xref: /linux/fs/exec.c (revision 00c010e130e58301db2ea0cec1eadc931e1cb8cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 #include <linux/rseq.h>
70 #include <linux/ksm.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/tlb.h>
75 
76 #include <trace/events/task.h>
77 #include "internal.h"
78 
79 #include <trace/events/sched.h>
80 
81 /* For vma exec functions. */
82 #include "../mm/internal.h"
83 
84 static int bprm_creds_from_file(struct linux_binprm *bprm);
85 
86 int suid_dumpable = 0;
87 
88 static LIST_HEAD(formats);
89 static DEFINE_RWLOCK(binfmt_lock);
90 
__register_binfmt(struct linux_binfmt * fmt,int insert)91 void __register_binfmt(struct linux_binfmt * fmt, int insert)
92 {
93 	write_lock(&binfmt_lock);
94 	insert ? list_add(&fmt->lh, &formats) :
95 		 list_add_tail(&fmt->lh, &formats);
96 	write_unlock(&binfmt_lock);
97 }
98 
99 EXPORT_SYMBOL(__register_binfmt);
100 
unregister_binfmt(struct linux_binfmt * fmt)101 void unregister_binfmt(struct linux_binfmt * fmt)
102 {
103 	write_lock(&binfmt_lock);
104 	list_del(&fmt->lh);
105 	write_unlock(&binfmt_lock);
106 }
107 
108 EXPORT_SYMBOL(unregister_binfmt);
109 
put_binfmt(struct linux_binfmt * fmt)110 static inline void put_binfmt(struct linux_binfmt * fmt)
111 {
112 	module_put(fmt->module);
113 }
114 
path_noexec(const struct path * path)115 bool path_noexec(const struct path *path)
116 {
117 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
118 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
119 }
120 
121 #ifdef CONFIG_MMU
122 /*
123  * The nascent bprm->mm is not visible until exec_mmap() but it can
124  * use a lot of memory, account these pages in current->mm temporary
125  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
126  * change the counter back via acct_arg_size(0).
127  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)128 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
129 {
130 	struct mm_struct *mm = current->mm;
131 	long diff = (long)(pages - bprm->vma_pages);
132 
133 	if (!mm || !diff)
134 		return;
135 
136 	bprm->vma_pages = pages;
137 	add_mm_counter(mm, MM_ANONPAGES, diff);
138 }
139 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)140 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
141 		int write)
142 {
143 	struct page *page;
144 	struct vm_area_struct *vma = bprm->vma;
145 	struct mm_struct *mm = bprm->mm;
146 	int ret;
147 
148 	/*
149 	 * Avoid relying on expanding the stack down in GUP (which
150 	 * does not work for STACK_GROWSUP anyway), and just do it
151 	 * ahead of time.
152 	 */
153 	if (!mmap_read_lock_maybe_expand(mm, vma, pos, write))
154 		return NULL;
155 
156 	/*
157 	 * We are doing an exec().  'current' is the process
158 	 * doing the exec and 'mm' is the new process's mm.
159 	 */
160 	ret = get_user_pages_remote(mm, pos, 1,
161 			write ? FOLL_WRITE : 0,
162 			&page, NULL);
163 	mmap_read_unlock(mm);
164 	if (ret <= 0)
165 		return NULL;
166 
167 	if (write)
168 		acct_arg_size(bprm, vma_pages(vma));
169 
170 	return page;
171 }
172 
put_arg_page(struct page * page)173 static void put_arg_page(struct page *page)
174 {
175 	put_page(page);
176 }
177 
free_arg_pages(struct linux_binprm * bprm)178 static void free_arg_pages(struct linux_binprm *bprm)
179 {
180 }
181 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)182 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
183 		struct page *page)
184 {
185 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
186 }
187 
valid_arg_len(struct linux_binprm * bprm,long len)188 static bool valid_arg_len(struct linux_binprm *bprm, long len)
189 {
190 	return len <= MAX_ARG_STRLEN;
191 }
192 
193 #else
194 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)195 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
196 {
197 }
198 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 		int write)
201 {
202 	struct page *page;
203 
204 	page = bprm->page[pos / PAGE_SIZE];
205 	if (!page && write) {
206 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
207 		if (!page)
208 			return NULL;
209 		bprm->page[pos / PAGE_SIZE] = page;
210 	}
211 
212 	return page;
213 }
214 
put_arg_page(struct page * page)215 static void put_arg_page(struct page *page)
216 {
217 }
218 
free_arg_page(struct linux_binprm * bprm,int i)219 static void free_arg_page(struct linux_binprm *bprm, int i)
220 {
221 	if (bprm->page[i]) {
222 		__free_page(bprm->page[i]);
223 		bprm->page[i] = NULL;
224 	}
225 }
226 
free_arg_pages(struct linux_binprm * bprm)227 static void free_arg_pages(struct linux_binprm *bprm)
228 {
229 	int i;
230 
231 	for (i = 0; i < MAX_ARG_PAGES; i++)
232 		free_arg_page(bprm, i);
233 }
234 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)235 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
236 		struct page *page)
237 {
238 }
239 
valid_arg_len(struct linux_binprm * bprm,long len)240 static bool valid_arg_len(struct linux_binprm *bprm, long len)
241 {
242 	return len <= bprm->p;
243 }
244 
245 #endif /* CONFIG_MMU */
246 
247 /*
248  * Create a new mm_struct and populate it with a temporary stack
249  * vm_area_struct.  We don't have enough context at this point to set the stack
250  * flags, permissions, and offset, so we use temporary values.  We'll update
251  * them later in setup_arg_pages().
252  */
bprm_mm_init(struct linux_binprm * bprm)253 static int bprm_mm_init(struct linux_binprm *bprm)
254 {
255 	int err;
256 	struct mm_struct *mm = NULL;
257 
258 	bprm->mm = mm = mm_alloc();
259 	err = -ENOMEM;
260 	if (!mm)
261 		goto err;
262 
263 	/* Save current stack limit for all calculations made during exec. */
264 	task_lock(current->group_leader);
265 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
266 	task_unlock(current->group_leader);
267 
268 #ifndef CONFIG_MMU
269 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
270 #else
271 	err = create_init_stack_vma(bprm->mm, &bprm->vma, &bprm->p);
272 	if (err)
273 		goto err;
274 #endif
275 
276 	return 0;
277 
278 err:
279 	if (mm) {
280 		bprm->mm = NULL;
281 		mmdrop(mm);
282 	}
283 
284 	return err;
285 }
286 
287 struct user_arg_ptr {
288 #ifdef CONFIG_COMPAT
289 	bool is_compat;
290 #endif
291 	union {
292 		const char __user *const __user *native;
293 #ifdef CONFIG_COMPAT
294 		const compat_uptr_t __user *compat;
295 #endif
296 	} ptr;
297 };
298 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)299 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
300 {
301 	const char __user *native;
302 
303 #ifdef CONFIG_COMPAT
304 	if (unlikely(argv.is_compat)) {
305 		compat_uptr_t compat;
306 
307 		if (get_user(compat, argv.ptr.compat + nr))
308 			return ERR_PTR(-EFAULT);
309 
310 		return compat_ptr(compat);
311 	}
312 #endif
313 
314 	if (get_user(native, argv.ptr.native + nr))
315 		return ERR_PTR(-EFAULT);
316 
317 	return native;
318 }
319 
320 /*
321  * count() counts the number of strings in array ARGV.
322  */
count(struct user_arg_ptr argv,int max)323 static int count(struct user_arg_ptr argv, int max)
324 {
325 	int i = 0;
326 
327 	if (argv.ptr.native != NULL) {
328 		for (;;) {
329 			const char __user *p = get_user_arg_ptr(argv, i);
330 
331 			if (!p)
332 				break;
333 
334 			if (IS_ERR(p))
335 				return -EFAULT;
336 
337 			if (i >= max)
338 				return -E2BIG;
339 			++i;
340 
341 			if (fatal_signal_pending(current))
342 				return -ERESTARTNOHAND;
343 			cond_resched();
344 		}
345 	}
346 	return i;
347 }
348 
count_strings_kernel(const char * const * argv)349 static int count_strings_kernel(const char *const *argv)
350 {
351 	int i;
352 
353 	if (!argv)
354 		return 0;
355 
356 	for (i = 0; argv[i]; ++i) {
357 		if (i >= MAX_ARG_STRINGS)
358 			return -E2BIG;
359 		if (fatal_signal_pending(current))
360 			return -ERESTARTNOHAND;
361 		cond_resched();
362 	}
363 	return i;
364 }
365 
bprm_set_stack_limit(struct linux_binprm * bprm,unsigned long limit)366 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
367 				       unsigned long limit)
368 {
369 #ifdef CONFIG_MMU
370 	/* Avoid a pathological bprm->p. */
371 	if (bprm->p < limit)
372 		return -E2BIG;
373 	bprm->argmin = bprm->p - limit;
374 #endif
375 	return 0;
376 }
bprm_hit_stack_limit(struct linux_binprm * bprm)377 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
378 {
379 #ifdef CONFIG_MMU
380 	return bprm->p < bprm->argmin;
381 #else
382 	return false;
383 #endif
384 }
385 
386 /*
387  * Calculate bprm->argmin from:
388  * - _STK_LIM
389  * - ARG_MAX
390  * - bprm->rlim_stack.rlim_cur
391  * - bprm->argc
392  * - bprm->envc
393  * - bprm->p
394  */
bprm_stack_limits(struct linux_binprm * bprm)395 static int bprm_stack_limits(struct linux_binprm *bprm)
396 {
397 	unsigned long limit, ptr_size;
398 
399 	/*
400 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
401 	 * (whichever is smaller) for the argv+env strings.
402 	 * This ensures that:
403 	 *  - the remaining binfmt code will not run out of stack space,
404 	 *  - the program will have a reasonable amount of stack left
405 	 *    to work from.
406 	 */
407 	limit = _STK_LIM / 4 * 3;
408 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
409 	/*
410 	 * We've historically supported up to 32 pages (ARG_MAX)
411 	 * of argument strings even with small stacks
412 	 */
413 	limit = max_t(unsigned long, limit, ARG_MAX);
414 	/* Reject totally pathological counts. */
415 	if (bprm->argc < 0 || bprm->envc < 0)
416 		return -E2BIG;
417 	/*
418 	 * We must account for the size of all the argv and envp pointers to
419 	 * the argv and envp strings, since they will also take up space in
420 	 * the stack. They aren't stored until much later when we can't
421 	 * signal to the parent that the child has run out of stack space.
422 	 * Instead, calculate it here so it's possible to fail gracefully.
423 	 *
424 	 * In the case of argc = 0, make sure there is space for adding a
425 	 * empty string (which will bump argc to 1), to ensure confused
426 	 * userspace programs don't start processing from argv[1], thinking
427 	 * argc can never be 0, to keep them from walking envp by accident.
428 	 * See do_execveat_common().
429 	 */
430 	if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
431 	    check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
432 		return -E2BIG;
433 	if (limit <= ptr_size)
434 		return -E2BIG;
435 	limit -= ptr_size;
436 
437 	return bprm_set_stack_limit(bprm, limit);
438 }
439 
440 /*
441  * 'copy_strings()' copies argument/environment strings from the old
442  * processes's memory to the new process's stack.  The call to get_user_pages()
443  * ensures the destination page is created and not swapped out.
444  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)445 static int copy_strings(int argc, struct user_arg_ptr argv,
446 			struct linux_binprm *bprm)
447 {
448 	struct page *kmapped_page = NULL;
449 	char *kaddr = NULL;
450 	unsigned long kpos = 0;
451 	int ret;
452 
453 	while (argc-- > 0) {
454 		const char __user *str;
455 		int len;
456 		unsigned long pos;
457 
458 		ret = -EFAULT;
459 		str = get_user_arg_ptr(argv, argc);
460 		if (IS_ERR(str))
461 			goto out;
462 
463 		len = strnlen_user(str, MAX_ARG_STRLEN);
464 		if (!len)
465 			goto out;
466 
467 		ret = -E2BIG;
468 		if (!valid_arg_len(bprm, len))
469 			goto out;
470 
471 		/* We're going to work our way backwards. */
472 		pos = bprm->p;
473 		str += len;
474 		bprm->p -= len;
475 		if (bprm_hit_stack_limit(bprm))
476 			goto out;
477 
478 		while (len > 0) {
479 			int offset, bytes_to_copy;
480 
481 			if (fatal_signal_pending(current)) {
482 				ret = -ERESTARTNOHAND;
483 				goto out;
484 			}
485 			cond_resched();
486 
487 			offset = pos % PAGE_SIZE;
488 			if (offset == 0)
489 				offset = PAGE_SIZE;
490 
491 			bytes_to_copy = offset;
492 			if (bytes_to_copy > len)
493 				bytes_to_copy = len;
494 
495 			offset -= bytes_to_copy;
496 			pos -= bytes_to_copy;
497 			str -= bytes_to_copy;
498 			len -= bytes_to_copy;
499 
500 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
501 				struct page *page;
502 
503 				page = get_arg_page(bprm, pos, 1);
504 				if (!page) {
505 					ret = -E2BIG;
506 					goto out;
507 				}
508 
509 				if (kmapped_page) {
510 					flush_dcache_page(kmapped_page);
511 					kunmap_local(kaddr);
512 					put_arg_page(kmapped_page);
513 				}
514 				kmapped_page = page;
515 				kaddr = kmap_local_page(kmapped_page);
516 				kpos = pos & PAGE_MASK;
517 				flush_arg_page(bprm, kpos, kmapped_page);
518 			}
519 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
520 				ret = -EFAULT;
521 				goto out;
522 			}
523 		}
524 	}
525 	ret = 0;
526 out:
527 	if (kmapped_page) {
528 		flush_dcache_page(kmapped_page);
529 		kunmap_local(kaddr);
530 		put_arg_page(kmapped_page);
531 	}
532 	return ret;
533 }
534 
535 /*
536  * Copy and argument/environment string from the kernel to the processes stack.
537  */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)538 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
539 {
540 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
541 	unsigned long pos = bprm->p;
542 
543 	if (len == 0)
544 		return -EFAULT;
545 	if (!valid_arg_len(bprm, len))
546 		return -E2BIG;
547 
548 	/* We're going to work our way backwards. */
549 	arg += len;
550 	bprm->p -= len;
551 	if (bprm_hit_stack_limit(bprm))
552 		return -E2BIG;
553 
554 	while (len > 0) {
555 		unsigned int bytes_to_copy = min_t(unsigned int, len,
556 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
557 		struct page *page;
558 
559 		pos -= bytes_to_copy;
560 		arg -= bytes_to_copy;
561 		len -= bytes_to_copy;
562 
563 		page = get_arg_page(bprm, pos, 1);
564 		if (!page)
565 			return -E2BIG;
566 		flush_arg_page(bprm, pos & PAGE_MASK, page);
567 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
568 		put_arg_page(page);
569 	}
570 
571 	return 0;
572 }
573 EXPORT_SYMBOL(copy_string_kernel);
574 
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)575 static int copy_strings_kernel(int argc, const char *const *argv,
576 			       struct linux_binprm *bprm)
577 {
578 	while (argc-- > 0) {
579 		int ret = copy_string_kernel(argv[argc], bprm);
580 		if (ret < 0)
581 			return ret;
582 		if (fatal_signal_pending(current))
583 			return -ERESTARTNOHAND;
584 		cond_resched();
585 	}
586 	return 0;
587 }
588 
589 #ifdef CONFIG_MMU
590 
591 /*
592  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
593  * the stack is optionally relocated, and some extra space is added.
594  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)595 int setup_arg_pages(struct linux_binprm *bprm,
596 		    unsigned long stack_top,
597 		    int executable_stack)
598 {
599 	unsigned long ret;
600 	unsigned long stack_shift;
601 	struct mm_struct *mm = current->mm;
602 	struct vm_area_struct *vma = bprm->vma;
603 	struct vm_area_struct *prev = NULL;
604 	unsigned long vm_flags;
605 	unsigned long stack_base;
606 	unsigned long stack_size;
607 	unsigned long stack_expand;
608 	unsigned long rlim_stack;
609 	struct mmu_gather tlb;
610 	struct vma_iterator vmi;
611 
612 #ifdef CONFIG_STACK_GROWSUP
613 	/* Limit stack size */
614 	stack_base = bprm->rlim_stack.rlim_max;
615 
616 	stack_base = calc_max_stack_size(stack_base);
617 
618 	/* Add space for stack randomization. */
619 	if (current->flags & PF_RANDOMIZE)
620 		stack_base += (STACK_RND_MASK << PAGE_SHIFT);
621 
622 	/* Make sure we didn't let the argument array grow too large. */
623 	if (vma->vm_end - vma->vm_start > stack_base)
624 		return -ENOMEM;
625 
626 	stack_base = PAGE_ALIGN(stack_top - stack_base);
627 
628 	stack_shift = vma->vm_start - stack_base;
629 	mm->arg_start = bprm->p - stack_shift;
630 	bprm->p = vma->vm_end - stack_shift;
631 #else
632 	stack_top = arch_align_stack(stack_top);
633 	stack_top = PAGE_ALIGN(stack_top);
634 
635 	if (unlikely(stack_top < mmap_min_addr) ||
636 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
637 		return -ENOMEM;
638 
639 	stack_shift = vma->vm_end - stack_top;
640 
641 	bprm->p -= stack_shift;
642 	mm->arg_start = bprm->p;
643 #endif
644 
645 	bprm->exec -= stack_shift;
646 
647 	if (mmap_write_lock_killable(mm))
648 		return -EINTR;
649 
650 	vm_flags = VM_STACK_FLAGS;
651 
652 	/*
653 	 * Adjust stack execute permissions; explicitly enable for
654 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
655 	 * (arch default) otherwise.
656 	 */
657 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
658 		vm_flags |= VM_EXEC;
659 	else if (executable_stack == EXSTACK_DISABLE_X)
660 		vm_flags &= ~VM_EXEC;
661 	vm_flags |= mm->def_flags;
662 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
663 
664 	vma_iter_init(&vmi, mm, vma->vm_start);
665 
666 	tlb_gather_mmu(&tlb, mm);
667 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
668 			vm_flags);
669 	tlb_finish_mmu(&tlb);
670 
671 	if (ret)
672 		goto out_unlock;
673 	BUG_ON(prev != vma);
674 
675 	if (unlikely(vm_flags & VM_EXEC)) {
676 		pr_warn_once("process '%pD4' started with executable stack\n",
677 			     bprm->file);
678 	}
679 
680 	/* Move stack pages down in memory. */
681 	if (stack_shift) {
682 		/*
683 		 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
684 		 * the binfmt code determines where the new stack should reside, we shift it to
685 		 * its final location.
686 		 */
687 		ret = relocate_vma_down(vma, stack_shift);
688 		if (ret)
689 			goto out_unlock;
690 	}
691 
692 	/* mprotect_fixup is overkill to remove the temporary stack flags */
693 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
694 
695 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
696 	stack_size = vma->vm_end - vma->vm_start;
697 	/*
698 	 * Align this down to a page boundary as expand_stack
699 	 * will align it up.
700 	 */
701 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
702 
703 	stack_expand = min(rlim_stack, stack_size + stack_expand);
704 
705 #ifdef CONFIG_STACK_GROWSUP
706 	stack_base = vma->vm_start + stack_expand;
707 #else
708 	stack_base = vma->vm_end - stack_expand;
709 #endif
710 	current->mm->start_stack = bprm->p;
711 	ret = expand_stack_locked(vma, stack_base);
712 	if (ret)
713 		ret = -EFAULT;
714 
715 out_unlock:
716 	mmap_write_unlock(mm);
717 	return ret;
718 }
719 EXPORT_SYMBOL(setup_arg_pages);
720 
721 #else
722 
723 /*
724  * Transfer the program arguments and environment from the holding pages
725  * onto the stack. The provided stack pointer is adjusted accordingly.
726  */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)727 int transfer_args_to_stack(struct linux_binprm *bprm,
728 			   unsigned long *sp_location)
729 {
730 	unsigned long index, stop, sp;
731 	int ret = 0;
732 
733 	stop = bprm->p >> PAGE_SHIFT;
734 	sp = *sp_location;
735 
736 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
737 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
738 		char *src = kmap_local_page(bprm->page[index]) + offset;
739 		sp -= PAGE_SIZE - offset;
740 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
741 			ret = -EFAULT;
742 		kunmap_local(src);
743 		if (ret)
744 			goto out;
745 	}
746 
747 	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
748 	*sp_location = sp;
749 
750 out:
751 	return ret;
752 }
753 EXPORT_SYMBOL(transfer_args_to_stack);
754 
755 #endif /* CONFIG_MMU */
756 
757 /*
758  * On success, caller must call do_close_execat() on the returned
759  * struct file to close it.
760  */
do_open_execat(int fd,struct filename * name,int flags)761 static struct file *do_open_execat(int fd, struct filename *name, int flags)
762 {
763 	int err;
764 	struct file *file __free(fput) = NULL;
765 	struct open_flags open_exec_flags = {
766 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
767 		.acc_mode = MAY_EXEC,
768 		.intent = LOOKUP_OPEN,
769 		.lookup_flags = LOOKUP_FOLLOW,
770 	};
771 
772 	if ((flags &
773 	     ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH | AT_EXECVE_CHECK)) != 0)
774 		return ERR_PTR(-EINVAL);
775 	if (flags & AT_SYMLINK_NOFOLLOW)
776 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
777 	if (flags & AT_EMPTY_PATH)
778 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
779 
780 	file = do_filp_open(fd, name, &open_exec_flags);
781 	if (IS_ERR(file))
782 		return file;
783 
784 	/*
785 	 * In the past the regular type check was here. It moved to may_open() in
786 	 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
787 	 * an invariant that all non-regular files error out before we get here.
788 	 */
789 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
790 	    path_noexec(&file->f_path))
791 		return ERR_PTR(-EACCES);
792 
793 	err = exe_file_deny_write_access(file);
794 	if (err)
795 		return ERR_PTR(err);
796 
797 	return no_free_ptr(file);
798 }
799 
800 /**
801  * open_exec - Open a path name for execution
802  *
803  * @name: path name to open with the intent of executing it.
804  *
805  * Returns ERR_PTR on failure or allocated struct file on success.
806  *
807  * As this is a wrapper for the internal do_open_execat(), callers
808  * must call exe_file_allow_write_access() before fput() on release. Also see
809  * do_close_execat().
810  */
open_exec(const char * name)811 struct file *open_exec(const char *name)
812 {
813 	struct filename *filename = getname_kernel(name);
814 	struct file *f = ERR_CAST(filename);
815 
816 	if (!IS_ERR(filename)) {
817 		f = do_open_execat(AT_FDCWD, filename, 0);
818 		putname(filename);
819 	}
820 	return f;
821 }
822 EXPORT_SYMBOL(open_exec);
823 
824 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)825 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
826 {
827 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
828 	if (res > 0)
829 		flush_icache_user_range(addr, addr + len);
830 	return res;
831 }
832 EXPORT_SYMBOL(read_code);
833 #endif
834 
835 /*
836  * Maps the mm_struct mm into the current task struct.
837  * On success, this function returns with exec_update_lock
838  * held for writing.
839  */
exec_mmap(struct mm_struct * mm)840 static int exec_mmap(struct mm_struct *mm)
841 {
842 	struct task_struct *tsk;
843 	struct mm_struct *old_mm, *active_mm;
844 	int ret;
845 
846 	/* Notify parent that we're no longer interested in the old VM */
847 	tsk = current;
848 	old_mm = current->mm;
849 	exec_mm_release(tsk, old_mm);
850 
851 	ret = down_write_killable(&tsk->signal->exec_update_lock);
852 	if (ret)
853 		return ret;
854 
855 	if (old_mm) {
856 		/*
857 		 * If there is a pending fatal signal perhaps a signal
858 		 * whose default action is to create a coredump get
859 		 * out and die instead of going through with the exec.
860 		 */
861 		ret = mmap_read_lock_killable(old_mm);
862 		if (ret) {
863 			up_write(&tsk->signal->exec_update_lock);
864 			return ret;
865 		}
866 	}
867 
868 	task_lock(tsk);
869 	membarrier_exec_mmap(mm);
870 
871 	local_irq_disable();
872 	active_mm = tsk->active_mm;
873 	tsk->active_mm = mm;
874 	tsk->mm = mm;
875 	mm_init_cid(mm, tsk);
876 	/*
877 	 * This prevents preemption while active_mm is being loaded and
878 	 * it and mm are being updated, which could cause problems for
879 	 * lazy tlb mm refcounting when these are updated by context
880 	 * switches. Not all architectures can handle irqs off over
881 	 * activate_mm yet.
882 	 */
883 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
884 		local_irq_enable();
885 	activate_mm(active_mm, mm);
886 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
887 		local_irq_enable();
888 	lru_gen_add_mm(mm);
889 	task_unlock(tsk);
890 	lru_gen_use_mm(mm);
891 	if (old_mm) {
892 		mmap_read_unlock(old_mm);
893 		BUG_ON(active_mm != old_mm);
894 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
895 		mm_update_next_owner(old_mm);
896 		mmput(old_mm);
897 		return 0;
898 	}
899 	mmdrop_lazy_tlb(active_mm);
900 	return 0;
901 }
902 
de_thread(struct task_struct * tsk)903 static int de_thread(struct task_struct *tsk)
904 {
905 	struct signal_struct *sig = tsk->signal;
906 	struct sighand_struct *oldsighand = tsk->sighand;
907 	spinlock_t *lock = &oldsighand->siglock;
908 
909 	if (thread_group_empty(tsk))
910 		goto no_thread_group;
911 
912 	/*
913 	 * Kill all other threads in the thread group.
914 	 */
915 	spin_lock_irq(lock);
916 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
917 		/*
918 		 * Another group action in progress, just
919 		 * return so that the signal is processed.
920 		 */
921 		spin_unlock_irq(lock);
922 		return -EAGAIN;
923 	}
924 
925 	sig->group_exec_task = tsk;
926 	sig->notify_count = zap_other_threads(tsk);
927 	if (!thread_group_leader(tsk))
928 		sig->notify_count--;
929 
930 	while (sig->notify_count) {
931 		__set_current_state(TASK_KILLABLE);
932 		spin_unlock_irq(lock);
933 		schedule();
934 		if (__fatal_signal_pending(tsk))
935 			goto killed;
936 		spin_lock_irq(lock);
937 	}
938 	spin_unlock_irq(lock);
939 
940 	/*
941 	 * At this point all other threads have exited, all we have to
942 	 * do is to wait for the thread group leader to become inactive,
943 	 * and to assume its PID:
944 	 */
945 	if (!thread_group_leader(tsk)) {
946 		struct task_struct *leader = tsk->group_leader;
947 
948 		for (;;) {
949 			cgroup_threadgroup_change_begin(tsk);
950 			write_lock_irq(&tasklist_lock);
951 			/*
952 			 * Do this under tasklist_lock to ensure that
953 			 * exit_notify() can't miss ->group_exec_task
954 			 */
955 			sig->notify_count = -1;
956 			if (likely(leader->exit_state))
957 				break;
958 			__set_current_state(TASK_KILLABLE);
959 			write_unlock_irq(&tasklist_lock);
960 			cgroup_threadgroup_change_end(tsk);
961 			schedule();
962 			if (__fatal_signal_pending(tsk))
963 				goto killed;
964 		}
965 
966 		/*
967 		 * The only record we have of the real-time age of a
968 		 * process, regardless of execs it's done, is start_time.
969 		 * All the past CPU time is accumulated in signal_struct
970 		 * from sister threads now dead.  But in this non-leader
971 		 * exec, nothing survives from the original leader thread,
972 		 * whose birth marks the true age of this process now.
973 		 * When we take on its identity by switching to its PID, we
974 		 * also take its birthdate (always earlier than our own).
975 		 */
976 		tsk->start_time = leader->start_time;
977 		tsk->start_boottime = leader->start_boottime;
978 
979 		BUG_ON(!same_thread_group(leader, tsk));
980 		/*
981 		 * An exec() starts a new thread group with the
982 		 * TGID of the previous thread group. Rehash the
983 		 * two threads with a switched PID, and release
984 		 * the former thread group leader:
985 		 */
986 
987 		/* Become a process group leader with the old leader's pid.
988 		 * The old leader becomes a thread of the this thread group.
989 		 */
990 		exchange_tids(tsk, leader);
991 		transfer_pid(leader, tsk, PIDTYPE_TGID);
992 		transfer_pid(leader, tsk, PIDTYPE_PGID);
993 		transfer_pid(leader, tsk, PIDTYPE_SID);
994 
995 		list_replace_rcu(&leader->tasks, &tsk->tasks);
996 		list_replace_init(&leader->sibling, &tsk->sibling);
997 
998 		tsk->group_leader = tsk;
999 		leader->group_leader = tsk;
1000 
1001 		tsk->exit_signal = SIGCHLD;
1002 		leader->exit_signal = -1;
1003 
1004 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1005 		leader->exit_state = EXIT_DEAD;
1006 		/*
1007 		 * We are going to release_task()->ptrace_unlink() silently,
1008 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1009 		 * the tracer won't block again waiting for this thread.
1010 		 */
1011 		if (unlikely(leader->ptrace))
1012 			__wake_up_parent(leader, leader->parent);
1013 		write_unlock_irq(&tasklist_lock);
1014 		cgroup_threadgroup_change_end(tsk);
1015 
1016 		release_task(leader);
1017 	}
1018 
1019 	sig->group_exec_task = NULL;
1020 	sig->notify_count = 0;
1021 
1022 no_thread_group:
1023 	/* we have changed execution domain */
1024 	tsk->exit_signal = SIGCHLD;
1025 
1026 	BUG_ON(!thread_group_leader(tsk));
1027 	return 0;
1028 
1029 killed:
1030 	/* protects against exit_notify() and __exit_signal() */
1031 	read_lock(&tasklist_lock);
1032 	sig->group_exec_task = NULL;
1033 	sig->notify_count = 0;
1034 	read_unlock(&tasklist_lock);
1035 	return -EAGAIN;
1036 }
1037 
1038 
1039 /*
1040  * This function makes sure the current process has its own signal table,
1041  * so that flush_signal_handlers can later reset the handlers without
1042  * disturbing other processes.  (Other processes might share the signal
1043  * table via the CLONE_SIGHAND option to clone().)
1044  */
unshare_sighand(struct task_struct * me)1045 static int unshare_sighand(struct task_struct *me)
1046 {
1047 	struct sighand_struct *oldsighand = me->sighand;
1048 
1049 	if (refcount_read(&oldsighand->count) != 1) {
1050 		struct sighand_struct *newsighand;
1051 		/*
1052 		 * This ->sighand is shared with the CLONE_SIGHAND
1053 		 * but not CLONE_THREAD task, switch to the new one.
1054 		 */
1055 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1056 		if (!newsighand)
1057 			return -ENOMEM;
1058 
1059 		refcount_set(&newsighand->count, 1);
1060 
1061 		write_lock_irq(&tasklist_lock);
1062 		spin_lock(&oldsighand->siglock);
1063 		memcpy(newsighand->action, oldsighand->action,
1064 		       sizeof(newsighand->action));
1065 		rcu_assign_pointer(me->sighand, newsighand);
1066 		spin_unlock(&oldsighand->siglock);
1067 		write_unlock_irq(&tasklist_lock);
1068 
1069 		__cleanup_sighand(oldsighand);
1070 	}
1071 	return 0;
1072 }
1073 
1074 /*
1075  * This is unlocked -- the string will always be NUL-terminated, but
1076  * may show overlapping contents if racing concurrent reads.
1077  */
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1078 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1079 {
1080 	size_t len = min(strlen(buf), sizeof(tsk->comm) - 1);
1081 
1082 	trace_task_rename(tsk, buf);
1083 	memcpy(tsk->comm, buf, len);
1084 	memset(&tsk->comm[len], 0, sizeof(tsk->comm) - len);
1085 	perf_event_comm(tsk, exec);
1086 }
1087 
1088 /*
1089  * Calling this is the point of no return. None of the failures will be
1090  * seen by userspace since either the process is already taking a fatal
1091  * signal (via de_thread() or coredump), or will have SEGV raised
1092  * (after exec_mmap()) by search_binary_handler (see below).
1093  */
begin_new_exec(struct linux_binprm * bprm)1094 int begin_new_exec(struct linux_binprm * bprm)
1095 {
1096 	struct task_struct *me = current;
1097 	int retval;
1098 
1099 	/* Once we are committed compute the creds */
1100 	retval = bprm_creds_from_file(bprm);
1101 	if (retval)
1102 		return retval;
1103 
1104 	/*
1105 	 * This tracepoint marks the point before flushing the old exec where
1106 	 * the current task is still unchanged, but errors are fatal (point of
1107 	 * no return). The later "sched_process_exec" tracepoint is called after
1108 	 * the current task has successfully switched to the new exec.
1109 	 */
1110 	trace_sched_prepare_exec(current, bprm);
1111 
1112 	/*
1113 	 * Ensure all future errors are fatal.
1114 	 */
1115 	bprm->point_of_no_return = true;
1116 
1117 	/* Make this the only thread in the thread group */
1118 	retval = de_thread(me);
1119 	if (retval)
1120 		goto out;
1121 	/* see the comment in check_unsafe_exec() */
1122 	current->fs->in_exec = 0;
1123 	/*
1124 	 * Cancel any io_uring activity across execve
1125 	 */
1126 	io_uring_task_cancel();
1127 
1128 	/* Ensure the files table is not shared. */
1129 	retval = unshare_files();
1130 	if (retval)
1131 		goto out;
1132 
1133 	/*
1134 	 * Must be called _before_ exec_mmap() as bprm->mm is
1135 	 * not visible until then. Doing it here also ensures
1136 	 * we don't race against replace_mm_exe_file().
1137 	 */
1138 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1139 	if (retval)
1140 		goto out;
1141 
1142 	/* If the binary is not readable then enforce mm->dumpable=0 */
1143 	would_dump(bprm, bprm->file);
1144 	if (bprm->have_execfd)
1145 		would_dump(bprm, bprm->executable);
1146 
1147 	/*
1148 	 * Release all of the old mmap stuff
1149 	 */
1150 	acct_arg_size(bprm, 0);
1151 	retval = exec_mmap(bprm->mm);
1152 	if (retval)
1153 		goto out;
1154 
1155 	bprm->mm = NULL;
1156 
1157 	retval = exec_task_namespaces();
1158 	if (retval)
1159 		goto out_unlock;
1160 
1161 #ifdef CONFIG_POSIX_TIMERS
1162 	spin_lock_irq(&me->sighand->siglock);
1163 	posix_cpu_timers_exit(me);
1164 	spin_unlock_irq(&me->sighand->siglock);
1165 	exit_itimers(me);
1166 	flush_itimer_signals();
1167 #endif
1168 
1169 	/*
1170 	 * Make the signal table private.
1171 	 */
1172 	retval = unshare_sighand(me);
1173 	if (retval)
1174 		goto out_unlock;
1175 
1176 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1177 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1178 	flush_thread();
1179 	me->personality &= ~bprm->per_clear;
1180 
1181 	clear_syscall_work_syscall_user_dispatch(me);
1182 
1183 	/*
1184 	 * We have to apply CLOEXEC before we change whether the process is
1185 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1186 	 * trying to access the should-be-closed file descriptors of a process
1187 	 * undergoing exec(2).
1188 	 */
1189 	do_close_on_exec(me->files);
1190 
1191 	if (bprm->secureexec) {
1192 		/* Make sure parent cannot signal privileged process. */
1193 		me->pdeath_signal = 0;
1194 
1195 		/*
1196 		 * For secureexec, reset the stack limit to sane default to
1197 		 * avoid bad behavior from the prior rlimits. This has to
1198 		 * happen before arch_pick_mmap_layout(), which examines
1199 		 * RLIMIT_STACK, but after the point of no return to avoid
1200 		 * needing to clean up the change on failure.
1201 		 */
1202 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1203 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1204 	}
1205 
1206 	me->sas_ss_sp = me->sas_ss_size = 0;
1207 
1208 	/*
1209 	 * Figure out dumpability. Note that this checking only of current
1210 	 * is wrong, but userspace depends on it. This should be testing
1211 	 * bprm->secureexec instead.
1212 	 */
1213 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1214 	    !(uid_eq(current_euid(), current_uid()) &&
1215 	      gid_eq(current_egid(), current_gid())))
1216 		set_dumpable(current->mm, suid_dumpable);
1217 	else
1218 		set_dumpable(current->mm, SUID_DUMP_USER);
1219 
1220 	perf_event_exec();
1221 
1222 	/*
1223 	 * If the original filename was empty, alloc_bprm() made up a path
1224 	 * that will probably not be useful to admins running ps or similar.
1225 	 * Let's fix it up to be something reasonable.
1226 	 */
1227 	if (bprm->comm_from_dentry) {
1228 		/*
1229 		 * Hold RCU lock to keep the name from being freed behind our back.
1230 		 * Use acquire semantics to make sure the terminating NUL from
1231 		 * __d_alloc() is seen.
1232 		 *
1233 		 * Note, we're deliberately sloppy here. We don't need to care about
1234 		 * detecting a concurrent rename and just want a terminated name.
1235 		 */
1236 		rcu_read_lock();
1237 		__set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name),
1238 				true);
1239 		rcu_read_unlock();
1240 	} else {
1241 		__set_task_comm(me, kbasename(bprm->filename), true);
1242 	}
1243 
1244 	/* An exec changes our domain. We are no longer part of the thread
1245 	   group */
1246 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1247 	flush_signal_handlers(me, 0);
1248 
1249 	retval = set_cred_ucounts(bprm->cred);
1250 	if (retval < 0)
1251 		goto out_unlock;
1252 
1253 	/*
1254 	 * install the new credentials for this executable
1255 	 */
1256 	security_bprm_committing_creds(bprm);
1257 
1258 	commit_creds(bprm->cred);
1259 	bprm->cred = NULL;
1260 
1261 	/*
1262 	 * Disable monitoring for regular users
1263 	 * when executing setuid binaries. Must
1264 	 * wait until new credentials are committed
1265 	 * by commit_creds() above
1266 	 */
1267 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1268 		perf_event_exit_task(me);
1269 	/*
1270 	 * cred_guard_mutex must be held at least to this point to prevent
1271 	 * ptrace_attach() from altering our determination of the task's
1272 	 * credentials; any time after this it may be unlocked.
1273 	 */
1274 	security_bprm_committed_creds(bprm);
1275 
1276 	/* Pass the opened binary to the interpreter. */
1277 	if (bprm->have_execfd) {
1278 		retval = get_unused_fd_flags(0);
1279 		if (retval < 0)
1280 			goto out_unlock;
1281 		fd_install(retval, bprm->executable);
1282 		bprm->executable = NULL;
1283 		bprm->execfd = retval;
1284 	}
1285 	return 0;
1286 
1287 out_unlock:
1288 	up_write(&me->signal->exec_update_lock);
1289 	if (!bprm->cred)
1290 		mutex_unlock(&me->signal->cred_guard_mutex);
1291 
1292 out:
1293 	return retval;
1294 }
1295 EXPORT_SYMBOL(begin_new_exec);
1296 
would_dump(struct linux_binprm * bprm,struct file * file)1297 void would_dump(struct linux_binprm *bprm, struct file *file)
1298 {
1299 	struct inode *inode = file_inode(file);
1300 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1301 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1302 		struct user_namespace *old, *user_ns;
1303 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1304 
1305 		/* Ensure mm->user_ns contains the executable */
1306 		user_ns = old = bprm->mm->user_ns;
1307 		while ((user_ns != &init_user_ns) &&
1308 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1309 			user_ns = user_ns->parent;
1310 
1311 		if (old != user_ns) {
1312 			bprm->mm->user_ns = get_user_ns(user_ns);
1313 			put_user_ns(old);
1314 		}
1315 	}
1316 }
1317 EXPORT_SYMBOL(would_dump);
1318 
setup_new_exec(struct linux_binprm * bprm)1319 void setup_new_exec(struct linux_binprm * bprm)
1320 {
1321 	/* Setup things that can depend upon the personality */
1322 	struct task_struct *me = current;
1323 
1324 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1325 
1326 	arch_setup_new_exec();
1327 
1328 	/* Set the new mm task size. We have to do that late because it may
1329 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1330 	 * some architectures like powerpc
1331 	 */
1332 	me->mm->task_size = TASK_SIZE;
1333 	up_write(&me->signal->exec_update_lock);
1334 	mutex_unlock(&me->signal->cred_guard_mutex);
1335 }
1336 EXPORT_SYMBOL(setup_new_exec);
1337 
1338 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1339 void finalize_exec(struct linux_binprm *bprm)
1340 {
1341 	/* Store any stack rlimit changes before starting thread. */
1342 	task_lock(current->group_leader);
1343 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1344 	task_unlock(current->group_leader);
1345 }
1346 EXPORT_SYMBOL(finalize_exec);
1347 
1348 /*
1349  * Prepare credentials and lock ->cred_guard_mutex.
1350  * setup_new_exec() commits the new creds and drops the lock.
1351  * Or, if exec fails before, free_bprm() should release ->cred
1352  * and unlock.
1353  */
prepare_bprm_creds(struct linux_binprm * bprm)1354 static int prepare_bprm_creds(struct linux_binprm *bprm)
1355 {
1356 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1357 		return -ERESTARTNOINTR;
1358 
1359 	bprm->cred = prepare_exec_creds();
1360 	if (likely(bprm->cred))
1361 		return 0;
1362 
1363 	mutex_unlock(&current->signal->cred_guard_mutex);
1364 	return -ENOMEM;
1365 }
1366 
1367 /* Matches do_open_execat() */
do_close_execat(struct file * file)1368 static void do_close_execat(struct file *file)
1369 {
1370 	if (!file)
1371 		return;
1372 	exe_file_allow_write_access(file);
1373 	fput(file);
1374 }
1375 
free_bprm(struct linux_binprm * bprm)1376 static void free_bprm(struct linux_binprm *bprm)
1377 {
1378 	if (bprm->mm) {
1379 		acct_arg_size(bprm, 0);
1380 		mmput(bprm->mm);
1381 	}
1382 	free_arg_pages(bprm);
1383 	if (bprm->cred) {
1384 		/* in case exec fails before de_thread() succeeds */
1385 		current->fs->in_exec = 0;
1386 		mutex_unlock(&current->signal->cred_guard_mutex);
1387 		abort_creds(bprm->cred);
1388 	}
1389 	do_close_execat(bprm->file);
1390 	if (bprm->executable)
1391 		fput(bprm->executable);
1392 	/* If a binfmt changed the interp, free it. */
1393 	if (bprm->interp != bprm->filename)
1394 		kfree(bprm->interp);
1395 	kfree(bprm->fdpath);
1396 	kfree(bprm);
1397 }
1398 
alloc_bprm(int fd,struct filename * filename,int flags)1399 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1400 {
1401 	struct linux_binprm *bprm;
1402 	struct file *file;
1403 	int retval = -ENOMEM;
1404 
1405 	file = do_open_execat(fd, filename, flags);
1406 	if (IS_ERR(file))
1407 		return ERR_CAST(file);
1408 
1409 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1410 	if (!bprm) {
1411 		do_close_execat(file);
1412 		return ERR_PTR(-ENOMEM);
1413 	}
1414 
1415 	bprm->file = file;
1416 
1417 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1418 		bprm->filename = filename->name;
1419 	} else {
1420 		if (filename->name[0] == '\0') {
1421 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1422 			bprm->comm_from_dentry = 1;
1423 		} else {
1424 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1425 						  fd, filename->name);
1426 		}
1427 		if (!bprm->fdpath)
1428 			goto out_free;
1429 
1430 		/*
1431 		 * Record that a name derived from an O_CLOEXEC fd will be
1432 		 * inaccessible after exec.  This allows the code in exec to
1433 		 * choose to fail when the executable is not mmaped into the
1434 		 * interpreter and an open file descriptor is not passed to
1435 		 * the interpreter.  This makes for a better user experience
1436 		 * than having the interpreter start and then immediately fail
1437 		 * when it finds the executable is inaccessible.
1438 		 */
1439 		if (get_close_on_exec(fd))
1440 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1441 
1442 		bprm->filename = bprm->fdpath;
1443 	}
1444 	bprm->interp = bprm->filename;
1445 
1446 	/*
1447 	 * At this point, security_file_open() has already been called (with
1448 	 * __FMODE_EXEC) and access control checks for AT_EXECVE_CHECK will
1449 	 * stop just after the security_bprm_creds_for_exec() call in
1450 	 * bprm_execve().  Indeed, the kernel should not try to parse the
1451 	 * content of the file with exec_binprm() nor change the calling
1452 	 * thread, which means that the following security functions will not
1453 	 * be called:
1454 	 * - security_bprm_check()
1455 	 * - security_bprm_creds_from_file()
1456 	 * - security_bprm_committing_creds()
1457 	 * - security_bprm_committed_creds()
1458 	 */
1459 	bprm->is_check = !!(flags & AT_EXECVE_CHECK);
1460 
1461 	retval = bprm_mm_init(bprm);
1462 	if (!retval)
1463 		return bprm;
1464 
1465 out_free:
1466 	free_bprm(bprm);
1467 	return ERR_PTR(retval);
1468 }
1469 
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1470 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1471 {
1472 	/* If a binfmt changed the interp, free it first. */
1473 	if (bprm->interp != bprm->filename)
1474 		kfree(bprm->interp);
1475 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1476 	if (!bprm->interp)
1477 		return -ENOMEM;
1478 	return 0;
1479 }
1480 EXPORT_SYMBOL(bprm_change_interp);
1481 
1482 /*
1483  * determine how safe it is to execute the proposed program
1484  * - the caller must hold ->cred_guard_mutex to protect against
1485  *   PTRACE_ATTACH or seccomp thread-sync
1486  */
check_unsafe_exec(struct linux_binprm * bprm)1487 static void check_unsafe_exec(struct linux_binprm *bprm)
1488 {
1489 	struct task_struct *p = current, *t;
1490 	unsigned n_fs;
1491 
1492 	if (p->ptrace)
1493 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1494 
1495 	/*
1496 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1497 	 * mess up.
1498 	 */
1499 	if (task_no_new_privs(current))
1500 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1501 
1502 	/*
1503 	 * If another task is sharing our fs, we cannot safely
1504 	 * suid exec because the differently privileged task
1505 	 * will be able to manipulate the current directory, etc.
1506 	 * It would be nice to force an unshare instead...
1507 	 *
1508 	 * Otherwise we set fs->in_exec = 1 to deny clone(CLONE_FS)
1509 	 * from another sub-thread until de_thread() succeeds, this
1510 	 * state is protected by cred_guard_mutex we hold.
1511 	 */
1512 	n_fs = 1;
1513 	spin_lock(&p->fs->lock);
1514 	rcu_read_lock();
1515 	for_other_threads(p, t) {
1516 		if (t->fs == p->fs)
1517 			n_fs++;
1518 	}
1519 	rcu_read_unlock();
1520 
1521 	/* "users" and "in_exec" locked for copy_fs() */
1522 	if (p->fs->users > n_fs)
1523 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1524 	else
1525 		p->fs->in_exec = 1;
1526 	spin_unlock(&p->fs->lock);
1527 }
1528 
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1529 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1530 {
1531 	/* Handle suid and sgid on files */
1532 	struct mnt_idmap *idmap;
1533 	struct inode *inode = file_inode(file);
1534 	unsigned int mode;
1535 	vfsuid_t vfsuid;
1536 	vfsgid_t vfsgid;
1537 	int err;
1538 
1539 	if (!mnt_may_suid(file->f_path.mnt))
1540 		return;
1541 
1542 	if (task_no_new_privs(current))
1543 		return;
1544 
1545 	mode = READ_ONCE(inode->i_mode);
1546 	if (!(mode & (S_ISUID|S_ISGID)))
1547 		return;
1548 
1549 	idmap = file_mnt_idmap(file);
1550 
1551 	/* Be careful if suid/sgid is set */
1552 	inode_lock(inode);
1553 
1554 	/* Atomically reload and check mode/uid/gid now that lock held. */
1555 	mode = inode->i_mode;
1556 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1557 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1558 	err = inode_permission(idmap, inode, MAY_EXEC);
1559 	inode_unlock(inode);
1560 
1561 	/* Did the exec bit vanish out from under us? Give up. */
1562 	if (err)
1563 		return;
1564 
1565 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1566 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1567 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1568 		return;
1569 
1570 	if (mode & S_ISUID) {
1571 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1572 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1573 	}
1574 
1575 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1576 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1577 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1578 	}
1579 }
1580 
1581 /*
1582  * Compute brpm->cred based upon the final binary.
1583  */
bprm_creds_from_file(struct linux_binprm * bprm)1584 static int bprm_creds_from_file(struct linux_binprm *bprm)
1585 {
1586 	/* Compute creds based on which file? */
1587 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1588 
1589 	bprm_fill_uid(bprm, file);
1590 	return security_bprm_creds_from_file(bprm, file);
1591 }
1592 
1593 /*
1594  * Fill the binprm structure from the inode.
1595  * Read the first BINPRM_BUF_SIZE bytes
1596  *
1597  * This may be called multiple times for binary chains (scripts for example).
1598  */
prepare_binprm(struct linux_binprm * bprm)1599 static int prepare_binprm(struct linux_binprm *bprm)
1600 {
1601 	loff_t pos = 0;
1602 
1603 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1604 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1605 }
1606 
1607 /*
1608  * Arguments are '\0' separated strings found at the location bprm->p
1609  * points to; chop off the first by relocating brpm->p to right after
1610  * the first '\0' encountered.
1611  */
remove_arg_zero(struct linux_binprm * bprm)1612 int remove_arg_zero(struct linux_binprm *bprm)
1613 {
1614 	unsigned long offset;
1615 	char *kaddr;
1616 	struct page *page;
1617 
1618 	if (!bprm->argc)
1619 		return 0;
1620 
1621 	do {
1622 		offset = bprm->p & ~PAGE_MASK;
1623 		page = get_arg_page(bprm, bprm->p, 0);
1624 		if (!page)
1625 			return -EFAULT;
1626 		kaddr = kmap_local_page(page);
1627 
1628 		for (; offset < PAGE_SIZE && kaddr[offset];
1629 				offset++, bprm->p++)
1630 			;
1631 
1632 		kunmap_local(kaddr);
1633 		put_arg_page(page);
1634 	} while (offset == PAGE_SIZE);
1635 
1636 	bprm->p++;
1637 	bprm->argc--;
1638 
1639 	return 0;
1640 }
1641 EXPORT_SYMBOL(remove_arg_zero);
1642 
1643 /*
1644  * cycle the list of binary formats handler, until one recognizes the image
1645  */
search_binary_handler(struct linux_binprm * bprm)1646 static int search_binary_handler(struct linux_binprm *bprm)
1647 {
1648 	struct linux_binfmt *fmt;
1649 	int retval;
1650 
1651 	retval = prepare_binprm(bprm);
1652 	if (retval < 0)
1653 		return retval;
1654 
1655 	retval = security_bprm_check(bprm);
1656 	if (retval)
1657 		return retval;
1658 
1659 	read_lock(&binfmt_lock);
1660 	list_for_each_entry(fmt, &formats, lh) {
1661 		if (!try_module_get(fmt->module))
1662 			continue;
1663 		read_unlock(&binfmt_lock);
1664 
1665 		retval = fmt->load_binary(bprm);
1666 
1667 		read_lock(&binfmt_lock);
1668 		put_binfmt(fmt);
1669 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1670 			read_unlock(&binfmt_lock);
1671 			return retval;
1672 		}
1673 	}
1674 	read_unlock(&binfmt_lock);
1675 
1676 	return -ENOEXEC;
1677 }
1678 
1679 /* binfmt handlers will call back into begin_new_exec() on success. */
exec_binprm(struct linux_binprm * bprm)1680 static int exec_binprm(struct linux_binprm *bprm)
1681 {
1682 	pid_t old_pid, old_vpid;
1683 	int ret, depth;
1684 
1685 	/* Need to fetch pid before load_binary changes it */
1686 	old_pid = current->pid;
1687 	rcu_read_lock();
1688 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1689 	rcu_read_unlock();
1690 
1691 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1692 	for (depth = 0;; depth++) {
1693 		struct file *exec;
1694 		if (depth > 5)
1695 			return -ELOOP;
1696 
1697 		ret = search_binary_handler(bprm);
1698 		if (ret < 0)
1699 			return ret;
1700 		if (!bprm->interpreter)
1701 			break;
1702 
1703 		exec = bprm->file;
1704 		bprm->file = bprm->interpreter;
1705 		bprm->interpreter = NULL;
1706 
1707 		exe_file_allow_write_access(exec);
1708 		if (unlikely(bprm->have_execfd)) {
1709 			if (bprm->executable) {
1710 				fput(exec);
1711 				return -ENOEXEC;
1712 			}
1713 			bprm->executable = exec;
1714 		} else
1715 			fput(exec);
1716 	}
1717 
1718 	audit_bprm(bprm);
1719 	trace_sched_process_exec(current, old_pid, bprm);
1720 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1721 	proc_exec_connector(current);
1722 	return 0;
1723 }
1724 
bprm_execve(struct linux_binprm * bprm)1725 static int bprm_execve(struct linux_binprm *bprm)
1726 {
1727 	int retval;
1728 
1729 	retval = prepare_bprm_creds(bprm);
1730 	if (retval)
1731 		return retval;
1732 
1733 	/*
1734 	 * Check for unsafe execution states before exec_binprm(), which
1735 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1736 	 * where setuid-ness is evaluated.
1737 	 */
1738 	check_unsafe_exec(bprm);
1739 	current->in_execve = 1;
1740 	sched_mm_cid_before_execve(current);
1741 
1742 	sched_exec();
1743 
1744 	/* Set the unchanging part of bprm->cred */
1745 	retval = security_bprm_creds_for_exec(bprm);
1746 	if (retval || bprm->is_check)
1747 		goto out;
1748 
1749 	retval = exec_binprm(bprm);
1750 	if (retval < 0)
1751 		goto out;
1752 
1753 	sched_mm_cid_after_execve(current);
1754 	rseq_execve(current);
1755 	/* execve succeeded */
1756 	current->in_execve = 0;
1757 	user_events_execve(current);
1758 	acct_update_integrals(current);
1759 	task_numa_free(current, false);
1760 	return retval;
1761 
1762 out:
1763 	/*
1764 	 * If past the point of no return ensure the code never
1765 	 * returns to the userspace process.  Use an existing fatal
1766 	 * signal if present otherwise terminate the process with
1767 	 * SIGSEGV.
1768 	 */
1769 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1770 		force_fatal_sig(SIGSEGV);
1771 
1772 	sched_mm_cid_after_execve(current);
1773 	rseq_set_notify_resume(current);
1774 	current->in_execve = 0;
1775 
1776 	return retval;
1777 }
1778 
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1779 static int do_execveat_common(int fd, struct filename *filename,
1780 			      struct user_arg_ptr argv,
1781 			      struct user_arg_ptr envp,
1782 			      int flags)
1783 {
1784 	struct linux_binprm *bprm;
1785 	int retval;
1786 
1787 	if (IS_ERR(filename))
1788 		return PTR_ERR(filename);
1789 
1790 	/*
1791 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1792 	 * set*uid() to execve() because too many poorly written programs
1793 	 * don't check setuid() return code.  Here we additionally recheck
1794 	 * whether NPROC limit is still exceeded.
1795 	 */
1796 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1797 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1798 		retval = -EAGAIN;
1799 		goto out_ret;
1800 	}
1801 
1802 	/* We're below the limit (still or again), so we don't want to make
1803 	 * further execve() calls fail. */
1804 	current->flags &= ~PF_NPROC_EXCEEDED;
1805 
1806 	bprm = alloc_bprm(fd, filename, flags);
1807 	if (IS_ERR(bprm)) {
1808 		retval = PTR_ERR(bprm);
1809 		goto out_ret;
1810 	}
1811 
1812 	retval = count(argv, MAX_ARG_STRINGS);
1813 	if (retval < 0)
1814 		goto out_free;
1815 	bprm->argc = retval;
1816 
1817 	retval = count(envp, MAX_ARG_STRINGS);
1818 	if (retval < 0)
1819 		goto out_free;
1820 	bprm->envc = retval;
1821 
1822 	retval = bprm_stack_limits(bprm);
1823 	if (retval < 0)
1824 		goto out_free;
1825 
1826 	retval = copy_string_kernel(bprm->filename, bprm);
1827 	if (retval < 0)
1828 		goto out_free;
1829 	bprm->exec = bprm->p;
1830 
1831 	retval = copy_strings(bprm->envc, envp, bprm);
1832 	if (retval < 0)
1833 		goto out_free;
1834 
1835 	retval = copy_strings(bprm->argc, argv, bprm);
1836 	if (retval < 0)
1837 		goto out_free;
1838 
1839 	/*
1840 	 * When argv is empty, add an empty string ("") as argv[0] to
1841 	 * ensure confused userspace programs that start processing
1842 	 * from argv[1] won't end up walking envp. See also
1843 	 * bprm_stack_limits().
1844 	 */
1845 	if (bprm->argc == 0) {
1846 		retval = copy_string_kernel("", bprm);
1847 		if (retval < 0)
1848 			goto out_free;
1849 		bprm->argc = 1;
1850 
1851 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1852 			     current->comm, bprm->filename);
1853 	}
1854 
1855 	retval = bprm_execve(bprm);
1856 out_free:
1857 	free_bprm(bprm);
1858 
1859 out_ret:
1860 	putname(filename);
1861 	return retval;
1862 }
1863 
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1864 int kernel_execve(const char *kernel_filename,
1865 		  const char *const *argv, const char *const *envp)
1866 {
1867 	struct filename *filename;
1868 	struct linux_binprm *bprm;
1869 	int fd = AT_FDCWD;
1870 	int retval;
1871 
1872 	/* It is non-sense for kernel threads to call execve */
1873 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1874 		return -EINVAL;
1875 
1876 	filename = getname_kernel(kernel_filename);
1877 	if (IS_ERR(filename))
1878 		return PTR_ERR(filename);
1879 
1880 	bprm = alloc_bprm(fd, filename, 0);
1881 	if (IS_ERR(bprm)) {
1882 		retval = PTR_ERR(bprm);
1883 		goto out_ret;
1884 	}
1885 
1886 	retval = count_strings_kernel(argv);
1887 	if (WARN_ON_ONCE(retval == 0))
1888 		retval = -EINVAL;
1889 	if (retval < 0)
1890 		goto out_free;
1891 	bprm->argc = retval;
1892 
1893 	retval = count_strings_kernel(envp);
1894 	if (retval < 0)
1895 		goto out_free;
1896 	bprm->envc = retval;
1897 
1898 	retval = bprm_stack_limits(bprm);
1899 	if (retval < 0)
1900 		goto out_free;
1901 
1902 	retval = copy_string_kernel(bprm->filename, bprm);
1903 	if (retval < 0)
1904 		goto out_free;
1905 	bprm->exec = bprm->p;
1906 
1907 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
1908 	if (retval < 0)
1909 		goto out_free;
1910 
1911 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
1912 	if (retval < 0)
1913 		goto out_free;
1914 
1915 	retval = bprm_execve(bprm);
1916 out_free:
1917 	free_bprm(bprm);
1918 out_ret:
1919 	putname(filename);
1920 	return retval;
1921 }
1922 
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1923 static int do_execve(struct filename *filename,
1924 	const char __user *const __user *__argv,
1925 	const char __user *const __user *__envp)
1926 {
1927 	struct user_arg_ptr argv = { .ptr.native = __argv };
1928 	struct user_arg_ptr envp = { .ptr.native = __envp };
1929 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1930 }
1931 
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)1932 static int do_execveat(int fd, struct filename *filename,
1933 		const char __user *const __user *__argv,
1934 		const char __user *const __user *__envp,
1935 		int flags)
1936 {
1937 	struct user_arg_ptr argv = { .ptr.native = __argv };
1938 	struct user_arg_ptr envp = { .ptr.native = __envp };
1939 
1940 	return do_execveat_common(fd, filename, argv, envp, flags);
1941 }
1942 
1943 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1944 static int compat_do_execve(struct filename *filename,
1945 	const compat_uptr_t __user *__argv,
1946 	const compat_uptr_t __user *__envp)
1947 {
1948 	struct user_arg_ptr argv = {
1949 		.is_compat = true,
1950 		.ptr.compat = __argv,
1951 	};
1952 	struct user_arg_ptr envp = {
1953 		.is_compat = true,
1954 		.ptr.compat = __envp,
1955 	};
1956 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1957 }
1958 
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)1959 static int compat_do_execveat(int fd, struct filename *filename,
1960 			      const compat_uptr_t __user *__argv,
1961 			      const compat_uptr_t __user *__envp,
1962 			      int flags)
1963 {
1964 	struct user_arg_ptr argv = {
1965 		.is_compat = true,
1966 		.ptr.compat = __argv,
1967 	};
1968 	struct user_arg_ptr envp = {
1969 		.is_compat = true,
1970 		.ptr.compat = __envp,
1971 	};
1972 	return do_execveat_common(fd, filename, argv, envp, flags);
1973 }
1974 #endif
1975 
set_binfmt(struct linux_binfmt * new)1976 void set_binfmt(struct linux_binfmt *new)
1977 {
1978 	struct mm_struct *mm = current->mm;
1979 
1980 	if (mm->binfmt)
1981 		module_put(mm->binfmt->module);
1982 
1983 	mm->binfmt = new;
1984 	if (new)
1985 		__module_get(new->module);
1986 }
1987 EXPORT_SYMBOL(set_binfmt);
1988 
1989 /*
1990  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1991  */
set_dumpable(struct mm_struct * mm,int value)1992 void set_dumpable(struct mm_struct *mm, int value)
1993 {
1994 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1995 		return;
1996 
1997 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
1998 }
1999 
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2000 SYSCALL_DEFINE3(execve,
2001 		const char __user *, filename,
2002 		const char __user *const __user *, argv,
2003 		const char __user *const __user *, envp)
2004 {
2005 	return do_execve(getname(filename), argv, envp);
2006 }
2007 
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2008 SYSCALL_DEFINE5(execveat,
2009 		int, fd, const char __user *, filename,
2010 		const char __user *const __user *, argv,
2011 		const char __user *const __user *, envp,
2012 		int, flags)
2013 {
2014 	return do_execveat(fd,
2015 			   getname_uflags(filename, flags),
2016 			   argv, envp, flags);
2017 }
2018 
2019 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2020 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2021 	const compat_uptr_t __user *, argv,
2022 	const compat_uptr_t __user *, envp)
2023 {
2024 	return compat_do_execve(getname(filename), argv, envp);
2025 }
2026 
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2027 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2028 		       const char __user *, filename,
2029 		       const compat_uptr_t __user *, argv,
2030 		       const compat_uptr_t __user *, envp,
2031 		       int,  flags)
2032 {
2033 	return compat_do_execveat(fd,
2034 				  getname_uflags(filename, flags),
2035 				  argv, envp, flags);
2036 }
2037 #endif
2038 
2039 #ifdef CONFIG_SYSCTL
2040 
proc_dointvec_minmax_coredump(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2041 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2042 		void *buffer, size_t *lenp, loff_t *ppos)
2043 {
2044 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2045 
2046 	if (!error)
2047 		validate_coredump_safety();
2048 	return error;
2049 }
2050 
2051 static const struct ctl_table fs_exec_sysctls[] = {
2052 	{
2053 		.procname	= "suid_dumpable",
2054 		.data		= &suid_dumpable,
2055 		.maxlen		= sizeof(int),
2056 		.mode		= 0644,
2057 		.proc_handler	= proc_dointvec_minmax_coredump,
2058 		.extra1		= SYSCTL_ZERO,
2059 		.extra2		= SYSCTL_TWO,
2060 	},
2061 };
2062 
init_fs_exec_sysctls(void)2063 static int __init init_fs_exec_sysctls(void)
2064 {
2065 	register_sysctl_init("fs", fs_exec_sysctls);
2066 	return 0;
2067 }
2068 
2069 fs_initcall(init_fs_exec_sysctls);
2070 #endif /* CONFIG_SYSCTL */
2071 
2072 #ifdef CONFIG_EXEC_KUNIT_TEST
2073 #include "tests/exec_kunit.c"
2074 #endif
2075