xref: /linux/drivers/gpu/drm/drm_vblank.c (revision 4d38b88fd17e9989429e65420bf3c33ca53b2085)
1 /*
2  * drm_irq.c IRQ and vblank support
3  *
4  * \author Rickard E. (Rik) Faith <faith@valinux.com>
5  * \author Gareth Hughes <gareth@valinux.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kthread.h>
29 #include <linux/moduleparam.h>
30 
31 #include <drm/drm_crtc.h>
32 #include <drm/drm_drv.h>
33 #include <drm/drm_framebuffer.h>
34 #include <drm/drm_managed.h>
35 #include <drm/drm_modeset_helper_vtables.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_vblank.h>
38 
39 #include "drm_internal.h"
40 #include "drm_trace.h"
41 
42 /**
43  * DOC: vblank handling
44  *
45  * From the computer's perspective, every time the monitor displays
46  * a new frame the scanout engine has "scanned out" the display image
47  * from top to bottom, one row of pixels at a time. The current row
48  * of pixels is referred to as the current scanline.
49  *
50  * In addition to the display's visible area, there's usually a couple of
51  * extra scanlines which aren't actually displayed on the screen.
52  * These extra scanlines don't contain image data and are occasionally used
53  * for features like audio and infoframes. The region made up of these
54  * scanlines is referred to as the vertical blanking region, or vblank for
55  * short.
56  *
57  * For historical reference, the vertical blanking period was designed to
58  * give the electron gun (on CRTs) enough time to move back to the top of
59  * the screen to start scanning out the next frame. Similar for horizontal
60  * blanking periods. They were designed to give the electron gun enough
61  * time to move back to the other side of the screen to start scanning the
62  * next scanline.
63  *
64  * ::
65  *
66  *
67  *    physical →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
68  *    top of      |                                        |
69  *    display     |                                        |
70  *                |               New frame                |
71  *                |                                        |
72  *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
73  *                |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
74  *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|   updates the
75  *                |                                        |   frame as it
76  *                |                                        |   travels down
77  *                |                                        |   ("scan out")
78  *                |               Old frame                |
79  *                |                                        |
80  *                |                                        |
81  *                |                                        |
82  *                |                                        |   physical
83  *                |                                        |   bottom of
84  *    vertical    |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
85  *    blanking    ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
86  *    region   →  ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
87  *                ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
88  *    start of →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
89  *    new frame
90  *
91  * "Physical top of display" is the reference point for the high-precision/
92  * corrected timestamp.
93  *
94  * On a lot of display hardware, programming needs to take effect during the
95  * vertical blanking period so that settings like gamma, the image buffer
96  * buffer to be scanned out, etc. can safely be changed without showing
97  * any visual artifacts on the screen. In some unforgiving hardware, some of
98  * this programming has to both start and end in the same vblank. To help
99  * with the timing of the hardware programming, an interrupt is usually
100  * available to notify the driver when it can start the updating of registers.
101  * The interrupt is in this context named the vblank interrupt.
102  *
103  * The vblank interrupt may be fired at different points depending on the
104  * hardware. Some hardware implementations will fire the interrupt when the
105  * new frame start, other implementations will fire the interrupt at different
106  * points in time.
107  *
108  * Vertical blanking plays a major role in graphics rendering. To achieve
109  * tear-free display, users must synchronize page flips and/or rendering to
110  * vertical blanking. The DRM API offers ioctls to perform page flips
111  * synchronized to vertical blanking and wait for vertical blanking.
112  *
113  * The DRM core handles most of the vertical blanking management logic, which
114  * involves filtering out spurious interrupts, keeping race-free blanking
115  * counters, coping with counter wrap-around and resets and keeping use counts.
116  * It relies on the driver to generate vertical blanking interrupts and
117  * optionally provide a hardware vertical blanking counter.
118  *
119  * Drivers must initialize the vertical blanking handling core with a call to
120  * drm_vblank_init(). Minimally, a driver needs to implement
121  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
122  * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
123  * support.
124  *
125  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
126  * themselves (for instance to handle page flipping operations).  The DRM core
127  * maintains a vertical blanking use count to ensure that the interrupts are not
128  * disabled while a user still needs them. To increment the use count, drivers
129  * call drm_crtc_vblank_get() and release the vblank reference again with
130  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
131  * guaranteed to be enabled.
132  *
133  * On many hardware disabling the vblank interrupt cannot be done in a race-free
134  * manner, see &drm_vblank_crtc_config.disable_immediate and
135  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
136  * vblanks after a timer has expired, which can be configured through the
137  * ``vblankoffdelay`` module parameter.
138  *
139  * Drivers for hardware without support for vertical-blanking interrupts
140  * must not call drm_vblank_init(). For such drivers, atomic helpers will
141  * automatically generate fake vblank events as part of the display update.
142  * This functionality also can be controlled by the driver by enabling and
143  * disabling struct drm_crtc_state.no_vblank.
144  */
145 
146 /* Retry timestamp calculation up to 3 times to satisfy
147  * drm_timestamp_precision before giving up.
148  */
149 #define DRM_TIMESTAMP_MAXRETRIES 3
150 
151 /* Threshold in nanoseconds for detection of redundant
152  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
153  */
154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
155 
156 static bool
157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
158 			  ktime_t *tvblank, bool in_vblank_irq);
159 
160 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
161 
162 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
163 
164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
168 
169 static struct drm_vblank_crtc *
drm_vblank_crtc(struct drm_device * dev,unsigned int pipe)170 drm_vblank_crtc(struct drm_device *dev, unsigned int pipe)
171 {
172 	return &dev->vblank[pipe];
173 }
174 
175 struct drm_vblank_crtc *
drm_crtc_vblank_crtc(struct drm_crtc * crtc)176 drm_crtc_vblank_crtc(struct drm_crtc *crtc)
177 {
178 	return drm_vblank_crtc(crtc->dev, drm_crtc_index(crtc));
179 }
180 EXPORT_SYMBOL(drm_crtc_vblank_crtc);
181 
store_vblank(struct drm_device * dev,unsigned int pipe,u32 vblank_count_inc,ktime_t t_vblank,u32 last)182 static void store_vblank(struct drm_device *dev, unsigned int pipe,
183 			 u32 vblank_count_inc,
184 			 ktime_t t_vblank, u32 last)
185 {
186 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
187 
188 	assert_spin_locked(&dev->vblank_time_lock);
189 
190 	vblank->last = last;
191 
192 	write_seqlock(&vblank->seqlock);
193 	vblank->time = t_vblank;
194 	atomic64_add(vblank_count_inc, &vblank->count);
195 	write_sequnlock(&vblank->seqlock);
196 }
197 
drm_max_vblank_count(struct drm_device * dev,unsigned int pipe)198 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
199 {
200 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
201 
202 	return vblank->max_vblank_count ?: dev->max_vblank_count;
203 }
204 
205 /*
206  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
207  * if there is no usable hardware frame counter available.
208  */
drm_vblank_no_hw_counter(struct drm_device * dev,unsigned int pipe)209 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
210 {
211 	drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
212 	return 0;
213 }
214 
__get_vblank_counter(struct drm_device * dev,unsigned int pipe)215 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
216 {
217 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
218 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
219 
220 		if (drm_WARN_ON(dev, !crtc))
221 			return 0;
222 
223 		if (crtc->funcs->get_vblank_counter)
224 			return crtc->funcs->get_vblank_counter(crtc);
225 	}
226 
227 	return drm_vblank_no_hw_counter(dev, pipe);
228 }
229 
230 /*
231  * Reset the stored timestamp for the current vblank count to correspond
232  * to the last vblank occurred.
233  *
234  * Only to be called from drm_crtc_vblank_on().
235  *
236  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
237  * device vblank fields.
238  */
drm_reset_vblank_timestamp(struct drm_device * dev,unsigned int pipe)239 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
240 {
241 	u32 cur_vblank;
242 	bool rc;
243 	ktime_t t_vblank;
244 	int count = DRM_TIMESTAMP_MAXRETRIES;
245 
246 	spin_lock(&dev->vblank_time_lock);
247 
248 	/*
249 	 * sample the current counter to avoid random jumps
250 	 * when drm_vblank_enable() applies the diff
251 	 */
252 	do {
253 		cur_vblank = __get_vblank_counter(dev, pipe);
254 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
255 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
256 
257 	/*
258 	 * Only reinitialize corresponding vblank timestamp if high-precision query
259 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
260 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
261 	 */
262 	if (!rc)
263 		t_vblank = 0;
264 
265 	/*
266 	 * +1 to make sure user will never see the same
267 	 * vblank counter value before and after a modeset
268 	 */
269 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
270 
271 	spin_unlock(&dev->vblank_time_lock);
272 }
273 
274 /*
275  * Call back into the driver to update the appropriate vblank counter
276  * (specified by @pipe).  Deal with wraparound, if it occurred, and
277  * update the last read value so we can deal with wraparound on the next
278  * call if necessary.
279  *
280  * Only necessary when going from off->on, to account for frames we
281  * didn't get an interrupt for.
282  *
283  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
284  * device vblank fields.
285  */
drm_update_vblank_count(struct drm_device * dev,unsigned int pipe,bool in_vblank_irq)286 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
287 				    bool in_vblank_irq)
288 {
289 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
290 	u32 cur_vblank, diff;
291 	bool rc;
292 	ktime_t t_vblank;
293 	int count = DRM_TIMESTAMP_MAXRETRIES;
294 	int framedur_ns = vblank->framedur_ns;
295 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
296 
297 	/*
298 	 * Interrupts were disabled prior to this call, so deal with counter
299 	 * wrap if needed.
300 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
301 	 * here if the register is small or we had vblank interrupts off for
302 	 * a long time.
303 	 *
304 	 * We repeat the hardware vblank counter & timestamp query until
305 	 * we get consistent results. This to prevent races between gpu
306 	 * updating its hardware counter while we are retrieving the
307 	 * corresponding vblank timestamp.
308 	 */
309 	do {
310 		cur_vblank = __get_vblank_counter(dev, pipe);
311 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
312 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
313 
314 	if (max_vblank_count) {
315 		/* trust the hw counter when it's around */
316 		diff = (cur_vblank - vblank->last) & max_vblank_count;
317 	} else if (rc && framedur_ns) {
318 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
319 
320 		/*
321 		 * Figure out how many vblanks we've missed based
322 		 * on the difference in the timestamps and the
323 		 * frame/field duration.
324 		 */
325 
326 		drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
327 			    " diff_ns = %lld, framedur_ns = %d)\n",
328 			    pipe, (long long)diff_ns, framedur_ns);
329 
330 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
331 
332 		if (diff == 0 && in_vblank_irq)
333 			drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
334 				    pipe);
335 	} else {
336 		/* some kind of default for drivers w/o accurate vbl timestamping */
337 		diff = in_vblank_irq ? 1 : 0;
338 	}
339 
340 	/*
341 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
342 	 * interval? If so then vblank irqs keep running and it will likely
343 	 * happen that the hardware vblank counter is not trustworthy as it
344 	 * might reset at some point in that interval and vblank timestamps
345 	 * are not trustworthy either in that interval. Iow. this can result
346 	 * in a bogus diff >> 1 which must be avoided as it would cause
347 	 * random large forward jumps of the software vblank counter.
348 	 */
349 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
350 		drm_dbg_vbl(dev,
351 			    "clamping vblank bump to 1 on crtc %u: diffr=%u"
352 			    " due to pre-modeset.\n", pipe, diff);
353 		diff = 1;
354 	}
355 
356 	drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
357 		    " current=%llu, diff=%u, hw=%u hw_last=%u\n",
358 		    pipe, (unsigned long long)atomic64_read(&vblank->count),
359 		    diff, cur_vblank, vblank->last);
360 
361 	if (diff == 0) {
362 		drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
363 		return;
364 	}
365 
366 	/*
367 	 * Only reinitialize corresponding vblank timestamp if high-precision query
368 	 * available and didn't fail, or we were called from the vblank interrupt.
369 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
370 	 * for now, to mark the vblanktimestamp as invalid.
371 	 */
372 	if (!rc && !in_vblank_irq)
373 		t_vblank = 0;
374 
375 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
376 }
377 
drm_vblank_count(struct drm_device * dev,unsigned int pipe)378 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
379 {
380 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
381 	u64 count;
382 
383 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
384 		return 0;
385 
386 	count = atomic64_read(&vblank->count);
387 
388 	/*
389 	 * This read barrier corresponds to the implicit write barrier of the
390 	 * write seqlock in store_vblank(). Note that this is the only place
391 	 * where we need an explicit barrier, since all other access goes
392 	 * through drm_vblank_count_and_time(), which already has the required
393 	 * read barrier curtesy of the read seqlock.
394 	 */
395 	smp_rmb();
396 
397 	return count;
398 }
399 
400 /**
401  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
402  * @crtc: which counter to retrieve
403  *
404  * This function is similar to drm_crtc_vblank_count() but this function
405  * interpolates to handle a race with vblank interrupts using the high precision
406  * timestamping support.
407  *
408  * This is mostly useful for hardware that can obtain the scanout position, but
409  * doesn't have a hardware frame counter.
410  */
drm_crtc_accurate_vblank_count(struct drm_crtc * crtc)411 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
412 {
413 	struct drm_device *dev = crtc->dev;
414 	unsigned int pipe = drm_crtc_index(crtc);
415 	u64 vblank;
416 	unsigned long flags;
417 
418 	drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
419 		      !crtc->funcs->get_vblank_timestamp,
420 		      "This function requires support for accurate vblank timestamps.");
421 
422 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
423 
424 	drm_update_vblank_count(dev, pipe, false);
425 	vblank = drm_vblank_count(dev, pipe);
426 
427 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
428 
429 	return vblank;
430 }
431 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
432 
__disable_vblank(struct drm_device * dev,unsigned int pipe)433 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
434 {
435 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
436 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
437 
438 		if (drm_WARN_ON(dev, !crtc))
439 			return;
440 
441 		if (crtc->funcs->disable_vblank)
442 			crtc->funcs->disable_vblank(crtc);
443 	}
444 }
445 
446 /*
447  * Disable vblank irq's on crtc, make sure that last vblank count
448  * of hardware and corresponding consistent software vblank counter
449  * are preserved, even if there are any spurious vblank irq's after
450  * disable.
451  */
drm_vblank_disable_and_save(struct drm_device * dev,unsigned int pipe)452 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
453 {
454 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
455 	unsigned long irqflags;
456 
457 	assert_spin_locked(&dev->vbl_lock);
458 
459 	/* Prevent vblank irq processing while disabling vblank irqs,
460 	 * so no updates of timestamps or count can happen after we've
461 	 * disabled. Needed to prevent races in case of delayed irq's.
462 	 */
463 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
464 
465 	/*
466 	 * Update vblank count and disable vblank interrupts only if the
467 	 * interrupts were enabled. This avoids calling the ->disable_vblank()
468 	 * operation in atomic context with the hardware potentially runtime
469 	 * suspended.
470 	 */
471 	if (!vblank->enabled)
472 		goto out;
473 
474 	/*
475 	 * Update the count and timestamp to maintain the
476 	 * appearance that the counter has been ticking all along until
477 	 * this time. This makes the count account for the entire time
478 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
479 	 */
480 	drm_update_vblank_count(dev, pipe, false);
481 	__disable_vblank(dev, pipe);
482 	vblank->enabled = false;
483 
484 out:
485 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
486 }
487 
vblank_disable_fn(struct timer_list * t)488 static void vblank_disable_fn(struct timer_list *t)
489 {
490 	struct drm_vblank_crtc *vblank = timer_container_of(vblank, t,
491 							    disable_timer);
492 	struct drm_device *dev = vblank->dev;
493 	unsigned int pipe = vblank->pipe;
494 	unsigned long irqflags;
495 
496 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
497 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
498 		drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
499 		drm_vblank_disable_and_save(dev, pipe);
500 	}
501 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
502 }
503 
drm_vblank_init_release(struct drm_device * dev,void * ptr)504 static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
505 {
506 	struct drm_vblank_crtc *vblank = ptr;
507 
508 	drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
509 		    drm_core_check_feature(dev, DRIVER_MODESET));
510 
511 	drm_vblank_destroy_worker(vblank);
512 	timer_delete_sync(&vblank->disable_timer);
513 }
514 
515 /**
516  * drm_vblank_init - initialize vblank support
517  * @dev: DRM device
518  * @num_crtcs: number of CRTCs supported by @dev
519  *
520  * This function initializes vblank support for @num_crtcs display pipelines.
521  * Cleanup is handled automatically through a cleanup function added with
522  * drmm_add_action_or_reset().
523  *
524  * Returns:
525  * Zero on success or a negative error code on failure.
526  */
drm_vblank_init(struct drm_device * dev,unsigned int num_crtcs)527 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
528 {
529 	int ret;
530 	unsigned int i;
531 
532 	spin_lock_init(&dev->vbl_lock);
533 	spin_lock_init(&dev->vblank_time_lock);
534 
535 	dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
536 	if (!dev->vblank)
537 		return -ENOMEM;
538 
539 	dev->num_crtcs = num_crtcs;
540 
541 	for (i = 0; i < num_crtcs; i++) {
542 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
543 
544 		vblank->dev = dev;
545 		vblank->pipe = i;
546 		init_waitqueue_head(&vblank->queue);
547 		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
548 		seqlock_init(&vblank->seqlock);
549 
550 		ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
551 					       vblank);
552 		if (ret)
553 			return ret;
554 
555 		ret = drm_vblank_worker_init(vblank);
556 		if (ret)
557 			return ret;
558 	}
559 
560 	return 0;
561 }
562 EXPORT_SYMBOL(drm_vblank_init);
563 
564 /**
565  * drm_dev_has_vblank - test if vblanking has been initialized for
566  *                      a device
567  * @dev: the device
568  *
569  * Drivers may call this function to test if vblank support is
570  * initialized for a device. For most hardware this means that vblanking
571  * can also be enabled.
572  *
573  * Atomic helpers use this function to initialize
574  * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
575  *
576  * Returns:
577  * True if vblanking has been initialized for the given device, false
578  * otherwise.
579  */
drm_dev_has_vblank(const struct drm_device * dev)580 bool drm_dev_has_vblank(const struct drm_device *dev)
581 {
582 	return dev->num_crtcs != 0;
583 }
584 EXPORT_SYMBOL(drm_dev_has_vblank);
585 
586 /**
587  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
588  * @crtc: which CRTC's vblank waitqueue to retrieve
589  *
590  * This function returns a pointer to the vblank waitqueue for the CRTC.
591  * Drivers can use this to implement vblank waits using wait_event() and related
592  * functions.
593  */
drm_crtc_vblank_waitqueue(struct drm_crtc * crtc)594 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
595 {
596 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
597 }
598 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
599 
600 
601 /**
602  * drm_calc_timestamping_constants - calculate vblank timestamp constants
603  * @crtc: drm_crtc whose timestamp constants should be updated.
604  * @mode: display mode containing the scanout timings
605  *
606  * Calculate and store various constants which are later needed by vblank and
607  * swap-completion timestamping, e.g, by
608  * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
609  * CRTC's true scanout timing, so they take things like panel scaling or
610  * other adjustments into account.
611  */
drm_calc_timestamping_constants(struct drm_crtc * crtc,const struct drm_display_mode * mode)612 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
613 				     const struct drm_display_mode *mode)
614 {
615 	struct drm_device *dev = crtc->dev;
616 	unsigned int pipe = drm_crtc_index(crtc);
617 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
618 	int linedur_ns = 0, framedur_ns = 0;
619 	int dotclock = mode->crtc_clock;
620 
621 	if (!drm_dev_has_vblank(dev))
622 		return;
623 
624 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
625 		return;
626 
627 	/* Valid dotclock? */
628 	if (dotclock > 0) {
629 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
630 
631 		/*
632 		 * Convert scanline length in pixels and video
633 		 * dot clock to line duration and frame duration
634 		 * in nanoseconds:
635 		 */
636 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
637 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
638 
639 		/*
640 		 * Fields of interlaced scanout modes are only half a frame duration.
641 		 */
642 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
643 			framedur_ns /= 2;
644 	} else {
645 		drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
646 			crtc->base.id);
647 	}
648 
649 	vblank->linedur_ns  = linedur_ns;
650 	vblank->framedur_ns = framedur_ns;
651 	drm_mode_copy(&vblank->hwmode, mode);
652 
653 	drm_dbg_core(dev,
654 		     "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
655 		     crtc->base.id, mode->crtc_htotal,
656 		     mode->crtc_vtotal, mode->crtc_vdisplay);
657 	drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
658 		     crtc->base.id, dotclock, framedur_ns, linedur_ns);
659 }
660 EXPORT_SYMBOL(drm_calc_timestamping_constants);
661 
662 /**
663  * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
664  *                                                        timestamp helper
665  * @crtc: CRTC whose vblank timestamp to retrieve
666  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
667  *             On return contains true maximum error of timestamp
668  * @vblank_time: Pointer to time which should receive the timestamp
669  * @in_vblank_irq:
670  *     True when called from drm_crtc_handle_vblank().  Some drivers
671  *     need to apply some workarounds for gpu-specific vblank irq quirks
672  *     if flag is set.
673  * @get_scanout_position:
674  *     Callback function to retrieve the scanout position. See
675  *     @struct drm_crtc_helper_funcs.get_scanout_position.
676  *
677  * Implements calculation of exact vblank timestamps from given drm_display_mode
678  * timings and current video scanout position of a CRTC.
679  *
680  * The current implementation only handles standard video modes. For double scan
681  * and interlaced modes the driver is supposed to adjust the hardware mode
682  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
683  * match the scanout position reported.
684  *
685  * Note that atomic drivers must call drm_calc_timestamping_constants() before
686  * enabling a CRTC. The atomic helpers already take care of that in
687  * drm_atomic_helper_calc_timestamping_constants().
688  *
689  * Returns:
690  * Returns true on success, and false on failure, i.e. when no accurate
691  * timestamp could be acquired.
692  */
693 bool
drm_crtc_vblank_helper_get_vblank_timestamp_internal(struct drm_crtc * crtc,int * max_error,ktime_t * vblank_time,bool in_vblank_irq,drm_vblank_get_scanout_position_func get_scanout_position)694 drm_crtc_vblank_helper_get_vblank_timestamp_internal(
695 	struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
696 	bool in_vblank_irq,
697 	drm_vblank_get_scanout_position_func get_scanout_position)
698 {
699 	struct drm_device *dev = crtc->dev;
700 	unsigned int pipe = crtc->index;
701 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
702 	struct timespec64 ts_etime, ts_vblank_time;
703 	ktime_t stime, etime;
704 	bool vbl_status;
705 	const struct drm_display_mode *mode;
706 	int vpos, hpos, i;
707 	int delta_ns, duration_ns;
708 
709 	if (pipe >= dev->num_crtcs) {
710 		drm_err(dev, "Invalid crtc %u\n", pipe);
711 		return false;
712 	}
713 
714 	/* Scanout position query not supported? Should not happen. */
715 	if (!get_scanout_position) {
716 		drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
717 		return false;
718 	}
719 
720 	if (drm_drv_uses_atomic_modeset(dev))
721 		mode = &vblank->hwmode;
722 	else
723 		mode = &crtc->hwmode;
724 
725 	/* If mode timing undefined, just return as no-op:
726 	 * Happens during initial modesetting of a crtc.
727 	 */
728 	if (mode->crtc_clock == 0) {
729 		drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
730 			     pipe);
731 		drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
732 		return false;
733 	}
734 
735 	/* Get current scanout position with system timestamp.
736 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
737 	 * if single query takes longer than max_error nanoseconds.
738 	 *
739 	 * This guarantees a tight bound on maximum error if
740 	 * code gets preempted or delayed for some reason.
741 	 */
742 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
743 		/*
744 		 * Get vertical and horizontal scanout position vpos, hpos,
745 		 * and bounding timestamps stime, etime, pre/post query.
746 		 */
747 		vbl_status = get_scanout_position(crtc, in_vblank_irq,
748 						  &vpos, &hpos,
749 						  &stime, &etime,
750 						  mode);
751 
752 		/* Return as no-op if scanout query unsupported or failed. */
753 		if (!vbl_status) {
754 			drm_dbg_core(dev,
755 				     "crtc %u : scanoutpos query failed.\n",
756 				     pipe);
757 			return false;
758 		}
759 
760 		/* Compute uncertainty in timestamp of scanout position query. */
761 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
762 
763 		/* Accept result with <  max_error nsecs timing uncertainty. */
764 		if (duration_ns <= *max_error)
765 			break;
766 	}
767 
768 	/* Noisy system timing? */
769 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
770 		drm_dbg_core(dev,
771 			     "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
772 			     pipe, duration_ns / 1000, *max_error / 1000, i);
773 	}
774 
775 	/* Return upper bound of timestamp precision error. */
776 	*max_error = duration_ns;
777 
778 	/* Convert scanout position into elapsed time at raw_time query
779 	 * since start of scanout at first display scanline. delta_ns
780 	 * can be negative if start of scanout hasn't happened yet.
781 	 */
782 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
783 			   mode->crtc_clock);
784 
785 	/* Subtract time delta from raw timestamp to get final
786 	 * vblank_time timestamp for end of vblank.
787 	 */
788 	*vblank_time = ktime_sub_ns(etime, delta_ns);
789 
790 	if (!drm_debug_enabled(DRM_UT_VBL))
791 		return true;
792 
793 	ts_etime = ktime_to_timespec64(etime);
794 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
795 
796 	drm_dbg_vbl(dev,
797 		    "crtc %u : v p(%d,%d)@ %ptSp -> %ptSp [e %d us, %d rep]\n",
798 		    pipe, hpos, vpos, &ts_etime, &ts_vblank_time,
799 		    duration_ns / 1000, i);
800 
801 	return true;
802 }
803 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
804 
805 /**
806  * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
807  *                                               helper
808  * @crtc: CRTC whose vblank timestamp to retrieve
809  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
810  *             On return contains true maximum error of timestamp
811  * @vblank_time: Pointer to time which should receive the timestamp
812  * @in_vblank_irq:
813  *     True when called from drm_crtc_handle_vblank().  Some drivers
814  *     need to apply some workarounds for gpu-specific vblank irq quirks
815  *     if flag is set.
816  *
817  * Implements calculation of exact vblank timestamps from given drm_display_mode
818  * timings and current video scanout position of a CRTC. This can be directly
819  * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
820  * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
821  *
822  * The current implementation only handles standard video modes. For double scan
823  * and interlaced modes the driver is supposed to adjust the hardware mode
824  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
825  * match the scanout position reported.
826  *
827  * Note that atomic drivers must call drm_calc_timestamping_constants() before
828  * enabling a CRTC. The atomic helpers already take care of that in
829  * drm_atomic_helper_calc_timestamping_constants().
830  *
831  * Returns:
832  * Returns true on success, and false on failure, i.e. when no accurate
833  * timestamp could be acquired.
834  */
drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc * crtc,int * max_error,ktime_t * vblank_time,bool in_vblank_irq)835 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
836 						 int *max_error,
837 						 ktime_t *vblank_time,
838 						 bool in_vblank_irq)
839 {
840 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
841 		crtc, max_error, vblank_time, in_vblank_irq,
842 		crtc->helper_private->get_scanout_position);
843 }
844 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
845 
846 /**
847  * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most
848  *                                  recent vblank interval
849  * @crtc: CRTC whose vblank timestamp to retrieve
850  * @tvblank: Pointer to target time which should receive the timestamp
851  * @in_vblank_irq:
852  *     True when called from drm_crtc_handle_vblank().  Some drivers
853  *     need to apply some workarounds for gpu-specific vblank irq quirks
854  *     if flag is set.
855  *
856  * Fetches the system timestamp corresponding to the time of the most recent
857  * vblank interval on specified CRTC. May call into kms-driver to
858  * compute the timestamp with a high-precision GPU specific method.
859  *
860  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
861  * call, i.e., it isn't very precisely locked to the true vblank.
862  *
863  * Returns:
864  * True if timestamp is considered to be very precise, false otherwise.
865  */
866 static bool
drm_crtc_get_last_vbltimestamp(struct drm_crtc * crtc,ktime_t * tvblank,bool in_vblank_irq)867 drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank,
868 			       bool in_vblank_irq)
869 {
870 	bool ret = false;
871 
872 	/* Define requested maximum error on timestamps (nanoseconds). */
873 	int max_error = (int) drm_timestamp_precision * 1000;
874 
875 	/* Query driver if possible and precision timestamping enabled. */
876 	if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
877 		ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
878 							tvblank, in_vblank_irq);
879 	}
880 
881 	/* GPU high precision timestamp query unsupported or failed.
882 	 * Return current monotonic/gettimeofday timestamp as best estimate.
883 	 */
884 	if (!ret)
885 		*tvblank = ktime_get();
886 
887 	return ret;
888 }
889 
890 static bool
drm_get_last_vbltimestamp(struct drm_device * dev,unsigned int pipe,ktime_t * tvblank,bool in_vblank_irq)891 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
892 			  ktime_t *tvblank, bool in_vblank_irq)
893 {
894 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
895 
896 	return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq);
897 }
898 
899 /**
900  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
901  * @crtc: which counter to retrieve
902  *
903  * Fetches the "cooked" vblank count value that represents the number of
904  * vblank events since the system was booted, including lost events due to
905  * modesetting activity. Note that this timer isn't correct against a racing
906  * vblank interrupt (since it only reports the software vblank counter), see
907  * drm_crtc_accurate_vblank_count() for such use-cases.
908  *
909  * Note that for a given vblank counter value drm_crtc_handle_vblank()
910  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
911  * provide a barrier: Any writes done before calling
912  * drm_crtc_handle_vblank() will be visible to callers of the later
913  * functions, if the vblank count is the same or a later one.
914  *
915  * See also &drm_vblank_crtc.count.
916  *
917  * Returns:
918  * The software vblank counter.
919  */
drm_crtc_vblank_count(struct drm_crtc * crtc)920 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
921 {
922 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
923 }
924 EXPORT_SYMBOL(drm_crtc_vblank_count);
925 
926 /**
927  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
928  *     system timestamp corresponding to that vblank counter value.
929  * @dev: DRM device
930  * @pipe: index of CRTC whose counter to retrieve
931  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
932  *
933  * Fetches the "cooked" vblank count value that represents the number of
934  * vblank events since the system was booted, including lost events due to
935  * modesetting activity. Returns corresponding system timestamp of the time
936  * of the vblank interval that corresponds to the current vblank counter value.
937  *
938  * This is the legacy version of drm_crtc_vblank_count_and_time().
939  */
drm_vblank_count_and_time(struct drm_device * dev,unsigned int pipe,ktime_t * vblanktime)940 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
941 				     ktime_t *vblanktime)
942 {
943 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
944 	u64 vblank_count;
945 	unsigned int seq;
946 
947 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
948 		*vblanktime = 0;
949 		return 0;
950 	}
951 
952 	do {
953 		seq = read_seqbegin(&vblank->seqlock);
954 		vblank_count = atomic64_read(&vblank->count);
955 		*vblanktime = vblank->time;
956 	} while (read_seqretry(&vblank->seqlock, seq));
957 
958 	return vblank_count;
959 }
960 
961 /**
962  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
963  *     and the system timestamp corresponding to that vblank counter value
964  * @crtc: which counter to retrieve
965  * @vblanktime: Pointer to time to receive the vblank timestamp.
966  *
967  * Fetches the "cooked" vblank count value that represents the number of
968  * vblank events since the system was booted, including lost events due to
969  * modesetting activity. Returns corresponding system timestamp of the time
970  * of the vblank interval that corresponds to the current vblank counter value.
971  *
972  * Note that for a given vblank counter value drm_crtc_handle_vblank()
973  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
974  * provide a barrier: Any writes done before calling
975  * drm_crtc_handle_vblank() will be visible to callers of the later
976  * functions, if the vblank count is the same or a later one.
977  *
978  * See also &drm_vblank_crtc.count.
979  */
drm_crtc_vblank_count_and_time(struct drm_crtc * crtc,ktime_t * vblanktime)980 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
981 				   ktime_t *vblanktime)
982 {
983 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
984 					 vblanktime);
985 }
986 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
987 
988 /**
989  * drm_crtc_next_vblank_start - calculate the time of the next vblank
990  * @crtc: the crtc for which to calculate next vblank time
991  * @vblanktime: pointer to time to receive the next vblank timestamp.
992  *
993  * Calculate the expected time of the start of the next vblank period,
994  * based on time of previous vblank and frame duration
995  */
drm_crtc_next_vblank_start(struct drm_crtc * crtc,ktime_t * vblanktime)996 int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime)
997 {
998 	struct drm_vblank_crtc *vblank;
999 	struct drm_display_mode *mode;
1000 	u64 vblank_start;
1001 
1002 	if (!drm_dev_has_vblank(crtc->dev))
1003 		return -EINVAL;
1004 
1005 	vblank = drm_crtc_vblank_crtc(crtc);
1006 	mode = &vblank->hwmode;
1007 
1008 	if (!vblank->framedur_ns || !vblank->linedur_ns)
1009 		return -EINVAL;
1010 
1011 	if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false))
1012 		return -EINVAL;
1013 
1014 	vblank_start = DIV_ROUND_DOWN_ULL(
1015 			(u64)vblank->framedur_ns * mode->crtc_vblank_start,
1016 			mode->crtc_vtotal);
1017 	*vblanktime  = ktime_add(*vblanktime, ns_to_ktime(vblank_start));
1018 
1019 	return 0;
1020 }
1021 EXPORT_SYMBOL(drm_crtc_next_vblank_start);
1022 
send_vblank_event(struct drm_device * dev,struct drm_pending_vblank_event * e,u64 seq,ktime_t now)1023 static void send_vblank_event(struct drm_device *dev,
1024 		struct drm_pending_vblank_event *e,
1025 		u64 seq, ktime_t now)
1026 {
1027 	struct timespec64 tv;
1028 
1029 	switch (e->event.base.type) {
1030 	case DRM_EVENT_VBLANK:
1031 	case DRM_EVENT_FLIP_COMPLETE:
1032 		tv = ktime_to_timespec64(now);
1033 		e->event.vbl.sequence = seq;
1034 		/*
1035 		 * e->event is a user space structure, with hardcoded unsigned
1036 		 * 32-bit seconds/microseconds. This is safe as we always use
1037 		 * monotonic timestamps since linux-4.15
1038 		 */
1039 		e->event.vbl.tv_sec = tv.tv_sec;
1040 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
1041 		break;
1042 	case DRM_EVENT_CRTC_SEQUENCE:
1043 		if (seq)
1044 			e->event.seq.sequence = seq;
1045 		e->event.seq.time_ns = ktime_to_ns(now);
1046 		break;
1047 	}
1048 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1049 	/*
1050 	 * Use the same timestamp for any associated fence signal to avoid
1051 	 * mismatch in timestamps for vsync & fence events triggered by the
1052 	 * same HW event. Frameworks like SurfaceFlinger in Android expects the
1053 	 * retire-fence timestamp to match exactly with HW vsync as it uses it
1054 	 * for its software vsync modeling.
1055 	 */
1056 	drm_send_event_timestamp_locked(dev, &e->base, now);
1057 }
1058 
1059 /**
1060  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1061  * @crtc: the source CRTC of the vblank event
1062  * @e: the event to send
1063  *
1064  * A lot of drivers need to generate vblank events for the very next vblank
1065  * interrupt. For example when the page flip interrupt happens when the page
1066  * flip gets armed, but not when it actually executes within the next vblank
1067  * period. This helper function implements exactly the required vblank arming
1068  * behaviour.
1069  *
1070  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1071  * atomic commit must ensure that the next vblank happens at exactly the same
1072  * time as the atomic commit is committed to the hardware. This function itself
1073  * does **not** protect against the next vblank interrupt racing with either this
1074  * function call or the atomic commit operation. A possible sequence could be:
1075  *
1076  * 1. Driver commits new hardware state into vblank-synchronized registers.
1077  * 2. A vblank happens, committing the hardware state. Also the corresponding
1078  *    vblank interrupt is fired off and fully processed by the interrupt
1079  *    handler.
1080  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1081  * 4. The event is only send out for the next vblank, which is wrong.
1082  *
1083  * An equivalent race can happen when the driver calls
1084  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1085  *
1086  * The only way to make this work safely is to prevent the vblank from firing
1087  * (and the hardware from committing anything else) until the entire atomic
1088  * commit sequence has run to completion. If the hardware does not have such a
1089  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1090  * Instead drivers need to manually send out the event from their interrupt
1091  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1092  * possible race with the hardware committing the atomic update.
1093  *
1094  * Caller must hold a vblank reference for the event @e acquired by a
1095  * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1096  */
drm_crtc_arm_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)1097 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1098 			       struct drm_pending_vblank_event *e)
1099 {
1100 	struct drm_device *dev = crtc->dev;
1101 	unsigned int pipe = drm_crtc_index(crtc);
1102 
1103 	assert_spin_locked(&dev->event_lock);
1104 
1105 	e->pipe = pipe;
1106 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1107 	list_add_tail(&e->base.link, &dev->vblank_event_list);
1108 }
1109 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1110 
1111 /**
1112  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1113  * @crtc: the source CRTC of the vblank event
1114  * @e: the event to send
1115  *
1116  * Updates sequence # and timestamp on event for the most recently processed
1117  * vblank, and sends it to userspace.  Caller must hold event lock.
1118  *
1119  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1120  * situation, especially to send out events for atomic commit operations.
1121  */
drm_crtc_send_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)1122 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1123 				struct drm_pending_vblank_event *e)
1124 {
1125 	struct drm_device *dev = crtc->dev;
1126 	u64 seq;
1127 	unsigned int pipe = drm_crtc_index(crtc);
1128 	ktime_t now;
1129 
1130 	if (drm_dev_has_vblank(dev)) {
1131 		seq = drm_vblank_count_and_time(dev, pipe, &now);
1132 	} else {
1133 		seq = 0;
1134 
1135 		now = ktime_get();
1136 	}
1137 	e->pipe = pipe;
1138 	send_vblank_event(dev, e, seq, now);
1139 }
1140 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1141 
__enable_vblank(struct drm_device * dev,unsigned int pipe)1142 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1143 {
1144 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1145 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1146 
1147 		if (drm_WARN_ON(dev, !crtc))
1148 			return 0;
1149 
1150 		if (crtc->funcs->enable_vblank)
1151 			return crtc->funcs->enable_vblank(crtc);
1152 	}
1153 
1154 	return -EINVAL;
1155 }
1156 
drm_vblank_enable(struct drm_device * dev,unsigned int pipe)1157 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1158 {
1159 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1160 	int ret = 0;
1161 
1162 	assert_spin_locked(&dev->vbl_lock);
1163 
1164 	spin_lock(&dev->vblank_time_lock);
1165 
1166 	if (!vblank->enabled) {
1167 		/*
1168 		 * Enable vblank irqs under vblank_time_lock protection.
1169 		 * All vblank count & timestamp updates are held off
1170 		 * until we are done reinitializing master counter and
1171 		 * timestamps. Filtercode in drm_handle_vblank() will
1172 		 * prevent double-accounting of same vblank interval.
1173 		 */
1174 		ret = __enable_vblank(dev, pipe);
1175 		drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1176 			     pipe, ret);
1177 		if (ret) {
1178 			atomic_dec(&vblank->refcount);
1179 		} else {
1180 			drm_update_vblank_count(dev, pipe, 0);
1181 			/* drm_update_vblank_count() includes a wmb so we just
1182 			 * need to ensure that the compiler emits the write
1183 			 * to mark the vblank as enabled after the call
1184 			 * to drm_update_vblank_count().
1185 			 */
1186 			WRITE_ONCE(vblank->enabled, true);
1187 		}
1188 	}
1189 
1190 	spin_unlock(&dev->vblank_time_lock);
1191 
1192 	return ret;
1193 }
1194 
drm_vblank_get(struct drm_device * dev,unsigned int pipe)1195 int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1196 {
1197 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1198 	unsigned long irqflags;
1199 	int ret = 0;
1200 
1201 	if (!drm_dev_has_vblank(dev))
1202 		return -EINVAL;
1203 
1204 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1205 		return -EINVAL;
1206 
1207 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1208 	/* Going from 0->1 means we have to enable interrupts again */
1209 	if (atomic_add_return(1, &vblank->refcount) == 1) {
1210 		ret = drm_vblank_enable(dev, pipe);
1211 	} else {
1212 		if (!vblank->enabled) {
1213 			atomic_dec(&vblank->refcount);
1214 			ret = -EINVAL;
1215 		}
1216 	}
1217 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1218 
1219 	return ret;
1220 }
1221 
1222 /**
1223  * drm_crtc_vblank_get - get a reference count on vblank events
1224  * @crtc: which CRTC to own
1225  *
1226  * Acquire a reference count on vblank events to avoid having them disabled
1227  * while in use.
1228  *
1229  * Returns:
1230  * Zero on success or a negative error code on failure.
1231  */
drm_crtc_vblank_get(struct drm_crtc * crtc)1232 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1233 {
1234 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1235 }
1236 EXPORT_SYMBOL(drm_crtc_vblank_get);
1237 
drm_vblank_put(struct drm_device * dev,unsigned int pipe)1238 void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1239 {
1240 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1241 	int vblank_offdelay = vblank->config.offdelay_ms;
1242 
1243 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1244 		return;
1245 
1246 	if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1247 		return;
1248 
1249 	/* Last user schedules interrupt disable */
1250 	if (atomic_dec_and_test(&vblank->refcount)) {
1251 		if (!vblank_offdelay)
1252 			return;
1253 		else if (vblank_offdelay < 0)
1254 			vblank_disable_fn(&vblank->disable_timer);
1255 		else if (!vblank->config.disable_immediate)
1256 			mod_timer(&vblank->disable_timer,
1257 				  jiffies + ((vblank_offdelay * HZ) / 1000));
1258 	}
1259 }
1260 
1261 /**
1262  * drm_crtc_vblank_put - give up ownership of vblank events
1263  * @crtc: which counter to give up
1264  *
1265  * Release ownership of a given vblank counter, turning off interrupts
1266  * if possible. Disable interrupts after &drm_vblank_crtc_config.offdelay_ms
1267  * milliseconds.
1268  */
drm_crtc_vblank_put(struct drm_crtc * crtc)1269 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1270 {
1271 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1272 }
1273 EXPORT_SYMBOL(drm_crtc_vblank_put);
1274 
1275 /**
1276  * drm_wait_one_vblank - wait for one vblank
1277  * @dev: DRM device
1278  * @pipe: CRTC index
1279  *
1280  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1281  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1282  * due to lack of driver support or because the crtc is off.
1283  *
1284  * This is the legacy version of drm_crtc_wait_one_vblank().
1285  */
drm_wait_one_vblank(struct drm_device * dev,unsigned int pipe)1286 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1287 {
1288 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1289 	int ret;
1290 	u64 last;
1291 
1292 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1293 		return;
1294 
1295 	ret = drm_vblank_get(dev, pipe);
1296 	if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1297 		     pipe, ret))
1298 		return;
1299 
1300 	last = drm_vblank_count(dev, pipe);
1301 
1302 	ret = wait_event_timeout(vblank->queue,
1303 				 last != drm_vblank_count(dev, pipe),
1304 				 msecs_to_jiffies(100));
1305 
1306 	drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1307 
1308 	drm_vblank_put(dev, pipe);
1309 }
1310 EXPORT_SYMBOL(drm_wait_one_vblank);
1311 
1312 /**
1313  * drm_crtc_wait_one_vblank - wait for one vblank
1314  * @crtc: DRM crtc
1315  *
1316  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1317  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1318  * due to lack of driver support or because the crtc is off.
1319  */
drm_crtc_wait_one_vblank(struct drm_crtc * crtc)1320 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1321 {
1322 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1323 }
1324 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1325 
1326 /**
1327  * drm_crtc_vblank_off - disable vblank events on a CRTC
1328  * @crtc: CRTC in question
1329  *
1330  * Drivers can use this function to shut down the vblank interrupt handling when
1331  * disabling a crtc. This function ensures that the latest vblank frame count is
1332  * stored so that drm_vblank_on can restore it again.
1333  *
1334  * Drivers must use this function when the hardware vblank counter can get
1335  * reset, e.g. when suspending or disabling the @crtc in general.
1336  */
drm_crtc_vblank_off(struct drm_crtc * crtc)1337 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1338 {
1339 	struct drm_device *dev = crtc->dev;
1340 	unsigned int pipe = drm_crtc_index(crtc);
1341 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1342 	struct drm_pending_vblank_event *e, *t;
1343 	ktime_t now;
1344 	u64 seq;
1345 
1346 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1347 		return;
1348 
1349 	/*
1350 	 * Grab event_lock early to prevent vblank work from being scheduled
1351 	 * while we're in the middle of shutting down vblank interrupts
1352 	 */
1353 	spin_lock_irq(&dev->event_lock);
1354 
1355 	spin_lock(&dev->vbl_lock);
1356 	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1357 		    pipe, vblank->enabled, vblank->inmodeset);
1358 
1359 	/* Avoid redundant vblank disables without previous
1360 	 * drm_crtc_vblank_on(). */
1361 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1362 		drm_vblank_disable_and_save(dev, pipe);
1363 
1364 	wake_up(&vblank->queue);
1365 
1366 	/*
1367 	 * Prevent subsequent drm_vblank_get() from re-enabling
1368 	 * the vblank interrupt by bumping the refcount.
1369 	 */
1370 	if (!vblank->inmodeset) {
1371 		atomic_inc(&vblank->refcount);
1372 		vblank->inmodeset = 1;
1373 	}
1374 	spin_unlock(&dev->vbl_lock);
1375 
1376 	/* Send any queued vblank events, lest the natives grow disquiet */
1377 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1378 
1379 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1380 		if (e->pipe != pipe)
1381 			continue;
1382 		drm_dbg_core(dev, "Sending premature vblank event on disable: "
1383 			     "wanted %llu, current %llu\n",
1384 			     e->sequence, seq);
1385 		list_del(&e->base.link);
1386 		drm_vblank_put(dev, pipe);
1387 		send_vblank_event(dev, e, seq, now);
1388 	}
1389 
1390 	/* Cancel any leftover pending vblank work */
1391 	drm_vblank_cancel_pending_works(vblank);
1392 
1393 	spin_unlock_irq(&dev->event_lock);
1394 
1395 	/* Will be reset by the modeset helpers when re-enabling the crtc by
1396 	 * calling drm_calc_timestamping_constants(). */
1397 	vblank->hwmode.crtc_clock = 0;
1398 
1399 	/* Wait for any vblank work that's still executing to finish */
1400 	drm_vblank_flush_worker(vblank);
1401 }
1402 EXPORT_SYMBOL(drm_crtc_vblank_off);
1403 
1404 /**
1405  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1406  * @crtc: CRTC in question
1407  *
1408  * Drivers can use this function to reset the vblank state to off at load time.
1409  * Drivers should use this together with the drm_crtc_vblank_off() and
1410  * drm_crtc_vblank_on() functions. The difference compared to
1411  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1412  * and hence doesn't need to call any driver hooks.
1413  *
1414  * This is useful for recovering driver state e.g. on driver load, or on resume.
1415  */
drm_crtc_vblank_reset(struct drm_crtc * crtc)1416 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1417 {
1418 	struct drm_device *dev = crtc->dev;
1419 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1420 
1421 	spin_lock_irq(&dev->vbl_lock);
1422 	/*
1423 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1424 	 * interrupt by bumping the refcount.
1425 	 */
1426 	if (!vblank->inmodeset) {
1427 		atomic_inc(&vblank->refcount);
1428 		vblank->inmodeset = 1;
1429 	}
1430 	spin_unlock_irq(&dev->vbl_lock);
1431 
1432 	drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1433 	drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1434 }
1435 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1436 
1437 /**
1438  * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1439  * @crtc: CRTC in question
1440  * @max_vblank_count: max hardware vblank counter value
1441  *
1442  * Update the maximum hardware vblank counter value for @crtc
1443  * at runtime. Useful for hardware where the operation of the
1444  * hardware vblank counter depends on the currently active
1445  * display configuration.
1446  *
1447  * For example, if the hardware vblank counter does not work
1448  * when a specific connector is active the maximum can be set
1449  * to zero. And when that specific connector isn't active the
1450  * maximum can again be set to the appropriate non-zero value.
1451  *
1452  * If used, must be called before drm_vblank_on().
1453  */
drm_crtc_set_max_vblank_count(struct drm_crtc * crtc,u32 max_vblank_count)1454 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1455 				   u32 max_vblank_count)
1456 {
1457 	struct drm_device *dev = crtc->dev;
1458 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1459 
1460 	drm_WARN_ON(dev, dev->max_vblank_count);
1461 	drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1462 
1463 	vblank->max_vblank_count = max_vblank_count;
1464 }
1465 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1466 
1467 /**
1468  * drm_crtc_vblank_on_config - enable vblank events on a CRTC with custom
1469  *     configuration options
1470  * @crtc: CRTC in question
1471  * @config: Vblank configuration value
1472  *
1473  * See drm_crtc_vblank_on(). In addition, this function allows you to provide a
1474  * custom vblank configuration for a given CRTC.
1475  *
1476  * Note that @config is copied, the pointer does not need to stay valid beyond
1477  * this function call. For details of the parameters see
1478  * struct drm_vblank_crtc_config.
1479  */
drm_crtc_vblank_on_config(struct drm_crtc * crtc,const struct drm_vblank_crtc_config * config)1480 void drm_crtc_vblank_on_config(struct drm_crtc *crtc,
1481 			       const struct drm_vblank_crtc_config *config)
1482 {
1483 	struct drm_device *dev = crtc->dev;
1484 	unsigned int pipe = drm_crtc_index(crtc);
1485 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
1486 
1487 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1488 		return;
1489 
1490 	spin_lock_irq(&dev->vbl_lock);
1491 	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1492 		    pipe, vblank->enabled, vblank->inmodeset);
1493 
1494 	vblank->config = *config;
1495 
1496 	/* Drop our private "prevent drm_vblank_get" refcount */
1497 	if (vblank->inmodeset) {
1498 		atomic_dec(&vblank->refcount);
1499 		vblank->inmodeset = 0;
1500 	}
1501 
1502 	drm_reset_vblank_timestamp(dev, pipe);
1503 
1504 	/*
1505 	 * re-enable interrupts if there are users left, or the
1506 	 * user wishes vblank interrupts to be enabled all the time.
1507 	 */
1508 	if (atomic_read(&vblank->refcount) != 0 || !vblank->config.offdelay_ms)
1509 		drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1510 	spin_unlock_irq(&dev->vbl_lock);
1511 }
1512 EXPORT_SYMBOL(drm_crtc_vblank_on_config);
1513 
1514 /**
1515  * drm_crtc_vblank_on - enable vblank events on a CRTC
1516  * @crtc: CRTC in question
1517  *
1518  * This functions restores the vblank interrupt state captured with
1519  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1520  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1521  * unbalanced and so can also be unconditionally called in driver load code to
1522  * reflect the current hardware state of the crtc.
1523  *
1524  * Note that unlike in drm_crtc_vblank_on_config(), default values are used.
1525  */
drm_crtc_vblank_on(struct drm_crtc * crtc)1526 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1527 {
1528 	const struct drm_vblank_crtc_config config = {
1529 		.offdelay_ms = drm_vblank_offdelay,
1530 		.disable_immediate = crtc->dev->vblank_disable_immediate
1531 	};
1532 
1533 	drm_crtc_vblank_on_config(crtc, &config);
1534 }
1535 EXPORT_SYMBOL(drm_crtc_vblank_on);
1536 
drm_vblank_restore(struct drm_device * dev,unsigned int pipe)1537 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1538 {
1539 	ktime_t t_vblank;
1540 	struct drm_vblank_crtc *vblank;
1541 	int framedur_ns;
1542 	u64 diff_ns;
1543 	u32 cur_vblank, diff = 1;
1544 	int count = DRM_TIMESTAMP_MAXRETRIES;
1545 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
1546 
1547 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1548 		return;
1549 
1550 	assert_spin_locked(&dev->vbl_lock);
1551 	assert_spin_locked(&dev->vblank_time_lock);
1552 
1553 	vblank = drm_vblank_crtc(dev, pipe);
1554 	drm_WARN_ONCE(dev,
1555 		      drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1556 		      "Cannot compute missed vblanks without frame duration\n");
1557 	framedur_ns = vblank->framedur_ns;
1558 
1559 	do {
1560 		cur_vblank = __get_vblank_counter(dev, pipe);
1561 		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1562 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1563 
1564 	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1565 	if (framedur_ns)
1566 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1567 
1568 
1569 	drm_dbg_vbl(dev,
1570 		    "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1571 		    diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1572 	vblank->last = (cur_vblank - diff) & max_vblank_count;
1573 }
1574 
1575 /**
1576  * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1577  * @crtc: CRTC in question
1578  *
1579  * Power manamement features can cause frame counter resets between vblank
1580  * disable and enable. Drivers can use this function in their
1581  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1582  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1583  * vblank counter.
1584  *
1585  * Note that drivers must have race-free high-precision timestamping support,
1586  * i.e.  &drm_crtc_funcs.get_vblank_timestamp must be hooked up and
1587  * &drm_vblank_crtc_config.disable_immediate must be set to indicate the
1588  * time-stamping functions are race-free against vblank hardware counter
1589  * increments.
1590  */
drm_crtc_vblank_restore(struct drm_crtc * crtc)1591 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1592 {
1593 	struct drm_device *dev = crtc->dev;
1594 	unsigned int pipe = drm_crtc_index(crtc);
1595 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1596 
1597 	drm_WARN_ON_ONCE(dev, !crtc->funcs->get_vblank_timestamp);
1598 	drm_WARN_ON_ONCE(dev, vblank->inmodeset);
1599 	drm_WARN_ON_ONCE(dev, !vblank->config.disable_immediate);
1600 
1601 	drm_vblank_restore(dev, pipe);
1602 }
1603 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1604 
drm_queue_vblank_event(struct drm_device * dev,unsigned int pipe,u64 req_seq,union drm_wait_vblank * vblwait,struct drm_file * file_priv)1605 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1606 				  u64 req_seq,
1607 				  union drm_wait_vblank *vblwait,
1608 				  struct drm_file *file_priv)
1609 {
1610 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1611 	struct drm_pending_vblank_event *e;
1612 	ktime_t now;
1613 	u64 seq;
1614 	int ret;
1615 
1616 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1617 	if (e == NULL) {
1618 		ret = -ENOMEM;
1619 		goto err_put;
1620 	}
1621 
1622 	e->pipe = pipe;
1623 	e->event.base.type = DRM_EVENT_VBLANK;
1624 	e->event.base.length = sizeof(e->event.vbl);
1625 	e->event.vbl.user_data = vblwait->request.signal;
1626 	e->event.vbl.crtc_id = 0;
1627 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1628 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1629 
1630 		if (crtc)
1631 			e->event.vbl.crtc_id = crtc->base.id;
1632 	}
1633 
1634 	spin_lock_irq(&dev->event_lock);
1635 
1636 	/*
1637 	 * drm_crtc_vblank_off() might have been called after we called
1638 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1639 	 * vblank disable, so no need for further locking.  The reference from
1640 	 * drm_vblank_get() protects against vblank disable from another source.
1641 	 */
1642 	if (!READ_ONCE(vblank->enabled)) {
1643 		ret = -EINVAL;
1644 		goto err_unlock;
1645 	}
1646 
1647 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1648 					    &e->event.base);
1649 
1650 	if (ret)
1651 		goto err_unlock;
1652 
1653 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1654 
1655 	drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1656 		     req_seq, seq, pipe);
1657 
1658 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1659 
1660 	e->sequence = req_seq;
1661 	if (drm_vblank_passed(seq, req_seq)) {
1662 		drm_vblank_put(dev, pipe);
1663 		send_vblank_event(dev, e, seq, now);
1664 		vblwait->reply.sequence = seq;
1665 	} else {
1666 		/* drm_handle_vblank_events will call drm_vblank_put */
1667 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1668 		vblwait->reply.sequence = req_seq;
1669 	}
1670 
1671 	spin_unlock_irq(&dev->event_lock);
1672 
1673 	return 0;
1674 
1675 err_unlock:
1676 	spin_unlock_irq(&dev->event_lock);
1677 	kfree(e);
1678 err_put:
1679 	drm_vblank_put(dev, pipe);
1680 	return ret;
1681 }
1682 
drm_wait_vblank_is_query(union drm_wait_vblank * vblwait)1683 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1684 {
1685 	if (vblwait->request.sequence)
1686 		return false;
1687 
1688 	return _DRM_VBLANK_RELATIVE ==
1689 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1690 					  _DRM_VBLANK_EVENT |
1691 					  _DRM_VBLANK_NEXTONMISS));
1692 }
1693 
1694 /*
1695  * Widen a 32-bit param to 64-bits.
1696  *
1697  * \param narrow 32-bit value (missing upper 32 bits)
1698  * \param near 64-bit value that should be 'close' to near
1699  *
1700  * This function returns a 64-bit value using the lower 32-bits from
1701  * 'narrow' and constructing the upper 32-bits so that the result is
1702  * as close as possible to 'near'.
1703  */
1704 
widen_32_to_64(u32 narrow,u64 near)1705 static u64 widen_32_to_64(u32 narrow, u64 near)
1706 {
1707 	return near + (s32) (narrow - near);
1708 }
1709 
drm_wait_vblank_reply(struct drm_device * dev,unsigned int pipe,struct drm_wait_vblank_reply * reply)1710 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1711 				  struct drm_wait_vblank_reply *reply)
1712 {
1713 	ktime_t now;
1714 	struct timespec64 ts;
1715 
1716 	/*
1717 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1718 	 * to store the seconds. This is safe as we always use monotonic
1719 	 * timestamps since linux-4.15.
1720 	 */
1721 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1722 	ts = ktime_to_timespec64(now);
1723 	reply->tval_sec = (u32)ts.tv_sec;
1724 	reply->tval_usec = ts.tv_nsec / 1000;
1725 }
1726 
drm_wait_vblank_supported(struct drm_device * dev)1727 static bool drm_wait_vblank_supported(struct drm_device *dev)
1728 {
1729 	return drm_dev_has_vblank(dev);
1730 }
1731 
drm_wait_vblank_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1732 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1733 			  struct drm_file *file_priv)
1734 {
1735 	struct drm_crtc *crtc;
1736 	struct drm_vblank_crtc *vblank;
1737 	union drm_wait_vblank *vblwait = data;
1738 	int ret;
1739 	u64 req_seq, seq;
1740 	unsigned int pipe_index;
1741 	unsigned int flags, pipe, high_pipe;
1742 
1743 	if (!drm_wait_vblank_supported(dev))
1744 		return -EOPNOTSUPP;
1745 
1746 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1747 		return -EINVAL;
1748 
1749 	if (vblwait->request.type &
1750 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1751 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1752 		drm_dbg_core(dev,
1753 			     "Unsupported type value 0x%x, supported mask 0x%x\n",
1754 			     vblwait->request.type,
1755 			     (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1756 			      _DRM_VBLANK_HIGH_CRTC_MASK));
1757 		return -EINVAL;
1758 	}
1759 
1760 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1761 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1762 	if (high_pipe)
1763 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1764 	else
1765 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1766 
1767 	/* Convert lease-relative crtc index into global crtc index */
1768 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1769 		pipe = 0;
1770 		drm_for_each_crtc(crtc, dev) {
1771 			if (drm_lease_held(file_priv, crtc->base.id)) {
1772 				if (pipe_index == 0)
1773 					break;
1774 				pipe_index--;
1775 			}
1776 			pipe++;
1777 		}
1778 	} else {
1779 		pipe = pipe_index;
1780 	}
1781 
1782 	if (pipe >= dev->num_crtcs)
1783 		return -EINVAL;
1784 
1785 	vblank = &dev->vblank[pipe];
1786 
1787 	/* If the counter is currently enabled and accurate, short-circuit
1788 	 * queries to return the cached timestamp of the last vblank.
1789 	 */
1790 	if (vblank->config.disable_immediate &&
1791 	    drm_wait_vblank_is_query(vblwait) &&
1792 	    READ_ONCE(vblank->enabled)) {
1793 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1794 		return 0;
1795 	}
1796 
1797 	ret = drm_vblank_get(dev, pipe);
1798 	if (ret) {
1799 		drm_dbg_core(dev,
1800 			     "crtc %d failed to acquire vblank counter, %d\n",
1801 			     pipe, ret);
1802 		return ret;
1803 	}
1804 	seq = drm_vblank_count(dev, pipe);
1805 
1806 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1807 	case _DRM_VBLANK_RELATIVE:
1808 		req_seq = seq + vblwait->request.sequence;
1809 		vblwait->request.sequence = req_seq;
1810 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1811 		break;
1812 	case _DRM_VBLANK_ABSOLUTE:
1813 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1814 		break;
1815 	default:
1816 		ret = -EINVAL;
1817 		goto done;
1818 	}
1819 
1820 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1821 	    drm_vblank_passed(seq, req_seq)) {
1822 		req_seq = seq + 1;
1823 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1824 		vblwait->request.sequence = req_seq;
1825 	}
1826 
1827 	if (flags & _DRM_VBLANK_EVENT) {
1828 		/* must hold on to the vblank ref until the event fires
1829 		 * drm_vblank_put will be called asynchronously
1830 		 */
1831 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1832 	}
1833 
1834 	if (req_seq != seq) {
1835 		int wait;
1836 
1837 		drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1838 			     req_seq, pipe);
1839 		wait = wait_event_interruptible_timeout(vblank->queue,
1840 			drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1841 				      !READ_ONCE(vblank->enabled),
1842 			msecs_to_jiffies(3000));
1843 
1844 		switch (wait) {
1845 		case 0:
1846 			/* timeout */
1847 			ret = -EBUSY;
1848 			break;
1849 		case -ERESTARTSYS:
1850 			/* interrupted by signal */
1851 			ret = -EINTR;
1852 			break;
1853 		default:
1854 			ret = 0;
1855 			break;
1856 		}
1857 	}
1858 
1859 	if (ret != -EINTR) {
1860 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1861 
1862 		drm_dbg_core(dev, "crtc %d returning %u to client\n",
1863 			     pipe, vblwait->reply.sequence);
1864 	} else {
1865 		drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1866 			     pipe);
1867 	}
1868 
1869 done:
1870 	drm_vblank_put(dev, pipe);
1871 	return ret;
1872 }
1873 
drm_handle_vblank_events(struct drm_device * dev,unsigned int pipe)1874 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1875 {
1876 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1877 	bool high_prec = false;
1878 	struct drm_pending_vblank_event *e, *t;
1879 	ktime_t now;
1880 	u64 seq;
1881 
1882 	assert_spin_locked(&dev->event_lock);
1883 
1884 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1885 
1886 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1887 		if (e->pipe != pipe)
1888 			continue;
1889 		if (!drm_vblank_passed(seq, e->sequence))
1890 			continue;
1891 
1892 		drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1893 			     e->sequence, seq);
1894 
1895 		list_del(&e->base.link);
1896 		drm_vblank_put(dev, pipe);
1897 		send_vblank_event(dev, e, seq, now);
1898 	}
1899 
1900 	if (crtc && crtc->funcs->get_vblank_timestamp)
1901 		high_prec = true;
1902 
1903 	trace_drm_vblank_event(pipe, seq, now, high_prec);
1904 }
1905 
1906 /**
1907  * drm_handle_vblank - handle a vblank event
1908  * @dev: DRM device
1909  * @pipe: index of CRTC where this event occurred
1910  *
1911  * Drivers should call this routine in their vblank interrupt handlers to
1912  * update the vblank counter and send any signals that may be pending.
1913  *
1914  * This is the legacy version of drm_crtc_handle_vblank().
1915  */
drm_handle_vblank(struct drm_device * dev,unsigned int pipe)1916 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1917 {
1918 	struct drm_vblank_crtc *vblank = drm_vblank_crtc(dev, pipe);
1919 	unsigned long irqflags;
1920 	bool disable_irq;
1921 
1922 	if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1923 		return false;
1924 
1925 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1926 		return false;
1927 
1928 	spin_lock_irqsave(&dev->event_lock, irqflags);
1929 
1930 	/* Need timestamp lock to prevent concurrent execution with
1931 	 * vblank enable/disable, as this would cause inconsistent
1932 	 * or corrupted timestamps and vblank counts.
1933 	 */
1934 	spin_lock(&dev->vblank_time_lock);
1935 
1936 	/* Vblank irq handling disabled. Nothing to do. */
1937 	if (!vblank->enabled) {
1938 		spin_unlock(&dev->vblank_time_lock);
1939 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1940 		return false;
1941 	}
1942 
1943 	drm_update_vblank_count(dev, pipe, true);
1944 
1945 	spin_unlock(&dev->vblank_time_lock);
1946 
1947 	wake_up(&vblank->queue);
1948 
1949 	/* With instant-off, we defer disabling the interrupt until after
1950 	 * we finish processing the following vblank after all events have
1951 	 * been signaled. The disable has to be last (after
1952 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1953 	 */
1954 	disable_irq = (vblank->config.disable_immediate &&
1955 		       vblank->config.offdelay_ms > 0 &&
1956 		       !atomic_read(&vblank->refcount));
1957 
1958 	drm_handle_vblank_events(dev, pipe);
1959 	drm_handle_vblank_works(vblank);
1960 
1961 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1962 
1963 	if (disable_irq)
1964 		vblank_disable_fn(&vblank->disable_timer);
1965 
1966 	return true;
1967 }
1968 EXPORT_SYMBOL(drm_handle_vblank);
1969 
1970 /**
1971  * drm_crtc_handle_vblank - handle a vblank event
1972  * @crtc: where this event occurred
1973  *
1974  * Drivers should call this routine in their vblank interrupt handlers to
1975  * update the vblank counter and send any signals that may be pending.
1976  *
1977  * This is the native KMS version of drm_handle_vblank().
1978  *
1979  * Note that for a given vblank counter value drm_crtc_handle_vblank()
1980  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1981  * provide a barrier: Any writes done before calling
1982  * drm_crtc_handle_vblank() will be visible to callers of the later
1983  * functions, if the vblank count is the same or a later one.
1984  *
1985  * See also &drm_vblank_crtc.count.
1986  *
1987  * Returns:
1988  * True if the event was successfully handled, false on failure.
1989  */
drm_crtc_handle_vblank(struct drm_crtc * crtc)1990 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1991 {
1992 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1993 }
1994 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1995 
1996 /*
1997  * Get crtc VBLANK count.
1998  *
1999  * \param dev DRM device
2000  * \param data user argument, pointing to a drm_crtc_get_sequence structure.
2001  * \param file_priv drm file private for the user's open file descriptor
2002  */
2003 
drm_crtc_get_sequence_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)2004 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
2005 				struct drm_file *file_priv)
2006 {
2007 	struct drm_crtc *crtc;
2008 	struct drm_vblank_crtc *vblank;
2009 	int pipe;
2010 	struct drm_crtc_get_sequence *get_seq = data;
2011 	ktime_t now;
2012 	bool vblank_enabled;
2013 	int ret;
2014 
2015 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2016 		return -EOPNOTSUPP;
2017 
2018 	if (!drm_dev_has_vblank(dev))
2019 		return -EOPNOTSUPP;
2020 
2021 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
2022 	if (!crtc)
2023 		return -ENOENT;
2024 
2025 	pipe = drm_crtc_index(crtc);
2026 
2027 	vblank = drm_crtc_vblank_crtc(crtc);
2028 	vblank_enabled = READ_ONCE(vblank->config.disable_immediate) &&
2029 		READ_ONCE(vblank->enabled);
2030 
2031 	if (!vblank_enabled) {
2032 		ret = drm_crtc_vblank_get(crtc);
2033 		if (ret) {
2034 			drm_dbg_core(dev,
2035 				     "crtc %d failed to acquire vblank counter, %d\n",
2036 				     pipe, ret);
2037 			return ret;
2038 		}
2039 	}
2040 	drm_modeset_lock(&crtc->mutex, NULL);
2041 	if (crtc->state)
2042 		get_seq->active = crtc->state->enable;
2043 	else
2044 		get_seq->active = crtc->enabled;
2045 	drm_modeset_unlock(&crtc->mutex);
2046 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2047 	get_seq->sequence_ns = ktime_to_ns(now);
2048 	if (!vblank_enabled)
2049 		drm_crtc_vblank_put(crtc);
2050 	return 0;
2051 }
2052 
2053 /*
2054  * Queue a event for VBLANK sequence
2055  *
2056  * \param dev DRM device
2057  * \param data user argument, pointing to a drm_crtc_queue_sequence structure.
2058  * \param file_priv drm file private for the user's open file descriptor
2059  */
2060 
drm_crtc_queue_sequence_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)2061 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2062 				  struct drm_file *file_priv)
2063 {
2064 	struct drm_crtc *crtc;
2065 	struct drm_vblank_crtc *vblank;
2066 	int pipe;
2067 	struct drm_crtc_queue_sequence *queue_seq = data;
2068 	ktime_t now;
2069 	struct drm_pending_vblank_event *e;
2070 	u32 flags;
2071 	u64 seq;
2072 	u64 req_seq;
2073 	int ret;
2074 
2075 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2076 		return -EOPNOTSUPP;
2077 
2078 	if (!drm_dev_has_vblank(dev))
2079 		return -EOPNOTSUPP;
2080 
2081 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2082 	if (!crtc)
2083 		return -ENOENT;
2084 
2085 	flags = queue_seq->flags;
2086 	/* Check valid flag bits */
2087 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2088 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2089 		return -EINVAL;
2090 
2091 	pipe = drm_crtc_index(crtc);
2092 
2093 	vblank = drm_crtc_vblank_crtc(crtc);
2094 
2095 	e = kzalloc(sizeof(*e), GFP_KERNEL);
2096 	if (e == NULL)
2097 		return -ENOMEM;
2098 
2099 	ret = drm_crtc_vblank_get(crtc);
2100 	if (ret) {
2101 		drm_dbg_core(dev,
2102 			     "crtc %d failed to acquire vblank counter, %d\n",
2103 			     pipe, ret);
2104 		goto err_free;
2105 	}
2106 
2107 	seq = drm_vblank_count_and_time(dev, pipe, &now);
2108 	req_seq = queue_seq->sequence;
2109 
2110 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2111 		req_seq += seq;
2112 
2113 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2114 		req_seq = seq + 1;
2115 
2116 	e->pipe = pipe;
2117 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2118 	e->event.base.length = sizeof(e->event.seq);
2119 	e->event.seq.user_data = queue_seq->user_data;
2120 
2121 	spin_lock_irq(&dev->event_lock);
2122 
2123 	/*
2124 	 * drm_crtc_vblank_off() might have been called after we called
2125 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2126 	 * vblank disable, so no need for further locking.  The reference from
2127 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2128 	 */
2129 	if (!READ_ONCE(vblank->enabled)) {
2130 		ret = -EINVAL;
2131 		goto err_unlock;
2132 	}
2133 
2134 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2135 					    &e->event.base);
2136 
2137 	if (ret)
2138 		goto err_unlock;
2139 
2140 	e->sequence = req_seq;
2141 
2142 	if (drm_vblank_passed(seq, req_seq)) {
2143 		drm_crtc_vblank_put(crtc);
2144 		send_vblank_event(dev, e, seq, now);
2145 		queue_seq->sequence = seq;
2146 	} else {
2147 		/* drm_handle_vblank_events will call drm_vblank_put */
2148 		list_add_tail(&e->base.link, &dev->vblank_event_list);
2149 		queue_seq->sequence = req_seq;
2150 	}
2151 
2152 	spin_unlock_irq(&dev->event_lock);
2153 	return 0;
2154 
2155 err_unlock:
2156 	spin_unlock_irq(&dev->event_lock);
2157 	drm_crtc_vblank_put(crtc);
2158 err_free:
2159 	kfree(e);
2160 	return ret;
2161 }
2162 
2163