseg_info *curseg = CURSEG_I(sbi, i);
5246 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5247 		unsigned int blkofs = curseg->next_blkoff;
5248 
5249 		if (f2fs_sb_has_readonly(sbi) &&
5250 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5251 			continue;
5252 
5253 		sanity_check_seg_type(sbi, curseg->seg_type);
5254 
5255 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5256 			f2fs_err(sbi,
5257 				 "Current segment has invalid alloc_type:%d",
5258 				 curseg->alloc_type);
5259 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5260 			return -EFSCORRUPTED;
5261 		}
5262 
5263 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
5264 			goto out;
5265 
5266 		if (curseg->alloc_type == SSR)
5267 			continue;
5268 
5269 		for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5270 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5271 				continue;
5272 out:
5273 			f2fs_err(sbi,
5274 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5275 				 i, curseg->segno, curseg->alloc_type,
5276 				 curseg->next_blkoff, blkofs);
5277 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5278 			return -EFSCORRUPTED;
5279 		}
5280 	}
5281 	return 0;
5282 }
5283 
5284 #ifdef CONFIG_BLK_DEV_ZONED
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)5285 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5286 				    struct f2fs_dev_info *fdev,
5287 				    struct blk_zone *zone)
5288 {
5289 	unsigned int zone_segno;
5290 	block_t zone_block, valid_block_cnt;
5291 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5292 	int ret;
5293 	unsigned int nofs_flags;
5294 
5295 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5296 		return 0;
5297 
5298 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5299 	zone_segno = GET_SEGNO(sbi, zone_block);
5300 
5301 	/*
5302 	 * Skip check of zones cursegs point to, since
5303 	 * fix_curseg_write_pointer() checks them.
5304 	 */
5305 	if (zone_segno >= MAIN_SEGS(sbi))
5306 		return 0;
5307 
5308 	/*
5309 	 * Get # of valid block of the zone.
5310 	 */
5311 	valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5312 	if (is_cursec(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5313 		f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5314 				zone_segno, valid_block_cnt,
5315 				blk_zone_cond_str(zone->cond));
5316 		return 0;
5317 	}
5318 
5319 	if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5320 	    (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5321 		return 0;
5322 
5323 	if (!valid_block_cnt) {
5324 		f2fs_notice(sbi, "Zone without valid block has non-zero write "
5325 			    "pointer. Reset the write pointer: cond[%s]",
5326 			    blk_zone_cond_str(zone->cond));
5327 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5328 					zone->len >> log_sectors_per_block);
5329 		if (ret)
5330 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5331 				 fdev->path, ret);
5332 		return ret;
5333 	}
5334 
5335 	/*
5336 	 * If there are valid blocks and the write pointer doesn't match
5337 	 * with them, we need to report the inconsistency and fill
5338 	 * the zone till the end to close the zone. This inconsistency
5339 	 * does not cause write error because the zone will not be
5340 	 * selected for write operation until it get discarded.
5341 	 */
5342 	f2fs_notice(sbi, "Valid blocks are not aligned with write "
5343 		    "pointer: valid block[0x%x,0x%x] cond[%s]",
5344 		    zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5345 
5346 	nofs_flags = memalloc_nofs_save();
5347 	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5348 				zone->start, zone->len);
5349 	memalloc_nofs_restore(nofs_flags);
5350 	if (ret == -EOPNOTSUPP) {
5351 		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5352 					zone->len - (zone->wp - zone->start),
5353 					GFP_NOFS, 0);
5354 		if (ret)
5355 			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5356 					fdev->path, ret);
5357 	} else if (ret) {
5358 		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5359 				fdev->path, ret);
5360 	}
5361 
5362 	return ret;
5363 }
5364 
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)5365 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5366 						  block_t zone_blkaddr)
5367 {
5368 	int i;
5369 
5370 	for (i = 0; i < sbi->s_ndevs; i++) {
5371 		if (!bdev_is_zoned(FDEV(i).bdev))
5372 			continue;
5373 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5374 				zone_blkaddr <= FDEV(i).end_blk))
5375 			return &FDEV(i);
5376 	}
5377 
5378 	return NULL;
5379 }
5380 
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)5381 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5382 			      void *data)
5383 {
5384 	memcpy(data, zone, sizeof(struct blk_zone));
5385 	return 0;
5386 }
5387 
do_fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)5388 static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5389 {
5390 	struct curseg_info *cs = CURSEG_I(sbi, type);
5391 	struct f2fs_dev_info *zbd;
5392 	struct blk_zone zone;
5393 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5394 	block_t cs_zone_block, wp_block;
5395 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5396 	sector_t zone_sector;
5397 	int err;
5398 
5399 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5400 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5401 
5402 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5403 	if (!zbd)
5404 		return 0;
5405 
5406 	/* report zone for the sector the curseg points to */
5407 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5408 		<< log_sectors_per_block;
5409 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5410 				  report_one_zone_cb, &zone);
5411 	if (err != 1) {
5412 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5413 			 zbd->path, err);
5414 		return err;
5415 	}
5416 
5417 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5418 		return 0;
5419 
5420 	/*
5421 	 * When safely unmounted in the previous mount, we could use current
5422 	 * segments. Otherwise, allocate new sections.
5423 	 */
5424 	if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5425 		wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5426 		wp_segno = GET_SEGNO(sbi, wp_block);
5427 		wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5428 		wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5429 
5430 		if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5431 				wp_sector_off == 0)
5432 			return 0;
5433 
5434 		f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5435 			    "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5436 			    cs->next_blkoff, wp_segno, wp_blkoff);
5437 	}
5438 
5439 	/* Allocate a new section if it's not new. */
5440 	if (cs->next_blkoff ||
5441 	    cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5442 		unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5443 
5444 		f2fs_allocate_new_section(sbi, type, true);
5445 		f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5446 				"[0x%x,0x%x] -> [0x%x,0x%x]",
5447 				type, old_segno, old_blkoff,
5448 				cs->segno, cs->next_blkoff);
5449 	}
5450 
5451 	/* check consistency of the zone curseg pointed to */
5452 	if (check_zone_write_pointer(sbi, zbd, &zone))
5453 		return -EIO;
5454 
5455 	/* check newly assigned zone */
5456 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5457 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5458 
5459 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5460 	if (!zbd)
5461 		return 0;
5462 
5463 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5464 		<< log_sectors_per_block;
5465 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5466 				  report_one_zone_cb, &zone);
5467 	if (err != 1) {
5468 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5469 			 zbd->path, err);
5470 		return err;
5471 	}
5472 
5473 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5474 		return 0;
5475 
5476 	if (zone.wp != zone.start) {
5477 		f2fs_notice(sbi,
5478 			    "New zone for curseg[%d] is not yet discarded. "
5479 			    "Reset the zone: curseg[0x%x,0x%x]",
5480 			    type, cs->segno, cs->next_blkoff);
5481 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5482 					zone.len >> log_sectors_per_block);
5483 		if (err) {
5484 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5485 				 zbd->path, err);
5486 			return err;
5487 		}
5488 	}
5489 
5490 	return 0;
5491 }
5492 
fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5493 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5494 {
5495 	int i, ret;
5496 
5497 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5498 		ret = do_fix_curseg_write_pointer(sbi, i);
5499 		if (ret)
5500 			return ret;
5501 	}
5502 
5503 	return 0;
5504 }
5505 
5506 struct check_zone_write_pointer_args {
5507 	struct f2fs_sb_info *sbi;
5508 	struct f2fs_dev_info *fdev;
5509 };
5510 
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5511 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5512 				      void *data)
5513 {
5514 	struct check_zone_write_pointer_args *args;
5515 
5516 	args = (struct check_zone_write_pointer_args *)data;
5517 
5518 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5519 }
5520 
check_write_pointer(struct f2fs_sb_info * sbi)5521 static int check_write_pointer(struct f2fs_sb_info *sbi)
5522 {
5523 	int i, ret;
5524 	struct check_zone_write_pointer_args args;
5525 
5526 	for (i = 0; i < sbi->s_ndevs; i++) {
5527 		if (!bdev_is_zoned(FDEV(i).bdev))
5528 			continue;
5529 
5530 		args.sbi = sbi;
5531 		args.fdev = &FDEV(i);
5532 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5533 					  check_zone_write_pointer_cb, &args);
5534 		if (ret < 0)
5535 			return ret;
5536 	}
5537 
5538 	return 0;
5539 }
5540 
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5541 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5542 {
5543 	int ret;
5544 
5545 	if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb) ||
5546 	    f2fs_hw_is_readonly(sbi))
5547 		return 0;
5548 
5549 	f2fs_notice(sbi, "Checking entire write pointers");
5550 	ret = fix_curseg_write_pointer(sbi);
5551 	if (!ret)
5552 		ret = check_write_pointer(sbi);
5553 	return ret;
5554 }
5555 
5556 /*
5557  * Return the number of usable blocks in a segment. The number of blocks
5558  * returned is always equal to the number of blocks in a segment for
5559  * segments fully contained within a sequential zone capacity or a
5560  * conventional zone. For segments partially contained in a sequential
5561  * zone capacity, the number of usable blocks up to the zone capacity
5562  * is returned. 0 is returned in all other cases.
5563  */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5564 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5565 			struct f2fs_sb_info *sbi, unsigned int segno)
5566 {
5567 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5568 	unsigned int secno;
5569 
5570 	if (!sbi->unusable_blocks_per_sec)
5571 		return BLKS_PER_SEG(sbi);
5572 
5573 	secno = GET_SEC_FROM_SEG(sbi, segno);
5574 	seg_start = START_BLOCK(sbi, segno);
5575 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5576 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5577 
5578 	/*
5579 	 * If segment starts before zone capacity and spans beyond
5580 	 * zone capacity, then usable blocks are from seg start to
5581 	 * zone capacity. If the segment starts after the zone capacity,
5582 	 * then there are no usable blocks.
5583 	 */
5584 	if (seg_start >= sec_cap_blkaddr)
5585 		return 0;
5586 	if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5587 		return sec_cap_blkaddr - seg_start;
5588 
5589 	return BLKS_PER_SEG(sbi);
5590 }
5591 #else
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5592 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5593 {
5594 	return 0;
5595 }
5596 
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5597 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5598 							unsigned int segno)
5599 {
5600 	return 0;
5601 }
5602 
5603 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5604 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5605 					unsigned int segno)
5606 {
5607 	if (f2fs_sb_has_blkzoned(sbi))
5608 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5609 
5610 	return BLKS_PER_SEG(sbi);
5611 }
5612 
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi)5613 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
5614 {
5615 	if (f2fs_sb_has_blkzoned(sbi))
5616 		return CAP_SEGS_PER_SEC(sbi);
5617 
5618 	return SEGS_PER_SEC(sbi);
5619 }
5620 
f2fs_get_section_mtime(struct f2fs_sb_info * sbi,unsigned int segno)5621 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
5622 	unsigned int segno)
5623 {
5624 	unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
5625 	unsigned int secno = 0, start = 0;
5626 	unsigned int total_valid_blocks = 0;
5627 	unsigned long long mtime = 0;
5628 	unsigned int i = 0;
5629 
5630 	secno = GET_SEC_FROM_SEG(sbi, segno);
5631 	start = GET_SEG_FROM_SEC(sbi, secno);
5632 
5633 	if (!__is_large_section(sbi)) {
5634 		mtime = get_seg_entry(sbi, start + i)->mtime;
5635 		goto out;
5636 	}
5637 
5638 	for (i = 0; i < usable_segs_per_sec; i++) {
5639 		/* for large section, only check the mtime of valid segments */
5640 		struct seg_entry *se = get_seg_entry(sbi, start+i);
5641 
5642 		mtime += se->mtime * se->valid_blocks;
5643 		total_valid_blocks += se->valid_blocks;
5644 	}
5645 
5646 	if (total_valid_blocks == 0)
5647 		return INVALID_MTIME;
5648 
5649 	mtime = div_u64(mtime, total_valid_blocks);
5650 out:
5651 	if (unlikely(mtime == INVALID_MTIME))
5652 		mtime -= 1;
5653 	return mtime;
5654 }
5655 
5656 /*
5657  * Update min, max modified time for cost-benefit GC algorithm
5658  */
init_min_max_mtime(struct f2fs_sb_info * sbi)5659 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5660 {
5661 	struct sit_info *sit_i = SIT_I(sbi);
5662 	unsigned int segno;
5663 
5664 	down_write(&sit_i->sentry_lock);
5665 
5666 	sit_i->min_mtime = ULLONG_MAX;
5667 
5668 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5669 		unsigned long long mtime = 0;
5670 
5671 		mtime = f2fs_get_section_mtime(sbi, segno);
5672 
5673 		if (sit_i->min_mtime > mtime)
5674 			sit_i->min_mtime = mtime;
5675 	}
5676 	sit_i->max_mtime = get_mtime(sbi, false);
5677 	sit_i->dirty_max_mtime = 0;
5678 	up_write(&sit_i->sentry_lock);
5679 }
5680 
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5681 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5682 {
5683 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5684 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5685 	struct f2fs_sm_info *sm_info;
5686 	int err;
5687 
5688 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5689 	if (!sm_info)
5690 		return -ENOMEM;
5691 
5692 	/* init sm info */
5693 	sbi->sm_info = sm_info;
5694 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5695 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5696 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5697 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5698 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5699 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5700 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5701 	sm_info->rec_prefree_segments = sm_info->main_segments *
5702 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5703 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5704 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5705 
5706 	if (!f2fs_lfs_mode(sbi))
5707 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5708 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5709 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5710 	sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5711 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5712 	sm_info->min_ssr_sections = reserved_sections(sbi);
5713 
5714 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5715 
5716 	init_f2fs_rwsem(&sm_info->curseg_lock);
5717 
5718 	err = f2fs_create_flush_cmd_control(sbi);
5719 	if (err)
5720 		return err;
5721 
5722 	err = create_discard_cmd_control(sbi);
5723 	if (err)
5724 		return err;
5725 
5726 	err = build_sit_info(sbi);
5727 	if (err)
5728 		return err;
5729 	err = build_free_segmap(sbi);
5730 	if (err)
5731 		return err;
5732 	err = build_curseg(sbi);
5733 	if (err)
5734 		return err;
5735 
5736 	/* reinit free segmap based on SIT */
5737 	err = build_sit_entries(sbi);
5738 	if (err)
5739 		return err;
5740 
5741 	init_free_segmap(sbi);
5742 	err = build_dirty_segmap(sbi);
5743 	if (err)
5744 		return err;
5745 
5746 	err = sanity_check_curseg(sbi);
5747 	if (err)
5748 		return err;
5749 
5750 	init_min_max_mtime(sbi);
5751 	return 0;
5752 }
5753 
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5754 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5755 		enum dirty_type dirty_type)
5756 {
5757 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5758 
5759 	mutex_lock(&dirty_i->seglist_lock);
5760 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5761 	dirty_i->nr_dirty[dirty_type] = 0;
5762 	mutex_unlock(&dirty_i->seglist_lock);
5763 }
5764 
destroy_victim_secmap(struct f2fs_sb_info * sbi)5765 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5766 {
5767 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5768 
5769 	kvfree(dirty_i->pinned_secmap);
5770 	kvfree(dirty_i->victim_secmap);
5771 }
5772 
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5773 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5774 {
5775 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5776 	int i;
5777 
5778 	if (!dirty_i)
5779 		return;
5780 
5781 	/* discard pre-free/dirty segments list */
5782 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5783 		discard_dirty_segmap(sbi, i);
5784 
5785 	if (__is_large_section(sbi)) {
5786 		mutex_lock(&dirty_i->seglist_lock);
5787 		kvfree(dirty_i->dirty_secmap);
5788 		mutex_unlock(&dirty_i->seglist_lock);
5789 	}
5790 
5791 	destroy_victim_secmap(sbi);
5792 	SM_I(sbi)->dirty_info = NULL;
5793 	kfree(dirty_i);
5794 }
5795 
destroy_curseg(struct f2fs_sb_info * sbi)5796 static void destroy_curseg(struct f2fs_sb_info *sbi)
5797 {
5798 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5799 	int i;
5800 
5801 	if (!array)
5802 		return;
5803 	SM_I(sbi)->curseg_array = NULL;
5804 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5805 		kfree(array[i].sum_blk);
5806 		kfree(array[i].journal);
5807 	}
5808 	kfree(array);
5809 }
5810 
destroy_free_segmap(struct f2fs_sb_info * sbi)5811 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5812 {
5813 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5814 
5815 	if (!free_i)
5816 		return;
5817 	SM_I(sbi)->free_info = NULL;
5818 	kvfree(free_i->free_segmap);
5819 	kvfree(free_i->free_secmap);
5820 	kfree(free_i);
5821 }
5822 
destroy_sit_info(struct f2fs_sb_info * sbi)5823 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5824 {
5825 	struct sit_info *sit_i = SIT_I(sbi);
5826 
5827 	if (!sit_i)
5828 		return;
5829 
5830 	if (sit_i->sentries)
5831 		kvfree(sit_i->bitmap);
5832 	kfree(sit_i->tmp_map);
5833 
5834 	kvfree(sit_i->sentries);
5835 	kvfree(sit_i->sec_entries);
5836 	kvfree(sit_i->dirty_sentries_bitmap);
5837 
5838 	SM_I(sbi)->sit_info = NULL;
5839 	kfree(sit_i->sit_bitmap);
5840 #ifdef CONFIG_F2FS_CHECK_FS
5841 	kfree(sit_i->sit_bitmap_mir);
5842 	kvfree(sit_i->invalid_segmap);
5843 #endif
5844 	kfree(sit_i);
5845 }
5846 
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5847 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5848 {
5849 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5850 
5851 	if (!sm_info)
5852 		return;
5853 	f2fs_destroy_flush_cmd_control(sbi, true);
5854 	destroy_discard_cmd_control(sbi);
5855 	destroy_dirty_segmap(sbi);
5856 	destroy_curseg(sbi);
5857 	destroy_free_segmap(sbi);
5858 	destroy_sit_info(sbi);
5859 	sbi->sm_info = NULL;
5860 	kfree(sm_info);
5861 }
5862 
f2fs_create_segment_manager_caches(void)5863 int __init f2fs_create_segment_manager_caches(void)
5864 {
5865 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5866 			sizeof(struct discard_entry));
5867 	if (!discard_entry_slab)
5868 		goto fail;
5869 
5870 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5871 			sizeof(struct discard_cmd));
5872 	if (!discard_cmd_slab)
5873 		goto destroy_discard_entry;
5874 
5875 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5876 			sizeof(struct sit_entry_set));
5877 	if (!sit_entry_set_slab)
5878 		goto destroy_discard_cmd;
5879 
5880 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5881 			sizeof(struct revoke_entry));
5882 	if (!revoke_entry_slab)
5883 		goto destroy_sit_entry_set;
5884 	return 0;
5885 
5886 destroy_sit_entry_set:
5887 	kmem_cache_destroy(sit_entry_set_slab);
5888 destroy_discard_cmd:
5889 	kmem_cache_destroy(discard_cmd_slab);
5890 destroy_discard_entry:
5891 	kmem_cache_destroy(discard_entry_slab);
5892 fail:
5893 	return -ENOMEM;
5894 }
5895 
f2fs_destroy_segment_manager_caches(void)5896 void f2fs_destroy_segment_manager_caches(void)
5897 {
5898 	kmem_cache_destroy(sit_entry_set_slab);
5899 	kmem_cache_destroy(discard_cmd_slab);
5900 	kmem_cache_destroy(discard_entry_slab);
5901 	kmem_cache_destroy(revoke_entry_slab);
5902 }
5903