xref: /linux/fs/btrfs/extent-tree.c (revision fd71def6d9abc5ae362fb9995d46049b7b0ed391)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "discard.h"
34 #include "zoned.h"
35 #include "dev-replace.h"
36 #include "fs.h"
37 #include "accessors.h"
38 #include "root-tree.h"
39 #include "file-item.h"
40 #include "orphan.h"
41 #include "tree-checker.h"
42 #include "raid-stripe-tree.h"
43 
44 #undef SCRAMBLE_DELAYED_REFS
45 
46 
47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
48 			       struct btrfs_delayed_ref_head *href,
49 			       struct btrfs_delayed_ref_node *node,
50 			       struct btrfs_delayed_extent_op *extra_op);
51 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
52 				    struct extent_buffer *leaf,
53 				    struct btrfs_extent_item *ei);
54 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
55 				      u64 parent, u64 root_objectid,
56 				      u64 flags, u64 owner, u64 offset,
57 				      struct btrfs_key *ins, int ref_mod, u64 oref_root);
58 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
59 				     struct btrfs_delayed_ref_node *node,
60 				     struct btrfs_delayed_extent_op *extent_op);
61 static int find_next_key(struct btrfs_path *path, int level,
62 			 struct btrfs_key *key);
63 
block_group_bits(struct btrfs_block_group * cache,u64 bits)64 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
65 {
66 	return (cache->flags & bits) == bits;
67 }
68 
69 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)70 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
71 {
72 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
73 	struct btrfs_key key;
74 	BTRFS_PATH_AUTO_FREE(path);
75 
76 	path = btrfs_alloc_path();
77 	if (!path)
78 		return -ENOMEM;
79 
80 	key.objectid = start;
81 	key.type = BTRFS_EXTENT_ITEM_KEY;
82 	key.offset = len;
83 	return btrfs_search_slot(NULL, root, &key, path, 0, 0);
84 }
85 
86 /*
87  * helper function to lookup reference count and flags of a tree block.
88  *
89  * the head node for delayed ref is used to store the sum of all the
90  * reference count modifications queued up in the rbtree. the head
91  * node may also store the extent flags to set. This way you can check
92  * to see what the reference count and extent flags would be if all of
93  * the delayed refs are not processed.
94  */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags,u64 * owning_root)95 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
96 			     struct btrfs_fs_info *fs_info, u64 bytenr,
97 			     u64 offset, int metadata, u64 *refs, u64 *flags,
98 			     u64 *owning_root)
99 {
100 	struct btrfs_root *extent_root;
101 	struct btrfs_delayed_ref_head *head;
102 	struct btrfs_delayed_ref_root *delayed_refs;
103 	BTRFS_PATH_AUTO_FREE(path);
104 	struct btrfs_key key;
105 	u64 num_refs;
106 	u64 extent_flags;
107 	u64 owner = 0;
108 	int ret;
109 
110 	/*
111 	 * If we don't have skinny metadata, don't bother doing anything
112 	 * different
113 	 */
114 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
115 		offset = fs_info->nodesize;
116 		metadata = 0;
117 	}
118 
119 	path = btrfs_alloc_path();
120 	if (!path)
121 		return -ENOMEM;
122 
123 search_again:
124 	key.objectid = bytenr;
125 	if (metadata)
126 		key.type = BTRFS_METADATA_ITEM_KEY;
127 	else
128 		key.type = BTRFS_EXTENT_ITEM_KEY;
129 	key.offset = offset;
130 
131 	extent_root = btrfs_extent_root(fs_info, bytenr);
132 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
133 	if (ret < 0)
134 		return ret;
135 
136 	if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) {
137 		if (path->slots[0]) {
138 			path->slots[0]--;
139 			btrfs_item_key_to_cpu(path->nodes[0], &key,
140 					      path->slots[0]);
141 			if (key.objectid == bytenr &&
142 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
143 			    key.offset == fs_info->nodesize)
144 				ret = 0;
145 		}
146 	}
147 
148 	if (ret == 0) {
149 		struct extent_buffer *leaf = path->nodes[0];
150 		struct btrfs_extent_item *ei;
151 		const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
152 
153 		if (unlikely(item_size < sizeof(*ei))) {
154 			ret = -EUCLEAN;
155 			btrfs_err(fs_info,
156 			"unexpected extent item size, has %u expect >= %zu",
157 				  item_size, sizeof(*ei));
158 			btrfs_abort_transaction(trans, ret);
159 			return ret;
160 		}
161 
162 		ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
163 		num_refs = btrfs_extent_refs(leaf, ei);
164 		if (unlikely(num_refs == 0)) {
165 			ret = -EUCLEAN;
166 			btrfs_err(fs_info,
167 		"unexpected zero reference count for extent item (%llu %u %llu)",
168 				  key.objectid, key.type, key.offset);
169 			btrfs_abort_transaction(trans, ret);
170 			return ret;
171 		}
172 		extent_flags = btrfs_extent_flags(leaf, ei);
173 		owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]);
174 	} else {
175 		num_refs = 0;
176 		extent_flags = 0;
177 		ret = 0;
178 	}
179 
180 	delayed_refs = &trans->transaction->delayed_refs;
181 	spin_lock(&delayed_refs->lock);
182 	head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
183 	if (head) {
184 		if (!mutex_trylock(&head->mutex)) {
185 			refcount_inc(&head->refs);
186 			spin_unlock(&delayed_refs->lock);
187 
188 			btrfs_release_path(path);
189 
190 			/*
191 			 * Mutex was contended, block until it's released and try
192 			 * again
193 			 */
194 			mutex_lock(&head->mutex);
195 			mutex_unlock(&head->mutex);
196 			btrfs_put_delayed_ref_head(head);
197 			goto search_again;
198 		}
199 		spin_lock(&head->lock);
200 		if (head->extent_op && head->extent_op->update_flags)
201 			extent_flags |= head->extent_op->flags_to_set;
202 
203 		num_refs += head->ref_mod;
204 		spin_unlock(&head->lock);
205 		mutex_unlock(&head->mutex);
206 	}
207 	spin_unlock(&delayed_refs->lock);
208 
209 	WARN_ON(num_refs == 0);
210 	if (refs)
211 		*refs = num_refs;
212 	if (flags)
213 		*flags = extent_flags;
214 	if (owning_root)
215 		*owning_root = owner;
216 
217 	return ret;
218 }
219 
220 /*
221  * Back reference rules.  Back refs have three main goals:
222  *
223  * 1) differentiate between all holders of references to an extent so that
224  *    when a reference is dropped we can make sure it was a valid reference
225  *    before freeing the extent.
226  *
227  * 2) Provide enough information to quickly find the holders of an extent
228  *    if we notice a given block is corrupted or bad.
229  *
230  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
231  *    maintenance.  This is actually the same as #2, but with a slightly
232  *    different use case.
233  *
234  * There are two kinds of back refs. The implicit back refs is optimized
235  * for pointers in non-shared tree blocks. For a given pointer in a block,
236  * back refs of this kind provide information about the block's owner tree
237  * and the pointer's key. These information allow us to find the block by
238  * b-tree searching. The full back refs is for pointers in tree blocks not
239  * referenced by their owner trees. The location of tree block is recorded
240  * in the back refs. Actually the full back refs is generic, and can be
241  * used in all cases the implicit back refs is used. The major shortcoming
242  * of the full back refs is its overhead. Every time a tree block gets
243  * COWed, we have to update back refs entry for all pointers in it.
244  *
245  * For a newly allocated tree block, we use implicit back refs for
246  * pointers in it. This means most tree related operations only involve
247  * implicit back refs. For a tree block created in old transaction, the
248  * only way to drop a reference to it is COW it. So we can detect the
249  * event that tree block loses its owner tree's reference and do the
250  * back refs conversion.
251  *
252  * When a tree block is COWed through a tree, there are four cases:
253  *
254  * The reference count of the block is one and the tree is the block's
255  * owner tree. Nothing to do in this case.
256  *
257  * The reference count of the block is one and the tree is not the
258  * block's owner tree. In this case, full back refs is used for pointers
259  * in the block. Remove these full back refs, add implicit back refs for
260  * every pointers in the new block.
261  *
262  * The reference count of the block is greater than one and the tree is
263  * the block's owner tree. In this case, implicit back refs is used for
264  * pointers in the block. Add full back refs for every pointers in the
265  * block, increase lower level extents' reference counts. The original
266  * implicit back refs are entailed to the new block.
267  *
268  * The reference count of the block is greater than one and the tree is
269  * not the block's owner tree. Add implicit back refs for every pointer in
270  * the new block, increase lower level extents' reference count.
271  *
272  * Back Reference Key composing:
273  *
274  * The key objectid corresponds to the first byte in the extent,
275  * The key type is used to differentiate between types of back refs.
276  * There are different meanings of the key offset for different types
277  * of back refs.
278  *
279  * File extents can be referenced by:
280  *
281  * - multiple snapshots, subvolumes, or different generations in one subvol
282  * - different files inside a single subvolume
283  * - different offsets inside a file (bookend extents in file.c)
284  *
285  * The extent ref structure for the implicit back refs has fields for:
286  *
287  * - Objectid of the subvolume root
288  * - objectid of the file holding the reference
289  * - original offset in the file
290  * - how many bookend extents
291  *
292  * The key offset for the implicit back refs is hash of the first
293  * three fields.
294  *
295  * The extent ref structure for the full back refs has field for:
296  *
297  * - number of pointers in the tree leaf
298  *
299  * The key offset for the implicit back refs is the first byte of
300  * the tree leaf
301  *
302  * When a file extent is allocated, The implicit back refs is used.
303  * the fields are filled in:
304  *
305  *     (root_key.objectid, inode objectid, offset in file, 1)
306  *
307  * When a file extent is removed file truncation, we find the
308  * corresponding implicit back refs and check the following fields:
309  *
310  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
311  *
312  * Btree extents can be referenced by:
313  *
314  * - Different subvolumes
315  *
316  * Both the implicit back refs and the full back refs for tree blocks
317  * only consist of key. The key offset for the implicit back refs is
318  * objectid of block's owner tree. The key offset for the full back refs
319  * is the first byte of parent block.
320  *
321  * When implicit back refs is used, information about the lowest key and
322  * level of the tree block are required. These information are stored in
323  * tree block info structure.
324  */
325 
326 /*
327  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
328  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
329  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
330  */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)331 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
332 				     struct btrfs_extent_inline_ref *iref,
333 				     enum btrfs_inline_ref_type is_data)
334 {
335 	struct btrfs_fs_info *fs_info = eb->fs_info;
336 	int type = btrfs_extent_inline_ref_type(eb, iref);
337 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
338 
339 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
340 		ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
341 		return type;
342 	}
343 
344 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
345 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
346 	    type == BTRFS_SHARED_DATA_REF_KEY ||
347 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
348 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
349 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
350 				return type;
351 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
352 				ASSERT(fs_info);
353 				/*
354 				 * Every shared one has parent tree block,
355 				 * which must be aligned to sector size.
356 				 */
357 				if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
358 					return type;
359 			}
360 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
361 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
362 				return type;
363 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
364 				ASSERT(fs_info);
365 				/*
366 				 * Every shared one has parent tree block,
367 				 * which must be aligned to sector size.
368 				 */
369 				if (offset &&
370 				    IS_ALIGNED(offset, fs_info->sectorsize))
371 					return type;
372 			}
373 		} else {
374 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
375 			return type;
376 		}
377 	}
378 
379 	WARN_ON(1);
380 	btrfs_print_leaf(eb);
381 	btrfs_err(fs_info,
382 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
383 		  eb->start, (unsigned long)iref, type);
384 
385 	return BTRFS_REF_TYPE_INVALID;
386 }
387 
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)388 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
389 {
390 	u32 high_crc = ~(u32)0;
391 	u32 low_crc = ~(u32)0;
392 	__le64 lenum;
393 
394 	lenum = cpu_to_le64(root_objectid);
395 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
396 	lenum = cpu_to_le64(owner);
397 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
398 	lenum = cpu_to_le64(offset);
399 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
400 
401 	return ((u64)high_crc << 31) ^ (u64)low_crc;
402 }
403 
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)404 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
405 				     struct btrfs_extent_data_ref *ref)
406 {
407 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
408 				    btrfs_extent_data_ref_objectid(leaf, ref),
409 				    btrfs_extent_data_ref_offset(leaf, ref));
410 }
411 
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)412 static int match_extent_data_ref(struct extent_buffer *leaf,
413 				 struct btrfs_extent_data_ref *ref,
414 				 u64 root_objectid, u64 owner, u64 offset)
415 {
416 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
417 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
418 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
419 		return 0;
420 	return 1;
421 }
422 
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)423 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
424 					   struct btrfs_path *path,
425 					   u64 bytenr, u64 parent,
426 					   u64 root_objectid,
427 					   u64 owner, u64 offset)
428 {
429 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
430 	struct btrfs_key key;
431 	struct btrfs_extent_data_ref *ref;
432 	struct extent_buffer *leaf;
433 	u32 nritems;
434 	int recow;
435 	int ret;
436 
437 	key.objectid = bytenr;
438 	if (parent) {
439 		key.type = BTRFS_SHARED_DATA_REF_KEY;
440 		key.offset = parent;
441 	} else {
442 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
443 		key.offset = hash_extent_data_ref(root_objectid,
444 						  owner, offset);
445 	}
446 again:
447 	recow = 0;
448 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
449 	if (ret < 0)
450 		return ret;
451 
452 	if (parent) {
453 		if (ret)
454 			return -ENOENT;
455 		return 0;
456 	}
457 
458 	ret = -ENOENT;
459 	leaf = path->nodes[0];
460 	nritems = btrfs_header_nritems(leaf);
461 	while (1) {
462 		if (path->slots[0] >= nritems) {
463 			ret = btrfs_next_leaf(root, path);
464 			if (ret) {
465 				if (ret > 0)
466 					return -ENOENT;
467 				return ret;
468 			}
469 
470 			leaf = path->nodes[0];
471 			nritems = btrfs_header_nritems(leaf);
472 			recow = 1;
473 		}
474 
475 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
476 		if (key.objectid != bytenr ||
477 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
478 			goto fail;
479 
480 		ref = btrfs_item_ptr(leaf, path->slots[0],
481 				     struct btrfs_extent_data_ref);
482 
483 		if (match_extent_data_ref(leaf, ref, root_objectid,
484 					  owner, offset)) {
485 			if (recow) {
486 				btrfs_release_path(path);
487 				goto again;
488 			}
489 			ret = 0;
490 			break;
491 		}
492 		path->slots[0]++;
493 	}
494 fail:
495 	return ret;
496 }
497 
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_ref_node * node,u64 bytenr)498 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
499 					   struct btrfs_path *path,
500 					   struct btrfs_delayed_ref_node *node,
501 					   u64 bytenr)
502 {
503 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
504 	struct btrfs_key key;
505 	struct extent_buffer *leaf;
506 	u64 owner = btrfs_delayed_ref_owner(node);
507 	u64 offset = btrfs_delayed_ref_offset(node);
508 	u32 size;
509 	u32 num_refs;
510 	int ret;
511 
512 	key.objectid = bytenr;
513 	if (node->parent) {
514 		key.type = BTRFS_SHARED_DATA_REF_KEY;
515 		key.offset = node->parent;
516 		size = sizeof(struct btrfs_shared_data_ref);
517 	} else {
518 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
519 		key.offset = hash_extent_data_ref(node->ref_root, owner, offset);
520 		size = sizeof(struct btrfs_extent_data_ref);
521 	}
522 
523 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
524 	if (ret && ret != -EEXIST)
525 		goto fail;
526 
527 	leaf = path->nodes[0];
528 	if (node->parent) {
529 		struct btrfs_shared_data_ref *ref;
530 		ref = btrfs_item_ptr(leaf, path->slots[0],
531 				     struct btrfs_shared_data_ref);
532 		if (ret == 0) {
533 			btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod);
534 		} else {
535 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
536 			num_refs += node->ref_mod;
537 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
538 		}
539 	} else {
540 		struct btrfs_extent_data_ref *ref;
541 		while (ret == -EEXIST) {
542 			ref = btrfs_item_ptr(leaf, path->slots[0],
543 					     struct btrfs_extent_data_ref);
544 			if (match_extent_data_ref(leaf, ref, node->ref_root,
545 						  owner, offset))
546 				break;
547 			btrfs_release_path(path);
548 			key.offset++;
549 			ret = btrfs_insert_empty_item(trans, root, path, &key,
550 						      size);
551 			if (ret && ret != -EEXIST)
552 				goto fail;
553 
554 			leaf = path->nodes[0];
555 		}
556 		ref = btrfs_item_ptr(leaf, path->slots[0],
557 				     struct btrfs_extent_data_ref);
558 		if (ret == 0) {
559 			btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root);
560 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
561 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
562 			btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod);
563 		} else {
564 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
565 			num_refs += node->ref_mod;
566 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
567 		}
568 	}
569 	ret = 0;
570 fail:
571 	btrfs_release_path(path);
572 	return ret;
573 }
574 
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)575 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
576 					   struct btrfs_root *root,
577 					   struct btrfs_path *path,
578 					   int refs_to_drop)
579 {
580 	struct btrfs_key key;
581 	struct btrfs_extent_data_ref *ref1 = NULL;
582 	struct btrfs_shared_data_ref *ref2 = NULL;
583 	struct extent_buffer *leaf;
584 	u32 num_refs = 0;
585 	int ret = 0;
586 
587 	leaf = path->nodes[0];
588 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
589 
590 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
591 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
592 				      struct btrfs_extent_data_ref);
593 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
594 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
595 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
596 				      struct btrfs_shared_data_ref);
597 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
598 	} else {
599 		btrfs_err(trans->fs_info,
600 			  "unrecognized backref key (%llu %u %llu)",
601 			  key.objectid, key.type, key.offset);
602 		btrfs_abort_transaction(trans, -EUCLEAN);
603 		return -EUCLEAN;
604 	}
605 
606 	BUG_ON(num_refs < refs_to_drop);
607 	num_refs -= refs_to_drop;
608 
609 	if (num_refs == 0) {
610 		ret = btrfs_del_item(trans, root, path);
611 	} else {
612 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
613 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
614 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
615 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
616 	}
617 	return ret;
618 }
619 
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)620 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
621 					  struct btrfs_extent_inline_ref *iref)
622 {
623 	struct btrfs_key key;
624 	struct extent_buffer *leaf;
625 	struct btrfs_extent_data_ref *ref1;
626 	struct btrfs_shared_data_ref *ref2;
627 	u32 num_refs = 0;
628 	int type;
629 
630 	leaf = path->nodes[0];
631 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
632 
633 	if (iref) {
634 		/*
635 		 * If type is invalid, we should have bailed out earlier than
636 		 * this call.
637 		 */
638 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
639 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
640 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
641 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
642 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
643 		} else {
644 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
645 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
646 		}
647 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
648 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
649 				      struct btrfs_extent_data_ref);
650 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
651 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
652 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
653 				      struct btrfs_shared_data_ref);
654 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
655 	} else {
656 		WARN_ON(1);
657 	}
658 	return num_refs;
659 }
660 
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)661 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
662 					  struct btrfs_path *path,
663 					  u64 bytenr, u64 parent,
664 					  u64 root_objectid)
665 {
666 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
667 	struct btrfs_key key;
668 	int ret;
669 
670 	key.objectid = bytenr;
671 	if (parent) {
672 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
673 		key.offset = parent;
674 	} else {
675 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
676 		key.offset = root_objectid;
677 	}
678 
679 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
680 	if (ret > 0)
681 		ret = -ENOENT;
682 	return ret;
683 }
684 
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_ref_node * node,u64 bytenr)685 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
686 					  struct btrfs_path *path,
687 					  struct btrfs_delayed_ref_node *node,
688 					  u64 bytenr)
689 {
690 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
691 	struct btrfs_key key;
692 	int ret;
693 
694 	key.objectid = bytenr;
695 	if (node->parent) {
696 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
697 		key.offset = node->parent;
698 	} else {
699 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
700 		key.offset = node->ref_root;
701 	}
702 
703 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
704 	btrfs_release_path(path);
705 	return ret;
706 }
707 
extent_ref_type(u64 parent,u64 owner)708 static inline int extent_ref_type(u64 parent, u64 owner)
709 {
710 	int type;
711 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
712 		if (parent > 0)
713 			type = BTRFS_SHARED_BLOCK_REF_KEY;
714 		else
715 			type = BTRFS_TREE_BLOCK_REF_KEY;
716 	} else {
717 		if (parent > 0)
718 			type = BTRFS_SHARED_DATA_REF_KEY;
719 		else
720 			type = BTRFS_EXTENT_DATA_REF_KEY;
721 	}
722 	return type;
723 }
724 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)725 static int find_next_key(struct btrfs_path *path, int level,
726 			 struct btrfs_key *key)
727 
728 {
729 	for (; level < BTRFS_MAX_LEVEL; level++) {
730 		if (!path->nodes[level])
731 			break;
732 		if (path->slots[level] + 1 >=
733 		    btrfs_header_nritems(path->nodes[level]))
734 			continue;
735 		if (level == 0)
736 			btrfs_item_key_to_cpu(path->nodes[level], key,
737 					      path->slots[level] + 1);
738 		else
739 			btrfs_node_key_to_cpu(path->nodes[level], key,
740 					      path->slots[level] + 1);
741 		return 0;
742 	}
743 	return 1;
744 }
745 
746 /*
747  * look for inline back ref. if back ref is found, *ref_ret is set
748  * to the address of inline back ref, and 0 is returned.
749  *
750  * if back ref isn't found, *ref_ret is set to the address where it
751  * should be inserted, and -ENOENT is returned.
752  *
753  * if insert is true and there are too many inline back refs, the path
754  * points to the extent item, and -EAGAIN is returned.
755  *
756  * NOTE: inline back refs are ordered in the same way that back ref
757  *	 items in the tree are ordered.
758  */
759 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)760 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
761 				 struct btrfs_path *path,
762 				 struct btrfs_extent_inline_ref **ref_ret,
763 				 u64 bytenr, u64 num_bytes,
764 				 u64 parent, u64 root_objectid,
765 				 u64 owner, u64 offset, int insert)
766 {
767 	struct btrfs_fs_info *fs_info = trans->fs_info;
768 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
769 	struct btrfs_key key;
770 	struct extent_buffer *leaf;
771 	struct btrfs_extent_item *ei;
772 	struct btrfs_extent_inline_ref *iref;
773 	u64 flags;
774 	u64 item_size;
775 	unsigned long ptr;
776 	unsigned long end;
777 	int extra_size;
778 	int type;
779 	int want;
780 	int ret;
781 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
782 	int needed;
783 
784 	key.objectid = bytenr;
785 	key.type = BTRFS_EXTENT_ITEM_KEY;
786 	key.offset = num_bytes;
787 
788 	want = extent_ref_type(parent, owner);
789 	if (insert) {
790 		extra_size = btrfs_extent_inline_ref_size(want);
791 		path->search_for_extension = 1;
792 	} else
793 		extra_size = -1;
794 
795 	/*
796 	 * Owner is our level, so we can just add one to get the level for the
797 	 * block we are interested in.
798 	 */
799 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
800 		key.type = BTRFS_METADATA_ITEM_KEY;
801 		key.offset = owner;
802 	}
803 
804 again:
805 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
806 	if (ret < 0)
807 		goto out;
808 
809 	/*
810 	 * We may be a newly converted file system which still has the old fat
811 	 * extent entries for metadata, so try and see if we have one of those.
812 	 */
813 	if (ret > 0 && skinny_metadata) {
814 		skinny_metadata = false;
815 		if (path->slots[0]) {
816 			path->slots[0]--;
817 			btrfs_item_key_to_cpu(path->nodes[0], &key,
818 					      path->slots[0]);
819 			if (key.objectid == bytenr &&
820 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
821 			    key.offset == num_bytes)
822 				ret = 0;
823 		}
824 		if (ret) {
825 			key.objectid = bytenr;
826 			key.type = BTRFS_EXTENT_ITEM_KEY;
827 			key.offset = num_bytes;
828 			btrfs_release_path(path);
829 			goto again;
830 		}
831 	}
832 
833 	if (ret && !insert) {
834 		ret = -ENOENT;
835 		goto out;
836 	} else if (WARN_ON(ret)) {
837 		btrfs_print_leaf(path->nodes[0]);
838 		btrfs_err(fs_info,
839 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
840 			  bytenr, num_bytes, parent, root_objectid, owner,
841 			  offset);
842 		ret = -EUCLEAN;
843 		goto out;
844 	}
845 
846 	leaf = path->nodes[0];
847 	item_size = btrfs_item_size(leaf, path->slots[0]);
848 	if (unlikely(item_size < sizeof(*ei))) {
849 		ret = -EUCLEAN;
850 		btrfs_err(fs_info,
851 			  "unexpected extent item size, has %llu expect >= %zu",
852 			  item_size, sizeof(*ei));
853 		btrfs_abort_transaction(trans, ret);
854 		goto out;
855 	}
856 
857 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
858 	flags = btrfs_extent_flags(leaf, ei);
859 
860 	ptr = (unsigned long)(ei + 1);
861 	end = (unsigned long)ei + item_size;
862 
863 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
864 		ptr += sizeof(struct btrfs_tree_block_info);
865 		BUG_ON(ptr > end);
866 	}
867 
868 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
869 		needed = BTRFS_REF_TYPE_DATA;
870 	else
871 		needed = BTRFS_REF_TYPE_BLOCK;
872 
873 	ret = -ENOENT;
874 	while (ptr < end) {
875 		iref = (struct btrfs_extent_inline_ref *)ptr;
876 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
877 		if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
878 			ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
879 			ptr += btrfs_extent_inline_ref_size(type);
880 			continue;
881 		}
882 		if (type == BTRFS_REF_TYPE_INVALID) {
883 			ret = -EUCLEAN;
884 			goto out;
885 		}
886 
887 		if (want < type)
888 			break;
889 		if (want > type) {
890 			ptr += btrfs_extent_inline_ref_size(type);
891 			continue;
892 		}
893 
894 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
895 			struct btrfs_extent_data_ref *dref;
896 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
897 			if (match_extent_data_ref(leaf, dref, root_objectid,
898 						  owner, offset)) {
899 				ret = 0;
900 				break;
901 			}
902 			if (hash_extent_data_ref_item(leaf, dref) <
903 			    hash_extent_data_ref(root_objectid, owner, offset))
904 				break;
905 		} else {
906 			u64 ref_offset;
907 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
908 			if (parent > 0) {
909 				if (parent == ref_offset) {
910 					ret = 0;
911 					break;
912 				}
913 				if (ref_offset < parent)
914 					break;
915 			} else {
916 				if (root_objectid == ref_offset) {
917 					ret = 0;
918 					break;
919 				}
920 				if (ref_offset < root_objectid)
921 					break;
922 			}
923 		}
924 		ptr += btrfs_extent_inline_ref_size(type);
925 	}
926 
927 	if (unlikely(ptr > end)) {
928 		ret = -EUCLEAN;
929 		btrfs_print_leaf(path->nodes[0]);
930 		btrfs_crit(fs_info,
931 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
932 			   path->slots[0], root_objectid, owner, offset, parent);
933 		goto out;
934 	}
935 
936 	if (ret == -ENOENT && insert) {
937 		if (item_size + extra_size >=
938 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
939 			ret = -EAGAIN;
940 			goto out;
941 		}
942 
943 		if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) {
944 			struct btrfs_key tmp_key;
945 
946 			btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1);
947 			if (tmp_key.objectid == bytenr &&
948 			    tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
949 				ret = -EAGAIN;
950 				goto out;
951 			}
952 			goto out_no_entry;
953 		}
954 
955 		if (!path->keep_locks) {
956 			btrfs_release_path(path);
957 			path->keep_locks = 1;
958 			goto again;
959 		}
960 
961 		/*
962 		 * To add new inline back ref, we have to make sure
963 		 * there is no corresponding back ref item.
964 		 * For simplicity, we just do not add new inline back
965 		 * ref if there is any kind of item for this block
966 		 */
967 		if (find_next_key(path, 0, &key) == 0 &&
968 		    key.objectid == bytenr &&
969 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
970 			ret = -EAGAIN;
971 			goto out;
972 		}
973 	}
974 out_no_entry:
975 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
976 out:
977 	if (path->keep_locks) {
978 		path->keep_locks = 0;
979 		btrfs_unlock_up_safe(path, 1);
980 	}
981 	if (insert)
982 		path->search_for_extension = 0;
983 	return ret;
984 }
985 
986 /*
987  * helper to add new inline back ref
988  */
989 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)990 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
991 				 struct btrfs_path *path,
992 				 struct btrfs_extent_inline_ref *iref,
993 				 u64 parent, u64 root_objectid,
994 				 u64 owner, u64 offset, int refs_to_add,
995 				 struct btrfs_delayed_extent_op *extent_op)
996 {
997 	struct extent_buffer *leaf;
998 	struct btrfs_extent_item *ei;
999 	unsigned long ptr;
1000 	unsigned long end;
1001 	unsigned long item_offset;
1002 	u64 refs;
1003 	int size;
1004 	int type;
1005 
1006 	leaf = path->nodes[0];
1007 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1008 	item_offset = (unsigned long)iref - (unsigned long)ei;
1009 
1010 	type = extent_ref_type(parent, owner);
1011 	size = btrfs_extent_inline_ref_size(type);
1012 
1013 	btrfs_extend_item(trans, path, size);
1014 
1015 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1016 	refs = btrfs_extent_refs(leaf, ei);
1017 	refs += refs_to_add;
1018 	btrfs_set_extent_refs(leaf, ei, refs);
1019 	if (extent_op)
1020 		__run_delayed_extent_op(extent_op, leaf, ei);
1021 
1022 	ptr = (unsigned long)ei + item_offset;
1023 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1024 	if (ptr < end - size)
1025 		memmove_extent_buffer(leaf, ptr + size, ptr,
1026 				      end - size - ptr);
1027 
1028 	iref = (struct btrfs_extent_inline_ref *)ptr;
1029 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1030 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1031 		struct btrfs_extent_data_ref *dref;
1032 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1033 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1034 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1035 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1036 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1037 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1038 		struct btrfs_shared_data_ref *sref;
1039 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1040 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1041 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1042 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1043 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1044 	} else {
1045 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1046 	}
1047 }
1048 
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1049 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1050 				 struct btrfs_path *path,
1051 				 struct btrfs_extent_inline_ref **ref_ret,
1052 				 u64 bytenr, u64 num_bytes, u64 parent,
1053 				 u64 root_objectid, u64 owner, u64 offset)
1054 {
1055 	int ret;
1056 
1057 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1058 					   num_bytes, parent, root_objectid,
1059 					   owner, offset, 0);
1060 	if (ret != -ENOENT)
1061 		return ret;
1062 
1063 	btrfs_release_path(path);
1064 	*ref_ret = NULL;
1065 
1066 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1067 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1068 					    root_objectid);
1069 	} else {
1070 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1071 					     root_objectid, owner, offset);
1072 	}
1073 	return ret;
1074 }
1075 
1076 /*
1077  * helper to update/remove inline back ref
1078  */
update_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1079 static noinline_for_stack int update_inline_extent_backref(
1080 				  struct btrfs_trans_handle *trans,
1081 				  struct btrfs_path *path,
1082 				  struct btrfs_extent_inline_ref *iref,
1083 				  int refs_to_mod,
1084 				  struct btrfs_delayed_extent_op *extent_op)
1085 {
1086 	struct extent_buffer *leaf = path->nodes[0];
1087 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1088 	struct btrfs_extent_item *ei;
1089 	struct btrfs_extent_data_ref *dref = NULL;
1090 	struct btrfs_shared_data_ref *sref = NULL;
1091 	unsigned long ptr;
1092 	unsigned long end;
1093 	u32 item_size;
1094 	int size;
1095 	int type;
1096 	u64 refs;
1097 
1098 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1099 	refs = btrfs_extent_refs(leaf, ei);
1100 	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1101 		struct btrfs_key key;
1102 		u32 extent_size;
1103 
1104 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1105 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1106 			extent_size = fs_info->nodesize;
1107 		else
1108 			extent_size = key.offset;
1109 		btrfs_print_leaf(leaf);
1110 		btrfs_err(fs_info,
1111 	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1112 			  key.objectid, extent_size, refs_to_mod, refs);
1113 		return -EUCLEAN;
1114 	}
1115 	refs += refs_to_mod;
1116 	btrfs_set_extent_refs(leaf, ei, refs);
1117 	if (extent_op)
1118 		__run_delayed_extent_op(extent_op, leaf, ei);
1119 
1120 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1121 	/*
1122 	 * Function btrfs_get_extent_inline_ref_type() has already printed
1123 	 * error messages.
1124 	 */
1125 	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1126 		return -EUCLEAN;
1127 
1128 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1129 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1130 		refs = btrfs_extent_data_ref_count(leaf, dref);
1131 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1132 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1133 		refs = btrfs_shared_data_ref_count(leaf, sref);
1134 	} else {
1135 		refs = 1;
1136 		/*
1137 		 * For tree blocks we can only drop one ref for it, and tree
1138 		 * blocks should not have refs > 1.
1139 		 *
1140 		 * Furthermore if we're inserting a new inline backref, we
1141 		 * won't reach this path either. That would be
1142 		 * setup_inline_extent_backref().
1143 		 */
1144 		if (unlikely(refs_to_mod != -1)) {
1145 			struct btrfs_key key;
1146 
1147 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1148 
1149 			btrfs_print_leaf(leaf);
1150 			btrfs_err(fs_info,
1151 			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1152 				  key.objectid, refs_to_mod);
1153 			return -EUCLEAN;
1154 		}
1155 	}
1156 
1157 	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1158 		struct btrfs_key key;
1159 		u32 extent_size;
1160 
1161 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1162 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1163 			extent_size = fs_info->nodesize;
1164 		else
1165 			extent_size = key.offset;
1166 		btrfs_print_leaf(leaf);
1167 		btrfs_err(fs_info,
1168 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1169 			  (unsigned long)iref, key.objectid, extent_size,
1170 			  refs_to_mod, refs);
1171 		return -EUCLEAN;
1172 	}
1173 	refs += refs_to_mod;
1174 
1175 	if (refs > 0) {
1176 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1177 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1178 		else
1179 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1180 	} else {
1181 		size =  btrfs_extent_inline_ref_size(type);
1182 		item_size = btrfs_item_size(leaf, path->slots[0]);
1183 		ptr = (unsigned long)iref;
1184 		end = (unsigned long)ei + item_size;
1185 		if (ptr + size < end)
1186 			memmove_extent_buffer(leaf, ptr, ptr + size,
1187 					      end - ptr - size);
1188 		item_size -= size;
1189 		btrfs_truncate_item(trans, path, item_size, 1);
1190 	}
1191 	return 0;
1192 }
1193 
1194 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1195 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1196 				 struct btrfs_path *path,
1197 				 u64 bytenr, u64 num_bytes, u64 parent,
1198 				 u64 root_objectid, u64 owner,
1199 				 u64 offset, int refs_to_add,
1200 				 struct btrfs_delayed_extent_op *extent_op)
1201 {
1202 	struct btrfs_extent_inline_ref *iref;
1203 	int ret;
1204 
1205 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1206 					   num_bytes, parent, root_objectid,
1207 					   owner, offset, 1);
1208 	if (ret == 0) {
1209 		/*
1210 		 * We're adding refs to a tree block we already own, this
1211 		 * should not happen at all.
1212 		 */
1213 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1214 			btrfs_print_leaf(path->nodes[0]);
1215 			btrfs_crit(trans->fs_info,
1216 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1217 				   bytenr, num_bytes, root_objectid, path->slots[0]);
1218 			return -EUCLEAN;
1219 		}
1220 		ret = update_inline_extent_backref(trans, path, iref,
1221 						   refs_to_add, extent_op);
1222 	} else if (ret == -ENOENT) {
1223 		setup_inline_extent_backref(trans, path, iref, parent,
1224 					    root_objectid, owner, offset,
1225 					    refs_to_add, extent_op);
1226 		ret = 0;
1227 	}
1228 	return ret;
1229 }
1230 
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1231 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1232 				 struct btrfs_root *root,
1233 				 struct btrfs_path *path,
1234 				 struct btrfs_extent_inline_ref *iref,
1235 				 int refs_to_drop, int is_data)
1236 {
1237 	int ret = 0;
1238 
1239 	BUG_ON(!is_data && refs_to_drop != 1);
1240 	if (iref)
1241 		ret = update_inline_extent_backref(trans, path, iref,
1242 						   -refs_to_drop, NULL);
1243 	else if (is_data)
1244 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1245 	else
1246 		ret = btrfs_del_item(trans, root, path);
1247 	return ret;
1248 }
1249 
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1250 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1251 			       u64 *discarded_bytes)
1252 {
1253 	int j, ret = 0;
1254 	u64 bytes_left, end;
1255 	u64 aligned_start = ALIGN(start, SECTOR_SIZE);
1256 
1257 	/* Adjust the range to be aligned to 512B sectors if necessary. */
1258 	if (start != aligned_start) {
1259 		len -= aligned_start - start;
1260 		len = round_down(len, SECTOR_SIZE);
1261 		start = aligned_start;
1262 	}
1263 
1264 	*discarded_bytes = 0;
1265 
1266 	if (!len)
1267 		return 0;
1268 
1269 	end = start + len;
1270 	bytes_left = len;
1271 
1272 	/* Skip any superblocks on this device. */
1273 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1274 		u64 sb_start = btrfs_sb_offset(j);
1275 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1276 		u64 size = sb_start - start;
1277 
1278 		if (!in_range(sb_start, start, bytes_left) &&
1279 		    !in_range(sb_end, start, bytes_left) &&
1280 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1281 			continue;
1282 
1283 		/*
1284 		 * Superblock spans beginning of range.  Adjust start and
1285 		 * try again.
1286 		 */
1287 		if (sb_start <= start) {
1288 			start += sb_end - start;
1289 			if (start > end) {
1290 				bytes_left = 0;
1291 				break;
1292 			}
1293 			bytes_left = end - start;
1294 			continue;
1295 		}
1296 
1297 		if (size) {
1298 			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1299 						   size >> SECTOR_SHIFT,
1300 						   GFP_NOFS);
1301 			if (!ret)
1302 				*discarded_bytes += size;
1303 			else if (ret != -EOPNOTSUPP)
1304 				return ret;
1305 		}
1306 
1307 		start = sb_end;
1308 		if (start > end) {
1309 			bytes_left = 0;
1310 			break;
1311 		}
1312 		bytes_left = end - start;
1313 	}
1314 
1315 	while (bytes_left) {
1316 		u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1317 
1318 		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1319 					   bytes_to_discard >> SECTOR_SHIFT,
1320 					   GFP_NOFS);
1321 
1322 		if (ret) {
1323 			if (ret != -EOPNOTSUPP)
1324 				break;
1325 			continue;
1326 		}
1327 
1328 		start += bytes_to_discard;
1329 		bytes_left -= bytes_to_discard;
1330 		*discarded_bytes += bytes_to_discard;
1331 
1332 		if (btrfs_trim_interrupted()) {
1333 			ret = -ERESTARTSYS;
1334 			break;
1335 		}
1336 	}
1337 
1338 	return ret;
1339 }
1340 
do_discard_extent(struct btrfs_discard_stripe * stripe,u64 * bytes)1341 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1342 {
1343 	struct btrfs_device *dev = stripe->dev;
1344 	struct btrfs_fs_info *fs_info = dev->fs_info;
1345 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1346 	u64 phys = stripe->physical;
1347 	u64 len = stripe->length;
1348 	u64 discarded = 0;
1349 	int ret = 0;
1350 
1351 	/* Zone reset on a zoned filesystem */
1352 	if (btrfs_can_zone_reset(dev, phys, len)) {
1353 		u64 src_disc;
1354 
1355 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1356 		if (ret)
1357 			goto out;
1358 
1359 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1360 		    dev != dev_replace->srcdev)
1361 			goto out;
1362 
1363 		src_disc = discarded;
1364 
1365 		/* Send to replace target as well */
1366 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1367 					      &discarded);
1368 		discarded += src_disc;
1369 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1370 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1371 	} else {
1372 		ret = 0;
1373 		*bytes = 0;
1374 	}
1375 
1376 out:
1377 	*bytes = discarded;
1378 	return ret;
1379 }
1380 
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1381 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1382 			 u64 num_bytes, u64 *actual_bytes)
1383 {
1384 	int ret = 0;
1385 	u64 discarded_bytes = 0;
1386 	u64 end = bytenr + num_bytes;
1387 	u64 cur = bytenr;
1388 
1389 	/*
1390 	 * Avoid races with device replace and make sure the devices in the
1391 	 * stripes don't go away while we are discarding.
1392 	 */
1393 	btrfs_bio_counter_inc_blocked(fs_info);
1394 	while (cur < end) {
1395 		struct btrfs_discard_stripe *stripes;
1396 		unsigned int num_stripes;
1397 		int i;
1398 
1399 		num_bytes = end - cur;
1400 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1401 		if (IS_ERR(stripes)) {
1402 			ret = PTR_ERR(stripes);
1403 			if (ret == -EOPNOTSUPP)
1404 				ret = 0;
1405 			break;
1406 		}
1407 
1408 		for (i = 0; i < num_stripes; i++) {
1409 			struct btrfs_discard_stripe *stripe = stripes + i;
1410 			u64 bytes;
1411 
1412 			if (!stripe->dev->bdev) {
1413 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1414 				continue;
1415 			}
1416 
1417 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1418 					&stripe->dev->dev_state))
1419 				continue;
1420 
1421 			ret = do_discard_extent(stripe, &bytes);
1422 			if (ret) {
1423 				/*
1424 				 * Keep going if discard is not supported by the
1425 				 * device.
1426 				 */
1427 				if (ret != -EOPNOTSUPP)
1428 					break;
1429 				ret = 0;
1430 			} else {
1431 				discarded_bytes += bytes;
1432 			}
1433 		}
1434 		kfree(stripes);
1435 		if (ret)
1436 			break;
1437 		cur += num_bytes;
1438 	}
1439 	btrfs_bio_counter_dec(fs_info);
1440 	if (actual_bytes)
1441 		*actual_bytes = discarded_bytes;
1442 	return ret;
1443 }
1444 
1445 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1446 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1447 			 struct btrfs_ref *generic_ref)
1448 {
1449 	struct btrfs_fs_info *fs_info = trans->fs_info;
1450 	int ret;
1451 
1452 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1453 	       generic_ref->action);
1454 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1455 	       generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID);
1456 
1457 	if (generic_ref->type == BTRFS_REF_METADATA)
1458 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1459 	else
1460 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1461 
1462 	btrfs_ref_tree_mod(fs_info, generic_ref);
1463 
1464 	return ret;
1465 }
1466 
1467 /*
1468  * Insert backreference for a given extent.
1469  *
1470  * The counterpart is in __btrfs_free_extent(), with examples and more details
1471  * how it works.
1472  *
1473  * @trans:	    Handle of transaction
1474  *
1475  * @node:	    The delayed ref node used to get the bytenr/length for
1476  *		    extent whose references are incremented.
1477  *
1478  * @extent_op       Pointer to a structure, holding information necessary when
1479  *                  updating a tree block's flags
1480  *
1481  */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)1482 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1483 				  struct btrfs_delayed_ref_node *node,
1484 				  struct btrfs_delayed_extent_op *extent_op)
1485 {
1486 	BTRFS_PATH_AUTO_FREE(path);
1487 	struct extent_buffer *leaf;
1488 	struct btrfs_extent_item *item;
1489 	struct btrfs_key key;
1490 	u64 bytenr = node->bytenr;
1491 	u64 num_bytes = node->num_bytes;
1492 	u64 owner = btrfs_delayed_ref_owner(node);
1493 	u64 offset = btrfs_delayed_ref_offset(node);
1494 	u64 refs;
1495 	int refs_to_add = node->ref_mod;
1496 	int ret;
1497 
1498 	path = btrfs_alloc_path();
1499 	if (!path)
1500 		return -ENOMEM;
1501 
1502 	/* this will setup the path even if it fails to insert the back ref */
1503 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1504 					   node->parent, node->ref_root, owner,
1505 					   offset, refs_to_add, extent_op);
1506 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1507 		return ret;
1508 
1509 	/*
1510 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1511 	 * inline extent ref, so just update the reference count and add a
1512 	 * normal backref.
1513 	 */
1514 	leaf = path->nodes[0];
1515 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1516 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1517 	refs = btrfs_extent_refs(leaf, item);
1518 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1519 	if (extent_op)
1520 		__run_delayed_extent_op(extent_op, leaf, item);
1521 
1522 	btrfs_release_path(path);
1523 
1524 	/* now insert the actual backref */
1525 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1526 		ret = insert_tree_block_ref(trans, path, node, bytenr);
1527 	else
1528 		ret = insert_extent_data_ref(trans, path, node, bytenr);
1529 
1530 	if (ret)
1531 		btrfs_abort_transaction(trans, ret);
1532 
1533 	return ret;
1534 }
1535 
free_head_ref_squota_rsv(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * href)1536 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1537 				     struct btrfs_delayed_ref_head *href)
1538 {
1539 	u64 root = href->owning_root;
1540 
1541 	/*
1542 	 * Don't check must_insert_reserved, as this is called from contexts
1543 	 * where it has already been unset.
1544 	 */
1545 	if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1546 	    !href->is_data || !is_fstree(root))
1547 		return;
1548 
1549 	btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1550 				  BTRFS_QGROUP_RSV_DATA);
1551 }
1552 
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1553 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1554 				struct btrfs_delayed_ref_head *href,
1555 				struct btrfs_delayed_ref_node *node,
1556 				struct btrfs_delayed_extent_op *extent_op,
1557 				bool insert_reserved)
1558 {
1559 	int ret = 0;
1560 	u64 parent = 0;
1561 	u64 flags = 0;
1562 
1563 	trace_run_delayed_data_ref(trans->fs_info, node);
1564 
1565 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1566 		parent = node->parent;
1567 
1568 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1569 		struct btrfs_key key;
1570 		struct btrfs_squota_delta delta = {
1571 			.root = href->owning_root,
1572 			.num_bytes = node->num_bytes,
1573 			.is_data = true,
1574 			.is_inc	= true,
1575 			.generation = trans->transid,
1576 		};
1577 		u64 owner = btrfs_delayed_ref_owner(node);
1578 		u64 offset = btrfs_delayed_ref_offset(node);
1579 
1580 		if (extent_op)
1581 			flags |= extent_op->flags_to_set;
1582 
1583 		key.objectid = node->bytenr;
1584 		key.type = BTRFS_EXTENT_ITEM_KEY;
1585 		key.offset = node->num_bytes;
1586 
1587 		ret = alloc_reserved_file_extent(trans, parent, node->ref_root,
1588 						 flags, owner, offset, &key,
1589 						 node->ref_mod,
1590 						 href->owning_root);
1591 		free_head_ref_squota_rsv(trans->fs_info, href);
1592 		if (!ret)
1593 			ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1594 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1595 		ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1596 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1597 		ret = __btrfs_free_extent(trans, href, node, extent_op);
1598 	} else {
1599 		BUG();
1600 	}
1601 	return ret;
1602 }
1603 
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1604 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1605 				    struct extent_buffer *leaf,
1606 				    struct btrfs_extent_item *ei)
1607 {
1608 	u64 flags = btrfs_extent_flags(leaf, ei);
1609 	if (extent_op->update_flags) {
1610 		flags |= extent_op->flags_to_set;
1611 		btrfs_set_extent_flags(leaf, ei, flags);
1612 	}
1613 
1614 	if (extent_op->update_key) {
1615 		struct btrfs_tree_block_info *bi;
1616 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1617 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1618 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1619 	}
1620 }
1621 
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1622 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1623 				 struct btrfs_delayed_ref_head *head,
1624 				 struct btrfs_delayed_extent_op *extent_op)
1625 {
1626 	struct btrfs_fs_info *fs_info = trans->fs_info;
1627 	struct btrfs_root *root;
1628 	struct btrfs_key key;
1629 	BTRFS_PATH_AUTO_FREE(path);
1630 	struct btrfs_extent_item *ei;
1631 	struct extent_buffer *leaf;
1632 	u32 item_size;
1633 	int ret;
1634 	int metadata = 1;
1635 
1636 	if (TRANS_ABORTED(trans))
1637 		return 0;
1638 
1639 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1640 		metadata = 0;
1641 
1642 	path = btrfs_alloc_path();
1643 	if (!path)
1644 		return -ENOMEM;
1645 
1646 	key.objectid = head->bytenr;
1647 
1648 	if (metadata) {
1649 		key.type = BTRFS_METADATA_ITEM_KEY;
1650 		key.offset = head->level;
1651 	} else {
1652 		key.type = BTRFS_EXTENT_ITEM_KEY;
1653 		key.offset = head->num_bytes;
1654 	}
1655 
1656 	root = btrfs_extent_root(fs_info, key.objectid);
1657 again:
1658 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1659 	if (ret < 0) {
1660 		return ret;
1661 	} else if (ret > 0) {
1662 		if (metadata) {
1663 			if (path->slots[0] > 0) {
1664 				path->slots[0]--;
1665 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1666 						      path->slots[0]);
1667 				if (key.objectid == head->bytenr &&
1668 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1669 				    key.offset == head->num_bytes)
1670 					ret = 0;
1671 			}
1672 			if (ret > 0) {
1673 				btrfs_release_path(path);
1674 				metadata = 0;
1675 
1676 				key.objectid = head->bytenr;
1677 				key.type = BTRFS_EXTENT_ITEM_KEY;
1678 				key.offset = head->num_bytes;
1679 				goto again;
1680 			}
1681 		} else {
1682 			ret = -EUCLEAN;
1683 			btrfs_err(fs_info,
1684 		  "missing extent item for extent %llu num_bytes %llu level %d",
1685 				  head->bytenr, head->num_bytes, head->level);
1686 			return ret;
1687 		}
1688 	}
1689 
1690 	leaf = path->nodes[0];
1691 	item_size = btrfs_item_size(leaf, path->slots[0]);
1692 
1693 	if (unlikely(item_size < sizeof(*ei))) {
1694 		ret = -EUCLEAN;
1695 		btrfs_err(fs_info,
1696 			  "unexpected extent item size, has %u expect >= %zu",
1697 			  item_size, sizeof(*ei));
1698 		btrfs_abort_transaction(trans, ret);
1699 		return ret;
1700 	}
1701 
1702 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1703 	__run_delayed_extent_op(extent_op, leaf, ei);
1704 
1705 	return ret;
1706 }
1707 
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1708 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1709 				struct btrfs_delayed_ref_head *href,
1710 				struct btrfs_delayed_ref_node *node,
1711 				struct btrfs_delayed_extent_op *extent_op,
1712 				bool insert_reserved)
1713 {
1714 	int ret = 0;
1715 	struct btrfs_fs_info *fs_info = trans->fs_info;
1716 	u64 parent = 0;
1717 	u64 ref_root = 0;
1718 
1719 	trace_run_delayed_tree_ref(trans->fs_info, node);
1720 
1721 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1722 		parent = node->parent;
1723 	ref_root = node->ref_root;
1724 
1725 	if (unlikely(node->ref_mod != 1)) {
1726 		btrfs_err(trans->fs_info,
1727 	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1728 			  node->bytenr, node->ref_mod, node->action, ref_root,
1729 			  parent);
1730 		return -EUCLEAN;
1731 	}
1732 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1733 		struct btrfs_squota_delta delta = {
1734 			.root = href->owning_root,
1735 			.num_bytes = fs_info->nodesize,
1736 			.is_data = false,
1737 			.is_inc = true,
1738 			.generation = trans->transid,
1739 		};
1740 
1741 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1742 		if (!ret)
1743 			btrfs_record_squota_delta(fs_info, &delta);
1744 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1745 		ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1746 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1747 		ret = __btrfs_free_extent(trans, href, node, extent_op);
1748 	} else {
1749 		BUG();
1750 	}
1751 	return ret;
1752 }
1753 
1754 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1755 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1756 			       struct btrfs_delayed_ref_head *href,
1757 			       struct btrfs_delayed_ref_node *node,
1758 			       struct btrfs_delayed_extent_op *extent_op,
1759 			       bool insert_reserved)
1760 {
1761 	int ret = 0;
1762 
1763 	if (TRANS_ABORTED(trans)) {
1764 		if (insert_reserved) {
1765 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1766 			free_head_ref_squota_rsv(trans->fs_info, href);
1767 		}
1768 		return 0;
1769 	}
1770 
1771 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1772 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1773 		ret = run_delayed_tree_ref(trans, href, node, extent_op,
1774 					   insert_reserved);
1775 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1776 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1777 		ret = run_delayed_data_ref(trans, href, node, extent_op,
1778 					   insert_reserved);
1779 	else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1780 		ret = 0;
1781 	else
1782 		BUG();
1783 	if (ret && insert_reserved)
1784 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1785 	if (ret < 0)
1786 		btrfs_err(trans->fs_info,
1787 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1788 			  node->bytenr, node->num_bytes, node->type,
1789 			  node->action, node->ref_mod, ret);
1790 	return ret;
1791 }
1792 
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1793 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1794 				struct btrfs_delayed_ref_head *head)
1795 {
1796 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1797 
1798 	if (!extent_op)
1799 		return NULL;
1800 
1801 	if (head->must_insert_reserved) {
1802 		head->extent_op = NULL;
1803 		btrfs_free_delayed_extent_op(extent_op);
1804 		return NULL;
1805 	}
1806 	return extent_op;
1807 }
1808 
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1809 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1810 				     struct btrfs_delayed_ref_head *head)
1811 {
1812 	struct btrfs_delayed_extent_op *extent_op;
1813 	int ret;
1814 
1815 	extent_op = cleanup_extent_op(head);
1816 	if (!extent_op)
1817 		return 0;
1818 	head->extent_op = NULL;
1819 	spin_unlock(&head->lock);
1820 	ret = run_delayed_extent_op(trans, head, extent_op);
1821 	btrfs_free_delayed_extent_op(extent_op);
1822 	return ret ? ret : 1;
1823 }
1824 
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1825 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1826 				  struct btrfs_delayed_ref_root *delayed_refs,
1827 				  struct btrfs_delayed_ref_head *head)
1828 {
1829 	u64 ret = 0;
1830 
1831 	/*
1832 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1833 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1834 	 */
1835 	if (head->total_ref_mod < 0 && head->is_data) {
1836 		int nr_csums;
1837 
1838 		spin_lock(&delayed_refs->lock);
1839 		delayed_refs->pending_csums -= head->num_bytes;
1840 		spin_unlock(&delayed_refs->lock);
1841 		nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1842 
1843 		btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1844 
1845 		ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1846 	}
1847 	/* must_insert_reserved can be set only if we didn't run the head ref. */
1848 	if (head->must_insert_reserved)
1849 		free_head_ref_squota_rsv(fs_info, head);
1850 
1851 	return ret;
1852 }
1853 
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,u64 * bytes_released)1854 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1855 			    struct btrfs_delayed_ref_head *head,
1856 			    u64 *bytes_released)
1857 {
1858 
1859 	struct btrfs_fs_info *fs_info = trans->fs_info;
1860 	struct btrfs_delayed_ref_root *delayed_refs;
1861 	int ret;
1862 
1863 	delayed_refs = &trans->transaction->delayed_refs;
1864 
1865 	ret = run_and_cleanup_extent_op(trans, head);
1866 	if (ret < 0) {
1867 		btrfs_unselect_ref_head(delayed_refs, head);
1868 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1869 		return ret;
1870 	} else if (ret) {
1871 		return ret;
1872 	}
1873 
1874 	/*
1875 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1876 	 * and then re-check to make sure nobody got added.
1877 	 */
1878 	spin_unlock(&head->lock);
1879 	spin_lock(&delayed_refs->lock);
1880 	spin_lock(&head->lock);
1881 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1882 		spin_unlock(&head->lock);
1883 		spin_unlock(&delayed_refs->lock);
1884 		return 1;
1885 	}
1886 	btrfs_delete_ref_head(fs_info, delayed_refs, head);
1887 	spin_unlock(&head->lock);
1888 	spin_unlock(&delayed_refs->lock);
1889 
1890 	if (head->must_insert_reserved) {
1891 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1892 		if (head->is_data) {
1893 			struct btrfs_root *csum_root;
1894 
1895 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1896 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1897 					      head->num_bytes);
1898 		}
1899 	}
1900 
1901 	*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1902 
1903 	trace_run_delayed_ref_head(fs_info, head, 0);
1904 	btrfs_delayed_ref_unlock(head);
1905 	btrfs_put_delayed_ref_head(head);
1906 	return ret;
1907 }
1908 
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,u64 * bytes_released)1909 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1910 					   struct btrfs_delayed_ref_head *locked_ref,
1911 					   u64 *bytes_released)
1912 {
1913 	struct btrfs_fs_info *fs_info = trans->fs_info;
1914 	struct btrfs_delayed_ref_root *delayed_refs;
1915 	struct btrfs_delayed_extent_op *extent_op;
1916 	struct btrfs_delayed_ref_node *ref;
1917 	bool must_insert_reserved;
1918 	int ret;
1919 
1920 	delayed_refs = &trans->transaction->delayed_refs;
1921 
1922 	lockdep_assert_held(&locked_ref->mutex);
1923 	lockdep_assert_held(&locked_ref->lock);
1924 
1925 	while ((ref = btrfs_select_delayed_ref(locked_ref))) {
1926 		if (ref->seq &&
1927 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1928 			spin_unlock(&locked_ref->lock);
1929 			btrfs_unselect_ref_head(delayed_refs, locked_ref);
1930 			return -EAGAIN;
1931 		}
1932 
1933 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1934 		RB_CLEAR_NODE(&ref->ref_node);
1935 		if (!list_empty(&ref->add_list))
1936 			list_del(&ref->add_list);
1937 		/*
1938 		 * When we play the delayed ref, also correct the ref_mod on
1939 		 * head
1940 		 */
1941 		switch (ref->action) {
1942 		case BTRFS_ADD_DELAYED_REF:
1943 		case BTRFS_ADD_DELAYED_EXTENT:
1944 			locked_ref->ref_mod -= ref->ref_mod;
1945 			break;
1946 		case BTRFS_DROP_DELAYED_REF:
1947 			locked_ref->ref_mod += ref->ref_mod;
1948 			break;
1949 		default:
1950 			WARN_ON(1);
1951 		}
1952 
1953 		/*
1954 		 * Record the must_insert_reserved flag before we drop the
1955 		 * spin lock.
1956 		 */
1957 		must_insert_reserved = locked_ref->must_insert_reserved;
1958 		/*
1959 		 * Unsetting this on the head ref relinquishes ownership of
1960 		 * the rsv_bytes, so it is critical that every possible code
1961 		 * path from here forward frees all reserves including qgroup
1962 		 * reserve.
1963 		 */
1964 		locked_ref->must_insert_reserved = false;
1965 
1966 		extent_op = locked_ref->extent_op;
1967 		locked_ref->extent_op = NULL;
1968 		spin_unlock(&locked_ref->lock);
1969 
1970 		ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
1971 					  must_insert_reserved);
1972 		btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
1973 		*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
1974 
1975 		btrfs_free_delayed_extent_op(extent_op);
1976 		if (ret) {
1977 			btrfs_unselect_ref_head(delayed_refs, locked_ref);
1978 			btrfs_put_delayed_ref(ref);
1979 			return ret;
1980 		}
1981 
1982 		btrfs_put_delayed_ref(ref);
1983 		cond_resched();
1984 
1985 		spin_lock(&locked_ref->lock);
1986 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 /*
1993  * Returns 0 on success or if called with an already aborted transaction.
1994  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1995  */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,u64 min_bytes)1996 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1997 					     u64 min_bytes)
1998 {
1999 	struct btrfs_fs_info *fs_info = trans->fs_info;
2000 	struct btrfs_delayed_ref_root *delayed_refs;
2001 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2002 	int ret;
2003 	unsigned long count = 0;
2004 	unsigned long max_count = 0;
2005 	u64 bytes_processed = 0;
2006 
2007 	delayed_refs = &trans->transaction->delayed_refs;
2008 	if (min_bytes == 0) {
2009 		max_count = delayed_refs->num_heads_ready;
2010 		min_bytes = U64_MAX;
2011 	}
2012 
2013 	do {
2014 		if (!locked_ref) {
2015 			locked_ref = btrfs_select_ref_head(fs_info, delayed_refs);
2016 			if (IS_ERR_OR_NULL(locked_ref)) {
2017 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2018 					continue;
2019 				} else {
2020 					break;
2021 				}
2022 			}
2023 			count++;
2024 		}
2025 		/*
2026 		 * We need to try and merge add/drops of the same ref since we
2027 		 * can run into issues with relocate dropping the implicit ref
2028 		 * and then it being added back again before the drop can
2029 		 * finish.  If we merged anything we need to re-loop so we can
2030 		 * get a good ref.
2031 		 * Or we can get node references of the same type that weren't
2032 		 * merged when created due to bumps in the tree mod seq, and
2033 		 * we need to merge them to prevent adding an inline extent
2034 		 * backref before dropping it (triggering a BUG_ON at
2035 		 * insert_inline_extent_backref()).
2036 		 */
2037 		spin_lock(&locked_ref->lock);
2038 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2039 
2040 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2041 		if (ret < 0 && ret != -EAGAIN) {
2042 			/*
2043 			 * Error, btrfs_run_delayed_refs_for_head already
2044 			 * unlocked everything so just bail out
2045 			 */
2046 			return ret;
2047 		} else if (!ret) {
2048 			/*
2049 			 * Success, perform the usual cleanup of a processed
2050 			 * head
2051 			 */
2052 			ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2053 			if (ret > 0 ) {
2054 				/* We dropped our lock, we need to loop. */
2055 				ret = 0;
2056 				continue;
2057 			} else if (ret) {
2058 				return ret;
2059 			}
2060 		}
2061 
2062 		/*
2063 		 * Either success case or btrfs_run_delayed_refs_for_head
2064 		 * returned -EAGAIN, meaning we need to select another head
2065 		 */
2066 
2067 		locked_ref = NULL;
2068 		cond_resched();
2069 	} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2070 		 (max_count > 0 && count < max_count) ||
2071 		 locked_ref);
2072 
2073 	return 0;
2074 }
2075 
2076 #ifdef SCRAMBLE_DELAYED_REFS
2077 /*
2078  * Normally delayed refs get processed in ascending bytenr order. This
2079  * correlates in most cases to the order added. To expose dependencies on this
2080  * order, we start to process the tree in the middle instead of the beginning
2081  */
find_middle(struct rb_root * root)2082 static u64 find_middle(struct rb_root *root)
2083 {
2084 	struct rb_node *n = root->rb_node;
2085 	struct btrfs_delayed_ref_node *entry;
2086 	int alt = 1;
2087 	u64 middle;
2088 	u64 first = 0, last = 0;
2089 
2090 	n = rb_first(root);
2091 	if (n) {
2092 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2093 		first = entry->bytenr;
2094 	}
2095 	n = rb_last(root);
2096 	if (n) {
2097 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2098 		last = entry->bytenr;
2099 	}
2100 	n = root->rb_node;
2101 
2102 	while (n) {
2103 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2104 		WARN_ON(!entry->in_tree);
2105 
2106 		middle = entry->bytenr;
2107 
2108 		if (alt)
2109 			n = n->rb_left;
2110 		else
2111 			n = n->rb_right;
2112 
2113 		alt = 1 - alt;
2114 	}
2115 	return middle;
2116 }
2117 #endif
2118 
2119 /*
2120  * Start processing the delayed reference count updates and extent insertions
2121  * we have queued up so far.
2122  *
2123  * @trans:	Transaction handle.
2124  * @min_bytes:	How many bytes of delayed references to process. After this
2125  *		many bytes we stop processing delayed references if there are
2126  *		any more. If 0 it means to run all existing delayed references,
2127  *		but not new ones added after running all existing ones.
2128  *		Use (u64)-1 (U64_MAX) to run all existing delayed references
2129  *		plus any new ones that are added.
2130  *
2131  * Returns 0 on success or if called with an aborted transaction
2132  * Returns <0 on error and aborts the transaction
2133  */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,u64 min_bytes)2134 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2135 {
2136 	struct btrfs_fs_info *fs_info = trans->fs_info;
2137 	struct btrfs_delayed_ref_root *delayed_refs;
2138 	int ret;
2139 
2140 	/* We'll clean this up in btrfs_cleanup_transaction */
2141 	if (TRANS_ABORTED(trans))
2142 		return 0;
2143 
2144 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2145 		return 0;
2146 
2147 	delayed_refs = &trans->transaction->delayed_refs;
2148 again:
2149 #ifdef SCRAMBLE_DELAYED_REFS
2150 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2151 #endif
2152 	ret = __btrfs_run_delayed_refs(trans, min_bytes);
2153 	if (ret < 0) {
2154 		btrfs_abort_transaction(trans, ret);
2155 		return ret;
2156 	}
2157 
2158 	if (min_bytes == U64_MAX) {
2159 		btrfs_create_pending_block_groups(trans);
2160 
2161 		spin_lock(&delayed_refs->lock);
2162 		if (xa_empty(&delayed_refs->head_refs)) {
2163 			spin_unlock(&delayed_refs->lock);
2164 			return 0;
2165 		}
2166 		spin_unlock(&delayed_refs->lock);
2167 
2168 		cond_resched();
2169 		goto again;
2170 	}
2171 
2172 	return 0;
2173 }
2174 
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags)2175 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2176 				struct extent_buffer *eb, u64 flags)
2177 {
2178 	struct btrfs_delayed_extent_op *extent_op;
2179 	int ret;
2180 
2181 	extent_op = btrfs_alloc_delayed_extent_op();
2182 	if (!extent_op)
2183 		return -ENOMEM;
2184 
2185 	extent_op->flags_to_set = flags;
2186 	extent_op->update_flags = true;
2187 	extent_op->update_key = false;
2188 
2189 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len,
2190 					  btrfs_header_level(eb), extent_op);
2191 	if (ret)
2192 		btrfs_free_delayed_extent_op(extent_op);
2193 	return ret;
2194 }
2195 
check_delayed_ref(struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 bytenr)2196 static noinline int check_delayed_ref(struct btrfs_inode *inode,
2197 				      struct btrfs_path *path,
2198 				      u64 offset, u64 bytenr)
2199 {
2200 	struct btrfs_root *root = inode->root;
2201 	struct btrfs_delayed_ref_head *head;
2202 	struct btrfs_delayed_ref_node *ref;
2203 	struct btrfs_delayed_ref_root *delayed_refs;
2204 	struct btrfs_transaction *cur_trans;
2205 	struct rb_node *node;
2206 	int ret = 0;
2207 
2208 	spin_lock(&root->fs_info->trans_lock);
2209 	cur_trans = root->fs_info->running_transaction;
2210 	if (cur_trans)
2211 		refcount_inc(&cur_trans->use_count);
2212 	spin_unlock(&root->fs_info->trans_lock);
2213 	if (!cur_trans)
2214 		return 0;
2215 
2216 	delayed_refs = &cur_trans->delayed_refs;
2217 	spin_lock(&delayed_refs->lock);
2218 	head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
2219 	if (!head) {
2220 		spin_unlock(&delayed_refs->lock);
2221 		btrfs_put_transaction(cur_trans);
2222 		return 0;
2223 	}
2224 
2225 	if (!mutex_trylock(&head->mutex)) {
2226 		if (path->nowait) {
2227 			spin_unlock(&delayed_refs->lock);
2228 			btrfs_put_transaction(cur_trans);
2229 			return -EAGAIN;
2230 		}
2231 
2232 		refcount_inc(&head->refs);
2233 		spin_unlock(&delayed_refs->lock);
2234 
2235 		btrfs_release_path(path);
2236 
2237 		/*
2238 		 * Mutex was contended, block until it's released and let
2239 		 * caller try again
2240 		 */
2241 		mutex_lock(&head->mutex);
2242 		mutex_unlock(&head->mutex);
2243 		btrfs_put_delayed_ref_head(head);
2244 		btrfs_put_transaction(cur_trans);
2245 		return -EAGAIN;
2246 	}
2247 	spin_unlock(&delayed_refs->lock);
2248 
2249 	spin_lock(&head->lock);
2250 	/*
2251 	 * XXX: We should replace this with a proper search function in the
2252 	 * future.
2253 	 */
2254 	for (node = rb_first_cached(&head->ref_tree); node;
2255 	     node = rb_next(node)) {
2256 		u64 ref_owner;
2257 		u64 ref_offset;
2258 
2259 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2260 		/* If it's a shared ref we know a cross reference exists */
2261 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2262 			ret = 1;
2263 			break;
2264 		}
2265 
2266 		ref_owner = btrfs_delayed_ref_owner(ref);
2267 		ref_offset = btrfs_delayed_ref_offset(ref);
2268 
2269 		/*
2270 		 * If our ref doesn't match the one we're currently looking at
2271 		 * then we have a cross reference.
2272 		 */
2273 		if (ref->ref_root != btrfs_root_id(root) ||
2274 		    ref_owner != btrfs_ino(inode) || ref_offset != offset) {
2275 			ret = 1;
2276 			break;
2277 		}
2278 	}
2279 	spin_unlock(&head->lock);
2280 	mutex_unlock(&head->mutex);
2281 	btrfs_put_transaction(cur_trans);
2282 	return ret;
2283 }
2284 
2285 /*
2286  * Check if there are references for a data extent other than the one belonging
2287  * to the given inode and offset.
2288  *
2289  * @inode:     The only inode we expect to find associated with the data extent.
2290  * @path:      A path to use for searching the extent tree.
2291  * @offset:    The only offset we expect to find associated with the data extent.
2292  * @bytenr:    The logical address of the data extent.
2293  *
2294  * When the extent does not have any other references other than the one we
2295  * expect to find, we always return a value of 0 with the path having a locked
2296  * leaf that contains the extent's extent item - this is necessary to ensure
2297  * we don't race with a task running delayed references, and our caller must
2298  * have such a path when calling check_delayed_ref() - it must lock a delayed
2299  * ref head while holding the leaf locked. In case the extent item is not found
2300  * in the extent tree, we return -ENOENT with the path having the leaf (locked)
2301  * where the extent item should be, in order to prevent races with another task
2302  * running delayed references, so that we don't miss any reference when calling
2303  * check_delayed_ref().
2304  *
2305  * Note: this may return false positives, and this is because we want to be
2306  *       quick here as we're called in write paths (when flushing delalloc and
2307  *       in the direct IO write path). For example we can have an extent with
2308  *       a single reference but that reference is not inlined, or we may have
2309  *       many references in the extent tree but we also have delayed references
2310  *       that cancel all the reference except the one for our inode and offset,
2311  *       but it would be expensive to do such checks and complex due to all
2312  *       locking to avoid races between the checks and flushing delayed refs,
2313  *       plus non-inline references may be located on leaves other than the one
2314  *       that contains the extent item in the extent tree. The important thing
2315  *       here is to not return false negatives and that the false positives are
2316  *       not very common.
2317  *
2318  * Returns: 0 if there are no cross references and with the path having a locked
2319  *          leaf from the extent tree that contains the extent's extent item.
2320  *
2321  *          1 if there are cross references (false positives can happen).
2322  *
2323  *          < 0 in case of an error. In case of -ENOENT the leaf in the extent
2324  *          tree where the extent item should be located at is read locked and
2325  *          accessible in the given path.
2326  */
check_committed_ref(struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 bytenr)2327 static noinline int check_committed_ref(struct btrfs_inode *inode,
2328 					struct btrfs_path *path,
2329 					u64 offset, u64 bytenr)
2330 {
2331 	struct btrfs_root *root = inode->root;
2332 	struct btrfs_fs_info *fs_info = root->fs_info;
2333 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2334 	struct extent_buffer *leaf;
2335 	struct btrfs_extent_data_ref *ref;
2336 	struct btrfs_extent_inline_ref *iref;
2337 	struct btrfs_extent_item *ei;
2338 	struct btrfs_key key;
2339 	u32 item_size;
2340 	u32 expected_size;
2341 	int type;
2342 	int ret;
2343 
2344 	key.objectid = bytenr;
2345 	key.type = BTRFS_EXTENT_ITEM_KEY;
2346 	key.offset = (u64)-1;
2347 
2348 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2349 	if (ret < 0)
2350 		return ret;
2351 	if (ret == 0) {
2352 		/*
2353 		 * Key with offset -1 found, there would have to exist an extent
2354 		 * item with such offset, but this is out of the valid range.
2355 		 */
2356 		return -EUCLEAN;
2357 	}
2358 
2359 	if (path->slots[0] == 0)
2360 		return -ENOENT;
2361 
2362 	path->slots[0]--;
2363 	leaf = path->nodes[0];
2364 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2365 
2366 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2367 		return -ENOENT;
2368 
2369 	item_size = btrfs_item_size(leaf, path->slots[0]);
2370 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2371 	expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2372 
2373 	/* No inline refs; we need to bail before checking for owner ref. */
2374 	if (item_size == sizeof(*ei))
2375 		return 1;
2376 
2377 	/* Check for an owner ref; skip over it to the real inline refs. */
2378 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2379 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2380 	if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2381 		expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2382 		iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2383 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2384 	}
2385 
2386 	/* If extent item has more than 1 inline ref then it's shared */
2387 	if (item_size != expected_size)
2388 		return 1;
2389 
2390 	/* If this extent has SHARED_DATA_REF then it's shared */
2391 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2392 		return 1;
2393 
2394 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2395 	if (btrfs_extent_refs(leaf, ei) !=
2396 	    btrfs_extent_data_ref_count(leaf, ref) ||
2397 	    btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) ||
2398 	    btrfs_extent_data_ref_objectid(leaf, ref) != btrfs_ino(inode) ||
2399 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2400 		return 1;
2401 
2402 	return 0;
2403 }
2404 
btrfs_cross_ref_exist(struct btrfs_inode * inode,u64 offset,u64 bytenr,struct btrfs_path * path)2405 int btrfs_cross_ref_exist(struct btrfs_inode *inode, u64 offset,
2406 			  u64 bytenr, struct btrfs_path *path)
2407 {
2408 	int ret;
2409 
2410 	do {
2411 		ret = check_committed_ref(inode, path, offset, bytenr);
2412 		if (ret && ret != -ENOENT)
2413 			goto out;
2414 
2415 		/*
2416 		 * The path must have a locked leaf from the extent tree where
2417 		 * the extent item for our extent is located, in case it exists,
2418 		 * or where it should be located in case it doesn't exist yet
2419 		 * because it's new and its delayed ref was not yet flushed.
2420 		 * We need to lock the delayed ref head at check_delayed_ref(),
2421 		 * if one exists, while holding the leaf locked in order to not
2422 		 * race with delayed ref flushing, missing references and
2423 		 * incorrectly reporting that the extent is not shared.
2424 		 */
2425 		if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) {
2426 			struct extent_buffer *leaf = path->nodes[0];
2427 
2428 			ASSERT(leaf != NULL);
2429 			btrfs_assert_tree_read_locked(leaf);
2430 
2431 			if (ret != -ENOENT) {
2432 				struct btrfs_key key;
2433 
2434 				btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2435 				ASSERT(key.objectid == bytenr);
2436 				ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY);
2437 			}
2438 		}
2439 
2440 		ret = check_delayed_ref(inode, path, offset, bytenr);
2441 	} while (ret == -EAGAIN && !path->nowait);
2442 
2443 out:
2444 	btrfs_release_path(path);
2445 	if (btrfs_is_data_reloc_root(inode->root))
2446 		WARN_ON(ret > 0);
2447 	return ret;
2448 }
2449 
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2450 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2451 			   struct btrfs_root *root,
2452 			   struct extent_buffer *buf,
2453 			   int full_backref, int inc)
2454 {
2455 	struct btrfs_fs_info *fs_info = root->fs_info;
2456 	u64 parent;
2457 	u64 ref_root;
2458 	u32 nritems;
2459 	struct btrfs_key key;
2460 	struct btrfs_file_extent_item *fi;
2461 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2462 	int i;
2463 	int action;
2464 	int level;
2465 	int ret = 0;
2466 
2467 	if (btrfs_is_testing(fs_info))
2468 		return 0;
2469 
2470 	ref_root = btrfs_header_owner(buf);
2471 	nritems = btrfs_header_nritems(buf);
2472 	level = btrfs_header_level(buf);
2473 
2474 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2475 		return 0;
2476 
2477 	if (full_backref)
2478 		parent = buf->start;
2479 	else
2480 		parent = 0;
2481 	if (inc)
2482 		action = BTRFS_ADD_DELAYED_REF;
2483 	else
2484 		action = BTRFS_DROP_DELAYED_REF;
2485 
2486 	for (i = 0; i < nritems; i++) {
2487 		struct btrfs_ref ref = {
2488 			.action = action,
2489 			.parent = parent,
2490 			.ref_root = ref_root,
2491 		};
2492 
2493 		if (level == 0) {
2494 			btrfs_item_key_to_cpu(buf, &key, i);
2495 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2496 				continue;
2497 			fi = btrfs_item_ptr(buf, i,
2498 					    struct btrfs_file_extent_item);
2499 			if (btrfs_file_extent_type(buf, fi) ==
2500 			    BTRFS_FILE_EXTENT_INLINE)
2501 				continue;
2502 			ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2503 			if (ref.bytenr == 0)
2504 				continue;
2505 
2506 			ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2507 			ref.owning_root = ref_root;
2508 
2509 			key.offset -= btrfs_file_extent_offset(buf, fi);
2510 			btrfs_init_data_ref(&ref, key.objectid, key.offset,
2511 					    btrfs_root_id(root), for_reloc);
2512 			if (inc)
2513 				ret = btrfs_inc_extent_ref(trans, &ref);
2514 			else
2515 				ret = btrfs_free_extent(trans, &ref);
2516 			if (ret)
2517 				goto fail;
2518 		} else {
2519 			/* We don't know the owning_root, leave as 0. */
2520 			ref.bytenr = btrfs_node_blockptr(buf, i);
2521 			ref.num_bytes = fs_info->nodesize;
2522 
2523 			btrfs_init_tree_ref(&ref, level - 1,
2524 					    btrfs_root_id(root), for_reloc);
2525 			if (inc)
2526 				ret = btrfs_inc_extent_ref(trans, &ref);
2527 			else
2528 				ret = btrfs_free_extent(trans, &ref);
2529 			if (ret)
2530 				goto fail;
2531 		}
2532 	}
2533 	return 0;
2534 fail:
2535 	return ret;
2536 }
2537 
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2538 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2539 		  struct extent_buffer *buf, int full_backref)
2540 {
2541 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2542 }
2543 
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2544 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2545 		  struct extent_buffer *buf, int full_backref)
2546 {
2547 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2548 }
2549 
get_alloc_profile_by_root(struct btrfs_root * root,int data)2550 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2551 {
2552 	struct btrfs_fs_info *fs_info = root->fs_info;
2553 	u64 flags;
2554 	u64 ret;
2555 
2556 	if (data)
2557 		flags = BTRFS_BLOCK_GROUP_DATA;
2558 	else if (root == fs_info->chunk_root)
2559 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2560 	else
2561 		flags = BTRFS_BLOCK_GROUP_METADATA;
2562 
2563 	ret = btrfs_get_alloc_profile(fs_info, flags);
2564 	return ret;
2565 }
2566 
first_logical_byte(struct btrfs_fs_info * fs_info)2567 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2568 {
2569 	struct rb_node *leftmost;
2570 	u64 bytenr = 0;
2571 
2572 	read_lock(&fs_info->block_group_cache_lock);
2573 	/* Get the block group with the lowest logical start address. */
2574 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2575 	if (leftmost) {
2576 		struct btrfs_block_group *bg;
2577 
2578 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2579 		bytenr = bg->start;
2580 	}
2581 	read_unlock(&fs_info->block_group_cache_lock);
2582 
2583 	return bytenr;
2584 }
2585 
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2586 static int pin_down_extent(struct btrfs_trans_handle *trans,
2587 			   struct btrfs_block_group *cache,
2588 			   u64 bytenr, u64 num_bytes, int reserved)
2589 {
2590 	spin_lock(&cache->space_info->lock);
2591 	spin_lock(&cache->lock);
2592 	cache->pinned += num_bytes;
2593 	btrfs_space_info_update_bytes_pinned(cache->space_info, num_bytes);
2594 	if (reserved) {
2595 		cache->reserved -= num_bytes;
2596 		cache->space_info->bytes_reserved -= num_bytes;
2597 	}
2598 	spin_unlock(&cache->lock);
2599 	spin_unlock(&cache->space_info->lock);
2600 
2601 	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2602 		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2603 	return 0;
2604 }
2605 
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2606 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2607 		     u64 bytenr, u64 num_bytes, int reserved)
2608 {
2609 	struct btrfs_block_group *cache;
2610 
2611 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2612 	BUG_ON(!cache); /* Logic error */
2613 
2614 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2615 
2616 	btrfs_put_block_group(cache);
2617 	return 0;
2618 }
2619 
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,const struct extent_buffer * eb)2620 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2621 				    const struct extent_buffer *eb)
2622 {
2623 	struct btrfs_block_group *cache;
2624 	int ret;
2625 
2626 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2627 	if (!cache)
2628 		return -EINVAL;
2629 
2630 	/*
2631 	 * Fully cache the free space first so that our pin removes the free space
2632 	 * from the cache.
2633 	 */
2634 	ret = btrfs_cache_block_group(cache, true);
2635 	if (ret)
2636 		goto out;
2637 
2638 	pin_down_extent(trans, cache, eb->start, eb->len, 0);
2639 
2640 	/* remove us from the free space cache (if we're there at all) */
2641 	ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2642 out:
2643 	btrfs_put_block_group(cache);
2644 	return ret;
2645 }
2646 
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2647 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2648 				   u64 start, u64 num_bytes)
2649 {
2650 	int ret;
2651 	struct btrfs_block_group *block_group;
2652 
2653 	block_group = btrfs_lookup_block_group(fs_info, start);
2654 	if (!block_group)
2655 		return -EINVAL;
2656 
2657 	ret = btrfs_cache_block_group(block_group, true);
2658 	if (ret)
2659 		goto out;
2660 
2661 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2662 out:
2663 	btrfs_put_block_group(block_group);
2664 	return ret;
2665 }
2666 
btrfs_exclude_logged_extents(struct extent_buffer * eb)2667 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2668 {
2669 	struct btrfs_fs_info *fs_info = eb->fs_info;
2670 	struct btrfs_file_extent_item *item;
2671 	struct btrfs_key key;
2672 	int found_type;
2673 	int i;
2674 	int ret = 0;
2675 
2676 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2677 		return 0;
2678 
2679 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2680 		btrfs_item_key_to_cpu(eb, &key, i);
2681 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2682 			continue;
2683 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2684 		found_type = btrfs_file_extent_type(eb, item);
2685 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2686 			continue;
2687 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2688 			continue;
2689 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2690 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2691 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2692 		if (ret)
2693 			break;
2694 	}
2695 
2696 	return ret;
2697 }
2698 
2699 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2700 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2701 {
2702 	atomic_inc(&bg->reservations);
2703 }
2704 
2705 /*
2706  * Returns the free cluster for the given space info and sets empty_cluster to
2707  * what it should be based on the mount options.
2708  */
2709 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2710 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2711 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2712 {
2713 	struct btrfs_free_cluster *ret = NULL;
2714 
2715 	*empty_cluster = 0;
2716 	if (btrfs_mixed_space_info(space_info))
2717 		return ret;
2718 
2719 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2720 		ret = &fs_info->meta_alloc_cluster;
2721 		if (btrfs_test_opt(fs_info, SSD))
2722 			*empty_cluster = SZ_2M;
2723 		else
2724 			*empty_cluster = SZ_64K;
2725 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2726 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2727 		*empty_cluster = SZ_2M;
2728 		ret = &fs_info->data_alloc_cluster;
2729 	}
2730 
2731 	return ret;
2732 }
2733 
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2734 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2735 			      u64 start, u64 end,
2736 			      const bool return_free_space)
2737 {
2738 	struct btrfs_block_group *cache = NULL;
2739 	struct btrfs_space_info *space_info;
2740 	struct btrfs_free_cluster *cluster = NULL;
2741 	u64 total_unpinned = 0;
2742 	u64 empty_cluster = 0;
2743 	bool readonly;
2744 	int ret = 0;
2745 
2746 	while (start <= end) {
2747 		u64 len;
2748 
2749 		readonly = false;
2750 		if (!cache ||
2751 		    start >= cache->start + cache->length) {
2752 			if (cache)
2753 				btrfs_put_block_group(cache);
2754 			total_unpinned = 0;
2755 			cache = btrfs_lookup_block_group(fs_info, start);
2756 			if (cache == NULL) {
2757 				/* Logic error, something removed the block group. */
2758 				ret = -EUCLEAN;
2759 				goto out;
2760 			}
2761 
2762 			cluster = fetch_cluster_info(fs_info,
2763 						     cache->space_info,
2764 						     &empty_cluster);
2765 			empty_cluster <<= 1;
2766 		}
2767 
2768 		len = cache->start + cache->length - start;
2769 		len = min(len, end + 1 - start);
2770 
2771 		if (return_free_space)
2772 			btrfs_add_free_space(cache, start, len);
2773 
2774 		start += len;
2775 		total_unpinned += len;
2776 		space_info = cache->space_info;
2777 
2778 		/*
2779 		 * If this space cluster has been marked as fragmented and we've
2780 		 * unpinned enough in this block group to potentially allow a
2781 		 * cluster to be created inside of it go ahead and clear the
2782 		 * fragmented check.
2783 		 */
2784 		if (cluster && cluster->fragmented &&
2785 		    total_unpinned > empty_cluster) {
2786 			spin_lock(&cluster->lock);
2787 			cluster->fragmented = 0;
2788 			spin_unlock(&cluster->lock);
2789 		}
2790 
2791 		spin_lock(&space_info->lock);
2792 		spin_lock(&cache->lock);
2793 		cache->pinned -= len;
2794 		btrfs_space_info_update_bytes_pinned(space_info, -len);
2795 		space_info->max_extent_size = 0;
2796 		if (cache->ro) {
2797 			space_info->bytes_readonly += len;
2798 			readonly = true;
2799 		} else if (btrfs_is_zoned(fs_info)) {
2800 			/* Need reset before reusing in a zoned block group */
2801 			btrfs_space_info_update_bytes_zone_unusable(space_info, len);
2802 			readonly = true;
2803 		}
2804 		spin_unlock(&cache->lock);
2805 		if (!readonly && return_free_space)
2806 			btrfs_return_free_space(space_info, len);
2807 		spin_unlock(&space_info->lock);
2808 	}
2809 
2810 	if (cache)
2811 		btrfs_put_block_group(cache);
2812 out:
2813 	return ret;
2814 }
2815 
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2816 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2817 {
2818 	struct btrfs_fs_info *fs_info = trans->fs_info;
2819 	struct btrfs_block_group *block_group, *tmp;
2820 	struct list_head *deleted_bgs;
2821 	struct extent_io_tree *unpin;
2822 	u64 start;
2823 	u64 end;
2824 	int ret;
2825 
2826 	unpin = &trans->transaction->pinned_extents;
2827 
2828 	while (!TRANS_ABORTED(trans)) {
2829 		struct extent_state *cached_state = NULL;
2830 
2831 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2832 		if (!find_first_extent_bit(unpin, 0, &start, &end,
2833 					   EXTENT_DIRTY, &cached_state)) {
2834 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2835 			break;
2836 		}
2837 
2838 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2839 			ret = btrfs_discard_extent(fs_info, start,
2840 						   end + 1 - start, NULL);
2841 
2842 		clear_extent_dirty(unpin, start, end, &cached_state);
2843 		ret = unpin_extent_range(fs_info, start, end, true);
2844 		BUG_ON(ret);
2845 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2846 		free_extent_state(cached_state);
2847 		cond_resched();
2848 	}
2849 
2850 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2851 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2852 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2853 	}
2854 
2855 	/*
2856 	 * Transaction is finished.  We don't need the lock anymore.  We
2857 	 * do need to clean up the block groups in case of a transaction
2858 	 * abort.
2859 	 */
2860 	deleted_bgs = &trans->transaction->deleted_bgs;
2861 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2862 		u64 trimmed = 0;
2863 
2864 		ret = -EROFS;
2865 		if (!TRANS_ABORTED(trans))
2866 			ret = btrfs_discard_extent(fs_info,
2867 						   block_group->start,
2868 						   block_group->length,
2869 						   &trimmed);
2870 
2871 		/*
2872 		 * Not strictly necessary to lock, as the block_group should be
2873 		 * read-only from btrfs_delete_unused_bgs().
2874 		 */
2875 		ASSERT(block_group->ro);
2876 		spin_lock(&fs_info->unused_bgs_lock);
2877 		list_del_init(&block_group->bg_list);
2878 		spin_unlock(&fs_info->unused_bgs_lock);
2879 
2880 		btrfs_unfreeze_block_group(block_group);
2881 		btrfs_put_block_group(block_group);
2882 
2883 		if (ret) {
2884 			const char *errstr = btrfs_decode_error(ret);
2885 			btrfs_warn(fs_info,
2886 			   "discard failed while removing blockgroup: errno=%d %s",
2887 				   ret, errstr);
2888 		}
2889 	}
2890 
2891 	return 0;
2892 }
2893 
2894 /*
2895  * Parse an extent item's inline extents looking for a simple quotas owner ref.
2896  *
2897  * @fs_info:	the btrfs_fs_info for this mount
2898  * @leaf:	a leaf in the extent tree containing the extent item
2899  * @slot:	the slot in the leaf where the extent item is found
2900  *
2901  * Returns the objectid of the root that originally allocated the extent item
2902  * if the inline owner ref is expected and present, otherwise 0.
2903  *
2904  * If an extent item has an owner ref item, it will be the first inline ref
2905  * item. Therefore the logic is to check whether there are any inline ref
2906  * items, then check the type of the first one.
2907  */
btrfs_get_extent_owner_root(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,int slot)2908 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2909 				struct extent_buffer *leaf, int slot)
2910 {
2911 	struct btrfs_extent_item *ei;
2912 	struct btrfs_extent_inline_ref *iref;
2913 	struct btrfs_extent_owner_ref *oref;
2914 	unsigned long ptr;
2915 	unsigned long end;
2916 	int type;
2917 
2918 	if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2919 		return 0;
2920 
2921 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2922 	ptr = (unsigned long)(ei + 1);
2923 	end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2924 
2925 	/* No inline ref items of any kind, can't check type. */
2926 	if (ptr == end)
2927 		return 0;
2928 
2929 	iref = (struct btrfs_extent_inline_ref *)ptr;
2930 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2931 
2932 	/* We found an owner ref, get the root out of it. */
2933 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2934 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2935 		return btrfs_extent_owner_ref_root_id(leaf, oref);
2936 	}
2937 
2938 	/* We have inline refs, but not an owner ref. */
2939 	return 0;
2940 }
2941 
do_free_extent_accounting(struct btrfs_trans_handle * trans,u64 bytenr,struct btrfs_squota_delta * delta)2942 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2943 				     u64 bytenr, struct btrfs_squota_delta *delta)
2944 {
2945 	int ret;
2946 	u64 num_bytes = delta->num_bytes;
2947 
2948 	if (delta->is_data) {
2949 		struct btrfs_root *csum_root;
2950 
2951 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2952 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2953 		if (ret) {
2954 			btrfs_abort_transaction(trans, ret);
2955 			return ret;
2956 		}
2957 
2958 		ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2959 		if (ret) {
2960 			btrfs_abort_transaction(trans, ret);
2961 			return ret;
2962 		}
2963 	}
2964 
2965 	ret = btrfs_record_squota_delta(trans->fs_info, delta);
2966 	if (ret) {
2967 		btrfs_abort_transaction(trans, ret);
2968 		return ret;
2969 	}
2970 
2971 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2972 	if (ret) {
2973 		btrfs_abort_transaction(trans, ret);
2974 		return ret;
2975 	}
2976 
2977 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2978 	if (ret)
2979 		btrfs_abort_transaction(trans, ret);
2980 
2981 	return ret;
2982 }
2983 
2984 #define abort_and_dump(trans, path, fmt, args...)	\
2985 ({							\
2986 	btrfs_abort_transaction(trans, -EUCLEAN);	\
2987 	btrfs_print_leaf(path->nodes[0]);		\
2988 	btrfs_crit(trans->fs_info, fmt, ##args);	\
2989 })
2990 
2991 /*
2992  * Drop one or more refs of @node.
2993  *
2994  * 1. Locate the extent refs.
2995  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2996  *    Locate it, then reduce the refs number or remove the ref line completely.
2997  *
2998  * 2. Update the refs count in EXTENT/METADATA_ITEM
2999  *
3000  * Inline backref case:
3001  *
3002  * in extent tree we have:
3003  *
3004  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3005  *		refs 2 gen 6 flags DATA
3006  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3007  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
3008  *
3009  * This function gets called with:
3010  *
3011  *    node->bytenr = 13631488
3012  *    node->num_bytes = 1048576
3013  *    root_objectid = FS_TREE
3014  *    owner_objectid = 257
3015  *    owner_offset = 0
3016  *    refs_to_drop = 1
3017  *
3018  * Then we should get some like:
3019  *
3020  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3021  *		refs 1 gen 6 flags DATA
3022  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3023  *
3024  * Keyed backref case:
3025  *
3026  * in extent tree we have:
3027  *
3028  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3029  *		refs 754 gen 6 flags DATA
3030  *	[...]
3031  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3032  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
3033  *
3034  * This function get called with:
3035  *
3036  *    node->bytenr = 13631488
3037  *    node->num_bytes = 1048576
3038  *    root_objectid = FS_TREE
3039  *    owner_objectid = 866
3040  *    owner_offset = 0
3041  *    refs_to_drop = 1
3042  *
3043  * Then we should get some like:
3044  *
3045  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3046  *		refs 753 gen 6 flags DATA
3047  *
3048  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3049  */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)3050 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3051 			       struct btrfs_delayed_ref_head *href,
3052 			       struct btrfs_delayed_ref_node *node,
3053 			       struct btrfs_delayed_extent_op *extent_op)
3054 {
3055 	struct btrfs_fs_info *info = trans->fs_info;
3056 	struct btrfs_key key;
3057 	struct btrfs_path *path;
3058 	struct btrfs_root *extent_root;
3059 	struct extent_buffer *leaf;
3060 	struct btrfs_extent_item *ei;
3061 	struct btrfs_extent_inline_ref *iref;
3062 	int ret;
3063 	int is_data;
3064 	int extent_slot = 0;
3065 	int found_extent = 0;
3066 	int num_to_del = 1;
3067 	int refs_to_drop = node->ref_mod;
3068 	u32 item_size;
3069 	u64 refs;
3070 	u64 bytenr = node->bytenr;
3071 	u64 num_bytes = node->num_bytes;
3072 	u64 owner_objectid = btrfs_delayed_ref_owner(node);
3073 	u64 owner_offset = btrfs_delayed_ref_offset(node);
3074 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3075 	u64 delayed_ref_root = href->owning_root;
3076 
3077 	extent_root = btrfs_extent_root(info, bytenr);
3078 	ASSERT(extent_root);
3079 
3080 	path = btrfs_alloc_path();
3081 	if (!path)
3082 		return -ENOMEM;
3083 
3084 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3085 
3086 	if (!is_data && refs_to_drop != 1) {
3087 		btrfs_crit(info,
3088 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3089 			   node->bytenr, refs_to_drop);
3090 		ret = -EINVAL;
3091 		btrfs_abort_transaction(trans, ret);
3092 		goto out;
3093 	}
3094 
3095 	if (is_data)
3096 		skinny_metadata = false;
3097 
3098 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3099 				    node->parent, node->ref_root, owner_objectid,
3100 				    owner_offset);
3101 	if (ret == 0) {
3102 		/*
3103 		 * Either the inline backref or the SHARED_DATA_REF/
3104 		 * SHARED_BLOCK_REF is found
3105 		 *
3106 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3107 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3108 		 */
3109 		extent_slot = path->slots[0];
3110 		while (extent_slot >= 0) {
3111 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3112 					      extent_slot);
3113 			if (key.objectid != bytenr)
3114 				break;
3115 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3116 			    key.offset == num_bytes) {
3117 				found_extent = 1;
3118 				break;
3119 			}
3120 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3121 			    key.offset == owner_objectid) {
3122 				found_extent = 1;
3123 				break;
3124 			}
3125 
3126 			/* Quick path didn't find the EXTENT/METADATA_ITEM */
3127 			if (path->slots[0] - extent_slot > 5)
3128 				break;
3129 			extent_slot--;
3130 		}
3131 
3132 		if (!found_extent) {
3133 			if (iref) {
3134 				abort_and_dump(trans, path,
3135 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3136 					   path->slots[0]);
3137 				ret = -EUCLEAN;
3138 				goto out;
3139 			}
3140 			/* Must be SHARED_* item, remove the backref first */
3141 			ret = remove_extent_backref(trans, extent_root, path,
3142 						    NULL, refs_to_drop, is_data);
3143 			if (ret) {
3144 				btrfs_abort_transaction(trans, ret);
3145 				goto out;
3146 			}
3147 			btrfs_release_path(path);
3148 
3149 			/* Slow path to locate EXTENT/METADATA_ITEM */
3150 			key.objectid = bytenr;
3151 			key.type = BTRFS_EXTENT_ITEM_KEY;
3152 			key.offset = num_bytes;
3153 
3154 			if (!is_data && skinny_metadata) {
3155 				key.type = BTRFS_METADATA_ITEM_KEY;
3156 				key.offset = owner_objectid;
3157 			}
3158 
3159 			ret = btrfs_search_slot(trans, extent_root,
3160 						&key, path, -1, 1);
3161 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3162 				/*
3163 				 * Couldn't find our skinny metadata item,
3164 				 * see if we have ye olde extent item.
3165 				 */
3166 				path->slots[0]--;
3167 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3168 						      path->slots[0]);
3169 				if (key.objectid == bytenr &&
3170 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3171 				    key.offset == num_bytes)
3172 					ret = 0;
3173 			}
3174 
3175 			if (ret > 0 && skinny_metadata) {
3176 				skinny_metadata = false;
3177 				key.objectid = bytenr;
3178 				key.type = BTRFS_EXTENT_ITEM_KEY;
3179 				key.offset = num_bytes;
3180 				btrfs_release_path(path);
3181 				ret = btrfs_search_slot(trans, extent_root,
3182 							&key, path, -1, 1);
3183 			}
3184 
3185 			if (ret) {
3186 				if (ret > 0)
3187 					btrfs_print_leaf(path->nodes[0]);
3188 				btrfs_err(info,
3189 			"umm, got %d back from search, was looking for %llu, slot %d",
3190 					  ret, bytenr, path->slots[0]);
3191 			}
3192 			if (ret < 0) {
3193 				btrfs_abort_transaction(trans, ret);
3194 				goto out;
3195 			}
3196 			extent_slot = path->slots[0];
3197 		}
3198 	} else if (WARN_ON(ret == -ENOENT)) {
3199 		abort_and_dump(trans, path,
3200 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3201 			       bytenr, node->parent, node->ref_root, owner_objectid,
3202 			       owner_offset, path->slots[0]);
3203 		goto out;
3204 	} else {
3205 		btrfs_abort_transaction(trans, ret);
3206 		goto out;
3207 	}
3208 
3209 	leaf = path->nodes[0];
3210 	item_size = btrfs_item_size(leaf, extent_slot);
3211 	if (unlikely(item_size < sizeof(*ei))) {
3212 		ret = -EUCLEAN;
3213 		btrfs_err(trans->fs_info,
3214 			  "unexpected extent item size, has %u expect >= %zu",
3215 			  item_size, sizeof(*ei));
3216 		btrfs_abort_transaction(trans, ret);
3217 		goto out;
3218 	}
3219 	ei = btrfs_item_ptr(leaf, extent_slot,
3220 			    struct btrfs_extent_item);
3221 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3222 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3223 		struct btrfs_tree_block_info *bi;
3224 
3225 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3226 			abort_and_dump(trans, path,
3227 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3228 				       key.objectid, key.type, key.offset,
3229 				       path->slots[0], owner_objectid, item_size,
3230 				       sizeof(*ei) + sizeof(*bi));
3231 			ret = -EUCLEAN;
3232 			goto out;
3233 		}
3234 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3235 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3236 	}
3237 
3238 	refs = btrfs_extent_refs(leaf, ei);
3239 	if (refs < refs_to_drop) {
3240 		abort_and_dump(trans, path,
3241 		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3242 			       refs_to_drop, refs, bytenr, path->slots[0]);
3243 		ret = -EUCLEAN;
3244 		goto out;
3245 	}
3246 	refs -= refs_to_drop;
3247 
3248 	if (refs > 0) {
3249 		if (extent_op)
3250 			__run_delayed_extent_op(extent_op, leaf, ei);
3251 		/*
3252 		 * In the case of inline back ref, reference count will
3253 		 * be updated by remove_extent_backref
3254 		 */
3255 		if (iref) {
3256 			if (!found_extent) {
3257 				abort_and_dump(trans, path,
3258 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3259 					       path->slots[0]);
3260 				ret = -EUCLEAN;
3261 				goto out;
3262 			}
3263 		} else {
3264 			btrfs_set_extent_refs(leaf, ei, refs);
3265 		}
3266 		if (found_extent) {
3267 			ret = remove_extent_backref(trans, extent_root, path,
3268 						    iref, refs_to_drop, is_data);
3269 			if (ret) {
3270 				btrfs_abort_transaction(trans, ret);
3271 				goto out;
3272 			}
3273 		}
3274 	} else {
3275 		struct btrfs_squota_delta delta = {
3276 			.root = delayed_ref_root,
3277 			.num_bytes = num_bytes,
3278 			.is_data = is_data,
3279 			.is_inc = false,
3280 			.generation = btrfs_extent_generation(leaf, ei),
3281 		};
3282 
3283 		/* In this branch refs == 1 */
3284 		if (found_extent) {
3285 			if (is_data && refs_to_drop !=
3286 			    extent_data_ref_count(path, iref)) {
3287 				abort_and_dump(trans, path,
3288 		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3289 					       extent_data_ref_count(path, iref),
3290 					       refs_to_drop, path->slots[0]);
3291 				ret = -EUCLEAN;
3292 				goto out;
3293 			}
3294 			if (iref) {
3295 				if (path->slots[0] != extent_slot) {
3296 					abort_and_dump(trans, path,
3297 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3298 						       key.objectid, key.type,
3299 						       key.offset, path->slots[0]);
3300 					ret = -EUCLEAN;
3301 					goto out;
3302 				}
3303 			} else {
3304 				/*
3305 				 * No inline ref, we must be at SHARED_* item,
3306 				 * And it's single ref, it must be:
3307 				 * |	extent_slot	  ||extent_slot + 1|
3308 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3309 				 */
3310 				if (path->slots[0] != extent_slot + 1) {
3311 					abort_and_dump(trans, path,
3312 	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3313 						       path->slots[0]);
3314 					ret = -EUCLEAN;
3315 					goto out;
3316 				}
3317 				path->slots[0] = extent_slot;
3318 				num_to_del = 2;
3319 			}
3320 		}
3321 		/*
3322 		 * We can't infer the data owner from the delayed ref, so we need
3323 		 * to try to get it from the owning ref item.
3324 		 *
3325 		 * If it is not present, then that extent was not written under
3326 		 * simple quotas mode, so we don't need to account for its deletion.
3327 		 */
3328 		if (is_data)
3329 			delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3330 								 leaf, extent_slot);
3331 
3332 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3333 				      num_to_del);
3334 		if (ret) {
3335 			btrfs_abort_transaction(trans, ret);
3336 			goto out;
3337 		}
3338 		btrfs_release_path(path);
3339 
3340 		ret = do_free_extent_accounting(trans, bytenr, &delta);
3341 	}
3342 	btrfs_release_path(path);
3343 
3344 out:
3345 	btrfs_free_path(path);
3346 	return ret;
3347 }
3348 
3349 /*
3350  * when we free an block, it is possible (and likely) that we free the last
3351  * delayed ref for that extent as well.  This searches the delayed ref tree for
3352  * a given extent, and if there are no other delayed refs to be processed, it
3353  * removes it from the tree.
3354  */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3355 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3356 				      u64 bytenr)
3357 {
3358 	struct btrfs_fs_info *fs_info = trans->fs_info;
3359 	struct btrfs_delayed_ref_head *head;
3360 	struct btrfs_delayed_ref_root *delayed_refs;
3361 	int ret = 0;
3362 
3363 	delayed_refs = &trans->transaction->delayed_refs;
3364 	spin_lock(&delayed_refs->lock);
3365 	head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
3366 	if (!head)
3367 		goto out_delayed_unlock;
3368 
3369 	spin_lock(&head->lock);
3370 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3371 		goto out;
3372 
3373 	if (cleanup_extent_op(head) != NULL)
3374 		goto out;
3375 
3376 	/*
3377 	 * waiting for the lock here would deadlock.  If someone else has it
3378 	 * locked they are already in the process of dropping it anyway
3379 	 */
3380 	if (!mutex_trylock(&head->mutex))
3381 		goto out;
3382 
3383 	btrfs_delete_ref_head(fs_info, delayed_refs, head);
3384 	head->processing = false;
3385 
3386 	spin_unlock(&head->lock);
3387 	spin_unlock(&delayed_refs->lock);
3388 
3389 	BUG_ON(head->extent_op);
3390 	if (head->must_insert_reserved)
3391 		ret = 1;
3392 
3393 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
3394 	mutex_unlock(&head->mutex);
3395 	btrfs_put_delayed_ref_head(head);
3396 	return ret;
3397 out:
3398 	spin_unlock(&head->lock);
3399 
3400 out_delayed_unlock:
3401 	spin_unlock(&delayed_refs->lock);
3402 	return 0;
3403 }
3404 
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3405 int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3406 			  u64 root_id,
3407 			  struct extent_buffer *buf,
3408 			  u64 parent, int last_ref)
3409 {
3410 	struct btrfs_fs_info *fs_info = trans->fs_info;
3411 	struct btrfs_block_group *bg;
3412 	int ret;
3413 
3414 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3415 		struct btrfs_ref generic_ref = {
3416 			.action = BTRFS_DROP_DELAYED_REF,
3417 			.bytenr = buf->start,
3418 			.num_bytes = buf->len,
3419 			.parent = parent,
3420 			.owning_root = btrfs_header_owner(buf),
3421 			.ref_root = root_id,
3422 		};
3423 
3424 		/*
3425 		 * Assert that the extent buffer is not cleared due to
3426 		 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer
3427 		 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for
3428 		 * detail.
3429 		 */
3430 		ASSERT(btrfs_header_bytenr(buf) != 0);
3431 
3432 		btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false);
3433 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3434 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3435 		if (ret < 0)
3436 			return ret;
3437 	}
3438 
3439 	if (!last_ref)
3440 		return 0;
3441 
3442 	if (btrfs_header_generation(buf) != trans->transid)
3443 		goto out;
3444 
3445 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3446 		ret = check_ref_cleanup(trans, buf->start);
3447 		if (!ret)
3448 			goto out;
3449 	}
3450 
3451 	bg = btrfs_lookup_block_group(fs_info, buf->start);
3452 
3453 	if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3454 		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3455 		btrfs_put_block_group(bg);
3456 		goto out;
3457 	}
3458 
3459 	/*
3460 	 * If there are tree mod log users we may have recorded mod log
3461 	 * operations for this node.  If we re-allocate this node we
3462 	 * could replay operations on this node that happened when it
3463 	 * existed in a completely different root.  For example if it
3464 	 * was part of root A, then was reallocated to root B, and we
3465 	 * are doing a btrfs_old_search_slot(root b), we could replay
3466 	 * operations that happened when the block was part of root A,
3467 	 * giving us an inconsistent view of the btree.
3468 	 *
3469 	 * We are safe from races here because at this point no other
3470 	 * node or root points to this extent buffer, so if after this
3471 	 * check a new tree mod log user joins we will not have an
3472 	 * existing log of operations on this node that we have to
3473 	 * contend with.
3474 	 */
3475 
3476 	if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3477 		     || btrfs_is_zoned(fs_info)) {
3478 		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3479 		btrfs_put_block_group(bg);
3480 		goto out;
3481 	}
3482 
3483 	WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3484 
3485 	btrfs_add_free_space(bg, buf->start, buf->len);
3486 	btrfs_free_reserved_bytes(bg, buf->len, 0);
3487 	btrfs_put_block_group(bg);
3488 	trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3489 
3490 out:
3491 
3492 	/*
3493 	 * Deleting the buffer, clear the corrupt flag since it doesn't
3494 	 * matter anymore.
3495 	 */
3496 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3497 	return 0;
3498 }
3499 
3500 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3501 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3502 {
3503 	struct btrfs_fs_info *fs_info = trans->fs_info;
3504 	int ret;
3505 
3506 	if (btrfs_is_testing(fs_info))
3507 		return 0;
3508 
3509 	/*
3510 	 * tree log blocks never actually go into the extent allocation
3511 	 * tree, just update pinning info and exit early.
3512 	 */
3513 	if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) {
3514 		btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1);
3515 		ret = 0;
3516 	} else if (ref->type == BTRFS_REF_METADATA) {
3517 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3518 	} else {
3519 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3520 	}
3521 
3522 	if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID)
3523 		btrfs_ref_tree_mod(fs_info, ref);
3524 
3525 	return ret;
3526 }
3527 
3528 enum btrfs_loop_type {
3529 	/*
3530 	 * Start caching block groups but do not wait for progress or for them
3531 	 * to be done.
3532 	 */
3533 	LOOP_CACHING_NOWAIT,
3534 
3535 	/*
3536 	 * Wait for the block group free_space >= the space we're waiting for if
3537 	 * the block group isn't cached.
3538 	 */
3539 	LOOP_CACHING_WAIT,
3540 
3541 	/*
3542 	 * Allow allocations to happen from block groups that do not yet have a
3543 	 * size classification.
3544 	 */
3545 	LOOP_UNSET_SIZE_CLASS,
3546 
3547 	/*
3548 	 * Allocate a chunk and then retry the allocation.
3549 	 */
3550 	LOOP_ALLOC_CHUNK,
3551 
3552 	/*
3553 	 * Ignore the size class restrictions for this allocation.
3554 	 */
3555 	LOOP_WRONG_SIZE_CLASS,
3556 
3557 	/*
3558 	 * Ignore the empty size, only try to allocate the number of bytes
3559 	 * needed for this allocation.
3560 	 */
3561 	LOOP_NO_EMPTY_SIZE,
3562 };
3563 
3564 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3565 btrfs_lock_block_group(struct btrfs_block_group *cache,
3566 		       int delalloc)
3567 {
3568 	if (delalloc)
3569 		down_read(&cache->data_rwsem);
3570 }
3571 
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3572 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3573 		       int delalloc)
3574 {
3575 	btrfs_get_block_group(cache);
3576 	if (delalloc)
3577 		down_read(&cache->data_rwsem);
3578 }
3579 
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3580 static struct btrfs_block_group *btrfs_lock_cluster(
3581 		   struct btrfs_block_group *block_group,
3582 		   struct btrfs_free_cluster *cluster,
3583 		   int delalloc)
3584 	__acquires(&cluster->refill_lock)
3585 {
3586 	struct btrfs_block_group *used_bg = NULL;
3587 
3588 	spin_lock(&cluster->refill_lock);
3589 	while (1) {
3590 		used_bg = cluster->block_group;
3591 		if (!used_bg)
3592 			return NULL;
3593 
3594 		if (used_bg == block_group)
3595 			return used_bg;
3596 
3597 		btrfs_get_block_group(used_bg);
3598 
3599 		if (!delalloc)
3600 			return used_bg;
3601 
3602 		if (down_read_trylock(&used_bg->data_rwsem))
3603 			return used_bg;
3604 
3605 		spin_unlock(&cluster->refill_lock);
3606 
3607 		/* We should only have one-level nested. */
3608 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3609 
3610 		spin_lock(&cluster->refill_lock);
3611 		if (used_bg == cluster->block_group)
3612 			return used_bg;
3613 
3614 		up_read(&used_bg->data_rwsem);
3615 		btrfs_put_block_group(used_bg);
3616 	}
3617 }
3618 
3619 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3620 btrfs_release_block_group(struct btrfs_block_group *cache,
3621 			 int delalloc)
3622 {
3623 	if (delalloc)
3624 		up_read(&cache->data_rwsem);
3625 	btrfs_put_block_group(cache);
3626 }
3627 
3628 /*
3629  * Helper function for find_free_extent().
3630  *
3631  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3632  * Return >0 to inform caller that we find nothing
3633  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3634  */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3635 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3636 				      struct find_free_extent_ctl *ffe_ctl,
3637 				      struct btrfs_block_group **cluster_bg_ret)
3638 {
3639 	struct btrfs_block_group *cluster_bg;
3640 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3641 	u64 aligned_cluster;
3642 	u64 offset;
3643 	int ret;
3644 
3645 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3646 	if (!cluster_bg)
3647 		goto refill_cluster;
3648 	if (cluster_bg != bg && (cluster_bg->ro ||
3649 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3650 		goto release_cluster;
3651 
3652 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3653 			ffe_ctl->num_bytes, cluster_bg->start,
3654 			&ffe_ctl->max_extent_size);
3655 	if (offset) {
3656 		/* We have a block, we're done */
3657 		spin_unlock(&last_ptr->refill_lock);
3658 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3659 		*cluster_bg_ret = cluster_bg;
3660 		ffe_ctl->found_offset = offset;
3661 		return 0;
3662 	}
3663 	WARN_ON(last_ptr->block_group != cluster_bg);
3664 
3665 release_cluster:
3666 	/*
3667 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3668 	 * lets just skip it and let the allocator find whatever block it can
3669 	 * find. If we reach this point, we will have tried the cluster
3670 	 * allocator plenty of times and not have found anything, so we are
3671 	 * likely way too fragmented for the clustering stuff to find anything.
3672 	 *
3673 	 * However, if the cluster is taken from the current block group,
3674 	 * release the cluster first, so that we stand a better chance of
3675 	 * succeeding in the unclustered allocation.
3676 	 */
3677 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3678 		spin_unlock(&last_ptr->refill_lock);
3679 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3680 		return -ENOENT;
3681 	}
3682 
3683 	/* This cluster didn't work out, free it and start over */
3684 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3685 
3686 	if (cluster_bg != bg)
3687 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3688 
3689 refill_cluster:
3690 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3691 		spin_unlock(&last_ptr->refill_lock);
3692 		return -ENOENT;
3693 	}
3694 
3695 	aligned_cluster = max_t(u64,
3696 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3697 			bg->full_stripe_len);
3698 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3699 			ffe_ctl->num_bytes, aligned_cluster);
3700 	if (ret == 0) {
3701 		/* Now pull our allocation out of this cluster */
3702 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3703 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3704 				&ffe_ctl->max_extent_size);
3705 		if (offset) {
3706 			/* We found one, proceed */
3707 			spin_unlock(&last_ptr->refill_lock);
3708 			ffe_ctl->found_offset = offset;
3709 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3710 			return 0;
3711 		}
3712 	}
3713 	/*
3714 	 * At this point we either didn't find a cluster or we weren't able to
3715 	 * allocate a block from our cluster.  Free the cluster we've been
3716 	 * trying to use, and go to the next block group.
3717 	 */
3718 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3719 	spin_unlock(&last_ptr->refill_lock);
3720 	return 1;
3721 }
3722 
3723 /*
3724  * Return >0 to inform caller that we find nothing
3725  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3726  */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3727 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3728 					struct find_free_extent_ctl *ffe_ctl)
3729 {
3730 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3731 	u64 offset;
3732 
3733 	/*
3734 	 * We are doing an unclustered allocation, set the fragmented flag so
3735 	 * we don't bother trying to setup a cluster again until we get more
3736 	 * space.
3737 	 */
3738 	if (unlikely(last_ptr)) {
3739 		spin_lock(&last_ptr->lock);
3740 		last_ptr->fragmented = 1;
3741 		spin_unlock(&last_ptr->lock);
3742 	}
3743 	if (ffe_ctl->cached) {
3744 		struct btrfs_free_space_ctl *free_space_ctl;
3745 
3746 		free_space_ctl = bg->free_space_ctl;
3747 		spin_lock(&free_space_ctl->tree_lock);
3748 		if (free_space_ctl->free_space <
3749 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3750 		    ffe_ctl->empty_size) {
3751 			ffe_ctl->total_free_space = max_t(u64,
3752 					ffe_ctl->total_free_space,
3753 					free_space_ctl->free_space);
3754 			spin_unlock(&free_space_ctl->tree_lock);
3755 			return 1;
3756 		}
3757 		spin_unlock(&free_space_ctl->tree_lock);
3758 	}
3759 
3760 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3761 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3762 			&ffe_ctl->max_extent_size);
3763 	if (!offset)
3764 		return 1;
3765 	ffe_ctl->found_offset = offset;
3766 	return 0;
3767 }
3768 
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3769 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3770 				   struct find_free_extent_ctl *ffe_ctl,
3771 				   struct btrfs_block_group **bg_ret)
3772 {
3773 	int ret;
3774 
3775 	/* We want to try and use the cluster allocator, so lets look there */
3776 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3777 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3778 		if (ret >= 0)
3779 			return ret;
3780 		/* ret == -ENOENT case falls through */
3781 	}
3782 
3783 	return find_free_extent_unclustered(block_group, ffe_ctl);
3784 }
3785 
3786 /*
3787  * Tree-log block group locking
3788  * ============================
3789  *
3790  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3791  * indicates the starting address of a block group, which is reserved only
3792  * for tree-log metadata.
3793  *
3794  * Lock nesting
3795  * ============
3796  *
3797  * space_info::lock
3798  *   block_group::lock
3799  *     fs_info::treelog_bg_lock
3800  */
3801 
3802 /*
3803  * Simple allocator for sequential-only block group. It only allows sequential
3804  * allocation. No need to play with trees. This function also reserves the
3805  * bytes as in btrfs_add_reserved_bytes.
3806  */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3807 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3808 			       struct find_free_extent_ctl *ffe_ctl,
3809 			       struct btrfs_block_group **bg_ret)
3810 {
3811 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3812 	struct btrfs_space_info *space_info = block_group->space_info;
3813 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3814 	u64 start = block_group->start;
3815 	u64 num_bytes = ffe_ctl->num_bytes;
3816 	u64 avail;
3817 	u64 bytenr = block_group->start;
3818 	u64 log_bytenr;
3819 	u64 data_reloc_bytenr;
3820 	int ret = 0;
3821 	bool skip = false;
3822 
3823 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3824 
3825 	/*
3826 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3827 	 * group, and vice versa.
3828 	 */
3829 	spin_lock(&fs_info->treelog_bg_lock);
3830 	log_bytenr = fs_info->treelog_bg;
3831 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3832 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3833 		skip = true;
3834 	spin_unlock(&fs_info->treelog_bg_lock);
3835 	if (skip)
3836 		return 1;
3837 
3838 	/*
3839 	 * Do not allow non-relocation blocks in the dedicated relocation block
3840 	 * group, and vice versa.
3841 	 */
3842 	spin_lock(&fs_info->relocation_bg_lock);
3843 	data_reloc_bytenr = fs_info->data_reloc_bg;
3844 	if (data_reloc_bytenr &&
3845 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3846 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3847 		skip = true;
3848 	spin_unlock(&fs_info->relocation_bg_lock);
3849 	if (skip)
3850 		return 1;
3851 
3852 	/* Check RO and no space case before trying to activate it */
3853 	spin_lock(&block_group->lock);
3854 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3855 		ret = 1;
3856 		/*
3857 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3858 		 * Return the error after taking the locks.
3859 		 */
3860 	}
3861 	spin_unlock(&block_group->lock);
3862 
3863 	/* Metadata block group is activated at write time. */
3864 	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3865 	    !btrfs_zone_activate(block_group)) {
3866 		ret = 1;
3867 		/*
3868 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3869 		 * Return the error after taking the locks.
3870 		 */
3871 	}
3872 
3873 	spin_lock(&space_info->lock);
3874 	spin_lock(&block_group->lock);
3875 	spin_lock(&fs_info->treelog_bg_lock);
3876 	spin_lock(&fs_info->relocation_bg_lock);
3877 
3878 	if (ret)
3879 		goto out;
3880 
3881 	ASSERT(!ffe_ctl->for_treelog ||
3882 	       block_group->start == fs_info->treelog_bg ||
3883 	       fs_info->treelog_bg == 0);
3884 	ASSERT(!ffe_ctl->for_data_reloc ||
3885 	       block_group->start == fs_info->data_reloc_bg ||
3886 	       fs_info->data_reloc_bg == 0);
3887 
3888 	if (block_group->ro ||
3889 	    (!ffe_ctl->for_data_reloc &&
3890 	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3891 		ret = 1;
3892 		goto out;
3893 	}
3894 
3895 	/*
3896 	 * Do not allow currently using block group to be tree-log dedicated
3897 	 * block group.
3898 	 */
3899 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3900 	    (block_group->used || block_group->reserved)) {
3901 		ret = 1;
3902 		goto out;
3903 	}
3904 
3905 	/*
3906 	 * Do not allow currently used block group to be the data relocation
3907 	 * dedicated block group.
3908 	 */
3909 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3910 	    (block_group->used || block_group->reserved)) {
3911 		ret = 1;
3912 		goto out;
3913 	}
3914 
3915 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3916 	avail = block_group->zone_capacity - block_group->alloc_offset;
3917 	if (avail < num_bytes) {
3918 		if (ffe_ctl->max_extent_size < avail) {
3919 			/*
3920 			 * With sequential allocator, free space is always
3921 			 * contiguous
3922 			 */
3923 			ffe_ctl->max_extent_size = avail;
3924 			ffe_ctl->total_free_space = avail;
3925 		}
3926 		ret = 1;
3927 		goto out;
3928 	}
3929 
3930 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3931 		fs_info->treelog_bg = block_group->start;
3932 
3933 	if (ffe_ctl->for_data_reloc) {
3934 		if (!fs_info->data_reloc_bg)
3935 			fs_info->data_reloc_bg = block_group->start;
3936 		/*
3937 		 * Do not allow allocations from this block group, unless it is
3938 		 * for data relocation. Compared to increasing the ->ro, setting
3939 		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3940 		 * writers to come in. See btrfs_inc_nocow_writers().
3941 		 *
3942 		 * We need to disable an allocation to avoid an allocation of
3943 		 * regular (non-relocation data) extent. With mix of relocation
3944 		 * extents and regular extents, we can dispatch WRITE commands
3945 		 * (for relocation extents) and ZONE APPEND commands (for
3946 		 * regular extents) at the same time to the same zone, which
3947 		 * easily break the write pointer.
3948 		 *
3949 		 * Also, this flag avoids this block group to be zone finished.
3950 		 */
3951 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3952 	}
3953 
3954 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3955 	block_group->alloc_offset += num_bytes;
3956 	spin_lock(&ctl->tree_lock);
3957 	ctl->free_space -= num_bytes;
3958 	spin_unlock(&ctl->tree_lock);
3959 
3960 	/*
3961 	 * We do not check if found_offset is aligned to stripesize. The
3962 	 * address is anyway rewritten when using zone append writing.
3963 	 */
3964 
3965 	ffe_ctl->search_start = ffe_ctl->found_offset;
3966 
3967 out:
3968 	if (ret && ffe_ctl->for_treelog)
3969 		fs_info->treelog_bg = 0;
3970 	if (ret && ffe_ctl->for_data_reloc)
3971 		fs_info->data_reloc_bg = 0;
3972 	spin_unlock(&fs_info->relocation_bg_lock);
3973 	spin_unlock(&fs_info->treelog_bg_lock);
3974 	spin_unlock(&block_group->lock);
3975 	spin_unlock(&space_info->lock);
3976 	return ret;
3977 }
3978 
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3979 static int do_allocation(struct btrfs_block_group *block_group,
3980 			 struct find_free_extent_ctl *ffe_ctl,
3981 			 struct btrfs_block_group **bg_ret)
3982 {
3983 	switch (ffe_ctl->policy) {
3984 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3985 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3986 	case BTRFS_EXTENT_ALLOC_ZONED:
3987 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3988 	default:
3989 		BUG();
3990 	}
3991 }
3992 
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3993 static void release_block_group(struct btrfs_block_group *block_group,
3994 				struct find_free_extent_ctl *ffe_ctl,
3995 				int delalloc)
3996 {
3997 	switch (ffe_ctl->policy) {
3998 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3999 		ffe_ctl->retry_uncached = false;
4000 		break;
4001 	case BTRFS_EXTENT_ALLOC_ZONED:
4002 		/* Nothing to do */
4003 		break;
4004 	default:
4005 		BUG();
4006 	}
4007 
4008 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4009 	       ffe_ctl->index);
4010 	btrfs_release_block_group(block_group, delalloc);
4011 }
4012 
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)4013 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4014 				   struct btrfs_key *ins)
4015 {
4016 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4017 
4018 	if (!ffe_ctl->use_cluster && last_ptr) {
4019 		spin_lock(&last_ptr->lock);
4020 		last_ptr->window_start = ins->objectid;
4021 		spin_unlock(&last_ptr->lock);
4022 	}
4023 }
4024 
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)4025 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4026 			 struct btrfs_key *ins)
4027 {
4028 	switch (ffe_ctl->policy) {
4029 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4030 		found_extent_clustered(ffe_ctl, ins);
4031 		break;
4032 	case BTRFS_EXTENT_ALLOC_ZONED:
4033 		/* Nothing to do */
4034 		break;
4035 	default:
4036 		BUG();
4037 	}
4038 }
4039 
can_allocate_chunk_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4040 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4041 				    struct find_free_extent_ctl *ffe_ctl)
4042 {
4043 	/* Block group's activeness is not a requirement for METADATA block groups. */
4044 	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4045 		return 0;
4046 
4047 	/* If we can activate new zone, just allocate a chunk and use it */
4048 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4049 		return 0;
4050 
4051 	/*
4052 	 * We already reached the max active zones. Try to finish one block
4053 	 * group to make a room for a new block group. This is only possible
4054 	 * for a data block group because btrfs_zone_finish() may need to wait
4055 	 * for a running transaction which can cause a deadlock for metadata
4056 	 * allocation.
4057 	 */
4058 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4059 		int ret = btrfs_zone_finish_one_bg(fs_info);
4060 
4061 		if (ret == 1)
4062 			return 0;
4063 		else if (ret < 0)
4064 			return ret;
4065 	}
4066 
4067 	/*
4068 	 * If we have enough free space left in an already active block group
4069 	 * and we can't activate any other zone now, do not allow allocating a
4070 	 * new chunk and let find_free_extent() retry with a smaller size.
4071 	 */
4072 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4073 		return -ENOSPC;
4074 
4075 	/*
4076 	 * Even min_alloc_size is not left in any block groups. Since we cannot
4077 	 * activate a new block group, allocating it may not help. Let's tell a
4078 	 * caller to try again and hope it progress something by writing some
4079 	 * parts of the region. That is only possible for data block groups,
4080 	 * where a part of the region can be written.
4081 	 */
4082 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4083 		return -EAGAIN;
4084 
4085 	/*
4086 	 * We cannot activate a new block group and no enough space left in any
4087 	 * block groups. So, allocating a new block group may not help. But,
4088 	 * there is nothing to do anyway, so let's go with it.
4089 	 */
4090 	return 0;
4091 }
4092 
can_allocate_chunk(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4093 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4094 			      struct find_free_extent_ctl *ffe_ctl)
4095 {
4096 	switch (ffe_ctl->policy) {
4097 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4098 		return 0;
4099 	case BTRFS_EXTENT_ALLOC_ZONED:
4100 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4101 	default:
4102 		BUG();
4103 	}
4104 }
4105 
4106 /*
4107  * Return >0 means caller needs to re-search for free extent
4108  * Return 0 means we have the needed free extent.
4109  * Return <0 means we failed to locate any free extent.
4110  */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)4111 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4112 					struct btrfs_key *ins,
4113 					struct find_free_extent_ctl *ffe_ctl,
4114 					bool full_search)
4115 {
4116 	struct btrfs_root *root = fs_info->chunk_root;
4117 	int ret;
4118 
4119 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4120 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4121 		ffe_ctl->orig_have_caching_bg = true;
4122 
4123 	if (ins->objectid) {
4124 		found_extent(ffe_ctl, ins);
4125 		return 0;
4126 	}
4127 
4128 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4129 		return 1;
4130 
4131 	ffe_ctl->index++;
4132 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4133 		return 1;
4134 
4135 	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4136 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4137 		ffe_ctl->index = 0;
4138 		/*
4139 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4140 		 * any uncached bgs and we've already done a full search
4141 		 * through.
4142 		 */
4143 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4144 		    (!ffe_ctl->orig_have_caching_bg && full_search))
4145 			ffe_ctl->loop++;
4146 		ffe_ctl->loop++;
4147 
4148 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4149 			struct btrfs_trans_handle *trans;
4150 			int exist = 0;
4151 
4152 			/* Check if allocation policy allows to create a new chunk */
4153 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4154 			if (ret)
4155 				return ret;
4156 
4157 			trans = current->journal_info;
4158 			if (trans)
4159 				exist = 1;
4160 			else
4161 				trans = btrfs_join_transaction(root);
4162 
4163 			if (IS_ERR(trans)) {
4164 				ret = PTR_ERR(trans);
4165 				return ret;
4166 			}
4167 
4168 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4169 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4170 
4171 			/* Do not bail out on ENOSPC since we can do more. */
4172 			if (ret == -ENOSPC) {
4173 				ret = 0;
4174 				ffe_ctl->loop++;
4175 			}
4176 			else if (ret < 0)
4177 				btrfs_abort_transaction(trans, ret);
4178 			else
4179 				ret = 0;
4180 			if (!exist)
4181 				btrfs_end_transaction(trans);
4182 			if (ret)
4183 				return ret;
4184 		}
4185 
4186 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4187 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4188 				return -ENOSPC;
4189 
4190 			/*
4191 			 * Don't loop again if we already have no empty_size and
4192 			 * no empty_cluster.
4193 			 */
4194 			if (ffe_ctl->empty_size == 0 &&
4195 			    ffe_ctl->empty_cluster == 0)
4196 				return -ENOSPC;
4197 			ffe_ctl->empty_size = 0;
4198 			ffe_ctl->empty_cluster = 0;
4199 		}
4200 		return 1;
4201 	}
4202 	return -ENOSPC;
4203 }
4204 
find_free_extent_check_size_class(struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group * bg)4205 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4206 					      struct btrfs_block_group *bg)
4207 {
4208 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4209 		return true;
4210 	if (!btrfs_block_group_should_use_size_class(bg))
4211 		return true;
4212 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4213 		return true;
4214 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4215 	    bg->size_class == BTRFS_BG_SZ_NONE)
4216 		return true;
4217 	return ffe_ctl->size_class == bg->size_class;
4218 }
4219 
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4220 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4221 					struct find_free_extent_ctl *ffe_ctl,
4222 					struct btrfs_space_info *space_info,
4223 					struct btrfs_key *ins)
4224 {
4225 	/*
4226 	 * If our free space is heavily fragmented we may not be able to make
4227 	 * big contiguous allocations, so instead of doing the expensive search
4228 	 * for free space, simply return ENOSPC with our max_extent_size so we
4229 	 * can go ahead and search for a more manageable chunk.
4230 	 *
4231 	 * If our max_extent_size is large enough for our allocation simply
4232 	 * disable clustering since we will likely not be able to find enough
4233 	 * space to create a cluster and induce latency trying.
4234 	 */
4235 	if (space_info->max_extent_size) {
4236 		spin_lock(&space_info->lock);
4237 		if (space_info->max_extent_size &&
4238 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4239 			ins->offset = space_info->max_extent_size;
4240 			spin_unlock(&space_info->lock);
4241 			return -ENOSPC;
4242 		} else if (space_info->max_extent_size) {
4243 			ffe_ctl->use_cluster = false;
4244 		}
4245 		spin_unlock(&space_info->lock);
4246 	}
4247 
4248 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4249 					       &ffe_ctl->empty_cluster);
4250 	if (ffe_ctl->last_ptr) {
4251 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4252 
4253 		spin_lock(&last_ptr->lock);
4254 		if (last_ptr->block_group)
4255 			ffe_ctl->hint_byte = last_ptr->window_start;
4256 		if (last_ptr->fragmented) {
4257 			/*
4258 			 * We still set window_start so we can keep track of the
4259 			 * last place we found an allocation to try and save
4260 			 * some time.
4261 			 */
4262 			ffe_ctl->hint_byte = last_ptr->window_start;
4263 			ffe_ctl->use_cluster = false;
4264 		}
4265 		spin_unlock(&last_ptr->lock);
4266 	}
4267 
4268 	return 0;
4269 }
4270 
prepare_allocation_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4271 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4272 				    struct find_free_extent_ctl *ffe_ctl)
4273 {
4274 	if (ffe_ctl->for_treelog) {
4275 		spin_lock(&fs_info->treelog_bg_lock);
4276 		if (fs_info->treelog_bg)
4277 			ffe_ctl->hint_byte = fs_info->treelog_bg;
4278 		spin_unlock(&fs_info->treelog_bg_lock);
4279 	} else if (ffe_ctl->for_data_reloc) {
4280 		spin_lock(&fs_info->relocation_bg_lock);
4281 		if (fs_info->data_reloc_bg)
4282 			ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4283 		spin_unlock(&fs_info->relocation_bg_lock);
4284 	} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4285 		struct btrfs_block_group *block_group;
4286 
4287 		spin_lock(&fs_info->zone_active_bgs_lock);
4288 		list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4289 			/*
4290 			 * No lock is OK here because avail is monotinically
4291 			 * decreasing, and this is just a hint.
4292 			 */
4293 			u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4294 
4295 			if (block_group_bits(block_group, ffe_ctl->flags) &&
4296 			    avail >= ffe_ctl->num_bytes) {
4297 				ffe_ctl->hint_byte = block_group->start;
4298 				break;
4299 			}
4300 		}
4301 		spin_unlock(&fs_info->zone_active_bgs_lock);
4302 	}
4303 
4304 	return 0;
4305 }
4306 
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4307 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4308 			      struct find_free_extent_ctl *ffe_ctl,
4309 			      struct btrfs_space_info *space_info,
4310 			      struct btrfs_key *ins)
4311 {
4312 	switch (ffe_ctl->policy) {
4313 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4314 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4315 						    space_info, ins);
4316 	case BTRFS_EXTENT_ALLOC_ZONED:
4317 		return prepare_allocation_zoned(fs_info, ffe_ctl);
4318 	default:
4319 		BUG();
4320 	}
4321 }
4322 
4323 /*
4324  * walks the btree of allocated extents and find a hole of a given size.
4325  * The key ins is changed to record the hole:
4326  * ins->objectid == start position
4327  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4328  * ins->offset == the size of the hole.
4329  * Any available blocks before search_start are skipped.
4330  *
4331  * If there is no suitable free space, we will record the max size of
4332  * the free space extent currently.
4333  *
4334  * The overall logic and call chain:
4335  *
4336  * find_free_extent()
4337  * |- Iterate through all block groups
4338  * |  |- Get a valid block group
4339  * |  |- Try to do clustered allocation in that block group
4340  * |  |- Try to do unclustered allocation in that block group
4341  * |  |- Check if the result is valid
4342  * |  |  |- If valid, then exit
4343  * |  |- Jump to next block group
4344  * |
4345  * |- Push harder to find free extents
4346  *    |- If not found, re-iterate all block groups
4347  */
find_free_extent(struct btrfs_root * root,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl)4348 static noinline int find_free_extent(struct btrfs_root *root,
4349 				     struct btrfs_key *ins,
4350 				     struct find_free_extent_ctl *ffe_ctl)
4351 {
4352 	struct btrfs_fs_info *fs_info = root->fs_info;
4353 	int ret = 0;
4354 	int cache_block_group_error = 0;
4355 	struct btrfs_block_group *block_group = NULL;
4356 	struct btrfs_space_info *space_info;
4357 	bool full_search = false;
4358 
4359 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4360 
4361 	ffe_ctl->search_start = 0;
4362 	/* For clustered allocation */
4363 	ffe_ctl->empty_cluster = 0;
4364 	ffe_ctl->last_ptr = NULL;
4365 	ffe_ctl->use_cluster = true;
4366 	ffe_ctl->have_caching_bg = false;
4367 	ffe_ctl->orig_have_caching_bg = false;
4368 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4369 	ffe_ctl->loop = 0;
4370 	ffe_ctl->retry_uncached = false;
4371 	ffe_ctl->cached = 0;
4372 	ffe_ctl->max_extent_size = 0;
4373 	ffe_ctl->total_free_space = 0;
4374 	ffe_ctl->found_offset = 0;
4375 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4376 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4377 
4378 	if (btrfs_is_zoned(fs_info))
4379 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4380 
4381 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4382 	ins->objectid = 0;
4383 	ins->offset = 0;
4384 
4385 	trace_find_free_extent(root, ffe_ctl);
4386 
4387 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4388 	if (!space_info) {
4389 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4390 		return -ENOSPC;
4391 	}
4392 
4393 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4394 	if (ret < 0)
4395 		return ret;
4396 
4397 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4398 				    first_logical_byte(fs_info));
4399 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4400 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4401 		block_group = btrfs_lookup_block_group(fs_info,
4402 						       ffe_ctl->search_start);
4403 		/*
4404 		 * we don't want to use the block group if it doesn't match our
4405 		 * allocation bits, or if its not cached.
4406 		 *
4407 		 * However if we are re-searching with an ideal block group
4408 		 * picked out then we don't care that the block group is cached.
4409 		 */
4410 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4411 		    block_group->cached != BTRFS_CACHE_NO) {
4412 			down_read(&space_info->groups_sem);
4413 			if (list_empty(&block_group->list) ||
4414 			    block_group->ro) {
4415 				/*
4416 				 * someone is removing this block group,
4417 				 * we can't jump into the have_block_group
4418 				 * target because our list pointers are not
4419 				 * valid
4420 				 */
4421 				btrfs_put_block_group(block_group);
4422 				up_read(&space_info->groups_sem);
4423 			} else {
4424 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4425 							block_group->flags);
4426 				btrfs_lock_block_group(block_group,
4427 						       ffe_ctl->delalloc);
4428 				ffe_ctl->hinted = true;
4429 				goto have_block_group;
4430 			}
4431 		} else if (block_group) {
4432 			btrfs_put_block_group(block_group);
4433 		}
4434 	}
4435 search:
4436 	trace_find_free_extent_search_loop(root, ffe_ctl);
4437 	ffe_ctl->have_caching_bg = false;
4438 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4439 	    ffe_ctl->index == 0)
4440 		full_search = true;
4441 	down_read(&space_info->groups_sem);
4442 	list_for_each_entry(block_group,
4443 			    &space_info->block_groups[ffe_ctl->index], list) {
4444 		struct btrfs_block_group *bg_ret;
4445 
4446 		ffe_ctl->hinted = false;
4447 		/* If the block group is read-only, we can skip it entirely. */
4448 		if (unlikely(block_group->ro)) {
4449 			if (ffe_ctl->for_treelog)
4450 				btrfs_clear_treelog_bg(block_group);
4451 			if (ffe_ctl->for_data_reloc)
4452 				btrfs_clear_data_reloc_bg(block_group);
4453 			continue;
4454 		}
4455 
4456 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4457 		ffe_ctl->search_start = block_group->start;
4458 
4459 		/*
4460 		 * this can happen if we end up cycling through all the
4461 		 * raid types, but we want to make sure we only allocate
4462 		 * for the proper type.
4463 		 */
4464 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4465 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4466 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4467 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4468 				BTRFS_BLOCK_GROUP_RAID10;
4469 
4470 			/*
4471 			 * if they asked for extra copies and this block group
4472 			 * doesn't provide them, bail.  This does allow us to
4473 			 * fill raid0 from raid1.
4474 			 */
4475 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4476 				goto loop;
4477 
4478 			/*
4479 			 * This block group has different flags than we want.
4480 			 * It's possible that we have MIXED_GROUP flag but no
4481 			 * block group is mixed.  Just skip such block group.
4482 			 */
4483 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4484 			continue;
4485 		}
4486 
4487 have_block_group:
4488 		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4489 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4490 		if (unlikely(!ffe_ctl->cached)) {
4491 			ffe_ctl->have_caching_bg = true;
4492 			ret = btrfs_cache_block_group(block_group, false);
4493 
4494 			/*
4495 			 * If we get ENOMEM here or something else we want to
4496 			 * try other block groups, because it may not be fatal.
4497 			 * However if we can't find anything else we need to
4498 			 * save our return here so that we return the actual
4499 			 * error that caused problems, not ENOSPC.
4500 			 */
4501 			if (ret < 0) {
4502 				if (!cache_block_group_error)
4503 					cache_block_group_error = ret;
4504 				ret = 0;
4505 				goto loop;
4506 			}
4507 			ret = 0;
4508 		}
4509 
4510 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4511 			if (!cache_block_group_error)
4512 				cache_block_group_error = -EIO;
4513 			goto loop;
4514 		}
4515 
4516 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4517 			goto loop;
4518 
4519 		bg_ret = NULL;
4520 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4521 		if (ret > 0)
4522 			goto loop;
4523 
4524 		if (bg_ret && bg_ret != block_group) {
4525 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4526 			block_group = bg_ret;
4527 		}
4528 
4529 		/* Checks */
4530 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4531 						 fs_info->stripesize);
4532 
4533 		/* move on to the next group */
4534 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4535 		    block_group->start + block_group->length) {
4536 			btrfs_add_free_space_unused(block_group,
4537 					    ffe_ctl->found_offset,
4538 					    ffe_ctl->num_bytes);
4539 			goto loop;
4540 		}
4541 
4542 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4543 			btrfs_add_free_space_unused(block_group,
4544 					ffe_ctl->found_offset,
4545 					ffe_ctl->search_start - ffe_ctl->found_offset);
4546 
4547 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4548 					       ffe_ctl->num_bytes,
4549 					       ffe_ctl->delalloc,
4550 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4551 		if (ret == -EAGAIN) {
4552 			btrfs_add_free_space_unused(block_group,
4553 					ffe_ctl->found_offset,
4554 					ffe_ctl->num_bytes);
4555 			goto loop;
4556 		}
4557 		btrfs_inc_block_group_reservations(block_group);
4558 
4559 		/* we are all good, lets return */
4560 		ins->objectid = ffe_ctl->search_start;
4561 		ins->offset = ffe_ctl->num_bytes;
4562 
4563 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4564 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4565 		break;
4566 loop:
4567 		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4568 		    !ffe_ctl->retry_uncached) {
4569 			ffe_ctl->retry_uncached = true;
4570 			btrfs_wait_block_group_cache_progress(block_group,
4571 						ffe_ctl->num_bytes +
4572 						ffe_ctl->empty_cluster +
4573 						ffe_ctl->empty_size);
4574 			goto have_block_group;
4575 		}
4576 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4577 		cond_resched();
4578 	}
4579 	up_read(&space_info->groups_sem);
4580 
4581 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4582 	if (ret > 0)
4583 		goto search;
4584 
4585 	if (ret == -ENOSPC && !cache_block_group_error) {
4586 		/*
4587 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4588 		 * any contiguous hole.
4589 		 */
4590 		if (!ffe_ctl->max_extent_size)
4591 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4592 		spin_lock(&space_info->lock);
4593 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4594 		spin_unlock(&space_info->lock);
4595 		ins->offset = ffe_ctl->max_extent_size;
4596 	} else if (ret == -ENOSPC) {
4597 		ret = cache_block_group_error;
4598 	}
4599 	return ret;
4600 }
4601 
4602 /*
4603  * Entry point to the extent allocator. Tries to find a hole that is at least
4604  * as big as @num_bytes.
4605  *
4606  * @root           -	The root that will contain this extent
4607  *
4608  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4609  *			is used for accounting purposes. This value differs
4610  *			from @num_bytes only in the case of compressed extents.
4611  *
4612  * @num_bytes      -	Number of bytes to allocate on-disk.
4613  *
4614  * @min_alloc_size -	Indicates the minimum amount of space that the
4615  *			allocator should try to satisfy. In some cases
4616  *			@num_bytes may be larger than what is required and if
4617  *			the filesystem is fragmented then allocation fails.
4618  *			However, the presence of @min_alloc_size gives a
4619  *			chance to try and satisfy the smaller allocation.
4620  *
4621  * @empty_size     -	A hint that you plan on doing more COW. This is the
4622  *			size in bytes the allocator should try to find free
4623  *			next to the block it returns.  This is just a hint and
4624  *			may be ignored by the allocator.
4625  *
4626  * @hint_byte      -	Hint to the allocator to start searching above the byte
4627  *			address passed. It might be ignored.
4628  *
4629  * @ins            -	This key is modified to record the found hole. It will
4630  *			have the following values:
4631  *			ins->objectid == start position
4632  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4633  *			ins->offset == the size of the hole.
4634  *
4635  * @is_data        -	Boolean flag indicating whether an extent is
4636  *			allocated for data (true) or metadata (false)
4637  *
4638  * @delalloc       -	Boolean flag indicating whether this allocation is for
4639  *			delalloc or not. If 'true' data_rwsem of block groups
4640  *			is going to be acquired.
4641  *
4642  *
4643  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4644  * case -ENOSPC is returned then @ins->offset will contain the size of the
4645  * largest available hole the allocator managed to find.
4646  */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4647 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4648 			 u64 num_bytes, u64 min_alloc_size,
4649 			 u64 empty_size, u64 hint_byte,
4650 			 struct btrfs_key *ins, int is_data, int delalloc)
4651 {
4652 	struct btrfs_fs_info *fs_info = root->fs_info;
4653 	struct find_free_extent_ctl ffe_ctl = {};
4654 	bool final_tried = num_bytes == min_alloc_size;
4655 	u64 flags;
4656 	int ret;
4657 	bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
4658 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4659 
4660 	flags = get_alloc_profile_by_root(root, is_data);
4661 again:
4662 	WARN_ON(num_bytes < fs_info->sectorsize);
4663 
4664 	ffe_ctl.ram_bytes = ram_bytes;
4665 	ffe_ctl.num_bytes = num_bytes;
4666 	ffe_ctl.min_alloc_size = min_alloc_size;
4667 	ffe_ctl.empty_size = empty_size;
4668 	ffe_ctl.flags = flags;
4669 	ffe_ctl.delalloc = delalloc;
4670 	ffe_ctl.hint_byte = hint_byte;
4671 	ffe_ctl.for_treelog = for_treelog;
4672 	ffe_ctl.for_data_reloc = for_data_reloc;
4673 
4674 	ret = find_free_extent(root, ins, &ffe_ctl);
4675 	if (!ret && !is_data) {
4676 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4677 	} else if (ret == -ENOSPC) {
4678 		if (!final_tried && ins->offset) {
4679 			num_bytes = min(num_bytes >> 1, ins->offset);
4680 			num_bytes = round_down(num_bytes,
4681 					       fs_info->sectorsize);
4682 			num_bytes = max(num_bytes, min_alloc_size);
4683 			ram_bytes = num_bytes;
4684 			if (num_bytes == min_alloc_size)
4685 				final_tried = true;
4686 			goto again;
4687 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4688 			struct btrfs_space_info *sinfo;
4689 
4690 			sinfo = btrfs_find_space_info(fs_info, flags);
4691 			btrfs_err(fs_info,
4692 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4693 				  flags, num_bytes, for_treelog, for_data_reloc);
4694 			if (sinfo)
4695 				btrfs_dump_space_info(fs_info, sinfo,
4696 						      num_bytes, 1);
4697 		}
4698 	}
4699 
4700 	return ret;
4701 }
4702 
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4703 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4704 			       u64 start, u64 len, int delalloc)
4705 {
4706 	struct btrfs_block_group *cache;
4707 
4708 	cache = btrfs_lookup_block_group(fs_info, start);
4709 	if (!cache) {
4710 		btrfs_err(fs_info, "Unable to find block group for %llu",
4711 			  start);
4712 		return -ENOSPC;
4713 	}
4714 
4715 	btrfs_add_free_space(cache, start, len);
4716 	btrfs_free_reserved_bytes(cache, len, delalloc);
4717 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4718 
4719 	btrfs_put_block_group(cache);
4720 	return 0;
4721 }
4722 
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,const struct extent_buffer * eb)4723 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4724 			      const struct extent_buffer *eb)
4725 {
4726 	struct btrfs_block_group *cache;
4727 	int ret = 0;
4728 
4729 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4730 	if (!cache) {
4731 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4732 			  eb->start);
4733 		return -ENOSPC;
4734 	}
4735 
4736 	ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4737 	btrfs_put_block_group(cache);
4738 	return ret;
4739 }
4740 
alloc_reserved_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)4741 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4742 				 u64 num_bytes)
4743 {
4744 	struct btrfs_fs_info *fs_info = trans->fs_info;
4745 	int ret;
4746 
4747 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4748 	if (ret)
4749 		return ret;
4750 
4751 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4752 	if (ret) {
4753 		ASSERT(!ret);
4754 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4755 			  bytenr, num_bytes);
4756 		return ret;
4757 	}
4758 
4759 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4760 	return 0;
4761 }
4762 
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod,u64 oref_root)4763 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4764 				      u64 parent, u64 root_objectid,
4765 				      u64 flags, u64 owner, u64 offset,
4766 				      struct btrfs_key *ins, int ref_mod, u64 oref_root)
4767 {
4768 	struct btrfs_fs_info *fs_info = trans->fs_info;
4769 	struct btrfs_root *extent_root;
4770 	int ret;
4771 	struct btrfs_extent_item *extent_item;
4772 	struct btrfs_extent_owner_ref *oref;
4773 	struct btrfs_extent_inline_ref *iref;
4774 	struct btrfs_path *path;
4775 	struct extent_buffer *leaf;
4776 	int type;
4777 	u32 size;
4778 	const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4779 
4780 	if (parent > 0)
4781 		type = BTRFS_SHARED_DATA_REF_KEY;
4782 	else
4783 		type = BTRFS_EXTENT_DATA_REF_KEY;
4784 
4785 	size = sizeof(*extent_item);
4786 	if (simple_quota)
4787 		size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4788 	size += btrfs_extent_inline_ref_size(type);
4789 
4790 	path = btrfs_alloc_path();
4791 	if (!path)
4792 		return -ENOMEM;
4793 
4794 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4795 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4796 	if (ret) {
4797 		btrfs_free_path(path);
4798 		return ret;
4799 	}
4800 
4801 	leaf = path->nodes[0];
4802 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4803 				     struct btrfs_extent_item);
4804 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4805 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4806 	btrfs_set_extent_flags(leaf, extent_item,
4807 			       flags | BTRFS_EXTENT_FLAG_DATA);
4808 
4809 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4810 	if (simple_quota) {
4811 		btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4812 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4813 		btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4814 		iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4815 	}
4816 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4817 
4818 	if (parent > 0) {
4819 		struct btrfs_shared_data_ref *ref;
4820 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4821 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4822 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4823 	} else {
4824 		struct btrfs_extent_data_ref *ref;
4825 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4826 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4827 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4828 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4829 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4830 	}
4831 
4832 	btrfs_free_path(path);
4833 
4834 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4835 }
4836 
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4837 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4838 				     struct btrfs_delayed_ref_node *node,
4839 				     struct btrfs_delayed_extent_op *extent_op)
4840 {
4841 	struct btrfs_fs_info *fs_info = trans->fs_info;
4842 	struct btrfs_root *extent_root;
4843 	int ret;
4844 	struct btrfs_extent_item *extent_item;
4845 	struct btrfs_key extent_key;
4846 	struct btrfs_tree_block_info *block_info;
4847 	struct btrfs_extent_inline_ref *iref;
4848 	struct btrfs_path *path;
4849 	struct extent_buffer *leaf;
4850 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4851 	const u64 flags = (extent_op ? extent_op->flags_to_set : 0);
4852 	/* The owner of a tree block is the level. */
4853 	int level = btrfs_delayed_ref_owner(node);
4854 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4855 
4856 	extent_key.objectid = node->bytenr;
4857 	if (skinny_metadata) {
4858 		/* The owner of a tree block is the level. */
4859 		extent_key.offset = level;
4860 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4861 	} else {
4862 		extent_key.offset = node->num_bytes;
4863 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4864 		size += sizeof(*block_info);
4865 	}
4866 
4867 	path = btrfs_alloc_path();
4868 	if (!path)
4869 		return -ENOMEM;
4870 
4871 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4872 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4873 				      size);
4874 	if (ret) {
4875 		btrfs_free_path(path);
4876 		return ret;
4877 	}
4878 
4879 	leaf = path->nodes[0];
4880 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4881 				     struct btrfs_extent_item);
4882 	btrfs_set_extent_refs(leaf, extent_item, 1);
4883 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4884 	btrfs_set_extent_flags(leaf, extent_item,
4885 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4886 
4887 	if (skinny_metadata) {
4888 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4889 	} else {
4890 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4891 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4892 		btrfs_set_tree_block_level(leaf, block_info, level);
4893 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4894 	}
4895 
4896 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4897 		btrfs_set_extent_inline_ref_type(leaf, iref,
4898 						 BTRFS_SHARED_BLOCK_REF_KEY);
4899 		btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent);
4900 	} else {
4901 		btrfs_set_extent_inline_ref_type(leaf, iref,
4902 						 BTRFS_TREE_BLOCK_REF_KEY);
4903 		btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root);
4904 	}
4905 
4906 	btrfs_free_path(path);
4907 
4908 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4909 }
4910 
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4911 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4912 				     struct btrfs_root *root, u64 owner,
4913 				     u64 offset, u64 ram_bytes,
4914 				     struct btrfs_key *ins)
4915 {
4916 	struct btrfs_ref generic_ref = {
4917 		.action = BTRFS_ADD_DELAYED_EXTENT,
4918 		.bytenr = ins->objectid,
4919 		.num_bytes = ins->offset,
4920 		.owning_root = btrfs_root_id(root),
4921 		.ref_root = btrfs_root_id(root),
4922 	};
4923 
4924 	ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID);
4925 
4926 	if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4927 		generic_ref.owning_root = root->relocation_src_root;
4928 
4929 	btrfs_init_data_ref(&generic_ref, owner, offset, 0, false);
4930 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4931 
4932 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4933 }
4934 
4935 /*
4936  * this is used by the tree logging recovery code.  It records that
4937  * an extent has been allocated and makes sure to clear the free
4938  * space cache bits as well
4939  */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4940 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4941 				   u64 root_objectid, u64 owner, u64 offset,
4942 				   struct btrfs_key *ins)
4943 {
4944 	struct btrfs_fs_info *fs_info = trans->fs_info;
4945 	int ret;
4946 	struct btrfs_block_group *block_group;
4947 	struct btrfs_space_info *space_info;
4948 	struct btrfs_squota_delta delta = {
4949 		.root = root_objectid,
4950 		.num_bytes = ins->offset,
4951 		.generation = trans->transid,
4952 		.is_data = true,
4953 		.is_inc = true,
4954 	};
4955 
4956 	/*
4957 	 * Mixed block groups will exclude before processing the log so we only
4958 	 * need to do the exclude dance if this fs isn't mixed.
4959 	 */
4960 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4961 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4962 					      ins->offset);
4963 		if (ret)
4964 			return ret;
4965 	}
4966 
4967 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4968 	if (!block_group)
4969 		return -EINVAL;
4970 
4971 	space_info = block_group->space_info;
4972 	spin_lock(&space_info->lock);
4973 	spin_lock(&block_group->lock);
4974 	space_info->bytes_reserved += ins->offset;
4975 	block_group->reserved += ins->offset;
4976 	spin_unlock(&block_group->lock);
4977 	spin_unlock(&space_info->lock);
4978 
4979 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4980 					 offset, ins, 1, root_objectid);
4981 	if (ret)
4982 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4983 	ret = btrfs_record_squota_delta(fs_info, &delta);
4984 	btrfs_put_block_group(block_group);
4985 	return ret;
4986 }
4987 
4988 #ifdef CONFIG_BTRFS_DEBUG
4989 /*
4990  * Extra safety check in case the extent tree is corrupted and extent allocator
4991  * chooses to use a tree block which is already used and locked.
4992  */
check_eb_lock_owner(const struct extent_buffer * eb)4993 static bool check_eb_lock_owner(const struct extent_buffer *eb)
4994 {
4995 	if (eb->lock_owner == current->pid) {
4996 		btrfs_err_rl(eb->fs_info,
4997 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4998 			     eb->start, btrfs_header_owner(eb), current->pid);
4999 		return true;
5000 	}
5001 	return false;
5002 }
5003 #else
check_eb_lock_owner(struct extent_buffer * eb)5004 static bool check_eb_lock_owner(struct extent_buffer *eb)
5005 {
5006 	return false;
5007 }
5008 #endif
5009 
5010 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)5011 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5012 		      u64 bytenr, int level, u64 owner,
5013 		      enum btrfs_lock_nesting nest)
5014 {
5015 	struct btrfs_fs_info *fs_info = root->fs_info;
5016 	struct extent_buffer *buf;
5017 	u64 lockdep_owner = owner;
5018 
5019 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5020 	if (IS_ERR(buf))
5021 		return buf;
5022 
5023 	if (check_eb_lock_owner(buf)) {
5024 		free_extent_buffer(buf);
5025 		return ERR_PTR(-EUCLEAN);
5026 	}
5027 
5028 	/*
5029 	 * The reloc trees are just snapshots, so we need them to appear to be
5030 	 * just like any other fs tree WRT lockdep.
5031 	 *
5032 	 * The exception however is in replace_path() in relocation, where we
5033 	 * hold the lock on the original fs root and then search for the reloc
5034 	 * root.  At that point we need to make sure any reloc root buffers are
5035 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5036 	 * lockdep happy.
5037 	 */
5038 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5039 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5040 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5041 
5042 	/* btrfs_clear_buffer_dirty() accesses generation field. */
5043 	btrfs_set_header_generation(buf, trans->transid);
5044 
5045 	/*
5046 	 * This needs to stay, because we could allocate a freed block from an
5047 	 * old tree into a new tree, so we need to make sure this new block is
5048 	 * set to the appropriate level and owner.
5049 	 */
5050 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5051 
5052 	btrfs_tree_lock_nested(buf, nest);
5053 	btrfs_clear_buffer_dirty(trans, buf);
5054 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5055 	clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5056 
5057 	set_extent_buffer_uptodate(buf);
5058 
5059 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5060 	btrfs_set_header_level(buf, level);
5061 	btrfs_set_header_bytenr(buf, buf->start);
5062 	btrfs_set_header_generation(buf, trans->transid);
5063 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5064 	btrfs_set_header_owner(buf, owner);
5065 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5066 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5067 	if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
5068 		buf->log_index = root->log_transid % 2;
5069 		/*
5070 		 * we allow two log transactions at a time, use different
5071 		 * EXTENT bit to differentiate dirty pages.
5072 		 */
5073 		if (buf->log_index == 0)
5074 			set_extent_bit(&root->dirty_log_pages, buf->start,
5075 				       buf->start + buf->len - 1,
5076 				       EXTENT_DIRTY, NULL);
5077 		else
5078 			set_extent_bit(&root->dirty_log_pages, buf->start,
5079 				       buf->start + buf->len - 1,
5080 				       EXTENT_NEW, NULL);
5081 	} else {
5082 		buf->log_index = -1;
5083 		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5084 			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5085 	}
5086 	/* this returns a buffer locked for blocking */
5087 	return buf;
5088 }
5089 
5090 /*
5091  * finds a free extent and does all the dirty work required for allocation
5092  * returns the tree buffer or an ERR_PTR on error.
5093  */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,u64 reloc_src_root,enum btrfs_lock_nesting nest)5094 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5095 					     struct btrfs_root *root,
5096 					     u64 parent, u64 root_objectid,
5097 					     const struct btrfs_disk_key *key,
5098 					     int level, u64 hint,
5099 					     u64 empty_size,
5100 					     u64 reloc_src_root,
5101 					     enum btrfs_lock_nesting nest)
5102 {
5103 	struct btrfs_fs_info *fs_info = root->fs_info;
5104 	struct btrfs_key ins;
5105 	struct btrfs_block_rsv *block_rsv;
5106 	struct extent_buffer *buf;
5107 	u64 flags = 0;
5108 	int ret;
5109 	u32 blocksize = fs_info->nodesize;
5110 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5111 	u64 owning_root;
5112 
5113 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5114 	if (btrfs_is_testing(fs_info)) {
5115 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5116 					    level, root_objectid, nest);
5117 		if (!IS_ERR(buf))
5118 			root->alloc_bytenr += blocksize;
5119 		return buf;
5120 	}
5121 #endif
5122 
5123 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5124 	if (IS_ERR(block_rsv))
5125 		return ERR_CAST(block_rsv);
5126 
5127 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5128 				   empty_size, hint, &ins, 0, 0);
5129 	if (ret)
5130 		goto out_unuse;
5131 
5132 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5133 				    root_objectid, nest);
5134 	if (IS_ERR(buf)) {
5135 		ret = PTR_ERR(buf);
5136 		goto out_free_reserved;
5137 	}
5138 	owning_root = btrfs_header_owner(buf);
5139 
5140 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5141 		if (parent == 0)
5142 			parent = ins.objectid;
5143 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5144 		owning_root = reloc_src_root;
5145 	} else
5146 		BUG_ON(parent > 0);
5147 
5148 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5149 		struct btrfs_delayed_extent_op *extent_op;
5150 		struct btrfs_ref generic_ref = {
5151 			.action = BTRFS_ADD_DELAYED_EXTENT,
5152 			.bytenr = ins.objectid,
5153 			.num_bytes = ins.offset,
5154 			.parent = parent,
5155 			.owning_root = owning_root,
5156 			.ref_root = root_objectid,
5157 		};
5158 
5159 		if (!skinny_metadata || flags != 0) {
5160 			extent_op = btrfs_alloc_delayed_extent_op();
5161 			if (!extent_op) {
5162 				ret = -ENOMEM;
5163 				goto out_free_buf;
5164 			}
5165 			if (key)
5166 				memcpy(&extent_op->key, key, sizeof(extent_op->key));
5167 			else
5168 				memset(&extent_op->key, 0, sizeof(extent_op->key));
5169 			extent_op->flags_to_set = flags;
5170 			extent_op->update_key = (skinny_metadata ? false : true);
5171 			extent_op->update_flags = (flags != 0);
5172 		} else {
5173 			extent_op = NULL;
5174 		}
5175 
5176 		btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false);
5177 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5178 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5179 		if (ret) {
5180 			btrfs_free_delayed_extent_op(extent_op);
5181 			goto out_free_buf;
5182 		}
5183 	}
5184 	return buf;
5185 
5186 out_free_buf:
5187 	btrfs_tree_unlock(buf);
5188 	free_extent_buffer(buf);
5189 out_free_reserved:
5190 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5191 out_unuse:
5192 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5193 	return ERR_PTR(ret);
5194 }
5195 
5196 struct walk_control {
5197 	u64 refs[BTRFS_MAX_LEVEL];
5198 	u64 flags[BTRFS_MAX_LEVEL];
5199 	struct btrfs_key update_progress;
5200 	struct btrfs_key drop_progress;
5201 	int drop_level;
5202 	int stage;
5203 	int level;
5204 	int shared_level;
5205 	int update_ref;
5206 	int keep_locks;
5207 	int reada_slot;
5208 	int reada_count;
5209 	int restarted;
5210 	/* Indicate that extent info needs to be looked up when walking the tree. */
5211 	int lookup_info;
5212 };
5213 
5214 /*
5215  * This is our normal stage.  We are traversing blocks the current snapshot owns
5216  * and we are dropping any of our references to any children we are able to, and
5217  * then freeing the block once we've processed all of the children.
5218  */
5219 #define DROP_REFERENCE	1
5220 
5221 /*
5222  * We enter this stage when we have to walk into a child block (meaning we can't
5223  * simply drop our reference to it from our current parent node) and there are
5224  * more than one reference on it.  If we are the owner of any of the children
5225  * blocks from the current parent node then we have to do the FULL_BACKREF dance
5226  * on them in order to drop our normal ref and add the shared ref.
5227  */
5228 #define UPDATE_BACKREF	2
5229 
5230 /*
5231  * Decide if we need to walk down into this node to adjust the references.
5232  *
5233  * @root:	the root we are currently deleting
5234  * @wc:		the walk control for this deletion
5235  * @eb:		the parent eb that we're currently visiting
5236  * @refs:	the number of refs for wc->level - 1
5237  * @flags:	the flags for wc->level - 1
5238  * @slot:	the slot in the eb that we're currently checking
5239  *
5240  * This is meant to be called when we're evaluating if a node we point to at
5241  * wc->level should be read and walked into, or if we can simply delete our
5242  * reference to it.  We return true if we should walk into the node, false if we
5243  * can skip it.
5244  *
5245  * We have assertions in here to make sure this is called correctly.  We assume
5246  * that sanity checking on the blocks read to this point has been done, so any
5247  * corrupted file systems must have been caught before calling this function.
5248  */
visit_node_for_delete(struct btrfs_root * root,struct walk_control * wc,struct extent_buffer * eb,u64 flags,int slot)5249 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc,
5250 				  struct extent_buffer *eb, u64 flags, int slot)
5251 {
5252 	struct btrfs_key key;
5253 	u64 generation;
5254 	int level = wc->level;
5255 
5256 	ASSERT(level > 0);
5257 	ASSERT(wc->refs[level - 1] > 0);
5258 
5259 	/*
5260 	 * The update backref stage we only want to skip if we already have
5261 	 * FULL_BACKREF set, otherwise we need to read.
5262 	 */
5263 	if (wc->stage == UPDATE_BACKREF) {
5264 		if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5265 			return false;
5266 		return true;
5267 	}
5268 
5269 	/*
5270 	 * We're the last ref on this block, we must walk into it and process
5271 	 * any refs it's pointing at.
5272 	 */
5273 	if (wc->refs[level - 1] == 1)
5274 		return true;
5275 
5276 	/*
5277 	 * If we're already FULL_BACKREF then we know we can just drop our
5278 	 * current reference.
5279 	 */
5280 	if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5281 		return false;
5282 
5283 	/*
5284 	 * This block is older than our creation generation, we can drop our
5285 	 * reference to it.
5286 	 */
5287 	generation = btrfs_node_ptr_generation(eb, slot);
5288 	if (!wc->update_ref || generation <= btrfs_root_origin_generation(root))
5289 		return false;
5290 
5291 	/*
5292 	 * This block was processed from a previous snapshot deletion run, we
5293 	 * can skip it.
5294 	 */
5295 	btrfs_node_key_to_cpu(eb, &key, slot);
5296 	if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0)
5297 		return false;
5298 
5299 	/* All other cases we need to wander into the node. */
5300 	return true;
5301 }
5302 
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)5303 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5304 				     struct btrfs_root *root,
5305 				     struct walk_control *wc,
5306 				     struct btrfs_path *path)
5307 {
5308 	struct btrfs_fs_info *fs_info = root->fs_info;
5309 	u64 bytenr;
5310 	u64 generation;
5311 	u64 refs;
5312 	u64 flags;
5313 	u32 nritems;
5314 	struct extent_buffer *eb;
5315 	int ret;
5316 	int slot;
5317 	int nread = 0;
5318 
5319 	if (path->slots[wc->level] < wc->reada_slot) {
5320 		wc->reada_count = wc->reada_count * 2 / 3;
5321 		wc->reada_count = max(wc->reada_count, 2);
5322 	} else {
5323 		wc->reada_count = wc->reada_count * 3 / 2;
5324 		wc->reada_count = min_t(int, wc->reada_count,
5325 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5326 	}
5327 
5328 	eb = path->nodes[wc->level];
5329 	nritems = btrfs_header_nritems(eb);
5330 
5331 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5332 		if (nread >= wc->reada_count)
5333 			break;
5334 
5335 		cond_resched();
5336 		bytenr = btrfs_node_blockptr(eb, slot);
5337 		generation = btrfs_node_ptr_generation(eb, slot);
5338 
5339 		if (slot == path->slots[wc->level])
5340 			goto reada;
5341 
5342 		if (wc->stage == UPDATE_BACKREF &&
5343 		    generation <= btrfs_root_origin_generation(root))
5344 			continue;
5345 
5346 		/* We don't lock the tree block, it's OK to be racy here */
5347 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5348 					       wc->level - 1, 1, &refs,
5349 					       &flags, NULL);
5350 		/* We don't care about errors in readahead. */
5351 		if (ret < 0)
5352 			continue;
5353 
5354 		/*
5355 		 * This could be racey, it's conceivable that we raced and end
5356 		 * up with a bogus refs count, if that's the case just skip, if
5357 		 * we are actually corrupt we will notice when we look up
5358 		 * everything again with our locks.
5359 		 */
5360 		if (refs == 0)
5361 			continue;
5362 
5363 		/* If we don't need to visit this node don't reada. */
5364 		if (!visit_node_for_delete(root, wc, eb, flags, slot))
5365 			continue;
5366 reada:
5367 		btrfs_readahead_node_child(eb, slot);
5368 		nread++;
5369 	}
5370 	wc->reada_slot = slot;
5371 }
5372 
5373 /*
5374  * helper to process tree block while walking down the tree.
5375  *
5376  * when wc->stage == UPDATE_BACKREF, this function updates
5377  * back refs for pointers in the block.
5378  *
5379  * NOTE: return value 1 means we should stop walking down.
5380  */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5381 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5382 				   struct btrfs_root *root,
5383 				   struct btrfs_path *path,
5384 				   struct walk_control *wc)
5385 {
5386 	struct btrfs_fs_info *fs_info = root->fs_info;
5387 	int level = wc->level;
5388 	struct extent_buffer *eb = path->nodes[level];
5389 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5390 	int ret;
5391 
5392 	if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root))
5393 		return 1;
5394 
5395 	/*
5396 	 * when reference count of tree block is 1, it won't increase
5397 	 * again. once full backref flag is set, we never clear it.
5398 	 */
5399 	if (wc->lookup_info &&
5400 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5401 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5402 		ASSERT(path->locks[level]);
5403 		ret = btrfs_lookup_extent_info(trans, fs_info,
5404 					       eb->start, level, 1,
5405 					       &wc->refs[level],
5406 					       &wc->flags[level],
5407 					       NULL);
5408 		if (ret)
5409 			return ret;
5410 		if (unlikely(wc->refs[level] == 0)) {
5411 			btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5412 				  eb->start);
5413 			return -EUCLEAN;
5414 		}
5415 	}
5416 
5417 	if (wc->stage == DROP_REFERENCE) {
5418 		if (wc->refs[level] > 1)
5419 			return 1;
5420 
5421 		if (path->locks[level] && !wc->keep_locks) {
5422 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5423 			path->locks[level] = 0;
5424 		}
5425 		return 0;
5426 	}
5427 
5428 	/* wc->stage == UPDATE_BACKREF */
5429 	if (!(wc->flags[level] & flag)) {
5430 		ASSERT(path->locks[level]);
5431 		ret = btrfs_inc_ref(trans, root, eb, 1);
5432 		if (ret) {
5433 			btrfs_abort_transaction(trans, ret);
5434 			return ret;
5435 		}
5436 		ret = btrfs_dec_ref(trans, root, eb, 0);
5437 		if (ret) {
5438 			btrfs_abort_transaction(trans, ret);
5439 			return ret;
5440 		}
5441 		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5442 		if (ret) {
5443 			btrfs_abort_transaction(trans, ret);
5444 			return ret;
5445 		}
5446 		wc->flags[level] |= flag;
5447 	}
5448 
5449 	/*
5450 	 * the block is shared by multiple trees, so it's not good to
5451 	 * keep the tree lock
5452 	 */
5453 	if (path->locks[level] && level > 0) {
5454 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5455 		path->locks[level] = 0;
5456 	}
5457 	return 0;
5458 }
5459 
5460 /*
5461  * This is used to verify a ref exists for this root to deal with a bug where we
5462  * would have a drop_progress key that hadn't been updated properly.
5463  */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5464 static int check_ref_exists(struct btrfs_trans_handle *trans,
5465 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5466 			    int level)
5467 {
5468 	struct btrfs_delayed_ref_root *delayed_refs;
5469 	struct btrfs_delayed_ref_head *head;
5470 	BTRFS_PATH_AUTO_FREE(path);
5471 	struct btrfs_extent_inline_ref *iref;
5472 	int ret;
5473 	bool exists = false;
5474 
5475 	path = btrfs_alloc_path();
5476 	if (!path)
5477 		return -ENOMEM;
5478 again:
5479 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5480 				    root->fs_info->nodesize, parent,
5481 				    btrfs_root_id(root), level, 0);
5482 	if (ret != -ENOENT) {
5483 		/*
5484 		 * If we get 0 then we found our reference, return 1, else
5485 		 * return the error if it's not -ENOENT;
5486 		 */
5487 		return (ret < 0 ) ? ret : 1;
5488 	}
5489 
5490 	/*
5491 	 * We could have a delayed ref with this reference, so look it up while
5492 	 * we're holding the path open to make sure we don't race with the
5493 	 * delayed ref running.
5494 	 */
5495 	delayed_refs = &trans->transaction->delayed_refs;
5496 	spin_lock(&delayed_refs->lock);
5497 	head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
5498 	if (!head)
5499 		goto out;
5500 	if (!mutex_trylock(&head->mutex)) {
5501 		/*
5502 		 * We're contended, means that the delayed ref is running, get a
5503 		 * reference and wait for the ref head to be complete and then
5504 		 * try again.
5505 		 */
5506 		refcount_inc(&head->refs);
5507 		spin_unlock(&delayed_refs->lock);
5508 
5509 		btrfs_release_path(path);
5510 
5511 		mutex_lock(&head->mutex);
5512 		mutex_unlock(&head->mutex);
5513 		btrfs_put_delayed_ref_head(head);
5514 		goto again;
5515 	}
5516 
5517 	exists = btrfs_find_delayed_tree_ref(head, root->root_key.objectid, parent);
5518 	mutex_unlock(&head->mutex);
5519 out:
5520 	spin_unlock(&delayed_refs->lock);
5521 	return exists ? 1 : 0;
5522 }
5523 
5524 /*
5525  * We may not have an uptodate block, so if we are going to walk down into this
5526  * block we need to drop the lock, read it off of the disk, re-lock it and
5527  * return to continue dropping the snapshot.
5528  */
check_next_block_uptodate(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,struct extent_buffer * next)5529 static int check_next_block_uptodate(struct btrfs_trans_handle *trans,
5530 				     struct btrfs_root *root,
5531 				     struct btrfs_path *path,
5532 				     struct walk_control *wc,
5533 				     struct extent_buffer *next)
5534 {
5535 	struct btrfs_tree_parent_check check = { 0 };
5536 	u64 generation;
5537 	int level = wc->level;
5538 	int ret;
5539 
5540 	btrfs_assert_tree_write_locked(next);
5541 
5542 	generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]);
5543 
5544 	if (btrfs_buffer_uptodate(next, generation, 0))
5545 		return 0;
5546 
5547 	check.level = level - 1;
5548 	check.transid = generation;
5549 	check.owner_root = btrfs_root_id(root);
5550 	check.has_first_key = true;
5551 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]);
5552 
5553 	btrfs_tree_unlock(next);
5554 	if (level == 1)
5555 		reada_walk_down(trans, root, wc, path);
5556 	ret = btrfs_read_extent_buffer(next, &check);
5557 	if (ret) {
5558 		free_extent_buffer(next);
5559 		return ret;
5560 	}
5561 	btrfs_tree_lock(next);
5562 	wc->lookup_info = 1;
5563 	return 0;
5564 }
5565 
5566 /*
5567  * If we determine that we don't have to visit wc->level - 1 then we need to
5568  * determine if we can drop our reference.
5569  *
5570  * If we are UPDATE_BACKREF then we will not, we need to update our backrefs.
5571  *
5572  * If we are DROP_REFERENCE this will figure out if we need to drop our current
5573  * reference, skipping it if we dropped it from a previous incompleted drop, or
5574  * dropping it if we still have a reference to it.
5575  */
maybe_drop_reference(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,struct extent_buffer * next,u64 owner_root)5576 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5577 				struct btrfs_path *path, struct walk_control *wc,
5578 				struct extent_buffer *next, u64 owner_root)
5579 {
5580 	struct btrfs_ref ref = {
5581 		.action = BTRFS_DROP_DELAYED_REF,
5582 		.bytenr = next->start,
5583 		.num_bytes = root->fs_info->nodesize,
5584 		.owning_root = owner_root,
5585 		.ref_root = btrfs_root_id(root),
5586 	};
5587 	int level = wc->level;
5588 	int ret;
5589 
5590 	/* We are UPDATE_BACKREF, we're not dropping anything. */
5591 	if (wc->stage == UPDATE_BACKREF)
5592 		return 0;
5593 
5594 	if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5595 		ref.parent = path->nodes[level]->start;
5596 	} else {
5597 		ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level]));
5598 		if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) {
5599 			btrfs_err(root->fs_info, "mismatched block owner");
5600 			return -EIO;
5601 		}
5602 	}
5603 
5604 	/*
5605 	 * If we had a drop_progress we need to verify the refs are set as
5606 	 * expected.  If we find our ref then we know that from here on out
5607 	 * everything should be correct, and we can clear the
5608 	 * ->restarted flag.
5609 	 */
5610 	if (wc->restarted) {
5611 		ret = check_ref_exists(trans, root, next->start, ref.parent,
5612 				       level - 1);
5613 		if (ret <= 0)
5614 			return ret;
5615 		ret = 0;
5616 		wc->restarted = 0;
5617 	}
5618 
5619 	/*
5620 	 * Reloc tree doesn't contribute to qgroup numbers, and we have already
5621 	 * accounted them at merge time (replace_path), thus we could skip
5622 	 * expensive subtree trace here.
5623 	 */
5624 	if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
5625 	    wc->refs[level - 1] > 1) {
5626 		u64 generation = btrfs_node_ptr_generation(path->nodes[level],
5627 							   path->slots[level]);
5628 
5629 		ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1);
5630 		if (ret) {
5631 			btrfs_err_rl(root->fs_info,
5632 "error %d accounting shared subtree, quota is out of sync, rescan required",
5633 				     ret);
5634 		}
5635 	}
5636 
5637 	/*
5638 	 * We need to update the next key in our walk control so we can update
5639 	 * the drop_progress key accordingly.  We don't care if find_next_key
5640 	 * doesn't find a key because that means we're at the end and are going
5641 	 * to clean up now.
5642 	 */
5643 	wc->drop_level = level;
5644 	find_next_key(path, level, &wc->drop_progress);
5645 
5646 	btrfs_init_tree_ref(&ref, level - 1, 0, false);
5647 	return btrfs_free_extent(trans, &ref);
5648 }
5649 
5650 /*
5651  * helper to process tree block pointer.
5652  *
5653  * when wc->stage == DROP_REFERENCE, this function checks
5654  * reference count of the block pointed to. if the block
5655  * is shared and we need update back refs for the subtree
5656  * rooted at the block, this function changes wc->stage to
5657  * UPDATE_BACKREF. if the block is shared and there is no
5658  * need to update back, this function drops the reference
5659  * to the block.
5660  *
5661  * NOTE: return value 1 means we should stop walking down.
5662  */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5663 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5664 				 struct btrfs_root *root,
5665 				 struct btrfs_path *path,
5666 				 struct walk_control *wc)
5667 {
5668 	struct btrfs_fs_info *fs_info = root->fs_info;
5669 	u64 bytenr;
5670 	u64 generation;
5671 	u64 owner_root = 0;
5672 	struct extent_buffer *next;
5673 	int level = wc->level;
5674 	int ret = 0;
5675 
5676 	generation = btrfs_node_ptr_generation(path->nodes[level],
5677 					       path->slots[level]);
5678 	/*
5679 	 * if the lower level block was created before the snapshot
5680 	 * was created, we know there is no need to update back refs
5681 	 * for the subtree
5682 	 */
5683 	if (wc->stage == UPDATE_BACKREF &&
5684 	    generation <= btrfs_root_origin_generation(root)) {
5685 		wc->lookup_info = 1;
5686 		return 1;
5687 	}
5688 
5689 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5690 
5691 	next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root),
5692 					    level - 1);
5693 	if (IS_ERR(next))
5694 		return PTR_ERR(next);
5695 
5696 	btrfs_tree_lock(next);
5697 
5698 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5699 				       &wc->refs[level - 1],
5700 				       &wc->flags[level - 1],
5701 				       &owner_root);
5702 	if (ret < 0)
5703 		goto out_unlock;
5704 
5705 	if (unlikely(wc->refs[level - 1] == 0)) {
5706 		btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5707 			  bytenr);
5708 		ret = -EUCLEAN;
5709 		goto out_unlock;
5710 	}
5711 	wc->lookup_info = 0;
5712 
5713 	/* If we don't have to walk into this node skip it. */
5714 	if (!visit_node_for_delete(root, wc, path->nodes[level],
5715 				   wc->flags[level - 1], path->slots[level]))
5716 		goto skip;
5717 
5718 	/*
5719 	 * We have to walk down into this node, and if we're currently at the
5720 	 * DROP_REFERNCE stage and this block is shared then we need to switch
5721 	 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF.
5722 	 */
5723 	if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) {
5724 		wc->stage = UPDATE_BACKREF;
5725 		wc->shared_level = level - 1;
5726 	}
5727 
5728 	ret = check_next_block_uptodate(trans, root, path, wc, next);
5729 	if (ret)
5730 		return ret;
5731 
5732 	level--;
5733 	ASSERT(level == btrfs_header_level(next));
5734 	if (level != btrfs_header_level(next)) {
5735 		btrfs_err(root->fs_info, "mismatched level");
5736 		ret = -EIO;
5737 		goto out_unlock;
5738 	}
5739 	path->nodes[level] = next;
5740 	path->slots[level] = 0;
5741 	path->locks[level] = BTRFS_WRITE_LOCK;
5742 	wc->level = level;
5743 	if (wc->level == 1)
5744 		wc->reada_slot = 0;
5745 	return 0;
5746 skip:
5747 	ret = maybe_drop_reference(trans, root, path, wc, next, owner_root);
5748 	if (ret)
5749 		goto out_unlock;
5750 	wc->refs[level - 1] = 0;
5751 	wc->flags[level - 1] = 0;
5752 	wc->lookup_info = 1;
5753 	ret = 1;
5754 
5755 out_unlock:
5756 	btrfs_tree_unlock(next);
5757 	free_extent_buffer(next);
5758 
5759 	return ret;
5760 }
5761 
5762 /*
5763  * helper to process tree block while walking up the tree.
5764  *
5765  * when wc->stage == DROP_REFERENCE, this function drops
5766  * reference count on the block.
5767  *
5768  * when wc->stage == UPDATE_BACKREF, this function changes
5769  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5770  * to UPDATE_BACKREF previously while processing the block.
5771  *
5772  * NOTE: return value 1 means we should stop walking up.
5773  */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5774 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5775 				 struct btrfs_root *root,
5776 				 struct btrfs_path *path,
5777 				 struct walk_control *wc)
5778 {
5779 	struct btrfs_fs_info *fs_info = root->fs_info;
5780 	int ret = 0;
5781 	int level = wc->level;
5782 	struct extent_buffer *eb = path->nodes[level];
5783 	u64 parent = 0;
5784 
5785 	if (wc->stage == UPDATE_BACKREF) {
5786 		ASSERT(wc->shared_level >= level);
5787 		if (level < wc->shared_level)
5788 			goto out;
5789 
5790 		ret = find_next_key(path, level + 1, &wc->update_progress);
5791 		if (ret > 0)
5792 			wc->update_ref = 0;
5793 
5794 		wc->stage = DROP_REFERENCE;
5795 		wc->shared_level = -1;
5796 		path->slots[level] = 0;
5797 
5798 		/*
5799 		 * check reference count again if the block isn't locked.
5800 		 * we should start walking down the tree again if reference
5801 		 * count is one.
5802 		 */
5803 		if (!path->locks[level]) {
5804 			ASSERT(level > 0);
5805 			btrfs_tree_lock(eb);
5806 			path->locks[level] = BTRFS_WRITE_LOCK;
5807 
5808 			ret = btrfs_lookup_extent_info(trans, fs_info,
5809 						       eb->start, level, 1,
5810 						       &wc->refs[level],
5811 						       &wc->flags[level],
5812 						       NULL);
5813 			if (ret < 0) {
5814 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5815 				path->locks[level] = 0;
5816 				return ret;
5817 			}
5818 			if (unlikely(wc->refs[level] == 0)) {
5819 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5820 				btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5821 					  eb->start);
5822 				return -EUCLEAN;
5823 			}
5824 			if (wc->refs[level] == 1) {
5825 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5826 				path->locks[level] = 0;
5827 				return 1;
5828 			}
5829 		}
5830 	}
5831 
5832 	/* wc->stage == DROP_REFERENCE */
5833 	ASSERT(path->locks[level] || wc->refs[level] == 1);
5834 
5835 	if (wc->refs[level] == 1) {
5836 		if (level == 0) {
5837 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5838 				ret = btrfs_dec_ref(trans, root, eb, 1);
5839 			else
5840 				ret = btrfs_dec_ref(trans, root, eb, 0);
5841 			if (ret) {
5842 				btrfs_abort_transaction(trans, ret);
5843 				return ret;
5844 			}
5845 			if (is_fstree(btrfs_root_id(root))) {
5846 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5847 				if (ret) {
5848 					btrfs_err_rl(fs_info,
5849 	"error %d accounting leaf items, quota is out of sync, rescan required",
5850 					     ret);
5851 				}
5852 			}
5853 		}
5854 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5855 		if (!path->locks[level]) {
5856 			btrfs_tree_lock(eb);
5857 			path->locks[level] = BTRFS_WRITE_LOCK;
5858 		}
5859 		btrfs_clear_buffer_dirty(trans, eb);
5860 	}
5861 
5862 	if (eb == root->node) {
5863 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5864 			parent = eb->start;
5865 		else if (btrfs_root_id(root) != btrfs_header_owner(eb))
5866 			goto owner_mismatch;
5867 	} else {
5868 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5869 			parent = path->nodes[level + 1]->start;
5870 		else if (btrfs_root_id(root) !=
5871 			 btrfs_header_owner(path->nodes[level + 1]))
5872 			goto owner_mismatch;
5873 	}
5874 
5875 	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5876 				    wc->refs[level] == 1);
5877 	if (ret < 0)
5878 		btrfs_abort_transaction(trans, ret);
5879 out:
5880 	wc->refs[level] = 0;
5881 	wc->flags[level] = 0;
5882 	return ret;
5883 
5884 owner_mismatch:
5885 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5886 		     btrfs_header_owner(eb), btrfs_root_id(root));
5887 	return -EUCLEAN;
5888 }
5889 
5890 /*
5891  * walk_down_tree consists of two steps.
5892  *
5893  * walk_down_proc().  Look up the reference count and reference of our current
5894  * wc->level.  At this point path->nodes[wc->level] should be populated and
5895  * uptodate, and in most cases should already be locked.  If we are in
5896  * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and
5897  * we can walk back up the tree.  If we are UPDATE_BACKREF we have to set
5898  * FULL_BACKREF on this node if it's not already set, and then do the
5899  * FULL_BACKREF conversion dance, which is to drop the root reference and add
5900  * the shared reference to all of this nodes children.
5901  *
5902  * do_walk_down().  This is where we actually start iterating on the children of
5903  * our current path->nodes[wc->level].  For DROP_REFERENCE that means dropping
5904  * our reference to the children that return false from visit_node_for_delete(),
5905  * which has various conditions where we know we can just drop our reference
5906  * without visiting the node.  For UPDATE_BACKREF we will skip any children that
5907  * visit_node_for_delete() returns false for, only walking down when necessary.
5908  * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of
5909  * snapshot deletion.
5910  */
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5911 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5912 				   struct btrfs_root *root,
5913 				   struct btrfs_path *path,
5914 				   struct walk_control *wc)
5915 {
5916 	int level = wc->level;
5917 	int ret = 0;
5918 
5919 	wc->lookup_info = 1;
5920 	while (level >= 0) {
5921 		ret = walk_down_proc(trans, root, path, wc);
5922 		if (ret)
5923 			break;
5924 
5925 		if (level == 0)
5926 			break;
5927 
5928 		if (path->slots[level] >=
5929 		    btrfs_header_nritems(path->nodes[level]))
5930 			break;
5931 
5932 		ret = do_walk_down(trans, root, path, wc);
5933 		if (ret > 0) {
5934 			path->slots[level]++;
5935 			continue;
5936 		} else if (ret < 0)
5937 			break;
5938 		level = wc->level;
5939 	}
5940 	return (ret == 1) ? 0 : ret;
5941 }
5942 
5943 /*
5944  * walk_up_tree() is responsible for making sure we visit every slot on our
5945  * current node, and if we're at the end of that node then we call
5946  * walk_up_proc() on our current node which will do one of a few things based on
5947  * our stage.
5948  *
5949  * UPDATE_BACKREF.  If we wc->level is currently less than our wc->shared_level
5950  * then we need to walk back up the tree, and then going back down into the
5951  * other slots via walk_down_tree to update any other children from our original
5952  * wc->shared_level.  Once we're at or above our wc->shared_level we can switch
5953  * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on.
5954  *
5955  * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block.
5956  * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents
5957  * in our current leaf.  After that we call btrfs_free_tree_block() on the
5958  * current node and walk up to the next node to walk down the next slot.
5959  */
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5960 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5961 				 struct btrfs_root *root,
5962 				 struct btrfs_path *path,
5963 				 struct walk_control *wc, int max_level)
5964 {
5965 	int level = wc->level;
5966 	int ret;
5967 
5968 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5969 	while (level < max_level && path->nodes[level]) {
5970 		wc->level = level;
5971 		if (path->slots[level] + 1 <
5972 		    btrfs_header_nritems(path->nodes[level])) {
5973 			path->slots[level]++;
5974 			return 0;
5975 		} else {
5976 			ret = walk_up_proc(trans, root, path, wc);
5977 			if (ret > 0)
5978 				return 0;
5979 			if (ret < 0)
5980 				return ret;
5981 
5982 			if (path->locks[level]) {
5983 				btrfs_tree_unlock_rw(path->nodes[level],
5984 						     path->locks[level]);
5985 				path->locks[level] = 0;
5986 			}
5987 			free_extent_buffer(path->nodes[level]);
5988 			path->nodes[level] = NULL;
5989 			level++;
5990 		}
5991 	}
5992 	return 1;
5993 }
5994 
5995 /*
5996  * drop a subvolume tree.
5997  *
5998  * this function traverses the tree freeing any blocks that only
5999  * referenced by the tree.
6000  *
6001  * when a shared tree block is found. this function decreases its
6002  * reference count by one. if update_ref is true, this function
6003  * also make sure backrefs for the shared block and all lower level
6004  * blocks are properly updated.
6005  *
6006  * If called with for_reloc == 0, may exit early with -EAGAIN
6007  */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)6008 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
6009 {
6010 	const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID);
6011 	struct btrfs_fs_info *fs_info = root->fs_info;
6012 	struct btrfs_path *path;
6013 	struct btrfs_trans_handle *trans;
6014 	struct btrfs_root *tree_root = fs_info->tree_root;
6015 	struct btrfs_root_item *root_item = &root->root_item;
6016 	struct walk_control *wc;
6017 	struct btrfs_key key;
6018 	const u64 rootid = btrfs_root_id(root);
6019 	int ret = 0;
6020 	int level;
6021 	bool root_dropped = false;
6022 	bool unfinished_drop = false;
6023 
6024 	btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root));
6025 
6026 	path = btrfs_alloc_path();
6027 	if (!path) {
6028 		ret = -ENOMEM;
6029 		goto out;
6030 	}
6031 
6032 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6033 	if (!wc) {
6034 		btrfs_free_path(path);
6035 		ret = -ENOMEM;
6036 		goto out;
6037 	}
6038 
6039 	/*
6040 	 * Use join to avoid potential EINTR from transaction start. See
6041 	 * wait_reserve_ticket and the whole reservation callchain.
6042 	 */
6043 	if (for_reloc)
6044 		trans = btrfs_join_transaction(tree_root);
6045 	else
6046 		trans = btrfs_start_transaction(tree_root, 0);
6047 	if (IS_ERR(trans)) {
6048 		ret = PTR_ERR(trans);
6049 		goto out_free;
6050 	}
6051 
6052 	ret = btrfs_run_delayed_items(trans);
6053 	if (ret)
6054 		goto out_end_trans;
6055 
6056 	/*
6057 	 * This will help us catch people modifying the fs tree while we're
6058 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
6059 	 * dropped as we unlock the root node and parent nodes as we walk down
6060 	 * the tree, assuming nothing will change.  If something does change
6061 	 * then we'll have stale information and drop references to blocks we've
6062 	 * already dropped.
6063 	 */
6064 	set_bit(BTRFS_ROOT_DELETING, &root->state);
6065 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
6066 
6067 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6068 		level = btrfs_header_level(root->node);
6069 		path->nodes[level] = btrfs_lock_root_node(root);
6070 		path->slots[level] = 0;
6071 		path->locks[level] = BTRFS_WRITE_LOCK;
6072 		memset(&wc->update_progress, 0,
6073 		       sizeof(wc->update_progress));
6074 	} else {
6075 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6076 		memcpy(&wc->update_progress, &key,
6077 		       sizeof(wc->update_progress));
6078 
6079 		level = btrfs_root_drop_level(root_item);
6080 		BUG_ON(level == 0);
6081 		path->lowest_level = level;
6082 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6083 		path->lowest_level = 0;
6084 		if (ret < 0)
6085 			goto out_end_trans;
6086 
6087 		WARN_ON(ret > 0);
6088 		ret = 0;
6089 
6090 		/*
6091 		 * unlock our path, this is safe because only this
6092 		 * function is allowed to delete this snapshot
6093 		 */
6094 		btrfs_unlock_up_safe(path, 0);
6095 
6096 		level = btrfs_header_level(root->node);
6097 		while (1) {
6098 			btrfs_tree_lock(path->nodes[level]);
6099 			path->locks[level] = BTRFS_WRITE_LOCK;
6100 
6101 			/*
6102 			 * btrfs_lookup_extent_info() returns 0 for success,
6103 			 * or < 0 for error.
6104 			 */
6105 			ret = btrfs_lookup_extent_info(trans, fs_info,
6106 						path->nodes[level]->start,
6107 						level, 1, &wc->refs[level],
6108 						&wc->flags[level], NULL);
6109 			if (ret < 0)
6110 				goto out_end_trans;
6111 
6112 			BUG_ON(wc->refs[level] == 0);
6113 
6114 			if (level == btrfs_root_drop_level(root_item))
6115 				break;
6116 
6117 			btrfs_tree_unlock(path->nodes[level]);
6118 			path->locks[level] = 0;
6119 			WARN_ON(wc->refs[level] != 1);
6120 			level--;
6121 		}
6122 	}
6123 
6124 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
6125 	wc->level = level;
6126 	wc->shared_level = -1;
6127 	wc->stage = DROP_REFERENCE;
6128 	wc->update_ref = update_ref;
6129 	wc->keep_locks = 0;
6130 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6131 
6132 	while (1) {
6133 
6134 		ret = walk_down_tree(trans, root, path, wc);
6135 		if (ret < 0) {
6136 			btrfs_abort_transaction(trans, ret);
6137 			break;
6138 		}
6139 
6140 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6141 		if (ret < 0) {
6142 			btrfs_abort_transaction(trans, ret);
6143 			break;
6144 		}
6145 
6146 		if (ret > 0) {
6147 			BUG_ON(wc->stage != DROP_REFERENCE);
6148 			ret = 0;
6149 			break;
6150 		}
6151 
6152 		if (wc->stage == DROP_REFERENCE) {
6153 			wc->drop_level = wc->level;
6154 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
6155 					      &wc->drop_progress,
6156 					      path->slots[wc->drop_level]);
6157 		}
6158 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
6159 				      &wc->drop_progress);
6160 		btrfs_set_root_drop_level(root_item, wc->drop_level);
6161 
6162 		BUG_ON(wc->level == 0);
6163 		if (btrfs_should_end_transaction(trans) ||
6164 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6165 			ret = btrfs_update_root(trans, tree_root,
6166 						&root->root_key,
6167 						root_item);
6168 			if (ret) {
6169 				btrfs_abort_transaction(trans, ret);
6170 				goto out_end_trans;
6171 			}
6172 
6173 			if (!is_reloc_root)
6174 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6175 
6176 			btrfs_end_transaction_throttle(trans);
6177 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6178 				btrfs_debug(fs_info,
6179 					    "drop snapshot early exit");
6180 				ret = -EAGAIN;
6181 				goto out_free;
6182 			}
6183 
6184 		       /*
6185 			* Use join to avoid potential EINTR from transaction
6186 			* start. See wait_reserve_ticket and the whole
6187 			* reservation callchain.
6188 			*/
6189 			if (for_reloc)
6190 				trans = btrfs_join_transaction(tree_root);
6191 			else
6192 				trans = btrfs_start_transaction(tree_root, 0);
6193 			if (IS_ERR(trans)) {
6194 				ret = PTR_ERR(trans);
6195 				goto out_free;
6196 			}
6197 		}
6198 	}
6199 	btrfs_release_path(path);
6200 	if (ret)
6201 		goto out_end_trans;
6202 
6203 	ret = btrfs_del_root(trans, &root->root_key);
6204 	if (ret) {
6205 		btrfs_abort_transaction(trans, ret);
6206 		goto out_end_trans;
6207 	}
6208 
6209 	if (!is_reloc_root) {
6210 		ret = btrfs_find_root(tree_root, &root->root_key, path,
6211 				      NULL, NULL);
6212 		if (ret < 0) {
6213 			btrfs_abort_transaction(trans, ret);
6214 			goto out_end_trans;
6215 		} else if (ret > 0) {
6216 			ret = 0;
6217 			/*
6218 			 * If we fail to delete the orphan item this time
6219 			 * around, it'll get picked up the next time.
6220 			 *
6221 			 * The most common failure here is just -ENOENT.
6222 			 */
6223 			btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root));
6224 		}
6225 	}
6226 
6227 	/*
6228 	 * This subvolume is going to be completely dropped, and won't be
6229 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6230 	 * commit transaction time.  So free it here manually.
6231 	 */
6232 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6233 	btrfs_qgroup_free_meta_all_pertrans(root);
6234 
6235 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6236 		btrfs_add_dropped_root(trans, root);
6237 	else
6238 		btrfs_put_root(root);
6239 	root_dropped = true;
6240 out_end_trans:
6241 	if (!is_reloc_root)
6242 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6243 
6244 	btrfs_end_transaction_throttle(trans);
6245 out_free:
6246 	kfree(wc);
6247 	btrfs_free_path(path);
6248 out:
6249 	if (!ret && root_dropped) {
6250 		ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid);
6251 		if (ret < 0)
6252 			btrfs_warn_rl(fs_info,
6253 				      "failed to cleanup qgroup 0/%llu: %d",
6254 				      rootid, ret);
6255 		ret = 0;
6256 	}
6257 	/*
6258 	 * We were an unfinished drop root, check to see if there are any
6259 	 * pending, and if not clear and wake up any waiters.
6260 	 */
6261 	if (!ret && unfinished_drop)
6262 		btrfs_maybe_wake_unfinished_drop(fs_info);
6263 
6264 	/*
6265 	 * So if we need to stop dropping the snapshot for whatever reason we
6266 	 * need to make sure to add it back to the dead root list so that we
6267 	 * keep trying to do the work later.  This also cleans up roots if we
6268 	 * don't have it in the radix (like when we recover after a power fail
6269 	 * or unmount) so we don't leak memory.
6270 	 */
6271 	if (!for_reloc && !root_dropped)
6272 		btrfs_add_dead_root(root);
6273 	return ret;
6274 }
6275 
6276 /*
6277  * drop subtree rooted at tree block 'node'.
6278  *
6279  * NOTE: this function will unlock and release tree block 'node'
6280  * only used by relocation code
6281  */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)6282 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6283 			struct btrfs_root *root,
6284 			struct extent_buffer *node,
6285 			struct extent_buffer *parent)
6286 {
6287 	struct btrfs_fs_info *fs_info = root->fs_info;
6288 	BTRFS_PATH_AUTO_FREE(path);
6289 	struct walk_control *wc;
6290 	int level;
6291 	int parent_level;
6292 	int ret = 0;
6293 
6294 	BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
6295 
6296 	path = btrfs_alloc_path();
6297 	if (!path)
6298 		return -ENOMEM;
6299 
6300 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6301 	if (!wc)
6302 		return -ENOMEM;
6303 
6304 	btrfs_assert_tree_write_locked(parent);
6305 	parent_level = btrfs_header_level(parent);
6306 	atomic_inc(&parent->refs);
6307 	path->nodes[parent_level] = parent;
6308 	path->slots[parent_level] = btrfs_header_nritems(parent);
6309 
6310 	btrfs_assert_tree_write_locked(node);
6311 	level = btrfs_header_level(node);
6312 	path->nodes[level] = node;
6313 	path->slots[level] = 0;
6314 	path->locks[level] = BTRFS_WRITE_LOCK;
6315 
6316 	wc->refs[parent_level] = 1;
6317 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6318 	wc->level = level;
6319 	wc->shared_level = -1;
6320 	wc->stage = DROP_REFERENCE;
6321 	wc->update_ref = 0;
6322 	wc->keep_locks = 1;
6323 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6324 
6325 	while (1) {
6326 		ret = walk_down_tree(trans, root, path, wc);
6327 		if (ret < 0)
6328 			break;
6329 
6330 		ret = walk_up_tree(trans, root, path, wc, parent_level);
6331 		if (ret) {
6332 			if (ret > 0)
6333 				ret = 0;
6334 			break;
6335 		}
6336 	}
6337 
6338 	kfree(wc);
6339 	return ret;
6340 }
6341 
6342 /*
6343  * Unpin the extent range in an error context and don't add the space back.
6344  * Errors are not propagated further.
6345  */
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)6346 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
6347 {
6348 	unpin_extent_range(fs_info, start, end, false);
6349 }
6350 
6351 /*
6352  * It used to be that old block groups would be left around forever.
6353  * Iterating over them would be enough to trim unused space.  Since we
6354  * now automatically remove them, we also need to iterate over unallocated
6355  * space.
6356  *
6357  * We don't want a transaction for this since the discard may take a
6358  * substantial amount of time.  We don't require that a transaction be
6359  * running, but we do need to take a running transaction into account
6360  * to ensure that we're not discarding chunks that were released or
6361  * allocated in the current transaction.
6362  *
6363  * Holding the chunks lock will prevent other threads from allocating
6364  * or releasing chunks, but it won't prevent a running transaction
6365  * from committing and releasing the memory that the pending chunks
6366  * list head uses.  For that, we need to take a reference to the
6367  * transaction and hold the commit root sem.  We only need to hold
6368  * it while performing the free space search since we have already
6369  * held back allocations.
6370  */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)6371 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6372 {
6373 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6374 	int ret;
6375 
6376 	*trimmed = 0;
6377 
6378 	/* Discard not supported = nothing to do. */
6379 	if (!bdev_max_discard_sectors(device->bdev))
6380 		return 0;
6381 
6382 	/* Not writable = nothing to do. */
6383 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6384 		return 0;
6385 
6386 	/* No free space = nothing to do. */
6387 	if (device->total_bytes <= device->bytes_used)
6388 		return 0;
6389 
6390 	ret = 0;
6391 
6392 	while (1) {
6393 		struct btrfs_fs_info *fs_info = device->fs_info;
6394 		u64 bytes;
6395 
6396 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6397 		if (ret)
6398 			break;
6399 
6400 		find_first_clear_extent_bit(&device->alloc_state, start,
6401 					    &start, &end,
6402 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6403 
6404 		/* Check if there are any CHUNK_* bits left */
6405 		if (start > device->total_bytes) {
6406 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6407 			btrfs_warn_in_rcu(fs_info,
6408 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6409 					  start, end - start + 1,
6410 					  btrfs_dev_name(device),
6411 					  device->total_bytes);
6412 			mutex_unlock(&fs_info->chunk_mutex);
6413 			ret = 0;
6414 			break;
6415 		}
6416 
6417 		/* Ensure we skip the reserved space on each device. */
6418 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6419 
6420 		/*
6421 		 * If find_first_clear_extent_bit find a range that spans the
6422 		 * end of the device it will set end to -1, in this case it's up
6423 		 * to the caller to trim the value to the size of the device.
6424 		 */
6425 		end = min(end, device->total_bytes - 1);
6426 
6427 		len = end - start + 1;
6428 
6429 		/* We didn't find any extents */
6430 		if (!len) {
6431 			mutex_unlock(&fs_info->chunk_mutex);
6432 			ret = 0;
6433 			break;
6434 		}
6435 
6436 		ret = btrfs_issue_discard(device->bdev, start, len,
6437 					  &bytes);
6438 		if (!ret)
6439 			set_extent_bit(&device->alloc_state, start,
6440 				       start + bytes - 1, CHUNK_TRIMMED, NULL);
6441 		mutex_unlock(&fs_info->chunk_mutex);
6442 
6443 		if (ret)
6444 			break;
6445 
6446 		start += len;
6447 		*trimmed += bytes;
6448 
6449 		if (btrfs_trim_interrupted()) {
6450 			ret = -ERESTARTSYS;
6451 			break;
6452 		}
6453 
6454 		cond_resched();
6455 	}
6456 
6457 	return ret;
6458 }
6459 
6460 /*
6461  * Trim the whole filesystem by:
6462  * 1) trimming the free space in each block group
6463  * 2) trimming the unallocated space on each device
6464  *
6465  * This will also continue trimming even if a block group or device encounters
6466  * an error.  The return value will be the last error, or 0 if nothing bad
6467  * happens.
6468  */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6469 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6470 {
6471 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6472 	struct btrfs_block_group *cache = NULL;
6473 	struct btrfs_device *device;
6474 	u64 group_trimmed;
6475 	u64 range_end = U64_MAX;
6476 	u64 start;
6477 	u64 end;
6478 	u64 trimmed = 0;
6479 	u64 bg_failed = 0;
6480 	u64 dev_failed = 0;
6481 	int bg_ret = 0;
6482 	int dev_ret = 0;
6483 	int ret = 0;
6484 
6485 	if (range->start == U64_MAX)
6486 		return -EINVAL;
6487 
6488 	/*
6489 	 * Check range overflow if range->len is set.
6490 	 * The default range->len is U64_MAX.
6491 	 */
6492 	if (range->len != U64_MAX &&
6493 	    check_add_overflow(range->start, range->len, &range_end))
6494 		return -EINVAL;
6495 
6496 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6497 	for (; cache; cache = btrfs_next_block_group(cache)) {
6498 		if (cache->start >= range_end) {
6499 			btrfs_put_block_group(cache);
6500 			break;
6501 		}
6502 
6503 		start = max(range->start, cache->start);
6504 		end = min(range_end, cache->start + cache->length);
6505 
6506 		if (end - start >= range->minlen) {
6507 			if (!btrfs_block_group_done(cache)) {
6508 				ret = btrfs_cache_block_group(cache, true);
6509 				if (ret) {
6510 					bg_failed++;
6511 					bg_ret = ret;
6512 					continue;
6513 				}
6514 			}
6515 			ret = btrfs_trim_block_group(cache,
6516 						     &group_trimmed,
6517 						     start,
6518 						     end,
6519 						     range->minlen);
6520 
6521 			trimmed += group_trimmed;
6522 			if (ret) {
6523 				bg_failed++;
6524 				bg_ret = ret;
6525 				continue;
6526 			}
6527 		}
6528 	}
6529 
6530 	if (bg_failed)
6531 		btrfs_warn(fs_info,
6532 			"failed to trim %llu block group(s), last error %d",
6533 			bg_failed, bg_ret);
6534 
6535 	mutex_lock(&fs_devices->device_list_mutex);
6536 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6537 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6538 			continue;
6539 
6540 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6541 
6542 		trimmed += group_trimmed;
6543 		if (ret) {
6544 			dev_failed++;
6545 			dev_ret = ret;
6546 			break;
6547 		}
6548 	}
6549 	mutex_unlock(&fs_devices->device_list_mutex);
6550 
6551 	if (dev_failed)
6552 		btrfs_warn(fs_info,
6553 			"failed to trim %llu device(s), last error %d",
6554 			dev_failed, dev_ret);
6555 	range->len = trimmed;
6556 	if (bg_ret)
6557 		return bg_ret;
6558 	return dev_ret;
6559 }
6560