1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "discard.h"
34 #include "zoned.h"
35 #include "dev-replace.h"
36 #include "fs.h"
37 #include "accessors.h"
38 #include "root-tree.h"
39 #include "file-item.h"
40 #include "orphan.h"
41 #include "tree-checker.h"
42 #include "raid-stripe-tree.h"
43
44 #undef SCRAMBLE_DELAYED_REFS
45
46
47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
48 struct btrfs_delayed_ref_head *href,
49 struct btrfs_delayed_ref_node *node,
50 struct btrfs_delayed_extent_op *extra_op);
51 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
52 struct extent_buffer *leaf,
53 struct btrfs_extent_item *ei);
54 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
55 u64 parent, u64 root_objectid,
56 u64 flags, u64 owner, u64 offset,
57 struct btrfs_key *ins, int ref_mod, u64 oref_root);
58 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
59 struct btrfs_delayed_ref_node *node,
60 struct btrfs_delayed_extent_op *extent_op);
61 static int find_next_key(struct btrfs_path *path, int level,
62 struct btrfs_key *key);
63
block_group_bits(struct btrfs_block_group * cache,u64 bits)64 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
65 {
66 return (cache->flags & bits) == bits;
67 }
68
69 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)70 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
71 {
72 struct btrfs_root *root = btrfs_extent_root(fs_info, start);
73 struct btrfs_key key;
74 BTRFS_PATH_AUTO_FREE(path);
75
76 path = btrfs_alloc_path();
77 if (!path)
78 return -ENOMEM;
79
80 key.objectid = start;
81 key.type = BTRFS_EXTENT_ITEM_KEY;
82 key.offset = len;
83 return btrfs_search_slot(NULL, root, &key, path, 0, 0);
84 }
85
86 /*
87 * helper function to lookup reference count and flags of a tree block.
88 *
89 * the head node for delayed ref is used to store the sum of all the
90 * reference count modifications queued up in the rbtree. the head
91 * node may also store the extent flags to set. This way you can check
92 * to see what the reference count and extent flags would be if all of
93 * the delayed refs are not processed.
94 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags,u64 * owning_root)95 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
96 struct btrfs_fs_info *fs_info, u64 bytenr,
97 u64 offset, int metadata, u64 *refs, u64 *flags,
98 u64 *owning_root)
99 {
100 struct btrfs_root *extent_root;
101 struct btrfs_delayed_ref_head *head;
102 struct btrfs_delayed_ref_root *delayed_refs;
103 BTRFS_PATH_AUTO_FREE(path);
104 struct btrfs_key key;
105 u64 num_refs;
106 u64 extent_flags;
107 u64 owner = 0;
108 int ret;
109
110 /*
111 * If we don't have skinny metadata, don't bother doing anything
112 * different
113 */
114 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
115 offset = fs_info->nodesize;
116 metadata = 0;
117 }
118
119 path = btrfs_alloc_path();
120 if (!path)
121 return -ENOMEM;
122
123 search_again:
124 key.objectid = bytenr;
125 if (metadata)
126 key.type = BTRFS_METADATA_ITEM_KEY;
127 else
128 key.type = BTRFS_EXTENT_ITEM_KEY;
129 key.offset = offset;
130
131 extent_root = btrfs_extent_root(fs_info, bytenr);
132 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
133 if (ret < 0)
134 return ret;
135
136 if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) {
137 if (path->slots[0]) {
138 path->slots[0]--;
139 btrfs_item_key_to_cpu(path->nodes[0], &key,
140 path->slots[0]);
141 if (key.objectid == bytenr &&
142 key.type == BTRFS_EXTENT_ITEM_KEY &&
143 key.offset == fs_info->nodesize)
144 ret = 0;
145 }
146 }
147
148 if (ret == 0) {
149 struct extent_buffer *leaf = path->nodes[0];
150 struct btrfs_extent_item *ei;
151 const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
152
153 if (unlikely(item_size < sizeof(*ei))) {
154 ret = -EUCLEAN;
155 btrfs_err(fs_info,
156 "unexpected extent item size, has %u expect >= %zu",
157 item_size, sizeof(*ei));
158 btrfs_abort_transaction(trans, ret);
159 return ret;
160 }
161
162 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
163 num_refs = btrfs_extent_refs(leaf, ei);
164 if (unlikely(num_refs == 0)) {
165 ret = -EUCLEAN;
166 btrfs_err(fs_info,
167 "unexpected zero reference count for extent item (%llu %u %llu)",
168 key.objectid, key.type, key.offset);
169 btrfs_abort_transaction(trans, ret);
170 return ret;
171 }
172 extent_flags = btrfs_extent_flags(leaf, ei);
173 owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]);
174 } else {
175 num_refs = 0;
176 extent_flags = 0;
177 ret = 0;
178 }
179
180 delayed_refs = &trans->transaction->delayed_refs;
181 spin_lock(&delayed_refs->lock);
182 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
183 if (head) {
184 if (!mutex_trylock(&head->mutex)) {
185 refcount_inc(&head->refs);
186 spin_unlock(&delayed_refs->lock);
187
188 btrfs_release_path(path);
189
190 /*
191 * Mutex was contended, block until it's released and try
192 * again
193 */
194 mutex_lock(&head->mutex);
195 mutex_unlock(&head->mutex);
196 btrfs_put_delayed_ref_head(head);
197 goto search_again;
198 }
199 spin_lock(&head->lock);
200 if (head->extent_op && head->extent_op->update_flags)
201 extent_flags |= head->extent_op->flags_to_set;
202
203 num_refs += head->ref_mod;
204 spin_unlock(&head->lock);
205 mutex_unlock(&head->mutex);
206 }
207 spin_unlock(&delayed_refs->lock);
208
209 WARN_ON(num_refs == 0);
210 if (refs)
211 *refs = num_refs;
212 if (flags)
213 *flags = extent_flags;
214 if (owning_root)
215 *owning_root = owner;
216
217 return ret;
218 }
219
220 /*
221 * Back reference rules. Back refs have three main goals:
222 *
223 * 1) differentiate between all holders of references to an extent so that
224 * when a reference is dropped we can make sure it was a valid reference
225 * before freeing the extent.
226 *
227 * 2) Provide enough information to quickly find the holders of an extent
228 * if we notice a given block is corrupted or bad.
229 *
230 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
231 * maintenance. This is actually the same as #2, but with a slightly
232 * different use case.
233 *
234 * There are two kinds of back refs. The implicit back refs is optimized
235 * for pointers in non-shared tree blocks. For a given pointer in a block,
236 * back refs of this kind provide information about the block's owner tree
237 * and the pointer's key. These information allow us to find the block by
238 * b-tree searching. The full back refs is for pointers in tree blocks not
239 * referenced by their owner trees. The location of tree block is recorded
240 * in the back refs. Actually the full back refs is generic, and can be
241 * used in all cases the implicit back refs is used. The major shortcoming
242 * of the full back refs is its overhead. Every time a tree block gets
243 * COWed, we have to update back refs entry for all pointers in it.
244 *
245 * For a newly allocated tree block, we use implicit back refs for
246 * pointers in it. This means most tree related operations only involve
247 * implicit back refs. For a tree block created in old transaction, the
248 * only way to drop a reference to it is COW it. So we can detect the
249 * event that tree block loses its owner tree's reference and do the
250 * back refs conversion.
251 *
252 * When a tree block is COWed through a tree, there are four cases:
253 *
254 * The reference count of the block is one and the tree is the block's
255 * owner tree. Nothing to do in this case.
256 *
257 * The reference count of the block is one and the tree is not the
258 * block's owner tree. In this case, full back refs is used for pointers
259 * in the block. Remove these full back refs, add implicit back refs for
260 * every pointers in the new block.
261 *
262 * The reference count of the block is greater than one and the tree is
263 * the block's owner tree. In this case, implicit back refs is used for
264 * pointers in the block. Add full back refs for every pointers in the
265 * block, increase lower level extents' reference counts. The original
266 * implicit back refs are entailed to the new block.
267 *
268 * The reference count of the block is greater than one and the tree is
269 * not the block's owner tree. Add implicit back refs for every pointer in
270 * the new block, increase lower level extents' reference count.
271 *
272 * Back Reference Key composing:
273 *
274 * The key objectid corresponds to the first byte in the extent,
275 * The key type is used to differentiate between types of back refs.
276 * There are different meanings of the key offset for different types
277 * of back refs.
278 *
279 * File extents can be referenced by:
280 *
281 * - multiple snapshots, subvolumes, or different generations in one subvol
282 * - different files inside a single subvolume
283 * - different offsets inside a file (bookend extents in file.c)
284 *
285 * The extent ref structure for the implicit back refs has fields for:
286 *
287 * - Objectid of the subvolume root
288 * - objectid of the file holding the reference
289 * - original offset in the file
290 * - how many bookend extents
291 *
292 * The key offset for the implicit back refs is hash of the first
293 * three fields.
294 *
295 * The extent ref structure for the full back refs has field for:
296 *
297 * - number of pointers in the tree leaf
298 *
299 * The key offset for the implicit back refs is the first byte of
300 * the tree leaf
301 *
302 * When a file extent is allocated, The implicit back refs is used.
303 * the fields are filled in:
304 *
305 * (root_key.objectid, inode objectid, offset in file, 1)
306 *
307 * When a file extent is removed file truncation, we find the
308 * corresponding implicit back refs and check the following fields:
309 *
310 * (btrfs_header_owner(leaf), inode objectid, offset in file)
311 *
312 * Btree extents can be referenced by:
313 *
314 * - Different subvolumes
315 *
316 * Both the implicit back refs and the full back refs for tree blocks
317 * only consist of key. The key offset for the implicit back refs is
318 * objectid of block's owner tree. The key offset for the full back refs
319 * is the first byte of parent block.
320 *
321 * When implicit back refs is used, information about the lowest key and
322 * level of the tree block are required. These information are stored in
323 * tree block info structure.
324 */
325
326 /*
327 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
328 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
329 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
330 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)331 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
332 struct btrfs_extent_inline_ref *iref,
333 enum btrfs_inline_ref_type is_data)
334 {
335 struct btrfs_fs_info *fs_info = eb->fs_info;
336 int type = btrfs_extent_inline_ref_type(eb, iref);
337 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
338
339 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
340 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
341 return type;
342 }
343
344 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
345 type == BTRFS_SHARED_BLOCK_REF_KEY ||
346 type == BTRFS_SHARED_DATA_REF_KEY ||
347 type == BTRFS_EXTENT_DATA_REF_KEY) {
348 if (is_data == BTRFS_REF_TYPE_BLOCK) {
349 if (type == BTRFS_TREE_BLOCK_REF_KEY)
350 return type;
351 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
352 ASSERT(fs_info);
353 /*
354 * Every shared one has parent tree block,
355 * which must be aligned to sector size.
356 */
357 if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
358 return type;
359 }
360 } else if (is_data == BTRFS_REF_TYPE_DATA) {
361 if (type == BTRFS_EXTENT_DATA_REF_KEY)
362 return type;
363 if (type == BTRFS_SHARED_DATA_REF_KEY) {
364 ASSERT(fs_info);
365 /*
366 * Every shared one has parent tree block,
367 * which must be aligned to sector size.
368 */
369 if (offset &&
370 IS_ALIGNED(offset, fs_info->sectorsize))
371 return type;
372 }
373 } else {
374 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
375 return type;
376 }
377 }
378
379 WARN_ON(1);
380 btrfs_print_leaf(eb);
381 btrfs_err(fs_info,
382 "eb %llu iref 0x%lx invalid extent inline ref type %d",
383 eb->start, (unsigned long)iref, type);
384
385 return BTRFS_REF_TYPE_INVALID;
386 }
387
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)388 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
389 {
390 u32 high_crc = ~(u32)0;
391 u32 low_crc = ~(u32)0;
392 __le64 lenum;
393
394 lenum = cpu_to_le64(root_objectid);
395 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
396 lenum = cpu_to_le64(owner);
397 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
398 lenum = cpu_to_le64(offset);
399 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
400
401 return ((u64)high_crc << 31) ^ (u64)low_crc;
402 }
403
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)404 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
405 struct btrfs_extent_data_ref *ref)
406 {
407 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
408 btrfs_extent_data_ref_objectid(leaf, ref),
409 btrfs_extent_data_ref_offset(leaf, ref));
410 }
411
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)412 static int match_extent_data_ref(struct extent_buffer *leaf,
413 struct btrfs_extent_data_ref *ref,
414 u64 root_objectid, u64 owner, u64 offset)
415 {
416 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
417 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
418 btrfs_extent_data_ref_offset(leaf, ref) != offset)
419 return 0;
420 return 1;
421 }
422
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)423 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
424 struct btrfs_path *path,
425 u64 bytenr, u64 parent,
426 u64 root_objectid,
427 u64 owner, u64 offset)
428 {
429 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
430 struct btrfs_key key;
431 struct btrfs_extent_data_ref *ref;
432 struct extent_buffer *leaf;
433 u32 nritems;
434 int recow;
435 int ret;
436
437 key.objectid = bytenr;
438 if (parent) {
439 key.type = BTRFS_SHARED_DATA_REF_KEY;
440 key.offset = parent;
441 } else {
442 key.type = BTRFS_EXTENT_DATA_REF_KEY;
443 key.offset = hash_extent_data_ref(root_objectid,
444 owner, offset);
445 }
446 again:
447 recow = 0;
448 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
449 if (ret < 0)
450 return ret;
451
452 if (parent) {
453 if (ret)
454 return -ENOENT;
455 return 0;
456 }
457
458 ret = -ENOENT;
459 leaf = path->nodes[0];
460 nritems = btrfs_header_nritems(leaf);
461 while (1) {
462 if (path->slots[0] >= nritems) {
463 ret = btrfs_next_leaf(root, path);
464 if (ret) {
465 if (ret > 0)
466 return -ENOENT;
467 return ret;
468 }
469
470 leaf = path->nodes[0];
471 nritems = btrfs_header_nritems(leaf);
472 recow = 1;
473 }
474
475 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
476 if (key.objectid != bytenr ||
477 key.type != BTRFS_EXTENT_DATA_REF_KEY)
478 goto fail;
479
480 ref = btrfs_item_ptr(leaf, path->slots[0],
481 struct btrfs_extent_data_ref);
482
483 if (match_extent_data_ref(leaf, ref, root_objectid,
484 owner, offset)) {
485 if (recow) {
486 btrfs_release_path(path);
487 goto again;
488 }
489 ret = 0;
490 break;
491 }
492 path->slots[0]++;
493 }
494 fail:
495 return ret;
496 }
497
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_ref_node * node,u64 bytenr)498 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
499 struct btrfs_path *path,
500 struct btrfs_delayed_ref_node *node,
501 u64 bytenr)
502 {
503 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
504 struct btrfs_key key;
505 struct extent_buffer *leaf;
506 u64 owner = btrfs_delayed_ref_owner(node);
507 u64 offset = btrfs_delayed_ref_offset(node);
508 u32 size;
509 u32 num_refs;
510 int ret;
511
512 key.objectid = bytenr;
513 if (node->parent) {
514 key.type = BTRFS_SHARED_DATA_REF_KEY;
515 key.offset = node->parent;
516 size = sizeof(struct btrfs_shared_data_ref);
517 } else {
518 key.type = BTRFS_EXTENT_DATA_REF_KEY;
519 key.offset = hash_extent_data_ref(node->ref_root, owner, offset);
520 size = sizeof(struct btrfs_extent_data_ref);
521 }
522
523 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
524 if (ret && ret != -EEXIST)
525 goto fail;
526
527 leaf = path->nodes[0];
528 if (node->parent) {
529 struct btrfs_shared_data_ref *ref;
530 ref = btrfs_item_ptr(leaf, path->slots[0],
531 struct btrfs_shared_data_ref);
532 if (ret == 0) {
533 btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod);
534 } else {
535 num_refs = btrfs_shared_data_ref_count(leaf, ref);
536 num_refs += node->ref_mod;
537 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
538 }
539 } else {
540 struct btrfs_extent_data_ref *ref;
541 while (ret == -EEXIST) {
542 ref = btrfs_item_ptr(leaf, path->slots[0],
543 struct btrfs_extent_data_ref);
544 if (match_extent_data_ref(leaf, ref, node->ref_root,
545 owner, offset))
546 break;
547 btrfs_release_path(path);
548 key.offset++;
549 ret = btrfs_insert_empty_item(trans, root, path, &key,
550 size);
551 if (ret && ret != -EEXIST)
552 goto fail;
553
554 leaf = path->nodes[0];
555 }
556 ref = btrfs_item_ptr(leaf, path->slots[0],
557 struct btrfs_extent_data_ref);
558 if (ret == 0) {
559 btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root);
560 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
561 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
562 btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod);
563 } else {
564 num_refs = btrfs_extent_data_ref_count(leaf, ref);
565 num_refs += node->ref_mod;
566 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
567 }
568 }
569 ret = 0;
570 fail:
571 btrfs_release_path(path);
572 return ret;
573 }
574
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)575 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
576 struct btrfs_root *root,
577 struct btrfs_path *path,
578 int refs_to_drop)
579 {
580 struct btrfs_key key;
581 struct btrfs_extent_data_ref *ref1 = NULL;
582 struct btrfs_shared_data_ref *ref2 = NULL;
583 struct extent_buffer *leaf;
584 u32 num_refs = 0;
585 int ret = 0;
586
587 leaf = path->nodes[0];
588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
589
590 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
591 ref1 = btrfs_item_ptr(leaf, path->slots[0],
592 struct btrfs_extent_data_ref);
593 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
594 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
595 ref2 = btrfs_item_ptr(leaf, path->slots[0],
596 struct btrfs_shared_data_ref);
597 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
598 } else {
599 btrfs_err(trans->fs_info,
600 "unrecognized backref key (%llu %u %llu)",
601 key.objectid, key.type, key.offset);
602 btrfs_abort_transaction(trans, -EUCLEAN);
603 return -EUCLEAN;
604 }
605
606 BUG_ON(num_refs < refs_to_drop);
607 num_refs -= refs_to_drop;
608
609 if (num_refs == 0) {
610 ret = btrfs_del_item(trans, root, path);
611 } else {
612 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
613 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
614 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
615 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
616 }
617 return ret;
618 }
619
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)620 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
621 struct btrfs_extent_inline_ref *iref)
622 {
623 struct btrfs_key key;
624 struct extent_buffer *leaf;
625 struct btrfs_extent_data_ref *ref1;
626 struct btrfs_shared_data_ref *ref2;
627 u32 num_refs = 0;
628 int type;
629
630 leaf = path->nodes[0];
631 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
632
633 if (iref) {
634 /*
635 * If type is invalid, we should have bailed out earlier than
636 * this call.
637 */
638 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
639 ASSERT(type != BTRFS_REF_TYPE_INVALID);
640 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
641 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
642 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
643 } else {
644 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
645 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
646 }
647 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
648 ref1 = btrfs_item_ptr(leaf, path->slots[0],
649 struct btrfs_extent_data_ref);
650 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
651 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
652 ref2 = btrfs_item_ptr(leaf, path->slots[0],
653 struct btrfs_shared_data_ref);
654 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
655 } else {
656 WARN_ON(1);
657 }
658 return num_refs;
659 }
660
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)661 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
662 struct btrfs_path *path,
663 u64 bytenr, u64 parent,
664 u64 root_objectid)
665 {
666 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
667 struct btrfs_key key;
668 int ret;
669
670 key.objectid = bytenr;
671 if (parent) {
672 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
673 key.offset = parent;
674 } else {
675 key.type = BTRFS_TREE_BLOCK_REF_KEY;
676 key.offset = root_objectid;
677 }
678
679 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
680 if (ret > 0)
681 ret = -ENOENT;
682 return ret;
683 }
684
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_ref_node * node,u64 bytenr)685 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
686 struct btrfs_path *path,
687 struct btrfs_delayed_ref_node *node,
688 u64 bytenr)
689 {
690 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
691 struct btrfs_key key;
692 int ret;
693
694 key.objectid = bytenr;
695 if (node->parent) {
696 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
697 key.offset = node->parent;
698 } else {
699 key.type = BTRFS_TREE_BLOCK_REF_KEY;
700 key.offset = node->ref_root;
701 }
702
703 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
704 btrfs_release_path(path);
705 return ret;
706 }
707
extent_ref_type(u64 parent,u64 owner)708 static inline int extent_ref_type(u64 parent, u64 owner)
709 {
710 int type;
711 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
712 if (parent > 0)
713 type = BTRFS_SHARED_BLOCK_REF_KEY;
714 else
715 type = BTRFS_TREE_BLOCK_REF_KEY;
716 } else {
717 if (parent > 0)
718 type = BTRFS_SHARED_DATA_REF_KEY;
719 else
720 type = BTRFS_EXTENT_DATA_REF_KEY;
721 }
722 return type;
723 }
724
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)725 static int find_next_key(struct btrfs_path *path, int level,
726 struct btrfs_key *key)
727
728 {
729 for (; level < BTRFS_MAX_LEVEL; level++) {
730 if (!path->nodes[level])
731 break;
732 if (path->slots[level] + 1 >=
733 btrfs_header_nritems(path->nodes[level]))
734 continue;
735 if (level == 0)
736 btrfs_item_key_to_cpu(path->nodes[level], key,
737 path->slots[level] + 1);
738 else
739 btrfs_node_key_to_cpu(path->nodes[level], key,
740 path->slots[level] + 1);
741 return 0;
742 }
743 return 1;
744 }
745
746 /*
747 * look for inline back ref. if back ref is found, *ref_ret is set
748 * to the address of inline back ref, and 0 is returned.
749 *
750 * if back ref isn't found, *ref_ret is set to the address where it
751 * should be inserted, and -ENOENT is returned.
752 *
753 * if insert is true and there are too many inline back refs, the path
754 * points to the extent item, and -EAGAIN is returned.
755 *
756 * NOTE: inline back refs are ordered in the same way that back ref
757 * items in the tree are ordered.
758 */
759 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)760 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
761 struct btrfs_path *path,
762 struct btrfs_extent_inline_ref **ref_ret,
763 u64 bytenr, u64 num_bytes,
764 u64 parent, u64 root_objectid,
765 u64 owner, u64 offset, int insert)
766 {
767 struct btrfs_fs_info *fs_info = trans->fs_info;
768 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
769 struct btrfs_key key;
770 struct extent_buffer *leaf;
771 struct btrfs_extent_item *ei;
772 struct btrfs_extent_inline_ref *iref;
773 u64 flags;
774 u64 item_size;
775 unsigned long ptr;
776 unsigned long end;
777 int extra_size;
778 int type;
779 int want;
780 int ret;
781 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
782 int needed;
783
784 key.objectid = bytenr;
785 key.type = BTRFS_EXTENT_ITEM_KEY;
786 key.offset = num_bytes;
787
788 want = extent_ref_type(parent, owner);
789 if (insert) {
790 extra_size = btrfs_extent_inline_ref_size(want);
791 path->search_for_extension = 1;
792 } else
793 extra_size = -1;
794
795 /*
796 * Owner is our level, so we can just add one to get the level for the
797 * block we are interested in.
798 */
799 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
800 key.type = BTRFS_METADATA_ITEM_KEY;
801 key.offset = owner;
802 }
803
804 again:
805 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
806 if (ret < 0)
807 goto out;
808
809 /*
810 * We may be a newly converted file system which still has the old fat
811 * extent entries for metadata, so try and see if we have one of those.
812 */
813 if (ret > 0 && skinny_metadata) {
814 skinny_metadata = false;
815 if (path->slots[0]) {
816 path->slots[0]--;
817 btrfs_item_key_to_cpu(path->nodes[0], &key,
818 path->slots[0]);
819 if (key.objectid == bytenr &&
820 key.type == BTRFS_EXTENT_ITEM_KEY &&
821 key.offset == num_bytes)
822 ret = 0;
823 }
824 if (ret) {
825 key.objectid = bytenr;
826 key.type = BTRFS_EXTENT_ITEM_KEY;
827 key.offset = num_bytes;
828 btrfs_release_path(path);
829 goto again;
830 }
831 }
832
833 if (ret && !insert) {
834 ret = -ENOENT;
835 goto out;
836 } else if (WARN_ON(ret)) {
837 btrfs_print_leaf(path->nodes[0]);
838 btrfs_err(fs_info,
839 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
840 bytenr, num_bytes, parent, root_objectid, owner,
841 offset);
842 ret = -EUCLEAN;
843 goto out;
844 }
845
846 leaf = path->nodes[0];
847 item_size = btrfs_item_size(leaf, path->slots[0]);
848 if (unlikely(item_size < sizeof(*ei))) {
849 ret = -EUCLEAN;
850 btrfs_err(fs_info,
851 "unexpected extent item size, has %llu expect >= %zu",
852 item_size, sizeof(*ei));
853 btrfs_abort_transaction(trans, ret);
854 goto out;
855 }
856
857 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
858 flags = btrfs_extent_flags(leaf, ei);
859
860 ptr = (unsigned long)(ei + 1);
861 end = (unsigned long)ei + item_size;
862
863 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
864 ptr += sizeof(struct btrfs_tree_block_info);
865 BUG_ON(ptr > end);
866 }
867
868 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
869 needed = BTRFS_REF_TYPE_DATA;
870 else
871 needed = BTRFS_REF_TYPE_BLOCK;
872
873 ret = -ENOENT;
874 while (ptr < end) {
875 iref = (struct btrfs_extent_inline_ref *)ptr;
876 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
877 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
878 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
879 ptr += btrfs_extent_inline_ref_size(type);
880 continue;
881 }
882 if (type == BTRFS_REF_TYPE_INVALID) {
883 ret = -EUCLEAN;
884 goto out;
885 }
886
887 if (want < type)
888 break;
889 if (want > type) {
890 ptr += btrfs_extent_inline_ref_size(type);
891 continue;
892 }
893
894 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
895 struct btrfs_extent_data_ref *dref;
896 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
897 if (match_extent_data_ref(leaf, dref, root_objectid,
898 owner, offset)) {
899 ret = 0;
900 break;
901 }
902 if (hash_extent_data_ref_item(leaf, dref) <
903 hash_extent_data_ref(root_objectid, owner, offset))
904 break;
905 } else {
906 u64 ref_offset;
907 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
908 if (parent > 0) {
909 if (parent == ref_offset) {
910 ret = 0;
911 break;
912 }
913 if (ref_offset < parent)
914 break;
915 } else {
916 if (root_objectid == ref_offset) {
917 ret = 0;
918 break;
919 }
920 if (ref_offset < root_objectid)
921 break;
922 }
923 }
924 ptr += btrfs_extent_inline_ref_size(type);
925 }
926
927 if (unlikely(ptr > end)) {
928 ret = -EUCLEAN;
929 btrfs_print_leaf(path->nodes[0]);
930 btrfs_crit(fs_info,
931 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
932 path->slots[0], root_objectid, owner, offset, parent);
933 goto out;
934 }
935
936 if (ret == -ENOENT && insert) {
937 if (item_size + extra_size >=
938 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
939 ret = -EAGAIN;
940 goto out;
941 }
942
943 if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) {
944 struct btrfs_key tmp_key;
945
946 btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1);
947 if (tmp_key.objectid == bytenr &&
948 tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
949 ret = -EAGAIN;
950 goto out;
951 }
952 goto out_no_entry;
953 }
954
955 if (!path->keep_locks) {
956 btrfs_release_path(path);
957 path->keep_locks = 1;
958 goto again;
959 }
960
961 /*
962 * To add new inline back ref, we have to make sure
963 * there is no corresponding back ref item.
964 * For simplicity, we just do not add new inline back
965 * ref if there is any kind of item for this block
966 */
967 if (find_next_key(path, 0, &key) == 0 &&
968 key.objectid == bytenr &&
969 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
970 ret = -EAGAIN;
971 goto out;
972 }
973 }
974 out_no_entry:
975 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
976 out:
977 if (path->keep_locks) {
978 path->keep_locks = 0;
979 btrfs_unlock_up_safe(path, 1);
980 }
981 if (insert)
982 path->search_for_extension = 0;
983 return ret;
984 }
985
986 /*
987 * helper to add new inline back ref
988 */
989 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)990 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
991 struct btrfs_path *path,
992 struct btrfs_extent_inline_ref *iref,
993 u64 parent, u64 root_objectid,
994 u64 owner, u64 offset, int refs_to_add,
995 struct btrfs_delayed_extent_op *extent_op)
996 {
997 struct extent_buffer *leaf;
998 struct btrfs_extent_item *ei;
999 unsigned long ptr;
1000 unsigned long end;
1001 unsigned long item_offset;
1002 u64 refs;
1003 int size;
1004 int type;
1005
1006 leaf = path->nodes[0];
1007 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1008 item_offset = (unsigned long)iref - (unsigned long)ei;
1009
1010 type = extent_ref_type(parent, owner);
1011 size = btrfs_extent_inline_ref_size(type);
1012
1013 btrfs_extend_item(trans, path, size);
1014
1015 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1016 refs = btrfs_extent_refs(leaf, ei);
1017 refs += refs_to_add;
1018 btrfs_set_extent_refs(leaf, ei, refs);
1019 if (extent_op)
1020 __run_delayed_extent_op(extent_op, leaf, ei);
1021
1022 ptr = (unsigned long)ei + item_offset;
1023 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1024 if (ptr < end - size)
1025 memmove_extent_buffer(leaf, ptr + size, ptr,
1026 end - size - ptr);
1027
1028 iref = (struct btrfs_extent_inline_ref *)ptr;
1029 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1030 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1031 struct btrfs_extent_data_ref *dref;
1032 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1033 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1034 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1035 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1036 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1037 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1038 struct btrfs_shared_data_ref *sref;
1039 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1040 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1041 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1042 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1043 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1044 } else {
1045 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1046 }
1047 }
1048
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1049 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1050 struct btrfs_path *path,
1051 struct btrfs_extent_inline_ref **ref_ret,
1052 u64 bytenr, u64 num_bytes, u64 parent,
1053 u64 root_objectid, u64 owner, u64 offset)
1054 {
1055 int ret;
1056
1057 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1058 num_bytes, parent, root_objectid,
1059 owner, offset, 0);
1060 if (ret != -ENOENT)
1061 return ret;
1062
1063 btrfs_release_path(path);
1064 *ref_ret = NULL;
1065
1066 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1067 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1068 root_objectid);
1069 } else {
1070 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1071 root_objectid, owner, offset);
1072 }
1073 return ret;
1074 }
1075
1076 /*
1077 * helper to update/remove inline back ref
1078 */
update_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1079 static noinline_for_stack int update_inline_extent_backref(
1080 struct btrfs_trans_handle *trans,
1081 struct btrfs_path *path,
1082 struct btrfs_extent_inline_ref *iref,
1083 int refs_to_mod,
1084 struct btrfs_delayed_extent_op *extent_op)
1085 {
1086 struct extent_buffer *leaf = path->nodes[0];
1087 struct btrfs_fs_info *fs_info = leaf->fs_info;
1088 struct btrfs_extent_item *ei;
1089 struct btrfs_extent_data_ref *dref = NULL;
1090 struct btrfs_shared_data_ref *sref = NULL;
1091 unsigned long ptr;
1092 unsigned long end;
1093 u32 item_size;
1094 int size;
1095 int type;
1096 u64 refs;
1097
1098 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1099 refs = btrfs_extent_refs(leaf, ei);
1100 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1101 struct btrfs_key key;
1102 u32 extent_size;
1103
1104 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1105 if (key.type == BTRFS_METADATA_ITEM_KEY)
1106 extent_size = fs_info->nodesize;
1107 else
1108 extent_size = key.offset;
1109 btrfs_print_leaf(leaf);
1110 btrfs_err(fs_info,
1111 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1112 key.objectid, extent_size, refs_to_mod, refs);
1113 return -EUCLEAN;
1114 }
1115 refs += refs_to_mod;
1116 btrfs_set_extent_refs(leaf, ei, refs);
1117 if (extent_op)
1118 __run_delayed_extent_op(extent_op, leaf, ei);
1119
1120 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1121 /*
1122 * Function btrfs_get_extent_inline_ref_type() has already printed
1123 * error messages.
1124 */
1125 if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1126 return -EUCLEAN;
1127
1128 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1129 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1130 refs = btrfs_extent_data_ref_count(leaf, dref);
1131 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1132 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1133 refs = btrfs_shared_data_ref_count(leaf, sref);
1134 } else {
1135 refs = 1;
1136 /*
1137 * For tree blocks we can only drop one ref for it, and tree
1138 * blocks should not have refs > 1.
1139 *
1140 * Furthermore if we're inserting a new inline backref, we
1141 * won't reach this path either. That would be
1142 * setup_inline_extent_backref().
1143 */
1144 if (unlikely(refs_to_mod != -1)) {
1145 struct btrfs_key key;
1146
1147 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1148
1149 btrfs_print_leaf(leaf);
1150 btrfs_err(fs_info,
1151 "invalid refs_to_mod for tree block %llu, has %d expect -1",
1152 key.objectid, refs_to_mod);
1153 return -EUCLEAN;
1154 }
1155 }
1156
1157 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1158 struct btrfs_key key;
1159 u32 extent_size;
1160
1161 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1162 if (key.type == BTRFS_METADATA_ITEM_KEY)
1163 extent_size = fs_info->nodesize;
1164 else
1165 extent_size = key.offset;
1166 btrfs_print_leaf(leaf);
1167 btrfs_err(fs_info,
1168 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1169 (unsigned long)iref, key.objectid, extent_size,
1170 refs_to_mod, refs);
1171 return -EUCLEAN;
1172 }
1173 refs += refs_to_mod;
1174
1175 if (refs > 0) {
1176 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1177 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1178 else
1179 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1180 } else {
1181 size = btrfs_extent_inline_ref_size(type);
1182 item_size = btrfs_item_size(leaf, path->slots[0]);
1183 ptr = (unsigned long)iref;
1184 end = (unsigned long)ei + item_size;
1185 if (ptr + size < end)
1186 memmove_extent_buffer(leaf, ptr, ptr + size,
1187 end - ptr - size);
1188 item_size -= size;
1189 btrfs_truncate_item(trans, path, item_size, 1);
1190 }
1191 return 0;
1192 }
1193
1194 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1195 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1196 struct btrfs_path *path,
1197 u64 bytenr, u64 num_bytes, u64 parent,
1198 u64 root_objectid, u64 owner,
1199 u64 offset, int refs_to_add,
1200 struct btrfs_delayed_extent_op *extent_op)
1201 {
1202 struct btrfs_extent_inline_ref *iref;
1203 int ret;
1204
1205 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1206 num_bytes, parent, root_objectid,
1207 owner, offset, 1);
1208 if (ret == 0) {
1209 /*
1210 * We're adding refs to a tree block we already own, this
1211 * should not happen at all.
1212 */
1213 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1214 btrfs_print_leaf(path->nodes[0]);
1215 btrfs_crit(trans->fs_info,
1216 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1217 bytenr, num_bytes, root_objectid, path->slots[0]);
1218 return -EUCLEAN;
1219 }
1220 ret = update_inline_extent_backref(trans, path, iref,
1221 refs_to_add, extent_op);
1222 } else if (ret == -ENOENT) {
1223 setup_inline_extent_backref(trans, path, iref, parent,
1224 root_objectid, owner, offset,
1225 refs_to_add, extent_op);
1226 ret = 0;
1227 }
1228 return ret;
1229 }
1230
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1231 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1232 struct btrfs_root *root,
1233 struct btrfs_path *path,
1234 struct btrfs_extent_inline_ref *iref,
1235 int refs_to_drop, int is_data)
1236 {
1237 int ret = 0;
1238
1239 BUG_ON(!is_data && refs_to_drop != 1);
1240 if (iref)
1241 ret = update_inline_extent_backref(trans, path, iref,
1242 -refs_to_drop, NULL);
1243 else if (is_data)
1244 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1245 else
1246 ret = btrfs_del_item(trans, root, path);
1247 return ret;
1248 }
1249
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1250 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1251 u64 *discarded_bytes)
1252 {
1253 int j, ret = 0;
1254 u64 bytes_left, end;
1255 u64 aligned_start = ALIGN(start, SECTOR_SIZE);
1256
1257 /* Adjust the range to be aligned to 512B sectors if necessary. */
1258 if (start != aligned_start) {
1259 len -= aligned_start - start;
1260 len = round_down(len, SECTOR_SIZE);
1261 start = aligned_start;
1262 }
1263
1264 *discarded_bytes = 0;
1265
1266 if (!len)
1267 return 0;
1268
1269 end = start + len;
1270 bytes_left = len;
1271
1272 /* Skip any superblocks on this device. */
1273 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1274 u64 sb_start = btrfs_sb_offset(j);
1275 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1276 u64 size = sb_start - start;
1277
1278 if (!in_range(sb_start, start, bytes_left) &&
1279 !in_range(sb_end, start, bytes_left) &&
1280 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1281 continue;
1282
1283 /*
1284 * Superblock spans beginning of range. Adjust start and
1285 * try again.
1286 */
1287 if (sb_start <= start) {
1288 start += sb_end - start;
1289 if (start > end) {
1290 bytes_left = 0;
1291 break;
1292 }
1293 bytes_left = end - start;
1294 continue;
1295 }
1296
1297 if (size) {
1298 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1299 size >> SECTOR_SHIFT,
1300 GFP_NOFS);
1301 if (!ret)
1302 *discarded_bytes += size;
1303 else if (ret != -EOPNOTSUPP)
1304 return ret;
1305 }
1306
1307 start = sb_end;
1308 if (start > end) {
1309 bytes_left = 0;
1310 break;
1311 }
1312 bytes_left = end - start;
1313 }
1314
1315 while (bytes_left) {
1316 u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1317
1318 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1319 bytes_to_discard >> SECTOR_SHIFT,
1320 GFP_NOFS);
1321
1322 if (ret) {
1323 if (ret != -EOPNOTSUPP)
1324 break;
1325 continue;
1326 }
1327
1328 start += bytes_to_discard;
1329 bytes_left -= bytes_to_discard;
1330 *discarded_bytes += bytes_to_discard;
1331
1332 if (btrfs_trim_interrupted()) {
1333 ret = -ERESTARTSYS;
1334 break;
1335 }
1336 }
1337
1338 return ret;
1339 }
1340
do_discard_extent(struct btrfs_discard_stripe * stripe,u64 * bytes)1341 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1342 {
1343 struct btrfs_device *dev = stripe->dev;
1344 struct btrfs_fs_info *fs_info = dev->fs_info;
1345 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1346 u64 phys = stripe->physical;
1347 u64 len = stripe->length;
1348 u64 discarded = 0;
1349 int ret = 0;
1350
1351 /* Zone reset on a zoned filesystem */
1352 if (btrfs_can_zone_reset(dev, phys, len)) {
1353 u64 src_disc;
1354
1355 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1356 if (ret)
1357 goto out;
1358
1359 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1360 dev != dev_replace->srcdev)
1361 goto out;
1362
1363 src_disc = discarded;
1364
1365 /* Send to replace target as well */
1366 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1367 &discarded);
1368 discarded += src_disc;
1369 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1370 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1371 } else {
1372 ret = 0;
1373 *bytes = 0;
1374 }
1375
1376 out:
1377 *bytes = discarded;
1378 return ret;
1379 }
1380
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1381 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1382 u64 num_bytes, u64 *actual_bytes)
1383 {
1384 int ret = 0;
1385 u64 discarded_bytes = 0;
1386 u64 end = bytenr + num_bytes;
1387 u64 cur = bytenr;
1388
1389 /*
1390 * Avoid races with device replace and make sure the devices in the
1391 * stripes don't go away while we are discarding.
1392 */
1393 btrfs_bio_counter_inc_blocked(fs_info);
1394 while (cur < end) {
1395 struct btrfs_discard_stripe *stripes;
1396 unsigned int num_stripes;
1397 int i;
1398
1399 num_bytes = end - cur;
1400 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1401 if (IS_ERR(stripes)) {
1402 ret = PTR_ERR(stripes);
1403 if (ret == -EOPNOTSUPP)
1404 ret = 0;
1405 break;
1406 }
1407
1408 for (i = 0; i < num_stripes; i++) {
1409 struct btrfs_discard_stripe *stripe = stripes + i;
1410 u64 bytes;
1411
1412 if (!stripe->dev->bdev) {
1413 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1414 continue;
1415 }
1416
1417 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1418 &stripe->dev->dev_state))
1419 continue;
1420
1421 ret = do_discard_extent(stripe, &bytes);
1422 if (ret) {
1423 /*
1424 * Keep going if discard is not supported by the
1425 * device.
1426 */
1427 if (ret != -EOPNOTSUPP)
1428 break;
1429 ret = 0;
1430 } else {
1431 discarded_bytes += bytes;
1432 }
1433 }
1434 kfree(stripes);
1435 if (ret)
1436 break;
1437 cur += num_bytes;
1438 }
1439 btrfs_bio_counter_dec(fs_info);
1440 if (actual_bytes)
1441 *actual_bytes = discarded_bytes;
1442 return ret;
1443 }
1444
1445 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1446 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1447 struct btrfs_ref *generic_ref)
1448 {
1449 struct btrfs_fs_info *fs_info = trans->fs_info;
1450 int ret;
1451
1452 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1453 generic_ref->action);
1454 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1455 generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID);
1456
1457 if (generic_ref->type == BTRFS_REF_METADATA)
1458 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1459 else
1460 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1461
1462 btrfs_ref_tree_mod(fs_info, generic_ref);
1463
1464 return ret;
1465 }
1466
1467 /*
1468 * Insert backreference for a given extent.
1469 *
1470 * The counterpart is in __btrfs_free_extent(), with examples and more details
1471 * how it works.
1472 *
1473 * @trans: Handle of transaction
1474 *
1475 * @node: The delayed ref node used to get the bytenr/length for
1476 * extent whose references are incremented.
1477 *
1478 * @extent_op Pointer to a structure, holding information necessary when
1479 * updating a tree block's flags
1480 *
1481 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)1482 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1483 struct btrfs_delayed_ref_node *node,
1484 struct btrfs_delayed_extent_op *extent_op)
1485 {
1486 BTRFS_PATH_AUTO_FREE(path);
1487 struct extent_buffer *leaf;
1488 struct btrfs_extent_item *item;
1489 struct btrfs_key key;
1490 u64 bytenr = node->bytenr;
1491 u64 num_bytes = node->num_bytes;
1492 u64 owner = btrfs_delayed_ref_owner(node);
1493 u64 offset = btrfs_delayed_ref_offset(node);
1494 u64 refs;
1495 int refs_to_add = node->ref_mod;
1496 int ret;
1497
1498 path = btrfs_alloc_path();
1499 if (!path)
1500 return -ENOMEM;
1501
1502 /* this will setup the path even if it fails to insert the back ref */
1503 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1504 node->parent, node->ref_root, owner,
1505 offset, refs_to_add, extent_op);
1506 if ((ret < 0 && ret != -EAGAIN) || !ret)
1507 return ret;
1508
1509 /*
1510 * Ok we had -EAGAIN which means we didn't have space to insert and
1511 * inline extent ref, so just update the reference count and add a
1512 * normal backref.
1513 */
1514 leaf = path->nodes[0];
1515 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1516 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1517 refs = btrfs_extent_refs(leaf, item);
1518 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1519 if (extent_op)
1520 __run_delayed_extent_op(extent_op, leaf, item);
1521
1522 btrfs_release_path(path);
1523
1524 /* now insert the actual backref */
1525 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1526 ret = insert_tree_block_ref(trans, path, node, bytenr);
1527 else
1528 ret = insert_extent_data_ref(trans, path, node, bytenr);
1529
1530 if (ret)
1531 btrfs_abort_transaction(trans, ret);
1532
1533 return ret;
1534 }
1535
free_head_ref_squota_rsv(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * href)1536 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1537 struct btrfs_delayed_ref_head *href)
1538 {
1539 u64 root = href->owning_root;
1540
1541 /*
1542 * Don't check must_insert_reserved, as this is called from contexts
1543 * where it has already been unset.
1544 */
1545 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1546 !href->is_data || !is_fstree(root))
1547 return;
1548
1549 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1550 BTRFS_QGROUP_RSV_DATA);
1551 }
1552
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1553 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1554 struct btrfs_delayed_ref_head *href,
1555 struct btrfs_delayed_ref_node *node,
1556 struct btrfs_delayed_extent_op *extent_op,
1557 bool insert_reserved)
1558 {
1559 int ret = 0;
1560 u64 parent = 0;
1561 u64 flags = 0;
1562
1563 trace_run_delayed_data_ref(trans->fs_info, node);
1564
1565 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1566 parent = node->parent;
1567
1568 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1569 struct btrfs_key key;
1570 struct btrfs_squota_delta delta = {
1571 .root = href->owning_root,
1572 .num_bytes = node->num_bytes,
1573 .is_data = true,
1574 .is_inc = true,
1575 .generation = trans->transid,
1576 };
1577 u64 owner = btrfs_delayed_ref_owner(node);
1578 u64 offset = btrfs_delayed_ref_offset(node);
1579
1580 if (extent_op)
1581 flags |= extent_op->flags_to_set;
1582
1583 key.objectid = node->bytenr;
1584 key.type = BTRFS_EXTENT_ITEM_KEY;
1585 key.offset = node->num_bytes;
1586
1587 ret = alloc_reserved_file_extent(trans, parent, node->ref_root,
1588 flags, owner, offset, &key,
1589 node->ref_mod,
1590 href->owning_root);
1591 free_head_ref_squota_rsv(trans->fs_info, href);
1592 if (!ret)
1593 ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1594 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1595 ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1596 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1597 ret = __btrfs_free_extent(trans, href, node, extent_op);
1598 } else {
1599 BUG();
1600 }
1601 return ret;
1602 }
1603
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1604 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1605 struct extent_buffer *leaf,
1606 struct btrfs_extent_item *ei)
1607 {
1608 u64 flags = btrfs_extent_flags(leaf, ei);
1609 if (extent_op->update_flags) {
1610 flags |= extent_op->flags_to_set;
1611 btrfs_set_extent_flags(leaf, ei, flags);
1612 }
1613
1614 if (extent_op->update_key) {
1615 struct btrfs_tree_block_info *bi;
1616 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1617 bi = (struct btrfs_tree_block_info *)(ei + 1);
1618 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1619 }
1620 }
1621
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1622 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1623 struct btrfs_delayed_ref_head *head,
1624 struct btrfs_delayed_extent_op *extent_op)
1625 {
1626 struct btrfs_fs_info *fs_info = trans->fs_info;
1627 struct btrfs_root *root;
1628 struct btrfs_key key;
1629 BTRFS_PATH_AUTO_FREE(path);
1630 struct btrfs_extent_item *ei;
1631 struct extent_buffer *leaf;
1632 u32 item_size;
1633 int ret;
1634 int metadata = 1;
1635
1636 if (TRANS_ABORTED(trans))
1637 return 0;
1638
1639 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1640 metadata = 0;
1641
1642 path = btrfs_alloc_path();
1643 if (!path)
1644 return -ENOMEM;
1645
1646 key.objectid = head->bytenr;
1647
1648 if (metadata) {
1649 key.type = BTRFS_METADATA_ITEM_KEY;
1650 key.offset = head->level;
1651 } else {
1652 key.type = BTRFS_EXTENT_ITEM_KEY;
1653 key.offset = head->num_bytes;
1654 }
1655
1656 root = btrfs_extent_root(fs_info, key.objectid);
1657 again:
1658 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1659 if (ret < 0) {
1660 return ret;
1661 } else if (ret > 0) {
1662 if (metadata) {
1663 if (path->slots[0] > 0) {
1664 path->slots[0]--;
1665 btrfs_item_key_to_cpu(path->nodes[0], &key,
1666 path->slots[0]);
1667 if (key.objectid == head->bytenr &&
1668 key.type == BTRFS_EXTENT_ITEM_KEY &&
1669 key.offset == head->num_bytes)
1670 ret = 0;
1671 }
1672 if (ret > 0) {
1673 btrfs_release_path(path);
1674 metadata = 0;
1675
1676 key.objectid = head->bytenr;
1677 key.type = BTRFS_EXTENT_ITEM_KEY;
1678 key.offset = head->num_bytes;
1679 goto again;
1680 }
1681 } else {
1682 ret = -EUCLEAN;
1683 btrfs_err(fs_info,
1684 "missing extent item for extent %llu num_bytes %llu level %d",
1685 head->bytenr, head->num_bytes, head->level);
1686 return ret;
1687 }
1688 }
1689
1690 leaf = path->nodes[0];
1691 item_size = btrfs_item_size(leaf, path->slots[0]);
1692
1693 if (unlikely(item_size < sizeof(*ei))) {
1694 ret = -EUCLEAN;
1695 btrfs_err(fs_info,
1696 "unexpected extent item size, has %u expect >= %zu",
1697 item_size, sizeof(*ei));
1698 btrfs_abort_transaction(trans, ret);
1699 return ret;
1700 }
1701
1702 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1703 __run_delayed_extent_op(extent_op, leaf, ei);
1704
1705 return ret;
1706 }
1707
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1708 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1709 struct btrfs_delayed_ref_head *href,
1710 struct btrfs_delayed_ref_node *node,
1711 struct btrfs_delayed_extent_op *extent_op,
1712 bool insert_reserved)
1713 {
1714 int ret = 0;
1715 struct btrfs_fs_info *fs_info = trans->fs_info;
1716 u64 parent = 0;
1717 u64 ref_root = 0;
1718
1719 trace_run_delayed_tree_ref(trans->fs_info, node);
1720
1721 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1722 parent = node->parent;
1723 ref_root = node->ref_root;
1724
1725 if (unlikely(node->ref_mod != 1)) {
1726 btrfs_err(trans->fs_info,
1727 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1728 node->bytenr, node->ref_mod, node->action, ref_root,
1729 parent);
1730 return -EUCLEAN;
1731 }
1732 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1733 struct btrfs_squota_delta delta = {
1734 .root = href->owning_root,
1735 .num_bytes = fs_info->nodesize,
1736 .is_data = false,
1737 .is_inc = true,
1738 .generation = trans->transid,
1739 };
1740
1741 ret = alloc_reserved_tree_block(trans, node, extent_op);
1742 if (!ret)
1743 btrfs_record_squota_delta(fs_info, &delta);
1744 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1745 ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1746 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1747 ret = __btrfs_free_extent(trans, href, node, extent_op);
1748 } else {
1749 BUG();
1750 }
1751 return ret;
1752 }
1753
1754 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1755 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1756 struct btrfs_delayed_ref_head *href,
1757 struct btrfs_delayed_ref_node *node,
1758 struct btrfs_delayed_extent_op *extent_op,
1759 bool insert_reserved)
1760 {
1761 int ret = 0;
1762
1763 if (TRANS_ABORTED(trans)) {
1764 if (insert_reserved) {
1765 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1766 free_head_ref_squota_rsv(trans->fs_info, href);
1767 }
1768 return 0;
1769 }
1770
1771 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1772 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1773 ret = run_delayed_tree_ref(trans, href, node, extent_op,
1774 insert_reserved);
1775 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1776 node->type == BTRFS_SHARED_DATA_REF_KEY)
1777 ret = run_delayed_data_ref(trans, href, node, extent_op,
1778 insert_reserved);
1779 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1780 ret = 0;
1781 else
1782 BUG();
1783 if (ret && insert_reserved)
1784 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1785 if (ret < 0)
1786 btrfs_err(trans->fs_info,
1787 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1788 node->bytenr, node->num_bytes, node->type,
1789 node->action, node->ref_mod, ret);
1790 return ret;
1791 }
1792
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1793 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1794 struct btrfs_delayed_ref_head *head)
1795 {
1796 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1797
1798 if (!extent_op)
1799 return NULL;
1800
1801 if (head->must_insert_reserved) {
1802 head->extent_op = NULL;
1803 btrfs_free_delayed_extent_op(extent_op);
1804 return NULL;
1805 }
1806 return extent_op;
1807 }
1808
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1809 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1810 struct btrfs_delayed_ref_head *head)
1811 {
1812 struct btrfs_delayed_extent_op *extent_op;
1813 int ret;
1814
1815 extent_op = cleanup_extent_op(head);
1816 if (!extent_op)
1817 return 0;
1818 head->extent_op = NULL;
1819 spin_unlock(&head->lock);
1820 ret = run_delayed_extent_op(trans, head, extent_op);
1821 btrfs_free_delayed_extent_op(extent_op);
1822 return ret ? ret : 1;
1823 }
1824
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1825 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1826 struct btrfs_delayed_ref_root *delayed_refs,
1827 struct btrfs_delayed_ref_head *head)
1828 {
1829 u64 ret = 0;
1830
1831 /*
1832 * We had csum deletions accounted for in our delayed refs rsv, we need
1833 * to drop the csum leaves for this update from our delayed_refs_rsv.
1834 */
1835 if (head->total_ref_mod < 0 && head->is_data) {
1836 int nr_csums;
1837
1838 spin_lock(&delayed_refs->lock);
1839 delayed_refs->pending_csums -= head->num_bytes;
1840 spin_unlock(&delayed_refs->lock);
1841 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1842
1843 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1844
1845 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1846 }
1847 /* must_insert_reserved can be set only if we didn't run the head ref. */
1848 if (head->must_insert_reserved)
1849 free_head_ref_squota_rsv(fs_info, head);
1850
1851 return ret;
1852 }
1853
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,u64 * bytes_released)1854 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1855 struct btrfs_delayed_ref_head *head,
1856 u64 *bytes_released)
1857 {
1858
1859 struct btrfs_fs_info *fs_info = trans->fs_info;
1860 struct btrfs_delayed_ref_root *delayed_refs;
1861 int ret;
1862
1863 delayed_refs = &trans->transaction->delayed_refs;
1864
1865 ret = run_and_cleanup_extent_op(trans, head);
1866 if (ret < 0) {
1867 btrfs_unselect_ref_head(delayed_refs, head);
1868 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1869 return ret;
1870 } else if (ret) {
1871 return ret;
1872 }
1873
1874 /*
1875 * Need to drop our head ref lock and re-acquire the delayed ref lock
1876 * and then re-check to make sure nobody got added.
1877 */
1878 spin_unlock(&head->lock);
1879 spin_lock(&delayed_refs->lock);
1880 spin_lock(&head->lock);
1881 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1882 spin_unlock(&head->lock);
1883 spin_unlock(&delayed_refs->lock);
1884 return 1;
1885 }
1886 btrfs_delete_ref_head(fs_info, delayed_refs, head);
1887 spin_unlock(&head->lock);
1888 spin_unlock(&delayed_refs->lock);
1889
1890 if (head->must_insert_reserved) {
1891 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1892 if (head->is_data) {
1893 struct btrfs_root *csum_root;
1894
1895 csum_root = btrfs_csum_root(fs_info, head->bytenr);
1896 ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1897 head->num_bytes);
1898 }
1899 }
1900
1901 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1902
1903 trace_run_delayed_ref_head(fs_info, head, 0);
1904 btrfs_delayed_ref_unlock(head);
1905 btrfs_put_delayed_ref_head(head);
1906 return ret;
1907 }
1908
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,u64 * bytes_released)1909 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1910 struct btrfs_delayed_ref_head *locked_ref,
1911 u64 *bytes_released)
1912 {
1913 struct btrfs_fs_info *fs_info = trans->fs_info;
1914 struct btrfs_delayed_ref_root *delayed_refs;
1915 struct btrfs_delayed_extent_op *extent_op;
1916 struct btrfs_delayed_ref_node *ref;
1917 bool must_insert_reserved;
1918 int ret;
1919
1920 delayed_refs = &trans->transaction->delayed_refs;
1921
1922 lockdep_assert_held(&locked_ref->mutex);
1923 lockdep_assert_held(&locked_ref->lock);
1924
1925 while ((ref = btrfs_select_delayed_ref(locked_ref))) {
1926 if (ref->seq &&
1927 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1928 spin_unlock(&locked_ref->lock);
1929 btrfs_unselect_ref_head(delayed_refs, locked_ref);
1930 return -EAGAIN;
1931 }
1932
1933 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1934 RB_CLEAR_NODE(&ref->ref_node);
1935 if (!list_empty(&ref->add_list))
1936 list_del(&ref->add_list);
1937 /*
1938 * When we play the delayed ref, also correct the ref_mod on
1939 * head
1940 */
1941 switch (ref->action) {
1942 case BTRFS_ADD_DELAYED_REF:
1943 case BTRFS_ADD_DELAYED_EXTENT:
1944 locked_ref->ref_mod -= ref->ref_mod;
1945 break;
1946 case BTRFS_DROP_DELAYED_REF:
1947 locked_ref->ref_mod += ref->ref_mod;
1948 break;
1949 default:
1950 WARN_ON(1);
1951 }
1952
1953 /*
1954 * Record the must_insert_reserved flag before we drop the
1955 * spin lock.
1956 */
1957 must_insert_reserved = locked_ref->must_insert_reserved;
1958 /*
1959 * Unsetting this on the head ref relinquishes ownership of
1960 * the rsv_bytes, so it is critical that every possible code
1961 * path from here forward frees all reserves including qgroup
1962 * reserve.
1963 */
1964 locked_ref->must_insert_reserved = false;
1965
1966 extent_op = locked_ref->extent_op;
1967 locked_ref->extent_op = NULL;
1968 spin_unlock(&locked_ref->lock);
1969
1970 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
1971 must_insert_reserved);
1972 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
1973 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
1974
1975 btrfs_free_delayed_extent_op(extent_op);
1976 if (ret) {
1977 btrfs_unselect_ref_head(delayed_refs, locked_ref);
1978 btrfs_put_delayed_ref(ref);
1979 return ret;
1980 }
1981
1982 btrfs_put_delayed_ref(ref);
1983 cond_resched();
1984
1985 spin_lock(&locked_ref->lock);
1986 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
1987 }
1988
1989 return 0;
1990 }
1991
1992 /*
1993 * Returns 0 on success or if called with an already aborted transaction.
1994 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1995 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,u64 min_bytes)1996 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1997 u64 min_bytes)
1998 {
1999 struct btrfs_fs_info *fs_info = trans->fs_info;
2000 struct btrfs_delayed_ref_root *delayed_refs;
2001 struct btrfs_delayed_ref_head *locked_ref = NULL;
2002 int ret;
2003 unsigned long count = 0;
2004 unsigned long max_count = 0;
2005 u64 bytes_processed = 0;
2006
2007 delayed_refs = &trans->transaction->delayed_refs;
2008 if (min_bytes == 0) {
2009 max_count = delayed_refs->num_heads_ready;
2010 min_bytes = U64_MAX;
2011 }
2012
2013 do {
2014 if (!locked_ref) {
2015 locked_ref = btrfs_select_ref_head(fs_info, delayed_refs);
2016 if (IS_ERR_OR_NULL(locked_ref)) {
2017 if (PTR_ERR(locked_ref) == -EAGAIN) {
2018 continue;
2019 } else {
2020 break;
2021 }
2022 }
2023 count++;
2024 }
2025 /*
2026 * We need to try and merge add/drops of the same ref since we
2027 * can run into issues with relocate dropping the implicit ref
2028 * and then it being added back again before the drop can
2029 * finish. If we merged anything we need to re-loop so we can
2030 * get a good ref.
2031 * Or we can get node references of the same type that weren't
2032 * merged when created due to bumps in the tree mod seq, and
2033 * we need to merge them to prevent adding an inline extent
2034 * backref before dropping it (triggering a BUG_ON at
2035 * insert_inline_extent_backref()).
2036 */
2037 spin_lock(&locked_ref->lock);
2038 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2039
2040 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2041 if (ret < 0 && ret != -EAGAIN) {
2042 /*
2043 * Error, btrfs_run_delayed_refs_for_head already
2044 * unlocked everything so just bail out
2045 */
2046 return ret;
2047 } else if (!ret) {
2048 /*
2049 * Success, perform the usual cleanup of a processed
2050 * head
2051 */
2052 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2053 if (ret > 0 ) {
2054 /* We dropped our lock, we need to loop. */
2055 ret = 0;
2056 continue;
2057 } else if (ret) {
2058 return ret;
2059 }
2060 }
2061
2062 /*
2063 * Either success case or btrfs_run_delayed_refs_for_head
2064 * returned -EAGAIN, meaning we need to select another head
2065 */
2066
2067 locked_ref = NULL;
2068 cond_resched();
2069 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2070 (max_count > 0 && count < max_count) ||
2071 locked_ref);
2072
2073 return 0;
2074 }
2075
2076 #ifdef SCRAMBLE_DELAYED_REFS
2077 /*
2078 * Normally delayed refs get processed in ascending bytenr order. This
2079 * correlates in most cases to the order added. To expose dependencies on this
2080 * order, we start to process the tree in the middle instead of the beginning
2081 */
find_middle(struct rb_root * root)2082 static u64 find_middle(struct rb_root *root)
2083 {
2084 struct rb_node *n = root->rb_node;
2085 struct btrfs_delayed_ref_node *entry;
2086 int alt = 1;
2087 u64 middle;
2088 u64 first = 0, last = 0;
2089
2090 n = rb_first(root);
2091 if (n) {
2092 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2093 first = entry->bytenr;
2094 }
2095 n = rb_last(root);
2096 if (n) {
2097 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2098 last = entry->bytenr;
2099 }
2100 n = root->rb_node;
2101
2102 while (n) {
2103 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2104 WARN_ON(!entry->in_tree);
2105
2106 middle = entry->bytenr;
2107
2108 if (alt)
2109 n = n->rb_left;
2110 else
2111 n = n->rb_right;
2112
2113 alt = 1 - alt;
2114 }
2115 return middle;
2116 }
2117 #endif
2118
2119 /*
2120 * Start processing the delayed reference count updates and extent insertions
2121 * we have queued up so far.
2122 *
2123 * @trans: Transaction handle.
2124 * @min_bytes: How many bytes of delayed references to process. After this
2125 * many bytes we stop processing delayed references if there are
2126 * any more. If 0 it means to run all existing delayed references,
2127 * but not new ones added after running all existing ones.
2128 * Use (u64)-1 (U64_MAX) to run all existing delayed references
2129 * plus any new ones that are added.
2130 *
2131 * Returns 0 on success or if called with an aborted transaction
2132 * Returns <0 on error and aborts the transaction
2133 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,u64 min_bytes)2134 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2135 {
2136 struct btrfs_fs_info *fs_info = trans->fs_info;
2137 struct btrfs_delayed_ref_root *delayed_refs;
2138 int ret;
2139
2140 /* We'll clean this up in btrfs_cleanup_transaction */
2141 if (TRANS_ABORTED(trans))
2142 return 0;
2143
2144 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2145 return 0;
2146
2147 delayed_refs = &trans->transaction->delayed_refs;
2148 again:
2149 #ifdef SCRAMBLE_DELAYED_REFS
2150 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2151 #endif
2152 ret = __btrfs_run_delayed_refs(trans, min_bytes);
2153 if (ret < 0) {
2154 btrfs_abort_transaction(trans, ret);
2155 return ret;
2156 }
2157
2158 if (min_bytes == U64_MAX) {
2159 btrfs_create_pending_block_groups(trans);
2160
2161 spin_lock(&delayed_refs->lock);
2162 if (xa_empty(&delayed_refs->head_refs)) {
2163 spin_unlock(&delayed_refs->lock);
2164 return 0;
2165 }
2166 spin_unlock(&delayed_refs->lock);
2167
2168 cond_resched();
2169 goto again;
2170 }
2171
2172 return 0;
2173 }
2174
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags)2175 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2176 struct extent_buffer *eb, u64 flags)
2177 {
2178 struct btrfs_delayed_extent_op *extent_op;
2179 int ret;
2180
2181 extent_op = btrfs_alloc_delayed_extent_op();
2182 if (!extent_op)
2183 return -ENOMEM;
2184
2185 extent_op->flags_to_set = flags;
2186 extent_op->update_flags = true;
2187 extent_op->update_key = false;
2188
2189 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len,
2190 btrfs_header_level(eb), extent_op);
2191 if (ret)
2192 btrfs_free_delayed_extent_op(extent_op);
2193 return ret;
2194 }
2195
check_delayed_ref(struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 bytenr)2196 static noinline int check_delayed_ref(struct btrfs_inode *inode,
2197 struct btrfs_path *path,
2198 u64 offset, u64 bytenr)
2199 {
2200 struct btrfs_root *root = inode->root;
2201 struct btrfs_delayed_ref_head *head;
2202 struct btrfs_delayed_ref_node *ref;
2203 struct btrfs_delayed_ref_root *delayed_refs;
2204 struct btrfs_transaction *cur_trans;
2205 struct rb_node *node;
2206 int ret = 0;
2207
2208 spin_lock(&root->fs_info->trans_lock);
2209 cur_trans = root->fs_info->running_transaction;
2210 if (cur_trans)
2211 refcount_inc(&cur_trans->use_count);
2212 spin_unlock(&root->fs_info->trans_lock);
2213 if (!cur_trans)
2214 return 0;
2215
2216 delayed_refs = &cur_trans->delayed_refs;
2217 spin_lock(&delayed_refs->lock);
2218 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
2219 if (!head) {
2220 spin_unlock(&delayed_refs->lock);
2221 btrfs_put_transaction(cur_trans);
2222 return 0;
2223 }
2224
2225 if (!mutex_trylock(&head->mutex)) {
2226 if (path->nowait) {
2227 spin_unlock(&delayed_refs->lock);
2228 btrfs_put_transaction(cur_trans);
2229 return -EAGAIN;
2230 }
2231
2232 refcount_inc(&head->refs);
2233 spin_unlock(&delayed_refs->lock);
2234
2235 btrfs_release_path(path);
2236
2237 /*
2238 * Mutex was contended, block until it's released and let
2239 * caller try again
2240 */
2241 mutex_lock(&head->mutex);
2242 mutex_unlock(&head->mutex);
2243 btrfs_put_delayed_ref_head(head);
2244 btrfs_put_transaction(cur_trans);
2245 return -EAGAIN;
2246 }
2247 spin_unlock(&delayed_refs->lock);
2248
2249 spin_lock(&head->lock);
2250 /*
2251 * XXX: We should replace this with a proper search function in the
2252 * future.
2253 */
2254 for (node = rb_first_cached(&head->ref_tree); node;
2255 node = rb_next(node)) {
2256 u64 ref_owner;
2257 u64 ref_offset;
2258
2259 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2260 /* If it's a shared ref we know a cross reference exists */
2261 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2262 ret = 1;
2263 break;
2264 }
2265
2266 ref_owner = btrfs_delayed_ref_owner(ref);
2267 ref_offset = btrfs_delayed_ref_offset(ref);
2268
2269 /*
2270 * If our ref doesn't match the one we're currently looking at
2271 * then we have a cross reference.
2272 */
2273 if (ref->ref_root != btrfs_root_id(root) ||
2274 ref_owner != btrfs_ino(inode) || ref_offset != offset) {
2275 ret = 1;
2276 break;
2277 }
2278 }
2279 spin_unlock(&head->lock);
2280 mutex_unlock(&head->mutex);
2281 btrfs_put_transaction(cur_trans);
2282 return ret;
2283 }
2284
2285 /*
2286 * Check if there are references for a data extent other than the one belonging
2287 * to the given inode and offset.
2288 *
2289 * @inode: The only inode we expect to find associated with the data extent.
2290 * @path: A path to use for searching the extent tree.
2291 * @offset: The only offset we expect to find associated with the data extent.
2292 * @bytenr: The logical address of the data extent.
2293 *
2294 * When the extent does not have any other references other than the one we
2295 * expect to find, we always return a value of 0 with the path having a locked
2296 * leaf that contains the extent's extent item - this is necessary to ensure
2297 * we don't race with a task running delayed references, and our caller must
2298 * have such a path when calling check_delayed_ref() - it must lock a delayed
2299 * ref head while holding the leaf locked. In case the extent item is not found
2300 * in the extent tree, we return -ENOENT with the path having the leaf (locked)
2301 * where the extent item should be, in order to prevent races with another task
2302 * running delayed references, so that we don't miss any reference when calling
2303 * check_delayed_ref().
2304 *
2305 * Note: this may return false positives, and this is because we want to be
2306 * quick here as we're called in write paths (when flushing delalloc and
2307 * in the direct IO write path). For example we can have an extent with
2308 * a single reference but that reference is not inlined, or we may have
2309 * many references in the extent tree but we also have delayed references
2310 * that cancel all the reference except the one for our inode and offset,
2311 * but it would be expensive to do such checks and complex due to all
2312 * locking to avoid races between the checks and flushing delayed refs,
2313 * plus non-inline references may be located on leaves other than the one
2314 * that contains the extent item in the extent tree. The important thing
2315 * here is to not return false negatives and that the false positives are
2316 * not very common.
2317 *
2318 * Returns: 0 if there are no cross references and with the path having a locked
2319 * leaf from the extent tree that contains the extent's extent item.
2320 *
2321 * 1 if there are cross references (false positives can happen).
2322 *
2323 * < 0 in case of an error. In case of -ENOENT the leaf in the extent
2324 * tree where the extent item should be located at is read locked and
2325 * accessible in the given path.
2326 */
check_committed_ref(struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 bytenr)2327 static noinline int check_committed_ref(struct btrfs_inode *inode,
2328 struct btrfs_path *path,
2329 u64 offset, u64 bytenr)
2330 {
2331 struct btrfs_root *root = inode->root;
2332 struct btrfs_fs_info *fs_info = root->fs_info;
2333 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2334 struct extent_buffer *leaf;
2335 struct btrfs_extent_data_ref *ref;
2336 struct btrfs_extent_inline_ref *iref;
2337 struct btrfs_extent_item *ei;
2338 struct btrfs_key key;
2339 u32 item_size;
2340 u32 expected_size;
2341 int type;
2342 int ret;
2343
2344 key.objectid = bytenr;
2345 key.type = BTRFS_EXTENT_ITEM_KEY;
2346 key.offset = (u64)-1;
2347
2348 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2349 if (ret < 0)
2350 return ret;
2351 if (ret == 0) {
2352 /*
2353 * Key with offset -1 found, there would have to exist an extent
2354 * item with such offset, but this is out of the valid range.
2355 */
2356 return -EUCLEAN;
2357 }
2358
2359 if (path->slots[0] == 0)
2360 return -ENOENT;
2361
2362 path->slots[0]--;
2363 leaf = path->nodes[0];
2364 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2365
2366 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2367 return -ENOENT;
2368
2369 item_size = btrfs_item_size(leaf, path->slots[0]);
2370 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2371 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2372
2373 /* No inline refs; we need to bail before checking for owner ref. */
2374 if (item_size == sizeof(*ei))
2375 return 1;
2376
2377 /* Check for an owner ref; skip over it to the real inline refs. */
2378 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2379 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2380 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2381 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2382 iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2383 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2384 }
2385
2386 /* If extent item has more than 1 inline ref then it's shared */
2387 if (item_size != expected_size)
2388 return 1;
2389
2390 /* If this extent has SHARED_DATA_REF then it's shared */
2391 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2392 return 1;
2393
2394 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2395 if (btrfs_extent_refs(leaf, ei) !=
2396 btrfs_extent_data_ref_count(leaf, ref) ||
2397 btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) ||
2398 btrfs_extent_data_ref_objectid(leaf, ref) != btrfs_ino(inode) ||
2399 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2400 return 1;
2401
2402 return 0;
2403 }
2404
btrfs_cross_ref_exist(struct btrfs_inode * inode,u64 offset,u64 bytenr,struct btrfs_path * path)2405 int btrfs_cross_ref_exist(struct btrfs_inode *inode, u64 offset,
2406 u64 bytenr, struct btrfs_path *path)
2407 {
2408 int ret;
2409
2410 do {
2411 ret = check_committed_ref(inode, path, offset, bytenr);
2412 if (ret && ret != -ENOENT)
2413 goto out;
2414
2415 /*
2416 * The path must have a locked leaf from the extent tree where
2417 * the extent item for our extent is located, in case it exists,
2418 * or where it should be located in case it doesn't exist yet
2419 * because it's new and its delayed ref was not yet flushed.
2420 * We need to lock the delayed ref head at check_delayed_ref(),
2421 * if one exists, while holding the leaf locked in order to not
2422 * race with delayed ref flushing, missing references and
2423 * incorrectly reporting that the extent is not shared.
2424 */
2425 if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) {
2426 struct extent_buffer *leaf = path->nodes[0];
2427
2428 ASSERT(leaf != NULL);
2429 btrfs_assert_tree_read_locked(leaf);
2430
2431 if (ret != -ENOENT) {
2432 struct btrfs_key key;
2433
2434 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2435 ASSERT(key.objectid == bytenr);
2436 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY);
2437 }
2438 }
2439
2440 ret = check_delayed_ref(inode, path, offset, bytenr);
2441 } while (ret == -EAGAIN && !path->nowait);
2442
2443 out:
2444 btrfs_release_path(path);
2445 if (btrfs_is_data_reloc_root(inode->root))
2446 WARN_ON(ret > 0);
2447 return ret;
2448 }
2449
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2450 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2451 struct btrfs_root *root,
2452 struct extent_buffer *buf,
2453 int full_backref, int inc)
2454 {
2455 struct btrfs_fs_info *fs_info = root->fs_info;
2456 u64 parent;
2457 u64 ref_root;
2458 u32 nritems;
2459 struct btrfs_key key;
2460 struct btrfs_file_extent_item *fi;
2461 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2462 int i;
2463 int action;
2464 int level;
2465 int ret = 0;
2466
2467 if (btrfs_is_testing(fs_info))
2468 return 0;
2469
2470 ref_root = btrfs_header_owner(buf);
2471 nritems = btrfs_header_nritems(buf);
2472 level = btrfs_header_level(buf);
2473
2474 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2475 return 0;
2476
2477 if (full_backref)
2478 parent = buf->start;
2479 else
2480 parent = 0;
2481 if (inc)
2482 action = BTRFS_ADD_DELAYED_REF;
2483 else
2484 action = BTRFS_DROP_DELAYED_REF;
2485
2486 for (i = 0; i < nritems; i++) {
2487 struct btrfs_ref ref = {
2488 .action = action,
2489 .parent = parent,
2490 .ref_root = ref_root,
2491 };
2492
2493 if (level == 0) {
2494 btrfs_item_key_to_cpu(buf, &key, i);
2495 if (key.type != BTRFS_EXTENT_DATA_KEY)
2496 continue;
2497 fi = btrfs_item_ptr(buf, i,
2498 struct btrfs_file_extent_item);
2499 if (btrfs_file_extent_type(buf, fi) ==
2500 BTRFS_FILE_EXTENT_INLINE)
2501 continue;
2502 ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2503 if (ref.bytenr == 0)
2504 continue;
2505
2506 ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2507 ref.owning_root = ref_root;
2508
2509 key.offset -= btrfs_file_extent_offset(buf, fi);
2510 btrfs_init_data_ref(&ref, key.objectid, key.offset,
2511 btrfs_root_id(root), for_reloc);
2512 if (inc)
2513 ret = btrfs_inc_extent_ref(trans, &ref);
2514 else
2515 ret = btrfs_free_extent(trans, &ref);
2516 if (ret)
2517 goto fail;
2518 } else {
2519 /* We don't know the owning_root, leave as 0. */
2520 ref.bytenr = btrfs_node_blockptr(buf, i);
2521 ref.num_bytes = fs_info->nodesize;
2522
2523 btrfs_init_tree_ref(&ref, level - 1,
2524 btrfs_root_id(root), for_reloc);
2525 if (inc)
2526 ret = btrfs_inc_extent_ref(trans, &ref);
2527 else
2528 ret = btrfs_free_extent(trans, &ref);
2529 if (ret)
2530 goto fail;
2531 }
2532 }
2533 return 0;
2534 fail:
2535 return ret;
2536 }
2537
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2538 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2539 struct extent_buffer *buf, int full_backref)
2540 {
2541 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2542 }
2543
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2544 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2545 struct extent_buffer *buf, int full_backref)
2546 {
2547 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2548 }
2549
get_alloc_profile_by_root(struct btrfs_root * root,int data)2550 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2551 {
2552 struct btrfs_fs_info *fs_info = root->fs_info;
2553 u64 flags;
2554 u64 ret;
2555
2556 if (data)
2557 flags = BTRFS_BLOCK_GROUP_DATA;
2558 else if (root == fs_info->chunk_root)
2559 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2560 else
2561 flags = BTRFS_BLOCK_GROUP_METADATA;
2562
2563 ret = btrfs_get_alloc_profile(fs_info, flags);
2564 return ret;
2565 }
2566
first_logical_byte(struct btrfs_fs_info * fs_info)2567 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2568 {
2569 struct rb_node *leftmost;
2570 u64 bytenr = 0;
2571
2572 read_lock(&fs_info->block_group_cache_lock);
2573 /* Get the block group with the lowest logical start address. */
2574 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2575 if (leftmost) {
2576 struct btrfs_block_group *bg;
2577
2578 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2579 bytenr = bg->start;
2580 }
2581 read_unlock(&fs_info->block_group_cache_lock);
2582
2583 return bytenr;
2584 }
2585
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2586 static int pin_down_extent(struct btrfs_trans_handle *trans,
2587 struct btrfs_block_group *cache,
2588 u64 bytenr, u64 num_bytes, int reserved)
2589 {
2590 spin_lock(&cache->space_info->lock);
2591 spin_lock(&cache->lock);
2592 cache->pinned += num_bytes;
2593 btrfs_space_info_update_bytes_pinned(cache->space_info, num_bytes);
2594 if (reserved) {
2595 cache->reserved -= num_bytes;
2596 cache->space_info->bytes_reserved -= num_bytes;
2597 }
2598 spin_unlock(&cache->lock);
2599 spin_unlock(&cache->space_info->lock);
2600
2601 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2602 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2603 return 0;
2604 }
2605
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2606 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2607 u64 bytenr, u64 num_bytes, int reserved)
2608 {
2609 struct btrfs_block_group *cache;
2610
2611 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2612 BUG_ON(!cache); /* Logic error */
2613
2614 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2615
2616 btrfs_put_block_group(cache);
2617 return 0;
2618 }
2619
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,const struct extent_buffer * eb)2620 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2621 const struct extent_buffer *eb)
2622 {
2623 struct btrfs_block_group *cache;
2624 int ret;
2625
2626 cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2627 if (!cache)
2628 return -EINVAL;
2629
2630 /*
2631 * Fully cache the free space first so that our pin removes the free space
2632 * from the cache.
2633 */
2634 ret = btrfs_cache_block_group(cache, true);
2635 if (ret)
2636 goto out;
2637
2638 pin_down_extent(trans, cache, eb->start, eb->len, 0);
2639
2640 /* remove us from the free space cache (if we're there at all) */
2641 ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2642 out:
2643 btrfs_put_block_group(cache);
2644 return ret;
2645 }
2646
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2647 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2648 u64 start, u64 num_bytes)
2649 {
2650 int ret;
2651 struct btrfs_block_group *block_group;
2652
2653 block_group = btrfs_lookup_block_group(fs_info, start);
2654 if (!block_group)
2655 return -EINVAL;
2656
2657 ret = btrfs_cache_block_group(block_group, true);
2658 if (ret)
2659 goto out;
2660
2661 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2662 out:
2663 btrfs_put_block_group(block_group);
2664 return ret;
2665 }
2666
btrfs_exclude_logged_extents(struct extent_buffer * eb)2667 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2668 {
2669 struct btrfs_fs_info *fs_info = eb->fs_info;
2670 struct btrfs_file_extent_item *item;
2671 struct btrfs_key key;
2672 int found_type;
2673 int i;
2674 int ret = 0;
2675
2676 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2677 return 0;
2678
2679 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2680 btrfs_item_key_to_cpu(eb, &key, i);
2681 if (key.type != BTRFS_EXTENT_DATA_KEY)
2682 continue;
2683 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2684 found_type = btrfs_file_extent_type(eb, item);
2685 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2686 continue;
2687 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2688 continue;
2689 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2690 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2691 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2692 if (ret)
2693 break;
2694 }
2695
2696 return ret;
2697 }
2698
2699 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2700 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2701 {
2702 atomic_inc(&bg->reservations);
2703 }
2704
2705 /*
2706 * Returns the free cluster for the given space info and sets empty_cluster to
2707 * what it should be based on the mount options.
2708 */
2709 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2710 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2711 struct btrfs_space_info *space_info, u64 *empty_cluster)
2712 {
2713 struct btrfs_free_cluster *ret = NULL;
2714
2715 *empty_cluster = 0;
2716 if (btrfs_mixed_space_info(space_info))
2717 return ret;
2718
2719 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2720 ret = &fs_info->meta_alloc_cluster;
2721 if (btrfs_test_opt(fs_info, SSD))
2722 *empty_cluster = SZ_2M;
2723 else
2724 *empty_cluster = SZ_64K;
2725 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2726 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2727 *empty_cluster = SZ_2M;
2728 ret = &fs_info->data_alloc_cluster;
2729 }
2730
2731 return ret;
2732 }
2733
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2734 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2735 u64 start, u64 end,
2736 const bool return_free_space)
2737 {
2738 struct btrfs_block_group *cache = NULL;
2739 struct btrfs_space_info *space_info;
2740 struct btrfs_free_cluster *cluster = NULL;
2741 u64 total_unpinned = 0;
2742 u64 empty_cluster = 0;
2743 bool readonly;
2744 int ret = 0;
2745
2746 while (start <= end) {
2747 u64 len;
2748
2749 readonly = false;
2750 if (!cache ||
2751 start >= cache->start + cache->length) {
2752 if (cache)
2753 btrfs_put_block_group(cache);
2754 total_unpinned = 0;
2755 cache = btrfs_lookup_block_group(fs_info, start);
2756 if (cache == NULL) {
2757 /* Logic error, something removed the block group. */
2758 ret = -EUCLEAN;
2759 goto out;
2760 }
2761
2762 cluster = fetch_cluster_info(fs_info,
2763 cache->space_info,
2764 &empty_cluster);
2765 empty_cluster <<= 1;
2766 }
2767
2768 len = cache->start + cache->length - start;
2769 len = min(len, end + 1 - start);
2770
2771 if (return_free_space)
2772 btrfs_add_free_space(cache, start, len);
2773
2774 start += len;
2775 total_unpinned += len;
2776 space_info = cache->space_info;
2777
2778 /*
2779 * If this space cluster has been marked as fragmented and we've
2780 * unpinned enough in this block group to potentially allow a
2781 * cluster to be created inside of it go ahead and clear the
2782 * fragmented check.
2783 */
2784 if (cluster && cluster->fragmented &&
2785 total_unpinned > empty_cluster) {
2786 spin_lock(&cluster->lock);
2787 cluster->fragmented = 0;
2788 spin_unlock(&cluster->lock);
2789 }
2790
2791 spin_lock(&space_info->lock);
2792 spin_lock(&cache->lock);
2793 cache->pinned -= len;
2794 btrfs_space_info_update_bytes_pinned(space_info, -len);
2795 space_info->max_extent_size = 0;
2796 if (cache->ro) {
2797 space_info->bytes_readonly += len;
2798 readonly = true;
2799 } else if (btrfs_is_zoned(fs_info)) {
2800 /* Need reset before reusing in a zoned block group */
2801 btrfs_space_info_update_bytes_zone_unusable(space_info, len);
2802 readonly = true;
2803 }
2804 spin_unlock(&cache->lock);
2805 if (!readonly && return_free_space)
2806 btrfs_return_free_space(space_info, len);
2807 spin_unlock(&space_info->lock);
2808 }
2809
2810 if (cache)
2811 btrfs_put_block_group(cache);
2812 out:
2813 return ret;
2814 }
2815
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2816 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2817 {
2818 struct btrfs_fs_info *fs_info = trans->fs_info;
2819 struct btrfs_block_group *block_group, *tmp;
2820 struct list_head *deleted_bgs;
2821 struct extent_io_tree *unpin;
2822 u64 start;
2823 u64 end;
2824 int ret;
2825
2826 unpin = &trans->transaction->pinned_extents;
2827
2828 while (!TRANS_ABORTED(trans)) {
2829 struct extent_state *cached_state = NULL;
2830
2831 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2832 if (!find_first_extent_bit(unpin, 0, &start, &end,
2833 EXTENT_DIRTY, &cached_state)) {
2834 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2835 break;
2836 }
2837
2838 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2839 ret = btrfs_discard_extent(fs_info, start,
2840 end + 1 - start, NULL);
2841
2842 clear_extent_dirty(unpin, start, end, &cached_state);
2843 ret = unpin_extent_range(fs_info, start, end, true);
2844 BUG_ON(ret);
2845 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2846 free_extent_state(cached_state);
2847 cond_resched();
2848 }
2849
2850 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2851 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2852 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2853 }
2854
2855 /*
2856 * Transaction is finished. We don't need the lock anymore. We
2857 * do need to clean up the block groups in case of a transaction
2858 * abort.
2859 */
2860 deleted_bgs = &trans->transaction->deleted_bgs;
2861 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2862 u64 trimmed = 0;
2863
2864 ret = -EROFS;
2865 if (!TRANS_ABORTED(trans))
2866 ret = btrfs_discard_extent(fs_info,
2867 block_group->start,
2868 block_group->length,
2869 &trimmed);
2870
2871 /*
2872 * Not strictly necessary to lock, as the block_group should be
2873 * read-only from btrfs_delete_unused_bgs().
2874 */
2875 ASSERT(block_group->ro);
2876 spin_lock(&fs_info->unused_bgs_lock);
2877 list_del_init(&block_group->bg_list);
2878 spin_unlock(&fs_info->unused_bgs_lock);
2879
2880 btrfs_unfreeze_block_group(block_group);
2881 btrfs_put_block_group(block_group);
2882
2883 if (ret) {
2884 const char *errstr = btrfs_decode_error(ret);
2885 btrfs_warn(fs_info,
2886 "discard failed while removing blockgroup: errno=%d %s",
2887 ret, errstr);
2888 }
2889 }
2890
2891 return 0;
2892 }
2893
2894 /*
2895 * Parse an extent item's inline extents looking for a simple quotas owner ref.
2896 *
2897 * @fs_info: the btrfs_fs_info for this mount
2898 * @leaf: a leaf in the extent tree containing the extent item
2899 * @slot: the slot in the leaf where the extent item is found
2900 *
2901 * Returns the objectid of the root that originally allocated the extent item
2902 * if the inline owner ref is expected and present, otherwise 0.
2903 *
2904 * If an extent item has an owner ref item, it will be the first inline ref
2905 * item. Therefore the logic is to check whether there are any inline ref
2906 * items, then check the type of the first one.
2907 */
btrfs_get_extent_owner_root(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,int slot)2908 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2909 struct extent_buffer *leaf, int slot)
2910 {
2911 struct btrfs_extent_item *ei;
2912 struct btrfs_extent_inline_ref *iref;
2913 struct btrfs_extent_owner_ref *oref;
2914 unsigned long ptr;
2915 unsigned long end;
2916 int type;
2917
2918 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2919 return 0;
2920
2921 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2922 ptr = (unsigned long)(ei + 1);
2923 end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2924
2925 /* No inline ref items of any kind, can't check type. */
2926 if (ptr == end)
2927 return 0;
2928
2929 iref = (struct btrfs_extent_inline_ref *)ptr;
2930 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2931
2932 /* We found an owner ref, get the root out of it. */
2933 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2934 oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2935 return btrfs_extent_owner_ref_root_id(leaf, oref);
2936 }
2937
2938 /* We have inline refs, but not an owner ref. */
2939 return 0;
2940 }
2941
do_free_extent_accounting(struct btrfs_trans_handle * trans,u64 bytenr,struct btrfs_squota_delta * delta)2942 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2943 u64 bytenr, struct btrfs_squota_delta *delta)
2944 {
2945 int ret;
2946 u64 num_bytes = delta->num_bytes;
2947
2948 if (delta->is_data) {
2949 struct btrfs_root *csum_root;
2950
2951 csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2952 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2953 if (ret) {
2954 btrfs_abort_transaction(trans, ret);
2955 return ret;
2956 }
2957
2958 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2959 if (ret) {
2960 btrfs_abort_transaction(trans, ret);
2961 return ret;
2962 }
2963 }
2964
2965 ret = btrfs_record_squota_delta(trans->fs_info, delta);
2966 if (ret) {
2967 btrfs_abort_transaction(trans, ret);
2968 return ret;
2969 }
2970
2971 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2972 if (ret) {
2973 btrfs_abort_transaction(trans, ret);
2974 return ret;
2975 }
2976
2977 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2978 if (ret)
2979 btrfs_abort_transaction(trans, ret);
2980
2981 return ret;
2982 }
2983
2984 #define abort_and_dump(trans, path, fmt, args...) \
2985 ({ \
2986 btrfs_abort_transaction(trans, -EUCLEAN); \
2987 btrfs_print_leaf(path->nodes[0]); \
2988 btrfs_crit(trans->fs_info, fmt, ##args); \
2989 })
2990
2991 /*
2992 * Drop one or more refs of @node.
2993 *
2994 * 1. Locate the extent refs.
2995 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2996 * Locate it, then reduce the refs number or remove the ref line completely.
2997 *
2998 * 2. Update the refs count in EXTENT/METADATA_ITEM
2999 *
3000 * Inline backref case:
3001 *
3002 * in extent tree we have:
3003 *
3004 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3005 * refs 2 gen 6 flags DATA
3006 * extent data backref root FS_TREE objectid 258 offset 0 count 1
3007 * extent data backref root FS_TREE objectid 257 offset 0 count 1
3008 *
3009 * This function gets called with:
3010 *
3011 * node->bytenr = 13631488
3012 * node->num_bytes = 1048576
3013 * root_objectid = FS_TREE
3014 * owner_objectid = 257
3015 * owner_offset = 0
3016 * refs_to_drop = 1
3017 *
3018 * Then we should get some like:
3019 *
3020 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3021 * refs 1 gen 6 flags DATA
3022 * extent data backref root FS_TREE objectid 258 offset 0 count 1
3023 *
3024 * Keyed backref case:
3025 *
3026 * in extent tree we have:
3027 *
3028 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3029 * refs 754 gen 6 flags DATA
3030 * [...]
3031 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3032 * extent data backref root FS_TREE objectid 866 offset 0 count 1
3033 *
3034 * This function get called with:
3035 *
3036 * node->bytenr = 13631488
3037 * node->num_bytes = 1048576
3038 * root_objectid = FS_TREE
3039 * owner_objectid = 866
3040 * owner_offset = 0
3041 * refs_to_drop = 1
3042 *
3043 * Then we should get some like:
3044 *
3045 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3046 * refs 753 gen 6 flags DATA
3047 *
3048 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3049 */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)3050 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3051 struct btrfs_delayed_ref_head *href,
3052 struct btrfs_delayed_ref_node *node,
3053 struct btrfs_delayed_extent_op *extent_op)
3054 {
3055 struct btrfs_fs_info *info = trans->fs_info;
3056 struct btrfs_key key;
3057 struct btrfs_path *path;
3058 struct btrfs_root *extent_root;
3059 struct extent_buffer *leaf;
3060 struct btrfs_extent_item *ei;
3061 struct btrfs_extent_inline_ref *iref;
3062 int ret;
3063 int is_data;
3064 int extent_slot = 0;
3065 int found_extent = 0;
3066 int num_to_del = 1;
3067 int refs_to_drop = node->ref_mod;
3068 u32 item_size;
3069 u64 refs;
3070 u64 bytenr = node->bytenr;
3071 u64 num_bytes = node->num_bytes;
3072 u64 owner_objectid = btrfs_delayed_ref_owner(node);
3073 u64 owner_offset = btrfs_delayed_ref_offset(node);
3074 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3075 u64 delayed_ref_root = href->owning_root;
3076
3077 extent_root = btrfs_extent_root(info, bytenr);
3078 ASSERT(extent_root);
3079
3080 path = btrfs_alloc_path();
3081 if (!path)
3082 return -ENOMEM;
3083
3084 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3085
3086 if (!is_data && refs_to_drop != 1) {
3087 btrfs_crit(info,
3088 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3089 node->bytenr, refs_to_drop);
3090 ret = -EINVAL;
3091 btrfs_abort_transaction(trans, ret);
3092 goto out;
3093 }
3094
3095 if (is_data)
3096 skinny_metadata = false;
3097
3098 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3099 node->parent, node->ref_root, owner_objectid,
3100 owner_offset);
3101 if (ret == 0) {
3102 /*
3103 * Either the inline backref or the SHARED_DATA_REF/
3104 * SHARED_BLOCK_REF is found
3105 *
3106 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3107 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3108 */
3109 extent_slot = path->slots[0];
3110 while (extent_slot >= 0) {
3111 btrfs_item_key_to_cpu(path->nodes[0], &key,
3112 extent_slot);
3113 if (key.objectid != bytenr)
3114 break;
3115 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3116 key.offset == num_bytes) {
3117 found_extent = 1;
3118 break;
3119 }
3120 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3121 key.offset == owner_objectid) {
3122 found_extent = 1;
3123 break;
3124 }
3125
3126 /* Quick path didn't find the EXTENT/METADATA_ITEM */
3127 if (path->slots[0] - extent_slot > 5)
3128 break;
3129 extent_slot--;
3130 }
3131
3132 if (!found_extent) {
3133 if (iref) {
3134 abort_and_dump(trans, path,
3135 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3136 path->slots[0]);
3137 ret = -EUCLEAN;
3138 goto out;
3139 }
3140 /* Must be SHARED_* item, remove the backref first */
3141 ret = remove_extent_backref(trans, extent_root, path,
3142 NULL, refs_to_drop, is_data);
3143 if (ret) {
3144 btrfs_abort_transaction(trans, ret);
3145 goto out;
3146 }
3147 btrfs_release_path(path);
3148
3149 /* Slow path to locate EXTENT/METADATA_ITEM */
3150 key.objectid = bytenr;
3151 key.type = BTRFS_EXTENT_ITEM_KEY;
3152 key.offset = num_bytes;
3153
3154 if (!is_data && skinny_metadata) {
3155 key.type = BTRFS_METADATA_ITEM_KEY;
3156 key.offset = owner_objectid;
3157 }
3158
3159 ret = btrfs_search_slot(trans, extent_root,
3160 &key, path, -1, 1);
3161 if (ret > 0 && skinny_metadata && path->slots[0]) {
3162 /*
3163 * Couldn't find our skinny metadata item,
3164 * see if we have ye olde extent item.
3165 */
3166 path->slots[0]--;
3167 btrfs_item_key_to_cpu(path->nodes[0], &key,
3168 path->slots[0]);
3169 if (key.objectid == bytenr &&
3170 key.type == BTRFS_EXTENT_ITEM_KEY &&
3171 key.offset == num_bytes)
3172 ret = 0;
3173 }
3174
3175 if (ret > 0 && skinny_metadata) {
3176 skinny_metadata = false;
3177 key.objectid = bytenr;
3178 key.type = BTRFS_EXTENT_ITEM_KEY;
3179 key.offset = num_bytes;
3180 btrfs_release_path(path);
3181 ret = btrfs_search_slot(trans, extent_root,
3182 &key, path, -1, 1);
3183 }
3184
3185 if (ret) {
3186 if (ret > 0)
3187 btrfs_print_leaf(path->nodes[0]);
3188 btrfs_err(info,
3189 "umm, got %d back from search, was looking for %llu, slot %d",
3190 ret, bytenr, path->slots[0]);
3191 }
3192 if (ret < 0) {
3193 btrfs_abort_transaction(trans, ret);
3194 goto out;
3195 }
3196 extent_slot = path->slots[0];
3197 }
3198 } else if (WARN_ON(ret == -ENOENT)) {
3199 abort_and_dump(trans, path,
3200 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3201 bytenr, node->parent, node->ref_root, owner_objectid,
3202 owner_offset, path->slots[0]);
3203 goto out;
3204 } else {
3205 btrfs_abort_transaction(trans, ret);
3206 goto out;
3207 }
3208
3209 leaf = path->nodes[0];
3210 item_size = btrfs_item_size(leaf, extent_slot);
3211 if (unlikely(item_size < sizeof(*ei))) {
3212 ret = -EUCLEAN;
3213 btrfs_err(trans->fs_info,
3214 "unexpected extent item size, has %u expect >= %zu",
3215 item_size, sizeof(*ei));
3216 btrfs_abort_transaction(trans, ret);
3217 goto out;
3218 }
3219 ei = btrfs_item_ptr(leaf, extent_slot,
3220 struct btrfs_extent_item);
3221 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3222 key.type == BTRFS_EXTENT_ITEM_KEY) {
3223 struct btrfs_tree_block_info *bi;
3224
3225 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3226 abort_and_dump(trans, path,
3227 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3228 key.objectid, key.type, key.offset,
3229 path->slots[0], owner_objectid, item_size,
3230 sizeof(*ei) + sizeof(*bi));
3231 ret = -EUCLEAN;
3232 goto out;
3233 }
3234 bi = (struct btrfs_tree_block_info *)(ei + 1);
3235 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3236 }
3237
3238 refs = btrfs_extent_refs(leaf, ei);
3239 if (refs < refs_to_drop) {
3240 abort_and_dump(trans, path,
3241 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3242 refs_to_drop, refs, bytenr, path->slots[0]);
3243 ret = -EUCLEAN;
3244 goto out;
3245 }
3246 refs -= refs_to_drop;
3247
3248 if (refs > 0) {
3249 if (extent_op)
3250 __run_delayed_extent_op(extent_op, leaf, ei);
3251 /*
3252 * In the case of inline back ref, reference count will
3253 * be updated by remove_extent_backref
3254 */
3255 if (iref) {
3256 if (!found_extent) {
3257 abort_and_dump(trans, path,
3258 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3259 path->slots[0]);
3260 ret = -EUCLEAN;
3261 goto out;
3262 }
3263 } else {
3264 btrfs_set_extent_refs(leaf, ei, refs);
3265 }
3266 if (found_extent) {
3267 ret = remove_extent_backref(trans, extent_root, path,
3268 iref, refs_to_drop, is_data);
3269 if (ret) {
3270 btrfs_abort_transaction(trans, ret);
3271 goto out;
3272 }
3273 }
3274 } else {
3275 struct btrfs_squota_delta delta = {
3276 .root = delayed_ref_root,
3277 .num_bytes = num_bytes,
3278 .is_data = is_data,
3279 .is_inc = false,
3280 .generation = btrfs_extent_generation(leaf, ei),
3281 };
3282
3283 /* In this branch refs == 1 */
3284 if (found_extent) {
3285 if (is_data && refs_to_drop !=
3286 extent_data_ref_count(path, iref)) {
3287 abort_and_dump(trans, path,
3288 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3289 extent_data_ref_count(path, iref),
3290 refs_to_drop, path->slots[0]);
3291 ret = -EUCLEAN;
3292 goto out;
3293 }
3294 if (iref) {
3295 if (path->slots[0] != extent_slot) {
3296 abort_and_dump(trans, path,
3297 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3298 key.objectid, key.type,
3299 key.offset, path->slots[0]);
3300 ret = -EUCLEAN;
3301 goto out;
3302 }
3303 } else {
3304 /*
3305 * No inline ref, we must be at SHARED_* item,
3306 * And it's single ref, it must be:
3307 * | extent_slot ||extent_slot + 1|
3308 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3309 */
3310 if (path->slots[0] != extent_slot + 1) {
3311 abort_and_dump(trans, path,
3312 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3313 path->slots[0]);
3314 ret = -EUCLEAN;
3315 goto out;
3316 }
3317 path->slots[0] = extent_slot;
3318 num_to_del = 2;
3319 }
3320 }
3321 /*
3322 * We can't infer the data owner from the delayed ref, so we need
3323 * to try to get it from the owning ref item.
3324 *
3325 * If it is not present, then that extent was not written under
3326 * simple quotas mode, so we don't need to account for its deletion.
3327 */
3328 if (is_data)
3329 delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3330 leaf, extent_slot);
3331
3332 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3333 num_to_del);
3334 if (ret) {
3335 btrfs_abort_transaction(trans, ret);
3336 goto out;
3337 }
3338 btrfs_release_path(path);
3339
3340 ret = do_free_extent_accounting(trans, bytenr, &delta);
3341 }
3342 btrfs_release_path(path);
3343
3344 out:
3345 btrfs_free_path(path);
3346 return ret;
3347 }
3348
3349 /*
3350 * when we free an block, it is possible (and likely) that we free the last
3351 * delayed ref for that extent as well. This searches the delayed ref tree for
3352 * a given extent, and if there are no other delayed refs to be processed, it
3353 * removes it from the tree.
3354 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3355 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3356 u64 bytenr)
3357 {
3358 struct btrfs_fs_info *fs_info = trans->fs_info;
3359 struct btrfs_delayed_ref_head *head;
3360 struct btrfs_delayed_ref_root *delayed_refs;
3361 int ret = 0;
3362
3363 delayed_refs = &trans->transaction->delayed_refs;
3364 spin_lock(&delayed_refs->lock);
3365 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
3366 if (!head)
3367 goto out_delayed_unlock;
3368
3369 spin_lock(&head->lock);
3370 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3371 goto out;
3372
3373 if (cleanup_extent_op(head) != NULL)
3374 goto out;
3375
3376 /*
3377 * waiting for the lock here would deadlock. If someone else has it
3378 * locked they are already in the process of dropping it anyway
3379 */
3380 if (!mutex_trylock(&head->mutex))
3381 goto out;
3382
3383 btrfs_delete_ref_head(fs_info, delayed_refs, head);
3384 head->processing = false;
3385
3386 spin_unlock(&head->lock);
3387 spin_unlock(&delayed_refs->lock);
3388
3389 BUG_ON(head->extent_op);
3390 if (head->must_insert_reserved)
3391 ret = 1;
3392
3393 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
3394 mutex_unlock(&head->mutex);
3395 btrfs_put_delayed_ref_head(head);
3396 return ret;
3397 out:
3398 spin_unlock(&head->lock);
3399
3400 out_delayed_unlock:
3401 spin_unlock(&delayed_refs->lock);
3402 return 0;
3403 }
3404
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3405 int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3406 u64 root_id,
3407 struct extent_buffer *buf,
3408 u64 parent, int last_ref)
3409 {
3410 struct btrfs_fs_info *fs_info = trans->fs_info;
3411 struct btrfs_block_group *bg;
3412 int ret;
3413
3414 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3415 struct btrfs_ref generic_ref = {
3416 .action = BTRFS_DROP_DELAYED_REF,
3417 .bytenr = buf->start,
3418 .num_bytes = buf->len,
3419 .parent = parent,
3420 .owning_root = btrfs_header_owner(buf),
3421 .ref_root = root_id,
3422 };
3423
3424 /*
3425 * Assert that the extent buffer is not cleared due to
3426 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer
3427 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for
3428 * detail.
3429 */
3430 ASSERT(btrfs_header_bytenr(buf) != 0);
3431
3432 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false);
3433 btrfs_ref_tree_mod(fs_info, &generic_ref);
3434 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3435 if (ret < 0)
3436 return ret;
3437 }
3438
3439 if (!last_ref)
3440 return 0;
3441
3442 if (btrfs_header_generation(buf) != trans->transid)
3443 goto out;
3444
3445 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3446 ret = check_ref_cleanup(trans, buf->start);
3447 if (!ret)
3448 goto out;
3449 }
3450
3451 bg = btrfs_lookup_block_group(fs_info, buf->start);
3452
3453 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3454 pin_down_extent(trans, bg, buf->start, buf->len, 1);
3455 btrfs_put_block_group(bg);
3456 goto out;
3457 }
3458
3459 /*
3460 * If there are tree mod log users we may have recorded mod log
3461 * operations for this node. If we re-allocate this node we
3462 * could replay operations on this node that happened when it
3463 * existed in a completely different root. For example if it
3464 * was part of root A, then was reallocated to root B, and we
3465 * are doing a btrfs_old_search_slot(root b), we could replay
3466 * operations that happened when the block was part of root A,
3467 * giving us an inconsistent view of the btree.
3468 *
3469 * We are safe from races here because at this point no other
3470 * node or root points to this extent buffer, so if after this
3471 * check a new tree mod log user joins we will not have an
3472 * existing log of operations on this node that we have to
3473 * contend with.
3474 */
3475
3476 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3477 || btrfs_is_zoned(fs_info)) {
3478 pin_down_extent(trans, bg, buf->start, buf->len, 1);
3479 btrfs_put_block_group(bg);
3480 goto out;
3481 }
3482
3483 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3484
3485 btrfs_add_free_space(bg, buf->start, buf->len);
3486 btrfs_free_reserved_bytes(bg, buf->len, 0);
3487 btrfs_put_block_group(bg);
3488 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3489
3490 out:
3491
3492 /*
3493 * Deleting the buffer, clear the corrupt flag since it doesn't
3494 * matter anymore.
3495 */
3496 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3497 return 0;
3498 }
3499
3500 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3501 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3502 {
3503 struct btrfs_fs_info *fs_info = trans->fs_info;
3504 int ret;
3505
3506 if (btrfs_is_testing(fs_info))
3507 return 0;
3508
3509 /*
3510 * tree log blocks never actually go into the extent allocation
3511 * tree, just update pinning info and exit early.
3512 */
3513 if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) {
3514 btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1);
3515 ret = 0;
3516 } else if (ref->type == BTRFS_REF_METADATA) {
3517 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3518 } else {
3519 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3520 }
3521
3522 if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID)
3523 btrfs_ref_tree_mod(fs_info, ref);
3524
3525 return ret;
3526 }
3527
3528 enum btrfs_loop_type {
3529 /*
3530 * Start caching block groups but do not wait for progress or for them
3531 * to be done.
3532 */
3533 LOOP_CACHING_NOWAIT,
3534
3535 /*
3536 * Wait for the block group free_space >= the space we're waiting for if
3537 * the block group isn't cached.
3538 */
3539 LOOP_CACHING_WAIT,
3540
3541 /*
3542 * Allow allocations to happen from block groups that do not yet have a
3543 * size classification.
3544 */
3545 LOOP_UNSET_SIZE_CLASS,
3546
3547 /*
3548 * Allocate a chunk and then retry the allocation.
3549 */
3550 LOOP_ALLOC_CHUNK,
3551
3552 /*
3553 * Ignore the size class restrictions for this allocation.
3554 */
3555 LOOP_WRONG_SIZE_CLASS,
3556
3557 /*
3558 * Ignore the empty size, only try to allocate the number of bytes
3559 * needed for this allocation.
3560 */
3561 LOOP_NO_EMPTY_SIZE,
3562 };
3563
3564 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3565 btrfs_lock_block_group(struct btrfs_block_group *cache,
3566 int delalloc)
3567 {
3568 if (delalloc)
3569 down_read(&cache->data_rwsem);
3570 }
3571
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3572 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3573 int delalloc)
3574 {
3575 btrfs_get_block_group(cache);
3576 if (delalloc)
3577 down_read(&cache->data_rwsem);
3578 }
3579
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3580 static struct btrfs_block_group *btrfs_lock_cluster(
3581 struct btrfs_block_group *block_group,
3582 struct btrfs_free_cluster *cluster,
3583 int delalloc)
3584 __acquires(&cluster->refill_lock)
3585 {
3586 struct btrfs_block_group *used_bg = NULL;
3587
3588 spin_lock(&cluster->refill_lock);
3589 while (1) {
3590 used_bg = cluster->block_group;
3591 if (!used_bg)
3592 return NULL;
3593
3594 if (used_bg == block_group)
3595 return used_bg;
3596
3597 btrfs_get_block_group(used_bg);
3598
3599 if (!delalloc)
3600 return used_bg;
3601
3602 if (down_read_trylock(&used_bg->data_rwsem))
3603 return used_bg;
3604
3605 spin_unlock(&cluster->refill_lock);
3606
3607 /* We should only have one-level nested. */
3608 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3609
3610 spin_lock(&cluster->refill_lock);
3611 if (used_bg == cluster->block_group)
3612 return used_bg;
3613
3614 up_read(&used_bg->data_rwsem);
3615 btrfs_put_block_group(used_bg);
3616 }
3617 }
3618
3619 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3620 btrfs_release_block_group(struct btrfs_block_group *cache,
3621 int delalloc)
3622 {
3623 if (delalloc)
3624 up_read(&cache->data_rwsem);
3625 btrfs_put_block_group(cache);
3626 }
3627
3628 /*
3629 * Helper function for find_free_extent().
3630 *
3631 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3632 * Return >0 to inform caller that we find nothing
3633 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3634 */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3635 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3636 struct find_free_extent_ctl *ffe_ctl,
3637 struct btrfs_block_group **cluster_bg_ret)
3638 {
3639 struct btrfs_block_group *cluster_bg;
3640 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3641 u64 aligned_cluster;
3642 u64 offset;
3643 int ret;
3644
3645 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3646 if (!cluster_bg)
3647 goto refill_cluster;
3648 if (cluster_bg != bg && (cluster_bg->ro ||
3649 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3650 goto release_cluster;
3651
3652 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3653 ffe_ctl->num_bytes, cluster_bg->start,
3654 &ffe_ctl->max_extent_size);
3655 if (offset) {
3656 /* We have a block, we're done */
3657 spin_unlock(&last_ptr->refill_lock);
3658 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3659 *cluster_bg_ret = cluster_bg;
3660 ffe_ctl->found_offset = offset;
3661 return 0;
3662 }
3663 WARN_ON(last_ptr->block_group != cluster_bg);
3664
3665 release_cluster:
3666 /*
3667 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3668 * lets just skip it and let the allocator find whatever block it can
3669 * find. If we reach this point, we will have tried the cluster
3670 * allocator plenty of times and not have found anything, so we are
3671 * likely way too fragmented for the clustering stuff to find anything.
3672 *
3673 * However, if the cluster is taken from the current block group,
3674 * release the cluster first, so that we stand a better chance of
3675 * succeeding in the unclustered allocation.
3676 */
3677 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3678 spin_unlock(&last_ptr->refill_lock);
3679 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3680 return -ENOENT;
3681 }
3682
3683 /* This cluster didn't work out, free it and start over */
3684 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3685
3686 if (cluster_bg != bg)
3687 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3688
3689 refill_cluster:
3690 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3691 spin_unlock(&last_ptr->refill_lock);
3692 return -ENOENT;
3693 }
3694
3695 aligned_cluster = max_t(u64,
3696 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3697 bg->full_stripe_len);
3698 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3699 ffe_ctl->num_bytes, aligned_cluster);
3700 if (ret == 0) {
3701 /* Now pull our allocation out of this cluster */
3702 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3703 ffe_ctl->num_bytes, ffe_ctl->search_start,
3704 &ffe_ctl->max_extent_size);
3705 if (offset) {
3706 /* We found one, proceed */
3707 spin_unlock(&last_ptr->refill_lock);
3708 ffe_ctl->found_offset = offset;
3709 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3710 return 0;
3711 }
3712 }
3713 /*
3714 * At this point we either didn't find a cluster or we weren't able to
3715 * allocate a block from our cluster. Free the cluster we've been
3716 * trying to use, and go to the next block group.
3717 */
3718 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3719 spin_unlock(&last_ptr->refill_lock);
3720 return 1;
3721 }
3722
3723 /*
3724 * Return >0 to inform caller that we find nothing
3725 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3726 */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3727 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3728 struct find_free_extent_ctl *ffe_ctl)
3729 {
3730 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3731 u64 offset;
3732
3733 /*
3734 * We are doing an unclustered allocation, set the fragmented flag so
3735 * we don't bother trying to setup a cluster again until we get more
3736 * space.
3737 */
3738 if (unlikely(last_ptr)) {
3739 spin_lock(&last_ptr->lock);
3740 last_ptr->fragmented = 1;
3741 spin_unlock(&last_ptr->lock);
3742 }
3743 if (ffe_ctl->cached) {
3744 struct btrfs_free_space_ctl *free_space_ctl;
3745
3746 free_space_ctl = bg->free_space_ctl;
3747 spin_lock(&free_space_ctl->tree_lock);
3748 if (free_space_ctl->free_space <
3749 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3750 ffe_ctl->empty_size) {
3751 ffe_ctl->total_free_space = max_t(u64,
3752 ffe_ctl->total_free_space,
3753 free_space_ctl->free_space);
3754 spin_unlock(&free_space_ctl->tree_lock);
3755 return 1;
3756 }
3757 spin_unlock(&free_space_ctl->tree_lock);
3758 }
3759
3760 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3761 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3762 &ffe_ctl->max_extent_size);
3763 if (!offset)
3764 return 1;
3765 ffe_ctl->found_offset = offset;
3766 return 0;
3767 }
3768
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3769 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3770 struct find_free_extent_ctl *ffe_ctl,
3771 struct btrfs_block_group **bg_ret)
3772 {
3773 int ret;
3774
3775 /* We want to try and use the cluster allocator, so lets look there */
3776 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3777 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3778 if (ret >= 0)
3779 return ret;
3780 /* ret == -ENOENT case falls through */
3781 }
3782
3783 return find_free_extent_unclustered(block_group, ffe_ctl);
3784 }
3785
3786 /*
3787 * Tree-log block group locking
3788 * ============================
3789 *
3790 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3791 * indicates the starting address of a block group, which is reserved only
3792 * for tree-log metadata.
3793 *
3794 * Lock nesting
3795 * ============
3796 *
3797 * space_info::lock
3798 * block_group::lock
3799 * fs_info::treelog_bg_lock
3800 */
3801
3802 /*
3803 * Simple allocator for sequential-only block group. It only allows sequential
3804 * allocation. No need to play with trees. This function also reserves the
3805 * bytes as in btrfs_add_reserved_bytes.
3806 */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3807 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3808 struct find_free_extent_ctl *ffe_ctl,
3809 struct btrfs_block_group **bg_ret)
3810 {
3811 struct btrfs_fs_info *fs_info = block_group->fs_info;
3812 struct btrfs_space_info *space_info = block_group->space_info;
3813 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3814 u64 start = block_group->start;
3815 u64 num_bytes = ffe_ctl->num_bytes;
3816 u64 avail;
3817 u64 bytenr = block_group->start;
3818 u64 log_bytenr;
3819 u64 data_reloc_bytenr;
3820 int ret = 0;
3821 bool skip = false;
3822
3823 ASSERT(btrfs_is_zoned(block_group->fs_info));
3824
3825 /*
3826 * Do not allow non-tree-log blocks in the dedicated tree-log block
3827 * group, and vice versa.
3828 */
3829 spin_lock(&fs_info->treelog_bg_lock);
3830 log_bytenr = fs_info->treelog_bg;
3831 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3832 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3833 skip = true;
3834 spin_unlock(&fs_info->treelog_bg_lock);
3835 if (skip)
3836 return 1;
3837
3838 /*
3839 * Do not allow non-relocation blocks in the dedicated relocation block
3840 * group, and vice versa.
3841 */
3842 spin_lock(&fs_info->relocation_bg_lock);
3843 data_reloc_bytenr = fs_info->data_reloc_bg;
3844 if (data_reloc_bytenr &&
3845 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3846 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3847 skip = true;
3848 spin_unlock(&fs_info->relocation_bg_lock);
3849 if (skip)
3850 return 1;
3851
3852 /* Check RO and no space case before trying to activate it */
3853 spin_lock(&block_group->lock);
3854 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3855 ret = 1;
3856 /*
3857 * May need to clear fs_info->{treelog,data_reloc}_bg.
3858 * Return the error after taking the locks.
3859 */
3860 }
3861 spin_unlock(&block_group->lock);
3862
3863 /* Metadata block group is activated at write time. */
3864 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3865 !btrfs_zone_activate(block_group)) {
3866 ret = 1;
3867 /*
3868 * May need to clear fs_info->{treelog,data_reloc}_bg.
3869 * Return the error after taking the locks.
3870 */
3871 }
3872
3873 spin_lock(&space_info->lock);
3874 spin_lock(&block_group->lock);
3875 spin_lock(&fs_info->treelog_bg_lock);
3876 spin_lock(&fs_info->relocation_bg_lock);
3877
3878 if (ret)
3879 goto out;
3880
3881 ASSERT(!ffe_ctl->for_treelog ||
3882 block_group->start == fs_info->treelog_bg ||
3883 fs_info->treelog_bg == 0);
3884 ASSERT(!ffe_ctl->for_data_reloc ||
3885 block_group->start == fs_info->data_reloc_bg ||
3886 fs_info->data_reloc_bg == 0);
3887
3888 if (block_group->ro ||
3889 (!ffe_ctl->for_data_reloc &&
3890 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3891 ret = 1;
3892 goto out;
3893 }
3894
3895 /*
3896 * Do not allow currently using block group to be tree-log dedicated
3897 * block group.
3898 */
3899 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3900 (block_group->used || block_group->reserved)) {
3901 ret = 1;
3902 goto out;
3903 }
3904
3905 /*
3906 * Do not allow currently used block group to be the data relocation
3907 * dedicated block group.
3908 */
3909 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3910 (block_group->used || block_group->reserved)) {
3911 ret = 1;
3912 goto out;
3913 }
3914
3915 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3916 avail = block_group->zone_capacity - block_group->alloc_offset;
3917 if (avail < num_bytes) {
3918 if (ffe_ctl->max_extent_size < avail) {
3919 /*
3920 * With sequential allocator, free space is always
3921 * contiguous
3922 */
3923 ffe_ctl->max_extent_size = avail;
3924 ffe_ctl->total_free_space = avail;
3925 }
3926 ret = 1;
3927 goto out;
3928 }
3929
3930 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3931 fs_info->treelog_bg = block_group->start;
3932
3933 if (ffe_ctl->for_data_reloc) {
3934 if (!fs_info->data_reloc_bg)
3935 fs_info->data_reloc_bg = block_group->start;
3936 /*
3937 * Do not allow allocations from this block group, unless it is
3938 * for data relocation. Compared to increasing the ->ro, setting
3939 * the ->zoned_data_reloc_ongoing flag still allows nocow
3940 * writers to come in. See btrfs_inc_nocow_writers().
3941 *
3942 * We need to disable an allocation to avoid an allocation of
3943 * regular (non-relocation data) extent. With mix of relocation
3944 * extents and regular extents, we can dispatch WRITE commands
3945 * (for relocation extents) and ZONE APPEND commands (for
3946 * regular extents) at the same time to the same zone, which
3947 * easily break the write pointer.
3948 *
3949 * Also, this flag avoids this block group to be zone finished.
3950 */
3951 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3952 }
3953
3954 ffe_ctl->found_offset = start + block_group->alloc_offset;
3955 block_group->alloc_offset += num_bytes;
3956 spin_lock(&ctl->tree_lock);
3957 ctl->free_space -= num_bytes;
3958 spin_unlock(&ctl->tree_lock);
3959
3960 /*
3961 * We do not check if found_offset is aligned to stripesize. The
3962 * address is anyway rewritten when using zone append writing.
3963 */
3964
3965 ffe_ctl->search_start = ffe_ctl->found_offset;
3966
3967 out:
3968 if (ret && ffe_ctl->for_treelog)
3969 fs_info->treelog_bg = 0;
3970 if (ret && ffe_ctl->for_data_reloc)
3971 fs_info->data_reloc_bg = 0;
3972 spin_unlock(&fs_info->relocation_bg_lock);
3973 spin_unlock(&fs_info->treelog_bg_lock);
3974 spin_unlock(&block_group->lock);
3975 spin_unlock(&space_info->lock);
3976 return ret;
3977 }
3978
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3979 static int do_allocation(struct btrfs_block_group *block_group,
3980 struct find_free_extent_ctl *ffe_ctl,
3981 struct btrfs_block_group **bg_ret)
3982 {
3983 switch (ffe_ctl->policy) {
3984 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3985 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3986 case BTRFS_EXTENT_ALLOC_ZONED:
3987 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3988 default:
3989 BUG();
3990 }
3991 }
3992
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3993 static void release_block_group(struct btrfs_block_group *block_group,
3994 struct find_free_extent_ctl *ffe_ctl,
3995 int delalloc)
3996 {
3997 switch (ffe_ctl->policy) {
3998 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3999 ffe_ctl->retry_uncached = false;
4000 break;
4001 case BTRFS_EXTENT_ALLOC_ZONED:
4002 /* Nothing to do */
4003 break;
4004 default:
4005 BUG();
4006 }
4007
4008 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4009 ffe_ctl->index);
4010 btrfs_release_block_group(block_group, delalloc);
4011 }
4012
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)4013 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4014 struct btrfs_key *ins)
4015 {
4016 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4017
4018 if (!ffe_ctl->use_cluster && last_ptr) {
4019 spin_lock(&last_ptr->lock);
4020 last_ptr->window_start = ins->objectid;
4021 spin_unlock(&last_ptr->lock);
4022 }
4023 }
4024
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)4025 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4026 struct btrfs_key *ins)
4027 {
4028 switch (ffe_ctl->policy) {
4029 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4030 found_extent_clustered(ffe_ctl, ins);
4031 break;
4032 case BTRFS_EXTENT_ALLOC_ZONED:
4033 /* Nothing to do */
4034 break;
4035 default:
4036 BUG();
4037 }
4038 }
4039
can_allocate_chunk_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4040 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4041 struct find_free_extent_ctl *ffe_ctl)
4042 {
4043 /* Block group's activeness is not a requirement for METADATA block groups. */
4044 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4045 return 0;
4046
4047 /* If we can activate new zone, just allocate a chunk and use it */
4048 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4049 return 0;
4050
4051 /*
4052 * We already reached the max active zones. Try to finish one block
4053 * group to make a room for a new block group. This is only possible
4054 * for a data block group because btrfs_zone_finish() may need to wait
4055 * for a running transaction which can cause a deadlock for metadata
4056 * allocation.
4057 */
4058 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4059 int ret = btrfs_zone_finish_one_bg(fs_info);
4060
4061 if (ret == 1)
4062 return 0;
4063 else if (ret < 0)
4064 return ret;
4065 }
4066
4067 /*
4068 * If we have enough free space left in an already active block group
4069 * and we can't activate any other zone now, do not allow allocating a
4070 * new chunk and let find_free_extent() retry with a smaller size.
4071 */
4072 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4073 return -ENOSPC;
4074
4075 /*
4076 * Even min_alloc_size is not left in any block groups. Since we cannot
4077 * activate a new block group, allocating it may not help. Let's tell a
4078 * caller to try again and hope it progress something by writing some
4079 * parts of the region. That is only possible for data block groups,
4080 * where a part of the region can be written.
4081 */
4082 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4083 return -EAGAIN;
4084
4085 /*
4086 * We cannot activate a new block group and no enough space left in any
4087 * block groups. So, allocating a new block group may not help. But,
4088 * there is nothing to do anyway, so let's go with it.
4089 */
4090 return 0;
4091 }
4092
can_allocate_chunk(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4093 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4094 struct find_free_extent_ctl *ffe_ctl)
4095 {
4096 switch (ffe_ctl->policy) {
4097 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4098 return 0;
4099 case BTRFS_EXTENT_ALLOC_ZONED:
4100 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4101 default:
4102 BUG();
4103 }
4104 }
4105
4106 /*
4107 * Return >0 means caller needs to re-search for free extent
4108 * Return 0 means we have the needed free extent.
4109 * Return <0 means we failed to locate any free extent.
4110 */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)4111 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4112 struct btrfs_key *ins,
4113 struct find_free_extent_ctl *ffe_ctl,
4114 bool full_search)
4115 {
4116 struct btrfs_root *root = fs_info->chunk_root;
4117 int ret;
4118
4119 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4120 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4121 ffe_ctl->orig_have_caching_bg = true;
4122
4123 if (ins->objectid) {
4124 found_extent(ffe_ctl, ins);
4125 return 0;
4126 }
4127
4128 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4129 return 1;
4130
4131 ffe_ctl->index++;
4132 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4133 return 1;
4134
4135 /* See the comments for btrfs_loop_type for an explanation of the phases. */
4136 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4137 ffe_ctl->index = 0;
4138 /*
4139 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4140 * any uncached bgs and we've already done a full search
4141 * through.
4142 */
4143 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4144 (!ffe_ctl->orig_have_caching_bg && full_search))
4145 ffe_ctl->loop++;
4146 ffe_ctl->loop++;
4147
4148 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4149 struct btrfs_trans_handle *trans;
4150 int exist = 0;
4151
4152 /* Check if allocation policy allows to create a new chunk */
4153 ret = can_allocate_chunk(fs_info, ffe_ctl);
4154 if (ret)
4155 return ret;
4156
4157 trans = current->journal_info;
4158 if (trans)
4159 exist = 1;
4160 else
4161 trans = btrfs_join_transaction(root);
4162
4163 if (IS_ERR(trans)) {
4164 ret = PTR_ERR(trans);
4165 return ret;
4166 }
4167
4168 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4169 CHUNK_ALLOC_FORCE_FOR_EXTENT);
4170
4171 /* Do not bail out on ENOSPC since we can do more. */
4172 if (ret == -ENOSPC) {
4173 ret = 0;
4174 ffe_ctl->loop++;
4175 }
4176 else if (ret < 0)
4177 btrfs_abort_transaction(trans, ret);
4178 else
4179 ret = 0;
4180 if (!exist)
4181 btrfs_end_transaction(trans);
4182 if (ret)
4183 return ret;
4184 }
4185
4186 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4187 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4188 return -ENOSPC;
4189
4190 /*
4191 * Don't loop again if we already have no empty_size and
4192 * no empty_cluster.
4193 */
4194 if (ffe_ctl->empty_size == 0 &&
4195 ffe_ctl->empty_cluster == 0)
4196 return -ENOSPC;
4197 ffe_ctl->empty_size = 0;
4198 ffe_ctl->empty_cluster = 0;
4199 }
4200 return 1;
4201 }
4202 return -ENOSPC;
4203 }
4204
find_free_extent_check_size_class(struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group * bg)4205 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4206 struct btrfs_block_group *bg)
4207 {
4208 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4209 return true;
4210 if (!btrfs_block_group_should_use_size_class(bg))
4211 return true;
4212 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4213 return true;
4214 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4215 bg->size_class == BTRFS_BG_SZ_NONE)
4216 return true;
4217 return ffe_ctl->size_class == bg->size_class;
4218 }
4219
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4220 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4221 struct find_free_extent_ctl *ffe_ctl,
4222 struct btrfs_space_info *space_info,
4223 struct btrfs_key *ins)
4224 {
4225 /*
4226 * If our free space is heavily fragmented we may not be able to make
4227 * big contiguous allocations, so instead of doing the expensive search
4228 * for free space, simply return ENOSPC with our max_extent_size so we
4229 * can go ahead and search for a more manageable chunk.
4230 *
4231 * If our max_extent_size is large enough for our allocation simply
4232 * disable clustering since we will likely not be able to find enough
4233 * space to create a cluster and induce latency trying.
4234 */
4235 if (space_info->max_extent_size) {
4236 spin_lock(&space_info->lock);
4237 if (space_info->max_extent_size &&
4238 ffe_ctl->num_bytes > space_info->max_extent_size) {
4239 ins->offset = space_info->max_extent_size;
4240 spin_unlock(&space_info->lock);
4241 return -ENOSPC;
4242 } else if (space_info->max_extent_size) {
4243 ffe_ctl->use_cluster = false;
4244 }
4245 spin_unlock(&space_info->lock);
4246 }
4247
4248 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4249 &ffe_ctl->empty_cluster);
4250 if (ffe_ctl->last_ptr) {
4251 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4252
4253 spin_lock(&last_ptr->lock);
4254 if (last_ptr->block_group)
4255 ffe_ctl->hint_byte = last_ptr->window_start;
4256 if (last_ptr->fragmented) {
4257 /*
4258 * We still set window_start so we can keep track of the
4259 * last place we found an allocation to try and save
4260 * some time.
4261 */
4262 ffe_ctl->hint_byte = last_ptr->window_start;
4263 ffe_ctl->use_cluster = false;
4264 }
4265 spin_unlock(&last_ptr->lock);
4266 }
4267
4268 return 0;
4269 }
4270
prepare_allocation_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4271 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4272 struct find_free_extent_ctl *ffe_ctl)
4273 {
4274 if (ffe_ctl->for_treelog) {
4275 spin_lock(&fs_info->treelog_bg_lock);
4276 if (fs_info->treelog_bg)
4277 ffe_ctl->hint_byte = fs_info->treelog_bg;
4278 spin_unlock(&fs_info->treelog_bg_lock);
4279 } else if (ffe_ctl->for_data_reloc) {
4280 spin_lock(&fs_info->relocation_bg_lock);
4281 if (fs_info->data_reloc_bg)
4282 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4283 spin_unlock(&fs_info->relocation_bg_lock);
4284 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4285 struct btrfs_block_group *block_group;
4286
4287 spin_lock(&fs_info->zone_active_bgs_lock);
4288 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4289 /*
4290 * No lock is OK here because avail is monotinically
4291 * decreasing, and this is just a hint.
4292 */
4293 u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4294
4295 if (block_group_bits(block_group, ffe_ctl->flags) &&
4296 avail >= ffe_ctl->num_bytes) {
4297 ffe_ctl->hint_byte = block_group->start;
4298 break;
4299 }
4300 }
4301 spin_unlock(&fs_info->zone_active_bgs_lock);
4302 }
4303
4304 return 0;
4305 }
4306
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4307 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4308 struct find_free_extent_ctl *ffe_ctl,
4309 struct btrfs_space_info *space_info,
4310 struct btrfs_key *ins)
4311 {
4312 switch (ffe_ctl->policy) {
4313 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4314 return prepare_allocation_clustered(fs_info, ffe_ctl,
4315 space_info, ins);
4316 case BTRFS_EXTENT_ALLOC_ZONED:
4317 return prepare_allocation_zoned(fs_info, ffe_ctl);
4318 default:
4319 BUG();
4320 }
4321 }
4322
4323 /*
4324 * walks the btree of allocated extents and find a hole of a given size.
4325 * The key ins is changed to record the hole:
4326 * ins->objectid == start position
4327 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4328 * ins->offset == the size of the hole.
4329 * Any available blocks before search_start are skipped.
4330 *
4331 * If there is no suitable free space, we will record the max size of
4332 * the free space extent currently.
4333 *
4334 * The overall logic and call chain:
4335 *
4336 * find_free_extent()
4337 * |- Iterate through all block groups
4338 * | |- Get a valid block group
4339 * | |- Try to do clustered allocation in that block group
4340 * | |- Try to do unclustered allocation in that block group
4341 * | |- Check if the result is valid
4342 * | | |- If valid, then exit
4343 * | |- Jump to next block group
4344 * |
4345 * |- Push harder to find free extents
4346 * |- If not found, re-iterate all block groups
4347 */
find_free_extent(struct btrfs_root * root,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl)4348 static noinline int find_free_extent(struct btrfs_root *root,
4349 struct btrfs_key *ins,
4350 struct find_free_extent_ctl *ffe_ctl)
4351 {
4352 struct btrfs_fs_info *fs_info = root->fs_info;
4353 int ret = 0;
4354 int cache_block_group_error = 0;
4355 struct btrfs_block_group *block_group = NULL;
4356 struct btrfs_space_info *space_info;
4357 bool full_search = false;
4358
4359 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4360
4361 ffe_ctl->search_start = 0;
4362 /* For clustered allocation */
4363 ffe_ctl->empty_cluster = 0;
4364 ffe_ctl->last_ptr = NULL;
4365 ffe_ctl->use_cluster = true;
4366 ffe_ctl->have_caching_bg = false;
4367 ffe_ctl->orig_have_caching_bg = false;
4368 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4369 ffe_ctl->loop = 0;
4370 ffe_ctl->retry_uncached = false;
4371 ffe_ctl->cached = 0;
4372 ffe_ctl->max_extent_size = 0;
4373 ffe_ctl->total_free_space = 0;
4374 ffe_ctl->found_offset = 0;
4375 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4376 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4377
4378 if (btrfs_is_zoned(fs_info))
4379 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4380
4381 ins->type = BTRFS_EXTENT_ITEM_KEY;
4382 ins->objectid = 0;
4383 ins->offset = 0;
4384
4385 trace_find_free_extent(root, ffe_ctl);
4386
4387 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4388 if (!space_info) {
4389 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4390 return -ENOSPC;
4391 }
4392
4393 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4394 if (ret < 0)
4395 return ret;
4396
4397 ffe_ctl->search_start = max(ffe_ctl->search_start,
4398 first_logical_byte(fs_info));
4399 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4400 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4401 block_group = btrfs_lookup_block_group(fs_info,
4402 ffe_ctl->search_start);
4403 /*
4404 * we don't want to use the block group if it doesn't match our
4405 * allocation bits, or if its not cached.
4406 *
4407 * However if we are re-searching with an ideal block group
4408 * picked out then we don't care that the block group is cached.
4409 */
4410 if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4411 block_group->cached != BTRFS_CACHE_NO) {
4412 down_read(&space_info->groups_sem);
4413 if (list_empty(&block_group->list) ||
4414 block_group->ro) {
4415 /*
4416 * someone is removing this block group,
4417 * we can't jump into the have_block_group
4418 * target because our list pointers are not
4419 * valid
4420 */
4421 btrfs_put_block_group(block_group);
4422 up_read(&space_info->groups_sem);
4423 } else {
4424 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4425 block_group->flags);
4426 btrfs_lock_block_group(block_group,
4427 ffe_ctl->delalloc);
4428 ffe_ctl->hinted = true;
4429 goto have_block_group;
4430 }
4431 } else if (block_group) {
4432 btrfs_put_block_group(block_group);
4433 }
4434 }
4435 search:
4436 trace_find_free_extent_search_loop(root, ffe_ctl);
4437 ffe_ctl->have_caching_bg = false;
4438 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4439 ffe_ctl->index == 0)
4440 full_search = true;
4441 down_read(&space_info->groups_sem);
4442 list_for_each_entry(block_group,
4443 &space_info->block_groups[ffe_ctl->index], list) {
4444 struct btrfs_block_group *bg_ret;
4445
4446 ffe_ctl->hinted = false;
4447 /* If the block group is read-only, we can skip it entirely. */
4448 if (unlikely(block_group->ro)) {
4449 if (ffe_ctl->for_treelog)
4450 btrfs_clear_treelog_bg(block_group);
4451 if (ffe_ctl->for_data_reloc)
4452 btrfs_clear_data_reloc_bg(block_group);
4453 continue;
4454 }
4455
4456 btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4457 ffe_ctl->search_start = block_group->start;
4458
4459 /*
4460 * this can happen if we end up cycling through all the
4461 * raid types, but we want to make sure we only allocate
4462 * for the proper type.
4463 */
4464 if (!block_group_bits(block_group, ffe_ctl->flags)) {
4465 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4466 BTRFS_BLOCK_GROUP_RAID1_MASK |
4467 BTRFS_BLOCK_GROUP_RAID56_MASK |
4468 BTRFS_BLOCK_GROUP_RAID10;
4469
4470 /*
4471 * if they asked for extra copies and this block group
4472 * doesn't provide them, bail. This does allow us to
4473 * fill raid0 from raid1.
4474 */
4475 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4476 goto loop;
4477
4478 /*
4479 * This block group has different flags than we want.
4480 * It's possible that we have MIXED_GROUP flag but no
4481 * block group is mixed. Just skip such block group.
4482 */
4483 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4484 continue;
4485 }
4486
4487 have_block_group:
4488 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4489 ffe_ctl->cached = btrfs_block_group_done(block_group);
4490 if (unlikely(!ffe_ctl->cached)) {
4491 ffe_ctl->have_caching_bg = true;
4492 ret = btrfs_cache_block_group(block_group, false);
4493
4494 /*
4495 * If we get ENOMEM here or something else we want to
4496 * try other block groups, because it may not be fatal.
4497 * However if we can't find anything else we need to
4498 * save our return here so that we return the actual
4499 * error that caused problems, not ENOSPC.
4500 */
4501 if (ret < 0) {
4502 if (!cache_block_group_error)
4503 cache_block_group_error = ret;
4504 ret = 0;
4505 goto loop;
4506 }
4507 ret = 0;
4508 }
4509
4510 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4511 if (!cache_block_group_error)
4512 cache_block_group_error = -EIO;
4513 goto loop;
4514 }
4515
4516 if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4517 goto loop;
4518
4519 bg_ret = NULL;
4520 ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4521 if (ret > 0)
4522 goto loop;
4523
4524 if (bg_ret && bg_ret != block_group) {
4525 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4526 block_group = bg_ret;
4527 }
4528
4529 /* Checks */
4530 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4531 fs_info->stripesize);
4532
4533 /* move on to the next group */
4534 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4535 block_group->start + block_group->length) {
4536 btrfs_add_free_space_unused(block_group,
4537 ffe_ctl->found_offset,
4538 ffe_ctl->num_bytes);
4539 goto loop;
4540 }
4541
4542 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4543 btrfs_add_free_space_unused(block_group,
4544 ffe_ctl->found_offset,
4545 ffe_ctl->search_start - ffe_ctl->found_offset);
4546
4547 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4548 ffe_ctl->num_bytes,
4549 ffe_ctl->delalloc,
4550 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4551 if (ret == -EAGAIN) {
4552 btrfs_add_free_space_unused(block_group,
4553 ffe_ctl->found_offset,
4554 ffe_ctl->num_bytes);
4555 goto loop;
4556 }
4557 btrfs_inc_block_group_reservations(block_group);
4558
4559 /* we are all good, lets return */
4560 ins->objectid = ffe_ctl->search_start;
4561 ins->offset = ffe_ctl->num_bytes;
4562
4563 trace_btrfs_reserve_extent(block_group, ffe_ctl);
4564 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4565 break;
4566 loop:
4567 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4568 !ffe_ctl->retry_uncached) {
4569 ffe_ctl->retry_uncached = true;
4570 btrfs_wait_block_group_cache_progress(block_group,
4571 ffe_ctl->num_bytes +
4572 ffe_ctl->empty_cluster +
4573 ffe_ctl->empty_size);
4574 goto have_block_group;
4575 }
4576 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4577 cond_resched();
4578 }
4579 up_read(&space_info->groups_sem);
4580
4581 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4582 if (ret > 0)
4583 goto search;
4584
4585 if (ret == -ENOSPC && !cache_block_group_error) {
4586 /*
4587 * Use ffe_ctl->total_free_space as fallback if we can't find
4588 * any contiguous hole.
4589 */
4590 if (!ffe_ctl->max_extent_size)
4591 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4592 spin_lock(&space_info->lock);
4593 space_info->max_extent_size = ffe_ctl->max_extent_size;
4594 spin_unlock(&space_info->lock);
4595 ins->offset = ffe_ctl->max_extent_size;
4596 } else if (ret == -ENOSPC) {
4597 ret = cache_block_group_error;
4598 }
4599 return ret;
4600 }
4601
4602 /*
4603 * Entry point to the extent allocator. Tries to find a hole that is at least
4604 * as big as @num_bytes.
4605 *
4606 * @root - The root that will contain this extent
4607 *
4608 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4609 * is used for accounting purposes. This value differs
4610 * from @num_bytes only in the case of compressed extents.
4611 *
4612 * @num_bytes - Number of bytes to allocate on-disk.
4613 *
4614 * @min_alloc_size - Indicates the minimum amount of space that the
4615 * allocator should try to satisfy. In some cases
4616 * @num_bytes may be larger than what is required and if
4617 * the filesystem is fragmented then allocation fails.
4618 * However, the presence of @min_alloc_size gives a
4619 * chance to try and satisfy the smaller allocation.
4620 *
4621 * @empty_size - A hint that you plan on doing more COW. This is the
4622 * size in bytes the allocator should try to find free
4623 * next to the block it returns. This is just a hint and
4624 * may be ignored by the allocator.
4625 *
4626 * @hint_byte - Hint to the allocator to start searching above the byte
4627 * address passed. It might be ignored.
4628 *
4629 * @ins - This key is modified to record the found hole. It will
4630 * have the following values:
4631 * ins->objectid == start position
4632 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4633 * ins->offset == the size of the hole.
4634 *
4635 * @is_data - Boolean flag indicating whether an extent is
4636 * allocated for data (true) or metadata (false)
4637 *
4638 * @delalloc - Boolean flag indicating whether this allocation is for
4639 * delalloc or not. If 'true' data_rwsem of block groups
4640 * is going to be acquired.
4641 *
4642 *
4643 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4644 * case -ENOSPC is returned then @ins->offset will contain the size of the
4645 * largest available hole the allocator managed to find.
4646 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4647 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4648 u64 num_bytes, u64 min_alloc_size,
4649 u64 empty_size, u64 hint_byte,
4650 struct btrfs_key *ins, int is_data, int delalloc)
4651 {
4652 struct btrfs_fs_info *fs_info = root->fs_info;
4653 struct find_free_extent_ctl ffe_ctl = {};
4654 bool final_tried = num_bytes == min_alloc_size;
4655 u64 flags;
4656 int ret;
4657 bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
4658 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4659
4660 flags = get_alloc_profile_by_root(root, is_data);
4661 again:
4662 WARN_ON(num_bytes < fs_info->sectorsize);
4663
4664 ffe_ctl.ram_bytes = ram_bytes;
4665 ffe_ctl.num_bytes = num_bytes;
4666 ffe_ctl.min_alloc_size = min_alloc_size;
4667 ffe_ctl.empty_size = empty_size;
4668 ffe_ctl.flags = flags;
4669 ffe_ctl.delalloc = delalloc;
4670 ffe_ctl.hint_byte = hint_byte;
4671 ffe_ctl.for_treelog = for_treelog;
4672 ffe_ctl.for_data_reloc = for_data_reloc;
4673
4674 ret = find_free_extent(root, ins, &ffe_ctl);
4675 if (!ret && !is_data) {
4676 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4677 } else if (ret == -ENOSPC) {
4678 if (!final_tried && ins->offset) {
4679 num_bytes = min(num_bytes >> 1, ins->offset);
4680 num_bytes = round_down(num_bytes,
4681 fs_info->sectorsize);
4682 num_bytes = max(num_bytes, min_alloc_size);
4683 ram_bytes = num_bytes;
4684 if (num_bytes == min_alloc_size)
4685 final_tried = true;
4686 goto again;
4687 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4688 struct btrfs_space_info *sinfo;
4689
4690 sinfo = btrfs_find_space_info(fs_info, flags);
4691 btrfs_err(fs_info,
4692 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4693 flags, num_bytes, for_treelog, for_data_reloc);
4694 if (sinfo)
4695 btrfs_dump_space_info(fs_info, sinfo,
4696 num_bytes, 1);
4697 }
4698 }
4699
4700 return ret;
4701 }
4702
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4703 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4704 u64 start, u64 len, int delalloc)
4705 {
4706 struct btrfs_block_group *cache;
4707
4708 cache = btrfs_lookup_block_group(fs_info, start);
4709 if (!cache) {
4710 btrfs_err(fs_info, "Unable to find block group for %llu",
4711 start);
4712 return -ENOSPC;
4713 }
4714
4715 btrfs_add_free_space(cache, start, len);
4716 btrfs_free_reserved_bytes(cache, len, delalloc);
4717 trace_btrfs_reserved_extent_free(fs_info, start, len);
4718
4719 btrfs_put_block_group(cache);
4720 return 0;
4721 }
4722
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,const struct extent_buffer * eb)4723 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4724 const struct extent_buffer *eb)
4725 {
4726 struct btrfs_block_group *cache;
4727 int ret = 0;
4728
4729 cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4730 if (!cache) {
4731 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4732 eb->start);
4733 return -ENOSPC;
4734 }
4735
4736 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4737 btrfs_put_block_group(cache);
4738 return ret;
4739 }
4740
alloc_reserved_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)4741 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4742 u64 num_bytes)
4743 {
4744 struct btrfs_fs_info *fs_info = trans->fs_info;
4745 int ret;
4746
4747 ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4748 if (ret)
4749 return ret;
4750
4751 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4752 if (ret) {
4753 ASSERT(!ret);
4754 btrfs_err(fs_info, "update block group failed for %llu %llu",
4755 bytenr, num_bytes);
4756 return ret;
4757 }
4758
4759 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4760 return 0;
4761 }
4762
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod,u64 oref_root)4763 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4764 u64 parent, u64 root_objectid,
4765 u64 flags, u64 owner, u64 offset,
4766 struct btrfs_key *ins, int ref_mod, u64 oref_root)
4767 {
4768 struct btrfs_fs_info *fs_info = trans->fs_info;
4769 struct btrfs_root *extent_root;
4770 int ret;
4771 struct btrfs_extent_item *extent_item;
4772 struct btrfs_extent_owner_ref *oref;
4773 struct btrfs_extent_inline_ref *iref;
4774 struct btrfs_path *path;
4775 struct extent_buffer *leaf;
4776 int type;
4777 u32 size;
4778 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4779
4780 if (parent > 0)
4781 type = BTRFS_SHARED_DATA_REF_KEY;
4782 else
4783 type = BTRFS_EXTENT_DATA_REF_KEY;
4784
4785 size = sizeof(*extent_item);
4786 if (simple_quota)
4787 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4788 size += btrfs_extent_inline_ref_size(type);
4789
4790 path = btrfs_alloc_path();
4791 if (!path)
4792 return -ENOMEM;
4793
4794 extent_root = btrfs_extent_root(fs_info, ins->objectid);
4795 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4796 if (ret) {
4797 btrfs_free_path(path);
4798 return ret;
4799 }
4800
4801 leaf = path->nodes[0];
4802 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4803 struct btrfs_extent_item);
4804 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4805 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4806 btrfs_set_extent_flags(leaf, extent_item,
4807 flags | BTRFS_EXTENT_FLAG_DATA);
4808
4809 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4810 if (simple_quota) {
4811 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4812 oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4813 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4814 iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4815 }
4816 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4817
4818 if (parent > 0) {
4819 struct btrfs_shared_data_ref *ref;
4820 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4821 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4822 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4823 } else {
4824 struct btrfs_extent_data_ref *ref;
4825 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4826 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4827 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4828 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4829 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4830 }
4831
4832 btrfs_free_path(path);
4833
4834 return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4835 }
4836
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4837 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4838 struct btrfs_delayed_ref_node *node,
4839 struct btrfs_delayed_extent_op *extent_op)
4840 {
4841 struct btrfs_fs_info *fs_info = trans->fs_info;
4842 struct btrfs_root *extent_root;
4843 int ret;
4844 struct btrfs_extent_item *extent_item;
4845 struct btrfs_key extent_key;
4846 struct btrfs_tree_block_info *block_info;
4847 struct btrfs_extent_inline_ref *iref;
4848 struct btrfs_path *path;
4849 struct extent_buffer *leaf;
4850 u32 size = sizeof(*extent_item) + sizeof(*iref);
4851 const u64 flags = (extent_op ? extent_op->flags_to_set : 0);
4852 /* The owner of a tree block is the level. */
4853 int level = btrfs_delayed_ref_owner(node);
4854 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4855
4856 extent_key.objectid = node->bytenr;
4857 if (skinny_metadata) {
4858 /* The owner of a tree block is the level. */
4859 extent_key.offset = level;
4860 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4861 } else {
4862 extent_key.offset = node->num_bytes;
4863 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4864 size += sizeof(*block_info);
4865 }
4866
4867 path = btrfs_alloc_path();
4868 if (!path)
4869 return -ENOMEM;
4870
4871 extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4872 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4873 size);
4874 if (ret) {
4875 btrfs_free_path(path);
4876 return ret;
4877 }
4878
4879 leaf = path->nodes[0];
4880 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4881 struct btrfs_extent_item);
4882 btrfs_set_extent_refs(leaf, extent_item, 1);
4883 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4884 btrfs_set_extent_flags(leaf, extent_item,
4885 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4886
4887 if (skinny_metadata) {
4888 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4889 } else {
4890 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4891 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4892 btrfs_set_tree_block_level(leaf, block_info, level);
4893 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4894 }
4895
4896 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4897 btrfs_set_extent_inline_ref_type(leaf, iref,
4898 BTRFS_SHARED_BLOCK_REF_KEY);
4899 btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent);
4900 } else {
4901 btrfs_set_extent_inline_ref_type(leaf, iref,
4902 BTRFS_TREE_BLOCK_REF_KEY);
4903 btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root);
4904 }
4905
4906 btrfs_free_path(path);
4907
4908 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4909 }
4910
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4911 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4912 struct btrfs_root *root, u64 owner,
4913 u64 offset, u64 ram_bytes,
4914 struct btrfs_key *ins)
4915 {
4916 struct btrfs_ref generic_ref = {
4917 .action = BTRFS_ADD_DELAYED_EXTENT,
4918 .bytenr = ins->objectid,
4919 .num_bytes = ins->offset,
4920 .owning_root = btrfs_root_id(root),
4921 .ref_root = btrfs_root_id(root),
4922 };
4923
4924 ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID);
4925
4926 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4927 generic_ref.owning_root = root->relocation_src_root;
4928
4929 btrfs_init_data_ref(&generic_ref, owner, offset, 0, false);
4930 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4931
4932 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4933 }
4934
4935 /*
4936 * this is used by the tree logging recovery code. It records that
4937 * an extent has been allocated and makes sure to clear the free
4938 * space cache bits as well
4939 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4940 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4941 u64 root_objectid, u64 owner, u64 offset,
4942 struct btrfs_key *ins)
4943 {
4944 struct btrfs_fs_info *fs_info = trans->fs_info;
4945 int ret;
4946 struct btrfs_block_group *block_group;
4947 struct btrfs_space_info *space_info;
4948 struct btrfs_squota_delta delta = {
4949 .root = root_objectid,
4950 .num_bytes = ins->offset,
4951 .generation = trans->transid,
4952 .is_data = true,
4953 .is_inc = true,
4954 };
4955
4956 /*
4957 * Mixed block groups will exclude before processing the log so we only
4958 * need to do the exclude dance if this fs isn't mixed.
4959 */
4960 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4961 ret = __exclude_logged_extent(fs_info, ins->objectid,
4962 ins->offset);
4963 if (ret)
4964 return ret;
4965 }
4966
4967 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4968 if (!block_group)
4969 return -EINVAL;
4970
4971 space_info = block_group->space_info;
4972 spin_lock(&space_info->lock);
4973 spin_lock(&block_group->lock);
4974 space_info->bytes_reserved += ins->offset;
4975 block_group->reserved += ins->offset;
4976 spin_unlock(&block_group->lock);
4977 spin_unlock(&space_info->lock);
4978
4979 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4980 offset, ins, 1, root_objectid);
4981 if (ret)
4982 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4983 ret = btrfs_record_squota_delta(fs_info, &delta);
4984 btrfs_put_block_group(block_group);
4985 return ret;
4986 }
4987
4988 #ifdef CONFIG_BTRFS_DEBUG
4989 /*
4990 * Extra safety check in case the extent tree is corrupted and extent allocator
4991 * chooses to use a tree block which is already used and locked.
4992 */
check_eb_lock_owner(const struct extent_buffer * eb)4993 static bool check_eb_lock_owner(const struct extent_buffer *eb)
4994 {
4995 if (eb->lock_owner == current->pid) {
4996 btrfs_err_rl(eb->fs_info,
4997 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4998 eb->start, btrfs_header_owner(eb), current->pid);
4999 return true;
5000 }
5001 return false;
5002 }
5003 #else
check_eb_lock_owner(struct extent_buffer * eb)5004 static bool check_eb_lock_owner(struct extent_buffer *eb)
5005 {
5006 return false;
5007 }
5008 #endif
5009
5010 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)5011 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5012 u64 bytenr, int level, u64 owner,
5013 enum btrfs_lock_nesting nest)
5014 {
5015 struct btrfs_fs_info *fs_info = root->fs_info;
5016 struct extent_buffer *buf;
5017 u64 lockdep_owner = owner;
5018
5019 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5020 if (IS_ERR(buf))
5021 return buf;
5022
5023 if (check_eb_lock_owner(buf)) {
5024 free_extent_buffer(buf);
5025 return ERR_PTR(-EUCLEAN);
5026 }
5027
5028 /*
5029 * The reloc trees are just snapshots, so we need them to appear to be
5030 * just like any other fs tree WRT lockdep.
5031 *
5032 * The exception however is in replace_path() in relocation, where we
5033 * hold the lock on the original fs root and then search for the reloc
5034 * root. At that point we need to make sure any reloc root buffers are
5035 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5036 * lockdep happy.
5037 */
5038 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5039 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5040 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5041
5042 /* btrfs_clear_buffer_dirty() accesses generation field. */
5043 btrfs_set_header_generation(buf, trans->transid);
5044
5045 /*
5046 * This needs to stay, because we could allocate a freed block from an
5047 * old tree into a new tree, so we need to make sure this new block is
5048 * set to the appropriate level and owner.
5049 */
5050 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5051
5052 btrfs_tree_lock_nested(buf, nest);
5053 btrfs_clear_buffer_dirty(trans, buf);
5054 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5055 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5056
5057 set_extent_buffer_uptodate(buf);
5058
5059 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5060 btrfs_set_header_level(buf, level);
5061 btrfs_set_header_bytenr(buf, buf->start);
5062 btrfs_set_header_generation(buf, trans->transid);
5063 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5064 btrfs_set_header_owner(buf, owner);
5065 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5066 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5067 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
5068 buf->log_index = root->log_transid % 2;
5069 /*
5070 * we allow two log transactions at a time, use different
5071 * EXTENT bit to differentiate dirty pages.
5072 */
5073 if (buf->log_index == 0)
5074 set_extent_bit(&root->dirty_log_pages, buf->start,
5075 buf->start + buf->len - 1,
5076 EXTENT_DIRTY, NULL);
5077 else
5078 set_extent_bit(&root->dirty_log_pages, buf->start,
5079 buf->start + buf->len - 1,
5080 EXTENT_NEW, NULL);
5081 } else {
5082 buf->log_index = -1;
5083 set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5084 buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5085 }
5086 /* this returns a buffer locked for blocking */
5087 return buf;
5088 }
5089
5090 /*
5091 * finds a free extent and does all the dirty work required for allocation
5092 * returns the tree buffer or an ERR_PTR on error.
5093 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,u64 reloc_src_root,enum btrfs_lock_nesting nest)5094 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5095 struct btrfs_root *root,
5096 u64 parent, u64 root_objectid,
5097 const struct btrfs_disk_key *key,
5098 int level, u64 hint,
5099 u64 empty_size,
5100 u64 reloc_src_root,
5101 enum btrfs_lock_nesting nest)
5102 {
5103 struct btrfs_fs_info *fs_info = root->fs_info;
5104 struct btrfs_key ins;
5105 struct btrfs_block_rsv *block_rsv;
5106 struct extent_buffer *buf;
5107 u64 flags = 0;
5108 int ret;
5109 u32 blocksize = fs_info->nodesize;
5110 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5111 u64 owning_root;
5112
5113 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5114 if (btrfs_is_testing(fs_info)) {
5115 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5116 level, root_objectid, nest);
5117 if (!IS_ERR(buf))
5118 root->alloc_bytenr += blocksize;
5119 return buf;
5120 }
5121 #endif
5122
5123 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5124 if (IS_ERR(block_rsv))
5125 return ERR_CAST(block_rsv);
5126
5127 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5128 empty_size, hint, &ins, 0, 0);
5129 if (ret)
5130 goto out_unuse;
5131
5132 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5133 root_objectid, nest);
5134 if (IS_ERR(buf)) {
5135 ret = PTR_ERR(buf);
5136 goto out_free_reserved;
5137 }
5138 owning_root = btrfs_header_owner(buf);
5139
5140 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5141 if (parent == 0)
5142 parent = ins.objectid;
5143 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5144 owning_root = reloc_src_root;
5145 } else
5146 BUG_ON(parent > 0);
5147
5148 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5149 struct btrfs_delayed_extent_op *extent_op;
5150 struct btrfs_ref generic_ref = {
5151 .action = BTRFS_ADD_DELAYED_EXTENT,
5152 .bytenr = ins.objectid,
5153 .num_bytes = ins.offset,
5154 .parent = parent,
5155 .owning_root = owning_root,
5156 .ref_root = root_objectid,
5157 };
5158
5159 if (!skinny_metadata || flags != 0) {
5160 extent_op = btrfs_alloc_delayed_extent_op();
5161 if (!extent_op) {
5162 ret = -ENOMEM;
5163 goto out_free_buf;
5164 }
5165 if (key)
5166 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5167 else
5168 memset(&extent_op->key, 0, sizeof(extent_op->key));
5169 extent_op->flags_to_set = flags;
5170 extent_op->update_key = (skinny_metadata ? false : true);
5171 extent_op->update_flags = (flags != 0);
5172 } else {
5173 extent_op = NULL;
5174 }
5175
5176 btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false);
5177 btrfs_ref_tree_mod(fs_info, &generic_ref);
5178 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5179 if (ret) {
5180 btrfs_free_delayed_extent_op(extent_op);
5181 goto out_free_buf;
5182 }
5183 }
5184 return buf;
5185
5186 out_free_buf:
5187 btrfs_tree_unlock(buf);
5188 free_extent_buffer(buf);
5189 out_free_reserved:
5190 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5191 out_unuse:
5192 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5193 return ERR_PTR(ret);
5194 }
5195
5196 struct walk_control {
5197 u64 refs[BTRFS_MAX_LEVEL];
5198 u64 flags[BTRFS_MAX_LEVEL];
5199 struct btrfs_key update_progress;
5200 struct btrfs_key drop_progress;
5201 int drop_level;
5202 int stage;
5203 int level;
5204 int shared_level;
5205 int update_ref;
5206 int keep_locks;
5207 int reada_slot;
5208 int reada_count;
5209 int restarted;
5210 /* Indicate that extent info needs to be looked up when walking the tree. */
5211 int lookup_info;
5212 };
5213
5214 /*
5215 * This is our normal stage. We are traversing blocks the current snapshot owns
5216 * and we are dropping any of our references to any children we are able to, and
5217 * then freeing the block once we've processed all of the children.
5218 */
5219 #define DROP_REFERENCE 1
5220
5221 /*
5222 * We enter this stage when we have to walk into a child block (meaning we can't
5223 * simply drop our reference to it from our current parent node) and there are
5224 * more than one reference on it. If we are the owner of any of the children
5225 * blocks from the current parent node then we have to do the FULL_BACKREF dance
5226 * on them in order to drop our normal ref and add the shared ref.
5227 */
5228 #define UPDATE_BACKREF 2
5229
5230 /*
5231 * Decide if we need to walk down into this node to adjust the references.
5232 *
5233 * @root: the root we are currently deleting
5234 * @wc: the walk control for this deletion
5235 * @eb: the parent eb that we're currently visiting
5236 * @refs: the number of refs for wc->level - 1
5237 * @flags: the flags for wc->level - 1
5238 * @slot: the slot in the eb that we're currently checking
5239 *
5240 * This is meant to be called when we're evaluating if a node we point to at
5241 * wc->level should be read and walked into, or if we can simply delete our
5242 * reference to it. We return true if we should walk into the node, false if we
5243 * can skip it.
5244 *
5245 * We have assertions in here to make sure this is called correctly. We assume
5246 * that sanity checking on the blocks read to this point has been done, so any
5247 * corrupted file systems must have been caught before calling this function.
5248 */
visit_node_for_delete(struct btrfs_root * root,struct walk_control * wc,struct extent_buffer * eb,u64 flags,int slot)5249 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc,
5250 struct extent_buffer *eb, u64 flags, int slot)
5251 {
5252 struct btrfs_key key;
5253 u64 generation;
5254 int level = wc->level;
5255
5256 ASSERT(level > 0);
5257 ASSERT(wc->refs[level - 1] > 0);
5258
5259 /*
5260 * The update backref stage we only want to skip if we already have
5261 * FULL_BACKREF set, otherwise we need to read.
5262 */
5263 if (wc->stage == UPDATE_BACKREF) {
5264 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5265 return false;
5266 return true;
5267 }
5268
5269 /*
5270 * We're the last ref on this block, we must walk into it and process
5271 * any refs it's pointing at.
5272 */
5273 if (wc->refs[level - 1] == 1)
5274 return true;
5275
5276 /*
5277 * If we're already FULL_BACKREF then we know we can just drop our
5278 * current reference.
5279 */
5280 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5281 return false;
5282
5283 /*
5284 * This block is older than our creation generation, we can drop our
5285 * reference to it.
5286 */
5287 generation = btrfs_node_ptr_generation(eb, slot);
5288 if (!wc->update_ref || generation <= btrfs_root_origin_generation(root))
5289 return false;
5290
5291 /*
5292 * This block was processed from a previous snapshot deletion run, we
5293 * can skip it.
5294 */
5295 btrfs_node_key_to_cpu(eb, &key, slot);
5296 if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0)
5297 return false;
5298
5299 /* All other cases we need to wander into the node. */
5300 return true;
5301 }
5302
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)5303 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5304 struct btrfs_root *root,
5305 struct walk_control *wc,
5306 struct btrfs_path *path)
5307 {
5308 struct btrfs_fs_info *fs_info = root->fs_info;
5309 u64 bytenr;
5310 u64 generation;
5311 u64 refs;
5312 u64 flags;
5313 u32 nritems;
5314 struct extent_buffer *eb;
5315 int ret;
5316 int slot;
5317 int nread = 0;
5318
5319 if (path->slots[wc->level] < wc->reada_slot) {
5320 wc->reada_count = wc->reada_count * 2 / 3;
5321 wc->reada_count = max(wc->reada_count, 2);
5322 } else {
5323 wc->reada_count = wc->reada_count * 3 / 2;
5324 wc->reada_count = min_t(int, wc->reada_count,
5325 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5326 }
5327
5328 eb = path->nodes[wc->level];
5329 nritems = btrfs_header_nritems(eb);
5330
5331 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5332 if (nread >= wc->reada_count)
5333 break;
5334
5335 cond_resched();
5336 bytenr = btrfs_node_blockptr(eb, slot);
5337 generation = btrfs_node_ptr_generation(eb, slot);
5338
5339 if (slot == path->slots[wc->level])
5340 goto reada;
5341
5342 if (wc->stage == UPDATE_BACKREF &&
5343 generation <= btrfs_root_origin_generation(root))
5344 continue;
5345
5346 /* We don't lock the tree block, it's OK to be racy here */
5347 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5348 wc->level - 1, 1, &refs,
5349 &flags, NULL);
5350 /* We don't care about errors in readahead. */
5351 if (ret < 0)
5352 continue;
5353
5354 /*
5355 * This could be racey, it's conceivable that we raced and end
5356 * up with a bogus refs count, if that's the case just skip, if
5357 * we are actually corrupt we will notice when we look up
5358 * everything again with our locks.
5359 */
5360 if (refs == 0)
5361 continue;
5362
5363 /* If we don't need to visit this node don't reada. */
5364 if (!visit_node_for_delete(root, wc, eb, flags, slot))
5365 continue;
5366 reada:
5367 btrfs_readahead_node_child(eb, slot);
5368 nread++;
5369 }
5370 wc->reada_slot = slot;
5371 }
5372
5373 /*
5374 * helper to process tree block while walking down the tree.
5375 *
5376 * when wc->stage == UPDATE_BACKREF, this function updates
5377 * back refs for pointers in the block.
5378 *
5379 * NOTE: return value 1 means we should stop walking down.
5380 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5381 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5382 struct btrfs_root *root,
5383 struct btrfs_path *path,
5384 struct walk_control *wc)
5385 {
5386 struct btrfs_fs_info *fs_info = root->fs_info;
5387 int level = wc->level;
5388 struct extent_buffer *eb = path->nodes[level];
5389 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5390 int ret;
5391
5392 if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root))
5393 return 1;
5394
5395 /*
5396 * when reference count of tree block is 1, it won't increase
5397 * again. once full backref flag is set, we never clear it.
5398 */
5399 if (wc->lookup_info &&
5400 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5401 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5402 ASSERT(path->locks[level]);
5403 ret = btrfs_lookup_extent_info(trans, fs_info,
5404 eb->start, level, 1,
5405 &wc->refs[level],
5406 &wc->flags[level],
5407 NULL);
5408 if (ret)
5409 return ret;
5410 if (unlikely(wc->refs[level] == 0)) {
5411 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5412 eb->start);
5413 return -EUCLEAN;
5414 }
5415 }
5416
5417 if (wc->stage == DROP_REFERENCE) {
5418 if (wc->refs[level] > 1)
5419 return 1;
5420
5421 if (path->locks[level] && !wc->keep_locks) {
5422 btrfs_tree_unlock_rw(eb, path->locks[level]);
5423 path->locks[level] = 0;
5424 }
5425 return 0;
5426 }
5427
5428 /* wc->stage == UPDATE_BACKREF */
5429 if (!(wc->flags[level] & flag)) {
5430 ASSERT(path->locks[level]);
5431 ret = btrfs_inc_ref(trans, root, eb, 1);
5432 if (ret) {
5433 btrfs_abort_transaction(trans, ret);
5434 return ret;
5435 }
5436 ret = btrfs_dec_ref(trans, root, eb, 0);
5437 if (ret) {
5438 btrfs_abort_transaction(trans, ret);
5439 return ret;
5440 }
5441 ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5442 if (ret) {
5443 btrfs_abort_transaction(trans, ret);
5444 return ret;
5445 }
5446 wc->flags[level] |= flag;
5447 }
5448
5449 /*
5450 * the block is shared by multiple trees, so it's not good to
5451 * keep the tree lock
5452 */
5453 if (path->locks[level] && level > 0) {
5454 btrfs_tree_unlock_rw(eb, path->locks[level]);
5455 path->locks[level] = 0;
5456 }
5457 return 0;
5458 }
5459
5460 /*
5461 * This is used to verify a ref exists for this root to deal with a bug where we
5462 * would have a drop_progress key that hadn't been updated properly.
5463 */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5464 static int check_ref_exists(struct btrfs_trans_handle *trans,
5465 struct btrfs_root *root, u64 bytenr, u64 parent,
5466 int level)
5467 {
5468 struct btrfs_delayed_ref_root *delayed_refs;
5469 struct btrfs_delayed_ref_head *head;
5470 BTRFS_PATH_AUTO_FREE(path);
5471 struct btrfs_extent_inline_ref *iref;
5472 int ret;
5473 bool exists = false;
5474
5475 path = btrfs_alloc_path();
5476 if (!path)
5477 return -ENOMEM;
5478 again:
5479 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5480 root->fs_info->nodesize, parent,
5481 btrfs_root_id(root), level, 0);
5482 if (ret != -ENOENT) {
5483 /*
5484 * If we get 0 then we found our reference, return 1, else
5485 * return the error if it's not -ENOENT;
5486 */
5487 return (ret < 0 ) ? ret : 1;
5488 }
5489
5490 /*
5491 * We could have a delayed ref with this reference, so look it up while
5492 * we're holding the path open to make sure we don't race with the
5493 * delayed ref running.
5494 */
5495 delayed_refs = &trans->transaction->delayed_refs;
5496 spin_lock(&delayed_refs->lock);
5497 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
5498 if (!head)
5499 goto out;
5500 if (!mutex_trylock(&head->mutex)) {
5501 /*
5502 * We're contended, means that the delayed ref is running, get a
5503 * reference and wait for the ref head to be complete and then
5504 * try again.
5505 */
5506 refcount_inc(&head->refs);
5507 spin_unlock(&delayed_refs->lock);
5508
5509 btrfs_release_path(path);
5510
5511 mutex_lock(&head->mutex);
5512 mutex_unlock(&head->mutex);
5513 btrfs_put_delayed_ref_head(head);
5514 goto again;
5515 }
5516
5517 exists = btrfs_find_delayed_tree_ref(head, root->root_key.objectid, parent);
5518 mutex_unlock(&head->mutex);
5519 out:
5520 spin_unlock(&delayed_refs->lock);
5521 return exists ? 1 : 0;
5522 }
5523
5524 /*
5525 * We may not have an uptodate block, so if we are going to walk down into this
5526 * block we need to drop the lock, read it off of the disk, re-lock it and
5527 * return to continue dropping the snapshot.
5528 */
check_next_block_uptodate(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,struct extent_buffer * next)5529 static int check_next_block_uptodate(struct btrfs_trans_handle *trans,
5530 struct btrfs_root *root,
5531 struct btrfs_path *path,
5532 struct walk_control *wc,
5533 struct extent_buffer *next)
5534 {
5535 struct btrfs_tree_parent_check check = { 0 };
5536 u64 generation;
5537 int level = wc->level;
5538 int ret;
5539
5540 btrfs_assert_tree_write_locked(next);
5541
5542 generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]);
5543
5544 if (btrfs_buffer_uptodate(next, generation, 0))
5545 return 0;
5546
5547 check.level = level - 1;
5548 check.transid = generation;
5549 check.owner_root = btrfs_root_id(root);
5550 check.has_first_key = true;
5551 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]);
5552
5553 btrfs_tree_unlock(next);
5554 if (level == 1)
5555 reada_walk_down(trans, root, wc, path);
5556 ret = btrfs_read_extent_buffer(next, &check);
5557 if (ret) {
5558 free_extent_buffer(next);
5559 return ret;
5560 }
5561 btrfs_tree_lock(next);
5562 wc->lookup_info = 1;
5563 return 0;
5564 }
5565
5566 /*
5567 * If we determine that we don't have to visit wc->level - 1 then we need to
5568 * determine if we can drop our reference.
5569 *
5570 * If we are UPDATE_BACKREF then we will not, we need to update our backrefs.
5571 *
5572 * If we are DROP_REFERENCE this will figure out if we need to drop our current
5573 * reference, skipping it if we dropped it from a previous incompleted drop, or
5574 * dropping it if we still have a reference to it.
5575 */
maybe_drop_reference(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,struct extent_buffer * next,u64 owner_root)5576 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5577 struct btrfs_path *path, struct walk_control *wc,
5578 struct extent_buffer *next, u64 owner_root)
5579 {
5580 struct btrfs_ref ref = {
5581 .action = BTRFS_DROP_DELAYED_REF,
5582 .bytenr = next->start,
5583 .num_bytes = root->fs_info->nodesize,
5584 .owning_root = owner_root,
5585 .ref_root = btrfs_root_id(root),
5586 };
5587 int level = wc->level;
5588 int ret;
5589
5590 /* We are UPDATE_BACKREF, we're not dropping anything. */
5591 if (wc->stage == UPDATE_BACKREF)
5592 return 0;
5593
5594 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5595 ref.parent = path->nodes[level]->start;
5596 } else {
5597 ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level]));
5598 if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) {
5599 btrfs_err(root->fs_info, "mismatched block owner");
5600 return -EIO;
5601 }
5602 }
5603
5604 /*
5605 * If we had a drop_progress we need to verify the refs are set as
5606 * expected. If we find our ref then we know that from here on out
5607 * everything should be correct, and we can clear the
5608 * ->restarted flag.
5609 */
5610 if (wc->restarted) {
5611 ret = check_ref_exists(trans, root, next->start, ref.parent,
5612 level - 1);
5613 if (ret <= 0)
5614 return ret;
5615 ret = 0;
5616 wc->restarted = 0;
5617 }
5618
5619 /*
5620 * Reloc tree doesn't contribute to qgroup numbers, and we have already
5621 * accounted them at merge time (replace_path), thus we could skip
5622 * expensive subtree trace here.
5623 */
5624 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
5625 wc->refs[level - 1] > 1) {
5626 u64 generation = btrfs_node_ptr_generation(path->nodes[level],
5627 path->slots[level]);
5628
5629 ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1);
5630 if (ret) {
5631 btrfs_err_rl(root->fs_info,
5632 "error %d accounting shared subtree, quota is out of sync, rescan required",
5633 ret);
5634 }
5635 }
5636
5637 /*
5638 * We need to update the next key in our walk control so we can update
5639 * the drop_progress key accordingly. We don't care if find_next_key
5640 * doesn't find a key because that means we're at the end and are going
5641 * to clean up now.
5642 */
5643 wc->drop_level = level;
5644 find_next_key(path, level, &wc->drop_progress);
5645
5646 btrfs_init_tree_ref(&ref, level - 1, 0, false);
5647 return btrfs_free_extent(trans, &ref);
5648 }
5649
5650 /*
5651 * helper to process tree block pointer.
5652 *
5653 * when wc->stage == DROP_REFERENCE, this function checks
5654 * reference count of the block pointed to. if the block
5655 * is shared and we need update back refs for the subtree
5656 * rooted at the block, this function changes wc->stage to
5657 * UPDATE_BACKREF. if the block is shared and there is no
5658 * need to update back, this function drops the reference
5659 * to the block.
5660 *
5661 * NOTE: return value 1 means we should stop walking down.
5662 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5663 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5664 struct btrfs_root *root,
5665 struct btrfs_path *path,
5666 struct walk_control *wc)
5667 {
5668 struct btrfs_fs_info *fs_info = root->fs_info;
5669 u64 bytenr;
5670 u64 generation;
5671 u64 owner_root = 0;
5672 struct extent_buffer *next;
5673 int level = wc->level;
5674 int ret = 0;
5675
5676 generation = btrfs_node_ptr_generation(path->nodes[level],
5677 path->slots[level]);
5678 /*
5679 * if the lower level block was created before the snapshot
5680 * was created, we know there is no need to update back refs
5681 * for the subtree
5682 */
5683 if (wc->stage == UPDATE_BACKREF &&
5684 generation <= btrfs_root_origin_generation(root)) {
5685 wc->lookup_info = 1;
5686 return 1;
5687 }
5688
5689 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5690
5691 next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root),
5692 level - 1);
5693 if (IS_ERR(next))
5694 return PTR_ERR(next);
5695
5696 btrfs_tree_lock(next);
5697
5698 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5699 &wc->refs[level - 1],
5700 &wc->flags[level - 1],
5701 &owner_root);
5702 if (ret < 0)
5703 goto out_unlock;
5704
5705 if (unlikely(wc->refs[level - 1] == 0)) {
5706 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5707 bytenr);
5708 ret = -EUCLEAN;
5709 goto out_unlock;
5710 }
5711 wc->lookup_info = 0;
5712
5713 /* If we don't have to walk into this node skip it. */
5714 if (!visit_node_for_delete(root, wc, path->nodes[level],
5715 wc->flags[level - 1], path->slots[level]))
5716 goto skip;
5717
5718 /*
5719 * We have to walk down into this node, and if we're currently at the
5720 * DROP_REFERNCE stage and this block is shared then we need to switch
5721 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF.
5722 */
5723 if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) {
5724 wc->stage = UPDATE_BACKREF;
5725 wc->shared_level = level - 1;
5726 }
5727
5728 ret = check_next_block_uptodate(trans, root, path, wc, next);
5729 if (ret)
5730 return ret;
5731
5732 level--;
5733 ASSERT(level == btrfs_header_level(next));
5734 if (level != btrfs_header_level(next)) {
5735 btrfs_err(root->fs_info, "mismatched level");
5736 ret = -EIO;
5737 goto out_unlock;
5738 }
5739 path->nodes[level] = next;
5740 path->slots[level] = 0;
5741 path->locks[level] = BTRFS_WRITE_LOCK;
5742 wc->level = level;
5743 if (wc->level == 1)
5744 wc->reada_slot = 0;
5745 return 0;
5746 skip:
5747 ret = maybe_drop_reference(trans, root, path, wc, next, owner_root);
5748 if (ret)
5749 goto out_unlock;
5750 wc->refs[level - 1] = 0;
5751 wc->flags[level - 1] = 0;
5752 wc->lookup_info = 1;
5753 ret = 1;
5754
5755 out_unlock:
5756 btrfs_tree_unlock(next);
5757 free_extent_buffer(next);
5758
5759 return ret;
5760 }
5761
5762 /*
5763 * helper to process tree block while walking up the tree.
5764 *
5765 * when wc->stage == DROP_REFERENCE, this function drops
5766 * reference count on the block.
5767 *
5768 * when wc->stage == UPDATE_BACKREF, this function changes
5769 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5770 * to UPDATE_BACKREF previously while processing the block.
5771 *
5772 * NOTE: return value 1 means we should stop walking up.
5773 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5774 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5775 struct btrfs_root *root,
5776 struct btrfs_path *path,
5777 struct walk_control *wc)
5778 {
5779 struct btrfs_fs_info *fs_info = root->fs_info;
5780 int ret = 0;
5781 int level = wc->level;
5782 struct extent_buffer *eb = path->nodes[level];
5783 u64 parent = 0;
5784
5785 if (wc->stage == UPDATE_BACKREF) {
5786 ASSERT(wc->shared_level >= level);
5787 if (level < wc->shared_level)
5788 goto out;
5789
5790 ret = find_next_key(path, level + 1, &wc->update_progress);
5791 if (ret > 0)
5792 wc->update_ref = 0;
5793
5794 wc->stage = DROP_REFERENCE;
5795 wc->shared_level = -1;
5796 path->slots[level] = 0;
5797
5798 /*
5799 * check reference count again if the block isn't locked.
5800 * we should start walking down the tree again if reference
5801 * count is one.
5802 */
5803 if (!path->locks[level]) {
5804 ASSERT(level > 0);
5805 btrfs_tree_lock(eb);
5806 path->locks[level] = BTRFS_WRITE_LOCK;
5807
5808 ret = btrfs_lookup_extent_info(trans, fs_info,
5809 eb->start, level, 1,
5810 &wc->refs[level],
5811 &wc->flags[level],
5812 NULL);
5813 if (ret < 0) {
5814 btrfs_tree_unlock_rw(eb, path->locks[level]);
5815 path->locks[level] = 0;
5816 return ret;
5817 }
5818 if (unlikely(wc->refs[level] == 0)) {
5819 btrfs_tree_unlock_rw(eb, path->locks[level]);
5820 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5821 eb->start);
5822 return -EUCLEAN;
5823 }
5824 if (wc->refs[level] == 1) {
5825 btrfs_tree_unlock_rw(eb, path->locks[level]);
5826 path->locks[level] = 0;
5827 return 1;
5828 }
5829 }
5830 }
5831
5832 /* wc->stage == DROP_REFERENCE */
5833 ASSERT(path->locks[level] || wc->refs[level] == 1);
5834
5835 if (wc->refs[level] == 1) {
5836 if (level == 0) {
5837 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5838 ret = btrfs_dec_ref(trans, root, eb, 1);
5839 else
5840 ret = btrfs_dec_ref(trans, root, eb, 0);
5841 if (ret) {
5842 btrfs_abort_transaction(trans, ret);
5843 return ret;
5844 }
5845 if (is_fstree(btrfs_root_id(root))) {
5846 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5847 if (ret) {
5848 btrfs_err_rl(fs_info,
5849 "error %d accounting leaf items, quota is out of sync, rescan required",
5850 ret);
5851 }
5852 }
5853 }
5854 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5855 if (!path->locks[level]) {
5856 btrfs_tree_lock(eb);
5857 path->locks[level] = BTRFS_WRITE_LOCK;
5858 }
5859 btrfs_clear_buffer_dirty(trans, eb);
5860 }
5861
5862 if (eb == root->node) {
5863 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5864 parent = eb->start;
5865 else if (btrfs_root_id(root) != btrfs_header_owner(eb))
5866 goto owner_mismatch;
5867 } else {
5868 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5869 parent = path->nodes[level + 1]->start;
5870 else if (btrfs_root_id(root) !=
5871 btrfs_header_owner(path->nodes[level + 1]))
5872 goto owner_mismatch;
5873 }
5874
5875 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5876 wc->refs[level] == 1);
5877 if (ret < 0)
5878 btrfs_abort_transaction(trans, ret);
5879 out:
5880 wc->refs[level] = 0;
5881 wc->flags[level] = 0;
5882 return ret;
5883
5884 owner_mismatch:
5885 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5886 btrfs_header_owner(eb), btrfs_root_id(root));
5887 return -EUCLEAN;
5888 }
5889
5890 /*
5891 * walk_down_tree consists of two steps.
5892 *
5893 * walk_down_proc(). Look up the reference count and reference of our current
5894 * wc->level. At this point path->nodes[wc->level] should be populated and
5895 * uptodate, and in most cases should already be locked. If we are in
5896 * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and
5897 * we can walk back up the tree. If we are UPDATE_BACKREF we have to set
5898 * FULL_BACKREF on this node if it's not already set, and then do the
5899 * FULL_BACKREF conversion dance, which is to drop the root reference and add
5900 * the shared reference to all of this nodes children.
5901 *
5902 * do_walk_down(). This is where we actually start iterating on the children of
5903 * our current path->nodes[wc->level]. For DROP_REFERENCE that means dropping
5904 * our reference to the children that return false from visit_node_for_delete(),
5905 * which has various conditions where we know we can just drop our reference
5906 * without visiting the node. For UPDATE_BACKREF we will skip any children that
5907 * visit_node_for_delete() returns false for, only walking down when necessary.
5908 * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of
5909 * snapshot deletion.
5910 */
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5911 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5912 struct btrfs_root *root,
5913 struct btrfs_path *path,
5914 struct walk_control *wc)
5915 {
5916 int level = wc->level;
5917 int ret = 0;
5918
5919 wc->lookup_info = 1;
5920 while (level >= 0) {
5921 ret = walk_down_proc(trans, root, path, wc);
5922 if (ret)
5923 break;
5924
5925 if (level == 0)
5926 break;
5927
5928 if (path->slots[level] >=
5929 btrfs_header_nritems(path->nodes[level]))
5930 break;
5931
5932 ret = do_walk_down(trans, root, path, wc);
5933 if (ret > 0) {
5934 path->slots[level]++;
5935 continue;
5936 } else if (ret < 0)
5937 break;
5938 level = wc->level;
5939 }
5940 return (ret == 1) ? 0 : ret;
5941 }
5942
5943 /*
5944 * walk_up_tree() is responsible for making sure we visit every slot on our
5945 * current node, and if we're at the end of that node then we call
5946 * walk_up_proc() on our current node which will do one of a few things based on
5947 * our stage.
5948 *
5949 * UPDATE_BACKREF. If we wc->level is currently less than our wc->shared_level
5950 * then we need to walk back up the tree, and then going back down into the
5951 * other slots via walk_down_tree to update any other children from our original
5952 * wc->shared_level. Once we're at or above our wc->shared_level we can switch
5953 * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on.
5954 *
5955 * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block.
5956 * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents
5957 * in our current leaf. After that we call btrfs_free_tree_block() on the
5958 * current node and walk up to the next node to walk down the next slot.
5959 */
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5960 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5961 struct btrfs_root *root,
5962 struct btrfs_path *path,
5963 struct walk_control *wc, int max_level)
5964 {
5965 int level = wc->level;
5966 int ret;
5967
5968 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5969 while (level < max_level && path->nodes[level]) {
5970 wc->level = level;
5971 if (path->slots[level] + 1 <
5972 btrfs_header_nritems(path->nodes[level])) {
5973 path->slots[level]++;
5974 return 0;
5975 } else {
5976 ret = walk_up_proc(trans, root, path, wc);
5977 if (ret > 0)
5978 return 0;
5979 if (ret < 0)
5980 return ret;
5981
5982 if (path->locks[level]) {
5983 btrfs_tree_unlock_rw(path->nodes[level],
5984 path->locks[level]);
5985 path->locks[level] = 0;
5986 }
5987 free_extent_buffer(path->nodes[level]);
5988 path->nodes[level] = NULL;
5989 level++;
5990 }
5991 }
5992 return 1;
5993 }
5994
5995 /*
5996 * drop a subvolume tree.
5997 *
5998 * this function traverses the tree freeing any blocks that only
5999 * referenced by the tree.
6000 *
6001 * when a shared tree block is found. this function decreases its
6002 * reference count by one. if update_ref is true, this function
6003 * also make sure backrefs for the shared block and all lower level
6004 * blocks are properly updated.
6005 *
6006 * If called with for_reloc == 0, may exit early with -EAGAIN
6007 */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)6008 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
6009 {
6010 const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID);
6011 struct btrfs_fs_info *fs_info = root->fs_info;
6012 struct btrfs_path *path;
6013 struct btrfs_trans_handle *trans;
6014 struct btrfs_root *tree_root = fs_info->tree_root;
6015 struct btrfs_root_item *root_item = &root->root_item;
6016 struct walk_control *wc;
6017 struct btrfs_key key;
6018 const u64 rootid = btrfs_root_id(root);
6019 int ret = 0;
6020 int level;
6021 bool root_dropped = false;
6022 bool unfinished_drop = false;
6023
6024 btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root));
6025
6026 path = btrfs_alloc_path();
6027 if (!path) {
6028 ret = -ENOMEM;
6029 goto out;
6030 }
6031
6032 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6033 if (!wc) {
6034 btrfs_free_path(path);
6035 ret = -ENOMEM;
6036 goto out;
6037 }
6038
6039 /*
6040 * Use join to avoid potential EINTR from transaction start. See
6041 * wait_reserve_ticket and the whole reservation callchain.
6042 */
6043 if (for_reloc)
6044 trans = btrfs_join_transaction(tree_root);
6045 else
6046 trans = btrfs_start_transaction(tree_root, 0);
6047 if (IS_ERR(trans)) {
6048 ret = PTR_ERR(trans);
6049 goto out_free;
6050 }
6051
6052 ret = btrfs_run_delayed_items(trans);
6053 if (ret)
6054 goto out_end_trans;
6055
6056 /*
6057 * This will help us catch people modifying the fs tree while we're
6058 * dropping it. It is unsafe to mess with the fs tree while it's being
6059 * dropped as we unlock the root node and parent nodes as we walk down
6060 * the tree, assuming nothing will change. If something does change
6061 * then we'll have stale information and drop references to blocks we've
6062 * already dropped.
6063 */
6064 set_bit(BTRFS_ROOT_DELETING, &root->state);
6065 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
6066
6067 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6068 level = btrfs_header_level(root->node);
6069 path->nodes[level] = btrfs_lock_root_node(root);
6070 path->slots[level] = 0;
6071 path->locks[level] = BTRFS_WRITE_LOCK;
6072 memset(&wc->update_progress, 0,
6073 sizeof(wc->update_progress));
6074 } else {
6075 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6076 memcpy(&wc->update_progress, &key,
6077 sizeof(wc->update_progress));
6078
6079 level = btrfs_root_drop_level(root_item);
6080 BUG_ON(level == 0);
6081 path->lowest_level = level;
6082 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6083 path->lowest_level = 0;
6084 if (ret < 0)
6085 goto out_end_trans;
6086
6087 WARN_ON(ret > 0);
6088 ret = 0;
6089
6090 /*
6091 * unlock our path, this is safe because only this
6092 * function is allowed to delete this snapshot
6093 */
6094 btrfs_unlock_up_safe(path, 0);
6095
6096 level = btrfs_header_level(root->node);
6097 while (1) {
6098 btrfs_tree_lock(path->nodes[level]);
6099 path->locks[level] = BTRFS_WRITE_LOCK;
6100
6101 /*
6102 * btrfs_lookup_extent_info() returns 0 for success,
6103 * or < 0 for error.
6104 */
6105 ret = btrfs_lookup_extent_info(trans, fs_info,
6106 path->nodes[level]->start,
6107 level, 1, &wc->refs[level],
6108 &wc->flags[level], NULL);
6109 if (ret < 0)
6110 goto out_end_trans;
6111
6112 BUG_ON(wc->refs[level] == 0);
6113
6114 if (level == btrfs_root_drop_level(root_item))
6115 break;
6116
6117 btrfs_tree_unlock(path->nodes[level]);
6118 path->locks[level] = 0;
6119 WARN_ON(wc->refs[level] != 1);
6120 level--;
6121 }
6122 }
6123
6124 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
6125 wc->level = level;
6126 wc->shared_level = -1;
6127 wc->stage = DROP_REFERENCE;
6128 wc->update_ref = update_ref;
6129 wc->keep_locks = 0;
6130 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6131
6132 while (1) {
6133
6134 ret = walk_down_tree(trans, root, path, wc);
6135 if (ret < 0) {
6136 btrfs_abort_transaction(trans, ret);
6137 break;
6138 }
6139
6140 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6141 if (ret < 0) {
6142 btrfs_abort_transaction(trans, ret);
6143 break;
6144 }
6145
6146 if (ret > 0) {
6147 BUG_ON(wc->stage != DROP_REFERENCE);
6148 ret = 0;
6149 break;
6150 }
6151
6152 if (wc->stage == DROP_REFERENCE) {
6153 wc->drop_level = wc->level;
6154 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
6155 &wc->drop_progress,
6156 path->slots[wc->drop_level]);
6157 }
6158 btrfs_cpu_key_to_disk(&root_item->drop_progress,
6159 &wc->drop_progress);
6160 btrfs_set_root_drop_level(root_item, wc->drop_level);
6161
6162 BUG_ON(wc->level == 0);
6163 if (btrfs_should_end_transaction(trans) ||
6164 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6165 ret = btrfs_update_root(trans, tree_root,
6166 &root->root_key,
6167 root_item);
6168 if (ret) {
6169 btrfs_abort_transaction(trans, ret);
6170 goto out_end_trans;
6171 }
6172
6173 if (!is_reloc_root)
6174 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6175
6176 btrfs_end_transaction_throttle(trans);
6177 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6178 btrfs_debug(fs_info,
6179 "drop snapshot early exit");
6180 ret = -EAGAIN;
6181 goto out_free;
6182 }
6183
6184 /*
6185 * Use join to avoid potential EINTR from transaction
6186 * start. See wait_reserve_ticket and the whole
6187 * reservation callchain.
6188 */
6189 if (for_reloc)
6190 trans = btrfs_join_transaction(tree_root);
6191 else
6192 trans = btrfs_start_transaction(tree_root, 0);
6193 if (IS_ERR(trans)) {
6194 ret = PTR_ERR(trans);
6195 goto out_free;
6196 }
6197 }
6198 }
6199 btrfs_release_path(path);
6200 if (ret)
6201 goto out_end_trans;
6202
6203 ret = btrfs_del_root(trans, &root->root_key);
6204 if (ret) {
6205 btrfs_abort_transaction(trans, ret);
6206 goto out_end_trans;
6207 }
6208
6209 if (!is_reloc_root) {
6210 ret = btrfs_find_root(tree_root, &root->root_key, path,
6211 NULL, NULL);
6212 if (ret < 0) {
6213 btrfs_abort_transaction(trans, ret);
6214 goto out_end_trans;
6215 } else if (ret > 0) {
6216 ret = 0;
6217 /*
6218 * If we fail to delete the orphan item this time
6219 * around, it'll get picked up the next time.
6220 *
6221 * The most common failure here is just -ENOENT.
6222 */
6223 btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root));
6224 }
6225 }
6226
6227 /*
6228 * This subvolume is going to be completely dropped, and won't be
6229 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6230 * commit transaction time. So free it here manually.
6231 */
6232 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6233 btrfs_qgroup_free_meta_all_pertrans(root);
6234
6235 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6236 btrfs_add_dropped_root(trans, root);
6237 else
6238 btrfs_put_root(root);
6239 root_dropped = true;
6240 out_end_trans:
6241 if (!is_reloc_root)
6242 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6243
6244 btrfs_end_transaction_throttle(trans);
6245 out_free:
6246 kfree(wc);
6247 btrfs_free_path(path);
6248 out:
6249 if (!ret && root_dropped) {
6250 ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid);
6251 if (ret < 0)
6252 btrfs_warn_rl(fs_info,
6253 "failed to cleanup qgroup 0/%llu: %d",
6254 rootid, ret);
6255 ret = 0;
6256 }
6257 /*
6258 * We were an unfinished drop root, check to see if there are any
6259 * pending, and if not clear and wake up any waiters.
6260 */
6261 if (!ret && unfinished_drop)
6262 btrfs_maybe_wake_unfinished_drop(fs_info);
6263
6264 /*
6265 * So if we need to stop dropping the snapshot for whatever reason we
6266 * need to make sure to add it back to the dead root list so that we
6267 * keep trying to do the work later. This also cleans up roots if we
6268 * don't have it in the radix (like when we recover after a power fail
6269 * or unmount) so we don't leak memory.
6270 */
6271 if (!for_reloc && !root_dropped)
6272 btrfs_add_dead_root(root);
6273 return ret;
6274 }
6275
6276 /*
6277 * drop subtree rooted at tree block 'node'.
6278 *
6279 * NOTE: this function will unlock and release tree block 'node'
6280 * only used by relocation code
6281 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)6282 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6283 struct btrfs_root *root,
6284 struct extent_buffer *node,
6285 struct extent_buffer *parent)
6286 {
6287 struct btrfs_fs_info *fs_info = root->fs_info;
6288 BTRFS_PATH_AUTO_FREE(path);
6289 struct walk_control *wc;
6290 int level;
6291 int parent_level;
6292 int ret = 0;
6293
6294 BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
6295
6296 path = btrfs_alloc_path();
6297 if (!path)
6298 return -ENOMEM;
6299
6300 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6301 if (!wc)
6302 return -ENOMEM;
6303
6304 btrfs_assert_tree_write_locked(parent);
6305 parent_level = btrfs_header_level(parent);
6306 atomic_inc(&parent->refs);
6307 path->nodes[parent_level] = parent;
6308 path->slots[parent_level] = btrfs_header_nritems(parent);
6309
6310 btrfs_assert_tree_write_locked(node);
6311 level = btrfs_header_level(node);
6312 path->nodes[level] = node;
6313 path->slots[level] = 0;
6314 path->locks[level] = BTRFS_WRITE_LOCK;
6315
6316 wc->refs[parent_level] = 1;
6317 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6318 wc->level = level;
6319 wc->shared_level = -1;
6320 wc->stage = DROP_REFERENCE;
6321 wc->update_ref = 0;
6322 wc->keep_locks = 1;
6323 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6324
6325 while (1) {
6326 ret = walk_down_tree(trans, root, path, wc);
6327 if (ret < 0)
6328 break;
6329
6330 ret = walk_up_tree(trans, root, path, wc, parent_level);
6331 if (ret) {
6332 if (ret > 0)
6333 ret = 0;
6334 break;
6335 }
6336 }
6337
6338 kfree(wc);
6339 return ret;
6340 }
6341
6342 /*
6343 * Unpin the extent range in an error context and don't add the space back.
6344 * Errors are not propagated further.
6345 */
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)6346 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
6347 {
6348 unpin_extent_range(fs_info, start, end, false);
6349 }
6350
6351 /*
6352 * It used to be that old block groups would be left around forever.
6353 * Iterating over them would be enough to trim unused space. Since we
6354 * now automatically remove them, we also need to iterate over unallocated
6355 * space.
6356 *
6357 * We don't want a transaction for this since the discard may take a
6358 * substantial amount of time. We don't require that a transaction be
6359 * running, but we do need to take a running transaction into account
6360 * to ensure that we're not discarding chunks that were released or
6361 * allocated in the current transaction.
6362 *
6363 * Holding the chunks lock will prevent other threads from allocating
6364 * or releasing chunks, but it won't prevent a running transaction
6365 * from committing and releasing the memory that the pending chunks
6366 * list head uses. For that, we need to take a reference to the
6367 * transaction and hold the commit root sem. We only need to hold
6368 * it while performing the free space search since we have already
6369 * held back allocations.
6370 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)6371 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6372 {
6373 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6374 int ret;
6375
6376 *trimmed = 0;
6377
6378 /* Discard not supported = nothing to do. */
6379 if (!bdev_max_discard_sectors(device->bdev))
6380 return 0;
6381
6382 /* Not writable = nothing to do. */
6383 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6384 return 0;
6385
6386 /* No free space = nothing to do. */
6387 if (device->total_bytes <= device->bytes_used)
6388 return 0;
6389
6390 ret = 0;
6391
6392 while (1) {
6393 struct btrfs_fs_info *fs_info = device->fs_info;
6394 u64 bytes;
6395
6396 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6397 if (ret)
6398 break;
6399
6400 find_first_clear_extent_bit(&device->alloc_state, start,
6401 &start, &end,
6402 CHUNK_TRIMMED | CHUNK_ALLOCATED);
6403
6404 /* Check if there are any CHUNK_* bits left */
6405 if (start > device->total_bytes) {
6406 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6407 btrfs_warn_in_rcu(fs_info,
6408 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6409 start, end - start + 1,
6410 btrfs_dev_name(device),
6411 device->total_bytes);
6412 mutex_unlock(&fs_info->chunk_mutex);
6413 ret = 0;
6414 break;
6415 }
6416
6417 /* Ensure we skip the reserved space on each device. */
6418 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6419
6420 /*
6421 * If find_first_clear_extent_bit find a range that spans the
6422 * end of the device it will set end to -1, in this case it's up
6423 * to the caller to trim the value to the size of the device.
6424 */
6425 end = min(end, device->total_bytes - 1);
6426
6427 len = end - start + 1;
6428
6429 /* We didn't find any extents */
6430 if (!len) {
6431 mutex_unlock(&fs_info->chunk_mutex);
6432 ret = 0;
6433 break;
6434 }
6435
6436 ret = btrfs_issue_discard(device->bdev, start, len,
6437 &bytes);
6438 if (!ret)
6439 set_extent_bit(&device->alloc_state, start,
6440 start + bytes - 1, CHUNK_TRIMMED, NULL);
6441 mutex_unlock(&fs_info->chunk_mutex);
6442
6443 if (ret)
6444 break;
6445
6446 start += len;
6447 *trimmed += bytes;
6448
6449 if (btrfs_trim_interrupted()) {
6450 ret = -ERESTARTSYS;
6451 break;
6452 }
6453
6454 cond_resched();
6455 }
6456
6457 return ret;
6458 }
6459
6460 /*
6461 * Trim the whole filesystem by:
6462 * 1) trimming the free space in each block group
6463 * 2) trimming the unallocated space on each device
6464 *
6465 * This will also continue trimming even if a block group or device encounters
6466 * an error. The return value will be the last error, or 0 if nothing bad
6467 * happens.
6468 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6469 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6470 {
6471 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6472 struct btrfs_block_group *cache = NULL;
6473 struct btrfs_device *device;
6474 u64 group_trimmed;
6475 u64 range_end = U64_MAX;
6476 u64 start;
6477 u64 end;
6478 u64 trimmed = 0;
6479 u64 bg_failed = 0;
6480 u64 dev_failed = 0;
6481 int bg_ret = 0;
6482 int dev_ret = 0;
6483 int ret = 0;
6484
6485 if (range->start == U64_MAX)
6486 return -EINVAL;
6487
6488 /*
6489 * Check range overflow if range->len is set.
6490 * The default range->len is U64_MAX.
6491 */
6492 if (range->len != U64_MAX &&
6493 check_add_overflow(range->start, range->len, &range_end))
6494 return -EINVAL;
6495
6496 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6497 for (; cache; cache = btrfs_next_block_group(cache)) {
6498 if (cache->start >= range_end) {
6499 btrfs_put_block_group(cache);
6500 break;
6501 }
6502
6503 start = max(range->start, cache->start);
6504 end = min(range_end, cache->start + cache->length);
6505
6506 if (end - start >= range->minlen) {
6507 if (!btrfs_block_group_done(cache)) {
6508 ret = btrfs_cache_block_group(cache, true);
6509 if (ret) {
6510 bg_failed++;
6511 bg_ret = ret;
6512 continue;
6513 }
6514 }
6515 ret = btrfs_trim_block_group(cache,
6516 &group_trimmed,
6517 start,
6518 end,
6519 range->minlen);
6520
6521 trimmed += group_trimmed;
6522 if (ret) {
6523 bg_failed++;
6524 bg_ret = ret;
6525 continue;
6526 }
6527 }
6528 }
6529
6530 if (bg_failed)
6531 btrfs_warn(fs_info,
6532 "failed to trim %llu block group(s), last error %d",
6533 bg_failed, bg_ret);
6534
6535 mutex_lock(&fs_devices->device_list_mutex);
6536 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6537 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6538 continue;
6539
6540 ret = btrfs_trim_free_extents(device, &group_trimmed);
6541
6542 trimmed += group_trimmed;
6543 if (ret) {
6544 dev_failed++;
6545 dev_ret = ret;
6546 break;
6547 }
6548 }
6549 mutex_unlock(&fs_devices->device_list_mutex);
6550
6551 if (dev_failed)
6552 btrfs_warn(fs_info,
6553 "failed to trim %llu device(s), last error %d",
6554 dev_failed, dev_ret);
6555 range->len = trimmed;
6556 if (bg_ret)
6557 return bg_ret;
6558 return dev_ret;
6559 }
6560