xref: /linux/fs/btrfs/file-item.c (revision 0eb4aaa230d725fa9b1cd758c0f17abca5597af6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "messages.h"
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "bio.h"
17 #include "compression.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "file-item.h"
21 
22 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
23 				   sizeof(struct btrfs_item) * 2) / \
24 				  size) - 1))
25 
26 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
27 				       PAGE_SIZE))
28 
29 /*
30  * Set inode's size according to filesystem options.
31  *
32  * @inode:      inode we want to update the disk_i_size for
33  * @new_i_size: i_size we want to set to, 0 if we use i_size
34  *
35  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
36  * returns as it is perfectly fine with a file that has holes without hole file
37  * extent items.
38  *
39  * However without NO_HOLES we need to only return the area that is contiguous
40  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
41  * to an extent that has a gap in between.
42  *
43  * Finally new_i_size should only be set in the case of truncate where we're not
44  * ready to use i_size_read() as the limiter yet.
45  */
btrfs_inode_safe_disk_i_size_write(struct btrfs_inode * inode,u64 new_i_size)46 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
47 {
48 	u64 start, end, i_size;
49 	int ret;
50 
51 	spin_lock(&inode->lock);
52 	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
53 	if (!inode->file_extent_tree) {
54 		inode->disk_i_size = i_size;
55 		goto out_unlock;
56 	}
57 
58 	ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
59 					 &end, EXTENT_DIRTY);
60 	if (!ret && start == 0)
61 		i_size = min(i_size, end + 1);
62 	else
63 		i_size = 0;
64 	inode->disk_i_size = i_size;
65 out_unlock:
66 	spin_unlock(&inode->lock);
67 }
68 
69 /*
70  * Mark range within a file as having a new extent inserted.
71  *
72  * @inode: inode being modified
73  * @start: start file offset of the file extent we've inserted
74  * @len:   logical length of the file extent item
75  *
76  * Call when we are inserting a new file extent where there was none before.
77  * Does not need to call this in the case where we're replacing an existing file
78  * extent, however if not sure it's fine to call this multiple times.
79  *
80  * The start and len must match the file extent item, so thus must be sectorsize
81  * aligned.
82  */
btrfs_inode_set_file_extent_range(struct btrfs_inode * inode,u64 start,u64 len)83 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
84 				      u64 len)
85 {
86 	if (!inode->file_extent_tree)
87 		return 0;
88 
89 	if (len == 0)
90 		return 0;
91 
92 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
93 
94 	return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
95 			      EXTENT_DIRTY, NULL);
96 }
97 
98 /*
99  * Mark an inode range as not having a backing extent.
100  *
101  * @inode: inode being modified
102  * @start: start file offset of the file extent we've inserted
103  * @len:   logical length of the file extent item
104  *
105  * Called when we drop a file extent, for example when we truncate.  Doesn't
106  * need to be called for cases where we're replacing a file extent, like when
107  * we've COWed a file extent.
108  *
109  * The start and len must match the file extent item, so thus must be sectorsize
110  * aligned.
111  */
btrfs_inode_clear_file_extent_range(struct btrfs_inode * inode,u64 start,u64 len)112 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
113 					u64 len)
114 {
115 	if (!inode->file_extent_tree)
116 		return 0;
117 
118 	if (len == 0)
119 		return 0;
120 
121 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
122 	       len == (u64)-1);
123 
124 	return clear_extent_bit(inode->file_extent_tree, start,
125 				start + len - 1, EXTENT_DIRTY, NULL);
126 }
127 
bytes_to_csum_size(const struct btrfs_fs_info * fs_info,u32 bytes)128 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
129 {
130 	ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
131 
132 	return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
133 }
134 
csum_size_to_bytes(const struct btrfs_fs_info * fs_info,u32 csum_size)135 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
136 {
137 	ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
138 
139 	return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
140 }
141 
max_ordered_sum_bytes(const struct btrfs_fs_info * fs_info)142 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
143 {
144 	u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
145 				       fs_info->csum_size);
146 
147 	return csum_size_to_bytes(fs_info, max_csum_size);
148 }
149 
150 /*
151  * Calculate the total size needed to allocate for an ordered sum structure
152  * spanning @bytes in the file.
153  */
btrfs_ordered_sum_size(const struct btrfs_fs_info * fs_info,unsigned long bytes)154 static int btrfs_ordered_sum_size(const struct btrfs_fs_info *fs_info, unsigned long bytes)
155 {
156 	return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
157 }
158 
btrfs_insert_hole_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid,u64 pos,u64 num_bytes)159 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
160 			     struct btrfs_root *root,
161 			     u64 objectid, u64 pos, u64 num_bytes)
162 {
163 	int ret = 0;
164 	struct btrfs_file_extent_item *item;
165 	struct btrfs_key file_key;
166 	struct btrfs_path *path;
167 	struct extent_buffer *leaf;
168 
169 	path = btrfs_alloc_path();
170 	if (!path)
171 		return -ENOMEM;
172 	file_key.objectid = objectid;
173 	file_key.offset = pos;
174 	file_key.type = BTRFS_EXTENT_DATA_KEY;
175 
176 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
177 				      sizeof(*item));
178 	if (ret < 0)
179 		goto out;
180 	leaf = path->nodes[0];
181 	item = btrfs_item_ptr(leaf, path->slots[0],
182 			      struct btrfs_file_extent_item);
183 	btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
184 	btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
185 	btrfs_set_file_extent_offset(leaf, item, 0);
186 	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
187 	btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
188 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
189 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
190 	btrfs_set_file_extent_compression(leaf, item, 0);
191 	btrfs_set_file_extent_encryption(leaf, item, 0);
192 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
193 out:
194 	btrfs_free_path(path);
195 	return ret;
196 }
197 
198 static struct btrfs_csum_item *
btrfs_lookup_csum(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,int cow)199 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
200 		  struct btrfs_root *root,
201 		  struct btrfs_path *path,
202 		  u64 bytenr, int cow)
203 {
204 	struct btrfs_fs_info *fs_info = root->fs_info;
205 	int ret;
206 	struct btrfs_key file_key;
207 	struct btrfs_key found_key;
208 	struct btrfs_csum_item *item;
209 	struct extent_buffer *leaf;
210 	u64 csum_offset = 0;
211 	const u32 csum_size = fs_info->csum_size;
212 	int csums_in_item;
213 
214 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
215 	file_key.offset = bytenr;
216 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
217 	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
218 	if (ret < 0)
219 		goto fail;
220 	leaf = path->nodes[0];
221 	if (ret > 0) {
222 		ret = 1;
223 		if (path->slots[0] == 0)
224 			goto fail;
225 		path->slots[0]--;
226 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
227 		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
228 			goto fail;
229 
230 		csum_offset = (bytenr - found_key.offset) >>
231 				fs_info->sectorsize_bits;
232 		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
233 		csums_in_item /= csum_size;
234 
235 		if (csum_offset == csums_in_item) {
236 			ret = -EFBIG;
237 			goto fail;
238 		} else if (csum_offset > csums_in_item) {
239 			goto fail;
240 		}
241 	}
242 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
243 	item = (struct btrfs_csum_item *)((unsigned char *)item +
244 					  csum_offset * csum_size);
245 	return item;
246 fail:
247 	if (ret > 0)
248 		ret = -ENOENT;
249 	return ERR_PTR(ret);
250 }
251 
btrfs_lookup_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,int mod)252 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
253 			     struct btrfs_root *root,
254 			     struct btrfs_path *path, u64 objectid,
255 			     u64 offset, int mod)
256 {
257 	struct btrfs_key file_key;
258 	int ins_len = mod < 0 ? -1 : 0;
259 	int cow = mod != 0;
260 
261 	file_key.objectid = objectid;
262 	file_key.offset = offset;
263 	file_key.type = BTRFS_EXTENT_DATA_KEY;
264 
265 	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
266 }
267 
268 /*
269  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
270  * store the result to @dst.
271  *
272  * Return >0 for the number of sectors we found.
273  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
274  * for it. Caller may want to try next sector until one range is hit.
275  * Return <0 for fatal error.
276  */
search_csum_tree(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 disk_bytenr,u64 len,u8 * dst)277 static int search_csum_tree(struct btrfs_fs_info *fs_info,
278 			    struct btrfs_path *path, u64 disk_bytenr,
279 			    u64 len, u8 *dst)
280 {
281 	struct btrfs_root *csum_root;
282 	struct btrfs_csum_item *item = NULL;
283 	struct btrfs_key key;
284 	const u32 sectorsize = fs_info->sectorsize;
285 	const u32 csum_size = fs_info->csum_size;
286 	u32 itemsize;
287 	int ret;
288 	u64 csum_start;
289 	u64 csum_len;
290 
291 	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
292 	       IS_ALIGNED(len, sectorsize));
293 
294 	/* Check if the current csum item covers disk_bytenr */
295 	if (path->nodes[0]) {
296 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
297 				      struct btrfs_csum_item);
298 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
299 		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
300 
301 		csum_start = key.offset;
302 		csum_len = (itemsize / csum_size) * sectorsize;
303 
304 		if (in_range(disk_bytenr, csum_start, csum_len))
305 			goto found;
306 	}
307 
308 	/* Current item doesn't contain the desired range, search again */
309 	btrfs_release_path(path);
310 	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
311 	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
312 	if (IS_ERR(item)) {
313 		ret = PTR_ERR(item);
314 		goto out;
315 	}
316 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
317 	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
318 
319 	csum_start = key.offset;
320 	csum_len = (itemsize / csum_size) * sectorsize;
321 	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
322 
323 found:
324 	ret = (min(csum_start + csum_len, disk_bytenr + len) -
325 		   disk_bytenr) >> fs_info->sectorsize_bits;
326 	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
327 			ret * csum_size);
328 out:
329 	if (ret == -ENOENT || ret == -EFBIG)
330 		ret = 0;
331 	return ret;
332 }
333 
334 /*
335  * Lookup the checksum for the read bio in csum tree.
336  *
337  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
338  */
btrfs_lookup_bio_sums(struct btrfs_bio * bbio)339 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
340 {
341 	struct btrfs_inode *inode = bbio->inode;
342 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
343 	struct bio *bio = &bbio->bio;
344 	struct btrfs_path *path;
345 	const u32 sectorsize = fs_info->sectorsize;
346 	const u32 csum_size = fs_info->csum_size;
347 	u32 orig_len = bio->bi_iter.bi_size;
348 	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
349 	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
350 	blk_status_t ret = BLK_STS_OK;
351 	u32 bio_offset = 0;
352 
353 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
354 	    test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state))
355 		return BLK_STS_OK;
356 
357 	/*
358 	 * This function is only called for read bio.
359 	 *
360 	 * This means two things:
361 	 * - All our csums should only be in csum tree
362 	 *   No ordered extents csums, as ordered extents are only for write
363 	 *   path.
364 	 * - No need to bother any other info from bvec
365 	 *   Since we're looking up csums, the only important info is the
366 	 *   disk_bytenr and the length, which can be extracted from bi_iter
367 	 *   directly.
368 	 */
369 	ASSERT(bio_op(bio) == REQ_OP_READ);
370 	path = btrfs_alloc_path();
371 	if (!path)
372 		return BLK_STS_RESOURCE;
373 
374 	if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
375 		bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
376 		if (!bbio->csum) {
377 			btrfs_free_path(path);
378 			return BLK_STS_RESOURCE;
379 		}
380 	} else {
381 		bbio->csum = bbio->csum_inline;
382 	}
383 
384 	/*
385 	 * If requested number of sectors is larger than one leaf can contain,
386 	 * kick the readahead for csum tree.
387 	 */
388 	if (nblocks > fs_info->csums_per_leaf)
389 		path->reada = READA_FORWARD;
390 
391 	/*
392 	 * the free space stuff is only read when it hasn't been
393 	 * updated in the current transaction.  So, we can safely
394 	 * read from the commit root and sidestep a nasty deadlock
395 	 * between reading the free space cache and updating the csum tree.
396 	 */
397 	if (btrfs_is_free_space_inode(inode)) {
398 		path->search_commit_root = 1;
399 		path->skip_locking = 1;
400 	}
401 
402 	while (bio_offset < orig_len) {
403 		int count;
404 		u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
405 		u8 *csum_dst = bbio->csum +
406 			(bio_offset >> fs_info->sectorsize_bits) * csum_size;
407 
408 		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
409 					 orig_len - bio_offset, csum_dst);
410 		if (count < 0) {
411 			ret = errno_to_blk_status(count);
412 			if (bbio->csum != bbio->csum_inline)
413 				kfree(bbio->csum);
414 			bbio->csum = NULL;
415 			break;
416 		}
417 
418 		/*
419 		 * We didn't find a csum for this range.  We need to make sure
420 		 * we complain loudly about this, because we are not NODATASUM.
421 		 *
422 		 * However for the DATA_RELOC inode we could potentially be
423 		 * relocating data extents for a NODATASUM inode, so the inode
424 		 * itself won't be marked with NODATASUM, but the extent we're
425 		 * copying is in fact NODATASUM.  If we don't find a csum we
426 		 * assume this is the case.
427 		 */
428 		if (count == 0) {
429 			memset(csum_dst, 0, csum_size);
430 			count = 1;
431 
432 			if (btrfs_root_id(inode->root) == BTRFS_DATA_RELOC_TREE_OBJECTID) {
433 				u64 file_offset = bbio->file_offset + bio_offset;
434 
435 				set_extent_bit(&inode->io_tree, file_offset,
436 					       file_offset + sectorsize - 1,
437 					       EXTENT_NODATASUM, NULL);
438 			} else {
439 				btrfs_warn_rl(fs_info,
440 			"csum hole found for disk bytenr range [%llu, %llu)",
441 				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
442 			}
443 		}
444 		bio_offset += count * sectorsize;
445 	}
446 
447 	btrfs_free_path(path);
448 	return ret;
449 }
450 
451 /*
452  * Search for checksums for a given logical range.
453  *
454  * @root:		The root where to look for checksums.
455  * @start:		Logical address of target checksum range.
456  * @end:		End offset (inclusive) of the target checksum range.
457  * @list:		List for adding each checksum that was found.
458  *			Can be NULL in case the caller only wants to check if
459  *			there any checksums for the range.
460  * @nowait:		Indicate if the search must be non-blocking or not.
461  *
462  * Return < 0 on error, 0 if no checksums were found, or 1 if checksums were
463  * found.
464  */
btrfs_lookup_csums_list(struct btrfs_root * root,u64 start,u64 end,struct list_head * list,bool nowait)465 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
466 			    struct list_head *list, bool nowait)
467 {
468 	struct btrfs_fs_info *fs_info = root->fs_info;
469 	struct btrfs_key key;
470 	struct btrfs_path *path;
471 	struct extent_buffer *leaf;
472 	struct btrfs_ordered_sum *sums;
473 	struct btrfs_csum_item *item;
474 	int ret;
475 	bool found_csums = false;
476 
477 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
478 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
479 
480 	path = btrfs_alloc_path();
481 	if (!path)
482 		return -ENOMEM;
483 
484 	path->nowait = nowait;
485 
486 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
487 	key.offset = start;
488 	key.type = BTRFS_EXTENT_CSUM_KEY;
489 
490 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
491 	if (ret < 0)
492 		goto out;
493 	if (ret > 0 && path->slots[0] > 0) {
494 		leaf = path->nodes[0];
495 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
496 
497 		/*
498 		 * There are two cases we can hit here for the previous csum
499 		 * item:
500 		 *
501 		 *		|<- search range ->|
502 		 *	|<- csum item ->|
503 		 *
504 		 * Or
505 		 *				|<- search range ->|
506 		 *	|<- csum item ->|
507 		 *
508 		 * Check if the previous csum item covers the leading part of
509 		 * the search range.  If so we have to start from previous csum
510 		 * item.
511 		 */
512 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
513 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
514 			if (bytes_to_csum_size(fs_info, start - key.offset) <
515 			    btrfs_item_size(leaf, path->slots[0] - 1))
516 				path->slots[0]--;
517 		}
518 	}
519 
520 	while (start <= end) {
521 		u64 csum_end;
522 
523 		leaf = path->nodes[0];
524 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
525 			ret = btrfs_next_leaf(root, path);
526 			if (ret < 0)
527 				goto out;
528 			if (ret > 0)
529 				break;
530 			leaf = path->nodes[0];
531 		}
532 
533 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
534 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
535 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
536 		    key.offset > end)
537 			break;
538 
539 		if (key.offset > start)
540 			start = key.offset;
541 
542 		csum_end = key.offset + csum_size_to_bytes(fs_info,
543 					btrfs_item_size(leaf, path->slots[0]));
544 		if (csum_end <= start) {
545 			path->slots[0]++;
546 			continue;
547 		}
548 
549 		found_csums = true;
550 		if (!list)
551 			goto out;
552 
553 		csum_end = min(csum_end, end + 1);
554 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
555 				      struct btrfs_csum_item);
556 		while (start < csum_end) {
557 			unsigned long offset;
558 			size_t size;
559 
560 			size = min_t(size_t, csum_end - start,
561 				     max_ordered_sum_bytes(fs_info));
562 			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
563 				       GFP_NOFS);
564 			if (!sums) {
565 				ret = -ENOMEM;
566 				goto out;
567 			}
568 
569 			sums->logical = start;
570 			sums->len = size;
571 
572 			offset = bytes_to_csum_size(fs_info, start - key.offset);
573 
574 			read_extent_buffer(path->nodes[0],
575 					   sums->sums,
576 					   ((unsigned long)item) + offset,
577 					   bytes_to_csum_size(fs_info, size));
578 
579 			start += size;
580 			list_add_tail(&sums->list, list);
581 		}
582 		path->slots[0]++;
583 	}
584 out:
585 	btrfs_free_path(path);
586 	if (ret < 0) {
587 		if (list) {
588 			struct btrfs_ordered_sum *tmp_sums;
589 
590 			list_for_each_entry_safe(sums, tmp_sums, list, list)
591 				kfree(sums);
592 		}
593 
594 		return ret;
595 	}
596 
597 	return found_csums ? 1 : 0;
598 }
599 
600 /*
601  * Do the same work as btrfs_lookup_csums_list(), the difference is in how
602  * we return the result.
603  *
604  * This version will set the corresponding bits in @csum_bitmap to represent
605  * that there is a csum found.
606  * Each bit represents a sector. Thus caller should ensure @csum_buf passed
607  * in is large enough to contain all csums.
608  */
btrfs_lookup_csums_bitmap(struct btrfs_root * root,struct btrfs_path * path,u64 start,u64 end,u8 * csum_buf,unsigned long * csum_bitmap)609 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
610 			      u64 start, u64 end, u8 *csum_buf,
611 			      unsigned long *csum_bitmap)
612 {
613 	struct btrfs_fs_info *fs_info = root->fs_info;
614 	struct btrfs_key key;
615 	struct extent_buffer *leaf;
616 	struct btrfs_csum_item *item;
617 	const u64 orig_start = start;
618 	bool free_path = false;
619 	int ret;
620 
621 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
622 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
623 
624 	if (!path) {
625 		path = btrfs_alloc_path();
626 		if (!path)
627 			return -ENOMEM;
628 		free_path = true;
629 	}
630 
631 	/* Check if we can reuse the previous path. */
632 	if (path->nodes[0]) {
633 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
634 
635 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
636 		    key.type == BTRFS_EXTENT_CSUM_KEY &&
637 		    key.offset <= start)
638 			goto search_forward;
639 		btrfs_release_path(path);
640 	}
641 
642 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
643 	key.type = BTRFS_EXTENT_CSUM_KEY;
644 	key.offset = start;
645 
646 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
647 	if (ret < 0)
648 		goto fail;
649 	if (ret > 0 && path->slots[0] > 0) {
650 		leaf = path->nodes[0];
651 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
652 
653 		/*
654 		 * There are two cases we can hit here for the previous csum
655 		 * item:
656 		 *
657 		 *		|<- search range ->|
658 		 *	|<- csum item ->|
659 		 *
660 		 * Or
661 		 *				|<- search range ->|
662 		 *	|<- csum item ->|
663 		 *
664 		 * Check if the previous csum item covers the leading part of
665 		 * the search range.  If so we have to start from previous csum
666 		 * item.
667 		 */
668 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
669 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
670 			if (bytes_to_csum_size(fs_info, start - key.offset) <
671 			    btrfs_item_size(leaf, path->slots[0] - 1))
672 				path->slots[0]--;
673 		}
674 	}
675 
676 search_forward:
677 	while (start <= end) {
678 		u64 csum_end;
679 
680 		leaf = path->nodes[0];
681 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
682 			ret = btrfs_next_leaf(root, path);
683 			if (ret < 0)
684 				goto fail;
685 			if (ret > 0)
686 				break;
687 			leaf = path->nodes[0];
688 		}
689 
690 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
691 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
692 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
693 		    key.offset > end)
694 			break;
695 
696 		if (key.offset > start)
697 			start = key.offset;
698 
699 		csum_end = key.offset + csum_size_to_bytes(fs_info,
700 					btrfs_item_size(leaf, path->slots[0]));
701 		if (csum_end <= start) {
702 			path->slots[0]++;
703 			continue;
704 		}
705 
706 		csum_end = min(csum_end, end + 1);
707 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
708 				      struct btrfs_csum_item);
709 		while (start < csum_end) {
710 			unsigned long offset;
711 			size_t size;
712 			u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
713 						start - orig_start);
714 
715 			size = min_t(size_t, csum_end - start, end + 1 - start);
716 
717 			offset = bytes_to_csum_size(fs_info, start - key.offset);
718 
719 			read_extent_buffer(path->nodes[0], csum_dest,
720 					   ((unsigned long)item) + offset,
721 					   bytes_to_csum_size(fs_info, size));
722 
723 			bitmap_set(csum_bitmap,
724 				(start - orig_start) >> fs_info->sectorsize_bits,
725 				size >> fs_info->sectorsize_bits);
726 
727 			start += size;
728 		}
729 		path->slots[0]++;
730 	}
731 	ret = 0;
732 fail:
733 	if (free_path)
734 		btrfs_free_path(path);
735 	return ret;
736 }
737 
738 /*
739  * Calculate checksums of the data contained inside a bio.
740  */
btrfs_csum_one_bio(struct btrfs_bio * bbio)741 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
742 {
743 	struct btrfs_ordered_extent *ordered = bbio->ordered;
744 	struct btrfs_inode *inode = bbio->inode;
745 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
746 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
747 	struct bio *bio = &bbio->bio;
748 	struct btrfs_ordered_sum *sums;
749 	char *data;
750 	struct bvec_iter iter;
751 	struct bio_vec bvec;
752 	int index;
753 	unsigned int blockcount;
754 	int i;
755 	unsigned nofs_flag;
756 
757 	nofs_flag = memalloc_nofs_save();
758 	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
759 		       GFP_KERNEL);
760 	memalloc_nofs_restore(nofs_flag);
761 
762 	if (!sums)
763 		return BLK_STS_RESOURCE;
764 
765 	sums->len = bio->bi_iter.bi_size;
766 	INIT_LIST_HEAD(&sums->list);
767 
768 	sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
769 	index = 0;
770 
771 	shash->tfm = fs_info->csum_shash;
772 
773 	bio_for_each_segment(bvec, bio, iter) {
774 		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
775 						 bvec.bv_len + fs_info->sectorsize
776 						 - 1);
777 
778 		for (i = 0; i < blockcount; i++) {
779 			data = bvec_kmap_local(&bvec);
780 			crypto_shash_digest(shash,
781 					    data + (i * fs_info->sectorsize),
782 					    fs_info->sectorsize,
783 					    sums->sums + index);
784 			kunmap_local(data);
785 			index += fs_info->csum_size;
786 		}
787 
788 	}
789 
790 	bbio->sums = sums;
791 	btrfs_add_ordered_sum(ordered, sums);
792 	return 0;
793 }
794 
795 /*
796  * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
797  * record the updated logical address on Zone Append completion.
798  * Allocate just the structure with an empty sums array here for that case.
799  */
btrfs_alloc_dummy_sum(struct btrfs_bio * bbio)800 blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
801 {
802 	bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
803 	if (!bbio->sums)
804 		return BLK_STS_RESOURCE;
805 	bbio->sums->len = bbio->bio.bi_iter.bi_size;
806 	bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
807 	btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
808 	return 0;
809 }
810 
811 /*
812  * Remove one checksum overlapping a range.
813  *
814  * This expects the key to describe the csum pointed to by the path, and it
815  * expects the csum to overlap the range [bytenr, len]
816  *
817  * The csum should not be entirely contained in the range and the range should
818  * not be entirely contained in the csum.
819  *
820  * This calls btrfs_truncate_item with the correct args based on the overlap,
821  * and fixes up the key as required.
822  */
truncate_one_csum(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_key * key,u64 bytenr,u64 len)823 static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
824 				       struct btrfs_path *path,
825 				       struct btrfs_key *key,
826 				       u64 bytenr, u64 len)
827 {
828 	struct btrfs_fs_info *fs_info = trans->fs_info;
829 	struct extent_buffer *leaf;
830 	const u32 csum_size = fs_info->csum_size;
831 	u64 csum_end;
832 	u64 end_byte = bytenr + len;
833 	u32 blocksize_bits = fs_info->sectorsize_bits;
834 
835 	leaf = path->nodes[0];
836 	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
837 	csum_end <<= blocksize_bits;
838 	csum_end += key->offset;
839 
840 	if (key->offset < bytenr && csum_end <= end_byte) {
841 		/*
842 		 *         [ bytenr - len ]
843 		 *         [   ]
844 		 *   [csum     ]
845 		 *   A simple truncate off the end of the item
846 		 */
847 		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
848 		new_size *= csum_size;
849 		btrfs_truncate_item(trans, path, new_size, 1);
850 	} else if (key->offset >= bytenr && csum_end > end_byte &&
851 		   end_byte > key->offset) {
852 		/*
853 		 *         [ bytenr - len ]
854 		 *                 [ ]
855 		 *                 [csum     ]
856 		 * we need to truncate from the beginning of the csum
857 		 */
858 		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
859 		new_size *= csum_size;
860 
861 		btrfs_truncate_item(trans, path, new_size, 0);
862 
863 		key->offset = end_byte;
864 		btrfs_set_item_key_safe(trans, path, key);
865 	} else {
866 		BUG();
867 	}
868 }
869 
870 /*
871  * Delete the csum items from the csum tree for a given range of bytes.
872  */
btrfs_del_csums(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 len)873 int btrfs_del_csums(struct btrfs_trans_handle *trans,
874 		    struct btrfs_root *root, u64 bytenr, u64 len)
875 {
876 	struct btrfs_fs_info *fs_info = trans->fs_info;
877 	struct btrfs_path *path;
878 	struct btrfs_key key;
879 	u64 end_byte = bytenr + len;
880 	u64 csum_end;
881 	struct extent_buffer *leaf;
882 	int ret = 0;
883 	const u32 csum_size = fs_info->csum_size;
884 	u32 blocksize_bits = fs_info->sectorsize_bits;
885 
886 	ASSERT(btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID ||
887 	       btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
888 
889 	path = btrfs_alloc_path();
890 	if (!path)
891 		return -ENOMEM;
892 
893 	while (1) {
894 		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
895 		key.offset = end_byte - 1;
896 		key.type = BTRFS_EXTENT_CSUM_KEY;
897 
898 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
899 		if (ret > 0) {
900 			ret = 0;
901 			if (path->slots[0] == 0)
902 				break;
903 			path->slots[0]--;
904 		} else if (ret < 0) {
905 			break;
906 		}
907 
908 		leaf = path->nodes[0];
909 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
910 
911 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
912 		    key.type != BTRFS_EXTENT_CSUM_KEY) {
913 			break;
914 		}
915 
916 		if (key.offset >= end_byte)
917 			break;
918 
919 		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
920 		csum_end <<= blocksize_bits;
921 		csum_end += key.offset;
922 
923 		/* this csum ends before we start, we're done */
924 		if (csum_end <= bytenr)
925 			break;
926 
927 		/* delete the entire item, it is inside our range */
928 		if (key.offset >= bytenr && csum_end <= end_byte) {
929 			int del_nr = 1;
930 
931 			/*
932 			 * Check how many csum items preceding this one in this
933 			 * leaf correspond to our range and then delete them all
934 			 * at once.
935 			 */
936 			if (key.offset > bytenr && path->slots[0] > 0) {
937 				int slot = path->slots[0] - 1;
938 
939 				while (slot >= 0) {
940 					struct btrfs_key pk;
941 
942 					btrfs_item_key_to_cpu(leaf, &pk, slot);
943 					if (pk.offset < bytenr ||
944 					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
945 					    pk.objectid !=
946 					    BTRFS_EXTENT_CSUM_OBJECTID)
947 						break;
948 					path->slots[0] = slot;
949 					del_nr++;
950 					key.offset = pk.offset;
951 					slot--;
952 				}
953 			}
954 			ret = btrfs_del_items(trans, root, path,
955 					      path->slots[0], del_nr);
956 			if (ret)
957 				break;
958 			if (key.offset == bytenr)
959 				break;
960 		} else if (key.offset < bytenr && csum_end > end_byte) {
961 			unsigned long offset;
962 			unsigned long shift_len;
963 			unsigned long item_offset;
964 			/*
965 			 *        [ bytenr - len ]
966 			 *     [csum                ]
967 			 *
968 			 * Our bytes are in the middle of the csum,
969 			 * we need to split this item and insert a new one.
970 			 *
971 			 * But we can't drop the path because the
972 			 * csum could change, get removed, extended etc.
973 			 *
974 			 * The trick here is the max size of a csum item leaves
975 			 * enough room in the tree block for a single
976 			 * item header.  So, we split the item in place,
977 			 * adding a new header pointing to the existing
978 			 * bytes.  Then we loop around again and we have
979 			 * a nicely formed csum item that we can neatly
980 			 * truncate.
981 			 */
982 			offset = (bytenr - key.offset) >> blocksize_bits;
983 			offset *= csum_size;
984 
985 			shift_len = (len >> blocksize_bits) * csum_size;
986 
987 			item_offset = btrfs_item_ptr_offset(leaf,
988 							    path->slots[0]);
989 
990 			memzero_extent_buffer(leaf, item_offset + offset,
991 					     shift_len);
992 			key.offset = bytenr;
993 
994 			/*
995 			 * btrfs_split_item returns -EAGAIN when the
996 			 * item changed size or key
997 			 */
998 			ret = btrfs_split_item(trans, root, path, &key, offset);
999 			if (ret && ret != -EAGAIN) {
1000 				btrfs_abort_transaction(trans, ret);
1001 				break;
1002 			}
1003 			ret = 0;
1004 
1005 			key.offset = end_byte - 1;
1006 		} else {
1007 			truncate_one_csum(trans, path, &key, bytenr, len);
1008 			if (key.offset < bytenr)
1009 				break;
1010 		}
1011 		btrfs_release_path(path);
1012 	}
1013 	btrfs_free_path(path);
1014 	return ret;
1015 }
1016 
find_next_csum_offset(struct btrfs_root * root,struct btrfs_path * path,u64 * next_offset)1017 static int find_next_csum_offset(struct btrfs_root *root,
1018 				 struct btrfs_path *path,
1019 				 u64 *next_offset)
1020 {
1021 	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1022 	struct btrfs_key found_key;
1023 	int slot = path->slots[0] + 1;
1024 	int ret;
1025 
1026 	if (nritems == 0 || slot >= nritems) {
1027 		ret = btrfs_next_leaf(root, path);
1028 		if (ret < 0) {
1029 			return ret;
1030 		} else if (ret > 0) {
1031 			*next_offset = (u64)-1;
1032 			return 0;
1033 		}
1034 		slot = path->slots[0];
1035 	}
1036 
1037 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1038 
1039 	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1040 	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
1041 		*next_offset = (u64)-1;
1042 	else
1043 		*next_offset = found_key.offset;
1044 
1045 	return 0;
1046 }
1047 
btrfs_csum_file_blocks(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_ordered_sum * sums)1048 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1049 			   struct btrfs_root *root,
1050 			   struct btrfs_ordered_sum *sums)
1051 {
1052 	struct btrfs_fs_info *fs_info = root->fs_info;
1053 	struct btrfs_key file_key;
1054 	struct btrfs_key found_key;
1055 	struct btrfs_path *path;
1056 	struct btrfs_csum_item *item;
1057 	struct btrfs_csum_item *item_end;
1058 	struct extent_buffer *leaf = NULL;
1059 	u64 next_offset;
1060 	u64 total_bytes = 0;
1061 	u64 csum_offset;
1062 	u64 bytenr;
1063 	u32 ins_size;
1064 	int index = 0;
1065 	int found_next;
1066 	int ret;
1067 	const u32 csum_size = fs_info->csum_size;
1068 
1069 	path = btrfs_alloc_path();
1070 	if (!path)
1071 		return -ENOMEM;
1072 again:
1073 	next_offset = (u64)-1;
1074 	found_next = 0;
1075 	bytenr = sums->logical + total_bytes;
1076 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1077 	file_key.offset = bytenr;
1078 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
1079 
1080 	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1081 	if (!IS_ERR(item)) {
1082 		ret = 0;
1083 		leaf = path->nodes[0];
1084 		item_end = btrfs_item_ptr(leaf, path->slots[0],
1085 					  struct btrfs_csum_item);
1086 		item_end = (struct btrfs_csum_item *)((char *)item_end +
1087 			   btrfs_item_size(leaf, path->slots[0]));
1088 		goto found;
1089 	}
1090 	ret = PTR_ERR(item);
1091 	if (ret != -EFBIG && ret != -ENOENT)
1092 		goto out;
1093 
1094 	if (ret == -EFBIG) {
1095 		u32 item_size;
1096 		/* we found one, but it isn't big enough yet */
1097 		leaf = path->nodes[0];
1098 		item_size = btrfs_item_size(leaf, path->slots[0]);
1099 		if ((item_size / csum_size) >=
1100 		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1101 			/* already at max size, make a new one */
1102 			goto insert;
1103 		}
1104 	} else {
1105 		/* We didn't find a csum item, insert one. */
1106 		ret = find_next_csum_offset(root, path, &next_offset);
1107 		if (ret < 0)
1108 			goto out;
1109 		found_next = 1;
1110 		goto insert;
1111 	}
1112 
1113 	/*
1114 	 * At this point, we know the tree has a checksum item that ends at an
1115 	 * offset matching the start of the checksum range we want to insert.
1116 	 * We try to extend that item as much as possible and then add as many
1117 	 * checksums to it as they fit.
1118 	 *
1119 	 * First check if the leaf has enough free space for at least one
1120 	 * checksum. If it has go directly to the item extension code, otherwise
1121 	 * release the path and do a search for insertion before the extension.
1122 	 */
1123 	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1124 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1125 		csum_offset = (bytenr - found_key.offset) >>
1126 			fs_info->sectorsize_bits;
1127 		goto extend_csum;
1128 	}
1129 
1130 	btrfs_release_path(path);
1131 	path->search_for_extension = 1;
1132 	ret = btrfs_search_slot(trans, root, &file_key, path,
1133 				csum_size, 1);
1134 	path->search_for_extension = 0;
1135 	if (ret < 0)
1136 		goto out;
1137 
1138 	if (ret > 0) {
1139 		if (path->slots[0] == 0)
1140 			goto insert;
1141 		path->slots[0]--;
1142 	}
1143 
1144 	leaf = path->nodes[0];
1145 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1146 	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1147 
1148 	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1149 	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1150 	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1151 		goto insert;
1152 	}
1153 
1154 extend_csum:
1155 	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1156 	    csum_size) {
1157 		int extend_nr;
1158 		u64 tmp;
1159 		u32 diff;
1160 
1161 		tmp = sums->len - total_bytes;
1162 		tmp >>= fs_info->sectorsize_bits;
1163 		WARN_ON(tmp < 1);
1164 		extend_nr = max_t(int, 1, tmp);
1165 
1166 		/*
1167 		 * A log tree can already have checksum items with a subset of
1168 		 * the checksums we are trying to log. This can happen after
1169 		 * doing a sequence of partial writes into prealloc extents and
1170 		 * fsyncs in between, with a full fsync logging a larger subrange
1171 		 * of an extent for which a previous fast fsync logged a smaller
1172 		 * subrange. And this happens in particular due to merging file
1173 		 * extent items when we complete an ordered extent for a range
1174 		 * covered by a prealloc extent - this is done at
1175 		 * btrfs_mark_extent_written().
1176 		 *
1177 		 * So if we try to extend the previous checksum item, which has
1178 		 * a range that ends at the start of the range we want to insert,
1179 		 * make sure we don't extend beyond the start offset of the next
1180 		 * checksum item. If we are at the last item in the leaf, then
1181 		 * forget the optimization of extending and add a new checksum
1182 		 * item - it is not worth the complexity of releasing the path,
1183 		 * getting the first key for the next leaf, repeat the btree
1184 		 * search, etc, because log trees are temporary anyway and it
1185 		 * would only save a few bytes of leaf space.
1186 		 */
1187 		if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
1188 			if (path->slots[0] + 1 >=
1189 			    btrfs_header_nritems(path->nodes[0])) {
1190 				ret = find_next_csum_offset(root, path, &next_offset);
1191 				if (ret < 0)
1192 					goto out;
1193 				found_next = 1;
1194 				goto insert;
1195 			}
1196 
1197 			ret = find_next_csum_offset(root, path, &next_offset);
1198 			if (ret < 0)
1199 				goto out;
1200 
1201 			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1202 			if (tmp <= INT_MAX)
1203 				extend_nr = min_t(int, extend_nr, tmp);
1204 		}
1205 
1206 		diff = (csum_offset + extend_nr) * csum_size;
1207 		diff = min(diff,
1208 			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1209 
1210 		diff = diff - btrfs_item_size(leaf, path->slots[0]);
1211 		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1212 		diff /= csum_size;
1213 		diff *= csum_size;
1214 
1215 		btrfs_extend_item(trans, path, diff);
1216 		ret = 0;
1217 		goto csum;
1218 	}
1219 
1220 insert:
1221 	btrfs_release_path(path);
1222 	csum_offset = 0;
1223 	if (found_next) {
1224 		u64 tmp;
1225 
1226 		tmp = sums->len - total_bytes;
1227 		tmp >>= fs_info->sectorsize_bits;
1228 		tmp = min(tmp, (next_offset - file_key.offset) >>
1229 					 fs_info->sectorsize_bits);
1230 
1231 		tmp = max_t(u64, 1, tmp);
1232 		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1233 		ins_size = csum_size * tmp;
1234 	} else {
1235 		ins_size = csum_size;
1236 	}
1237 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1238 				      ins_size);
1239 	if (ret < 0)
1240 		goto out;
1241 	leaf = path->nodes[0];
1242 csum:
1243 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1244 	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1245 				      btrfs_item_size(leaf, path->slots[0]));
1246 	item = (struct btrfs_csum_item *)((unsigned char *)item +
1247 					  csum_offset * csum_size);
1248 found:
1249 	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1250 	ins_size *= csum_size;
1251 	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1252 			      ins_size);
1253 	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1254 			    ins_size);
1255 
1256 	index += ins_size;
1257 	ins_size /= csum_size;
1258 	total_bytes += ins_size * fs_info->sectorsize;
1259 
1260 	if (total_bytes < sums->len) {
1261 		btrfs_release_path(path);
1262 		cond_resched();
1263 		goto again;
1264 	}
1265 out:
1266 	btrfs_free_path(path);
1267 	return ret;
1268 }
1269 
btrfs_extent_item_to_extent_map(struct btrfs_inode * inode,const struct btrfs_path * path,const struct btrfs_file_extent_item * fi,struct extent_map * em)1270 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1271 				     const struct btrfs_path *path,
1272 				     const struct btrfs_file_extent_item *fi,
1273 				     struct extent_map *em)
1274 {
1275 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1276 	struct btrfs_root *root = inode->root;
1277 	struct extent_buffer *leaf = path->nodes[0];
1278 	const int slot = path->slots[0];
1279 	struct btrfs_key key;
1280 	u64 extent_start;
1281 	u8 type = btrfs_file_extent_type(leaf, fi);
1282 	int compress_type = btrfs_file_extent_compression(leaf, fi);
1283 
1284 	btrfs_item_key_to_cpu(leaf, &key, slot);
1285 	extent_start = key.offset;
1286 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1287 	em->generation = btrfs_file_extent_generation(leaf, fi);
1288 	if (type == BTRFS_FILE_EXTENT_REG ||
1289 	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1290 		const u64 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1291 
1292 		em->start = extent_start;
1293 		em->len = btrfs_file_extent_end(path) - extent_start;
1294 		if (disk_bytenr == 0) {
1295 			em->disk_bytenr = EXTENT_MAP_HOLE;
1296 			em->disk_num_bytes = 0;
1297 			em->offset = 0;
1298 			return;
1299 		}
1300 		em->disk_bytenr = disk_bytenr;
1301 		em->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1302 		em->offset = btrfs_file_extent_offset(leaf, fi);
1303 		if (compress_type != BTRFS_COMPRESS_NONE) {
1304 			extent_map_set_compression(em, compress_type);
1305 		} else {
1306 			/*
1307 			 * Older kernels can create regular non-hole data
1308 			 * extents with ram_bytes smaller than disk_num_bytes.
1309 			 * Not a big deal, just always use disk_num_bytes
1310 			 * for ram_bytes.
1311 			 */
1312 			em->ram_bytes = em->disk_num_bytes;
1313 			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1314 				em->flags |= EXTENT_FLAG_PREALLOC;
1315 		}
1316 	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1317 		/* Tree-checker has ensured this. */
1318 		ASSERT(extent_start == 0);
1319 
1320 		em->disk_bytenr = EXTENT_MAP_INLINE;
1321 		em->start = 0;
1322 		em->len = fs_info->sectorsize;
1323 		em->offset = 0;
1324 		extent_map_set_compression(em, compress_type);
1325 	} else {
1326 		btrfs_err(fs_info,
1327 			  "unknown file extent item type %d, inode %llu, offset %llu, "
1328 			  "root %llu", type, btrfs_ino(inode), extent_start,
1329 			  btrfs_root_id(root));
1330 	}
1331 }
1332 
1333 /*
1334  * Returns the end offset (non inclusive) of the file extent item the given path
1335  * points to. If it points to an inline extent, the returned offset is rounded
1336  * up to the sector size.
1337  */
btrfs_file_extent_end(const struct btrfs_path * path)1338 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1339 {
1340 	const struct extent_buffer *leaf = path->nodes[0];
1341 	const int slot = path->slots[0];
1342 	struct btrfs_file_extent_item *fi;
1343 	struct btrfs_key key;
1344 	u64 end;
1345 
1346 	btrfs_item_key_to_cpu(leaf, &key, slot);
1347 	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1348 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1349 
1350 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE)
1351 		end = leaf->fs_info->sectorsize;
1352 	else
1353 		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1354 
1355 	return end;
1356 }
1357