xref: /linux/drivers/spi/spi-nxp-fspi.c (revision 5722a6cecfff3e381b96bbbd7e9b3911731e80d9)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 /*
4  * NXP FlexSPI(FSPI) controller driver.
5  *
6  * Copyright 2019-2020 NXP
7  * Copyright 2020 Puresoftware Ltd.
8  *
9  * FlexSPI is a flexsible SPI host controller which supports two SPI
10  * channels and up to 4 external devices. Each channel supports
11  * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12  * data lines).
13  *
14  * FlexSPI controller is driven by the LUT(Look-up Table) registers
15  * LUT registers are a look-up-table for sequences of instructions.
16  * A valid sequence consists of four LUT registers.
17  * Maximum 32 LUT sequences can be programmed simultaneously.
18  *
19  * LUTs are being created at run-time based on the commands passed
20  * from the spi-mem framework, thus using single LUT index.
21  *
22  * Software triggered Flash read/write access by IP Bus.
23  *
24  * Memory mapped read access by AHB Bus.
25  *
26  * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27  *
28  * Author:
29  *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30  *     Boris Brezillon <bbrezillon@kernel.org>
31  *     Frieder Schrempf <frieder.schrempf@kontron.de>
32  */
33 
34 #include <linux/acpi.h>
35 #include <linux/bitops.h>
36 #include <linux/bitfield.h>
37 #include <linux/clk.h>
38 #include <linux/completion.h>
39 #include <linux/delay.h>
40 #include <linux/err.h>
41 #include <linux/errno.h>
42 #include <linux/interrupt.h>
43 #include <linux/io.h>
44 #include <linux/iopoll.h>
45 #include <linux/jiffies.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/mutex.h>
49 #include <linux/of.h>
50 #include <linux/platform_device.h>
51 #include <linux/pinctrl/consumer.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/pm_qos.h>
54 #include <linux/regmap.h>
55 #include <linux/sizes.h>
56 #include <linux/sys_soc.h>
57 
58 #include <linux/mfd/syscon.h>
59 #include <linux/spi/spi.h>
60 #include <linux/spi/spi-mem.h>
61 
62 /* runtime pm timeout */
63 #define FSPI_RPM_TIMEOUT 50	/* 50ms */
64 
65 /* Registers used by the driver */
66 #define FSPI_MCR0			0x00
67 #define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
68 #define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
69 #define FSPI_MCR0_LEARN_EN		BIT(15)
70 #define FSPI_MCR0_SCRFRUN_EN		BIT(14)
71 #define FSPI_MCR0_OCTCOMB_EN		BIT(13)
72 #define FSPI_MCR0_DOZE_EN		BIT(12)
73 #define FSPI_MCR0_HSEN			BIT(11)
74 #define FSPI_MCR0_SERCLKDIV		BIT(8)
75 #define FSPI_MCR0_ATDF_EN		BIT(7)
76 #define FSPI_MCR0_ARDF_EN		BIT(6)
77 #define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
78 #define FSPI_MCR0_END_CFG(x)		((x) << 2)
79 #define FSPI_MCR0_MDIS			BIT(1)
80 #define FSPI_MCR0_SWRST			BIT(0)
81 
82 #define FSPI_MCR1			0x04
83 #define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
84 #define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
85 
86 #define FSPI_MCR2			0x08
87 #define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
88 #define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
89 #define FSPI_MCR2_CLRLRPHS		BIT(14)
90 #define FSPI_MCR2_ABRDATSZ		BIT(8)
91 #define FSPI_MCR2_ABRLEARN		BIT(7)
92 #define FSPI_MCR2_ABR_READ		BIT(6)
93 #define FSPI_MCR2_ABRWRITE		BIT(5)
94 #define FSPI_MCR2_ABRDUMMY		BIT(4)
95 #define FSPI_MCR2_ABR_MODE		BIT(3)
96 #define FSPI_MCR2_ABRCADDR		BIT(2)
97 #define FSPI_MCR2_ABRRADDR		BIT(1)
98 #define FSPI_MCR2_ABR_CMD		BIT(0)
99 
100 #define FSPI_AHBCR			0x0c
101 #define FSPI_AHBCR_RDADDROPT		BIT(6)
102 #define FSPI_AHBCR_PREF_EN		BIT(5)
103 #define FSPI_AHBCR_BUFF_EN		BIT(4)
104 #define FSPI_AHBCR_CACH_EN		BIT(3)
105 #define FSPI_AHBCR_CLRTXBUF		BIT(2)
106 #define FSPI_AHBCR_CLRRXBUF		BIT(1)
107 #define FSPI_AHBCR_PAR_EN		BIT(0)
108 
109 #define FSPI_INTEN			0x10
110 #define FSPI_INTEN_SCLKSBWR		BIT(9)
111 #define FSPI_INTEN_SCLKSBRD		BIT(8)
112 #define FSPI_INTEN_DATALRNFL		BIT(7)
113 #define FSPI_INTEN_IPTXWE		BIT(6)
114 #define FSPI_INTEN_IPRXWA		BIT(5)
115 #define FSPI_INTEN_AHBCMDERR		BIT(4)
116 #define FSPI_INTEN_IPCMDERR		BIT(3)
117 #define FSPI_INTEN_AHBCMDGE		BIT(2)
118 #define FSPI_INTEN_IPCMDGE		BIT(1)
119 #define FSPI_INTEN_IPCMDDONE		BIT(0)
120 
121 #define FSPI_INTR			0x14
122 #define FSPI_INTR_SCLKSBWR		BIT(9)
123 #define FSPI_INTR_SCLKSBRD		BIT(8)
124 #define FSPI_INTR_DATALRNFL		BIT(7)
125 #define FSPI_INTR_IPTXWE		BIT(6)
126 #define FSPI_INTR_IPRXWA		BIT(5)
127 #define FSPI_INTR_AHBCMDERR		BIT(4)
128 #define FSPI_INTR_IPCMDERR		BIT(3)
129 #define FSPI_INTR_AHBCMDGE		BIT(2)
130 #define FSPI_INTR_IPCMDGE		BIT(1)
131 #define FSPI_INTR_IPCMDDONE		BIT(0)
132 
133 #define FSPI_LUTKEY			0x18
134 #define FSPI_LUTKEY_VALUE		0x5AF05AF0
135 
136 #define FSPI_LCKCR			0x1C
137 
138 #define FSPI_LCKER_LOCK			0x1
139 #define FSPI_LCKER_UNLOCK		0x2
140 
141 #define FSPI_BUFXCR_INVALID_MSTRID	0xE
142 #define FSPI_AHBRX_BUF0CR0		0x20
143 #define FSPI_AHBRX_BUF1CR0		0x24
144 #define FSPI_AHBRX_BUF2CR0		0x28
145 #define FSPI_AHBRX_BUF3CR0		0x2C
146 #define FSPI_AHBRX_BUF4CR0		0x30
147 #define FSPI_AHBRX_BUF5CR0		0x34
148 #define FSPI_AHBRX_BUF6CR0		0x38
149 #define FSPI_AHBRX_BUF7CR0		0x3C
150 #define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
151 
152 #define FSPI_AHBRX_BUF0CR1		0x40
153 #define FSPI_AHBRX_BUF1CR1		0x44
154 #define FSPI_AHBRX_BUF2CR1		0x48
155 #define FSPI_AHBRX_BUF3CR1		0x4C
156 #define FSPI_AHBRX_BUF4CR1		0x50
157 #define FSPI_AHBRX_BUF5CR1		0x54
158 #define FSPI_AHBRX_BUF6CR1		0x58
159 #define FSPI_AHBRX_BUF7CR1		0x5C
160 
161 #define FSPI_FLSHA1CR0			0x60
162 #define FSPI_FLSHA2CR0			0x64
163 #define FSPI_FLSHB1CR0			0x68
164 #define FSPI_FLSHB2CR0			0x6C
165 #define FSPI_FLSHXCR0_SZ_KB		10
166 #define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
167 
168 #define FSPI_FLSHA1CR1			0x70
169 #define FSPI_FLSHA2CR1			0x74
170 #define FSPI_FLSHB1CR1			0x78
171 #define FSPI_FLSHB2CR1			0x7C
172 #define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
173 #define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
174 #define FSPI_FLSHXCR1_WA		BIT(10)
175 #define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
176 #define FSPI_FLSHXCR1_TCSS(x)		(x)
177 
178 #define FSPI_FLSHA1CR2			0x80
179 #define FSPI_FLSHA2CR2			0x84
180 #define FSPI_FLSHB1CR2			0x88
181 #define FSPI_FLSHB2CR2			0x8C
182 #define FSPI_FLSHXCR2_CLRINSP		BIT(24)
183 #define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
184 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
185 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
186 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
187 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
188 
189 #define FSPI_IPCR0			0xA0
190 
191 #define FSPI_IPCR1			0xA4
192 #define FSPI_IPCR1_IPAREN		BIT(31)
193 #define FSPI_IPCR1_SEQNUM_SHIFT		24
194 #define FSPI_IPCR1_SEQID_SHIFT		16
195 #define FSPI_IPCR1_IDATSZ(x)		(x)
196 
197 #define FSPI_IPCMD			0xB0
198 #define FSPI_IPCMD_TRG			BIT(0)
199 
200 #define FSPI_DLPR			0xB4
201 
202 #define FSPI_IPRXFCR			0xB8
203 #define FSPI_IPRXFCR_CLR		BIT(0)
204 #define FSPI_IPRXFCR_DMA_EN		BIT(1)
205 #define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
206 
207 #define FSPI_IPTXFCR			0xBC
208 #define FSPI_IPTXFCR_CLR		BIT(0)
209 #define FSPI_IPTXFCR_DMA_EN		BIT(1)
210 #define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
211 
212 #define FSPI_DLLACR			0xC0
213 #define FSPI_DLLACR_OVRDEN		BIT(8)
214 #define FSPI_DLLACR_SLVDLY(x)		((x) << 3)
215 #define FSPI_DLLACR_DLLRESET		BIT(1)
216 #define FSPI_DLLACR_DLLEN		BIT(0)
217 
218 #define FSPI_DLLBCR			0xC4
219 #define FSPI_DLLBCR_OVRDEN		BIT(8)
220 #define FSPI_DLLBCR_SLVDLY(x)		((x) << 3)
221 #define FSPI_DLLBCR_DLLRESET		BIT(1)
222 #define FSPI_DLLBCR_DLLEN		BIT(0)
223 
224 #define FSPI_STS0			0xE0
225 #define FSPI_STS0_DLPHB(x)		((x) << 8)
226 #define FSPI_STS0_DLPHA(x)		((x) << 4)
227 #define FSPI_STS0_CMD_SRC(x)		((x) << 2)
228 #define FSPI_STS0_ARB_IDLE		BIT(1)
229 #define FSPI_STS0_SEQ_IDLE		BIT(0)
230 
231 #define FSPI_STS1			0xE4
232 #define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
233 #define FSPI_STS1_IP_ERRID(x)		((x) << 16)
234 #define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
235 #define FSPI_STS1_AHB_ERRID(x)		(x)
236 
237 #define FSPI_STS2			0xE8
238 #define FSPI_STS2_BREFLOCK		BIT(17)
239 #define FSPI_STS2_BSLVLOCK		BIT(16)
240 #define FSPI_STS2_AREFLOCK		BIT(1)
241 #define FSPI_STS2_ASLVLOCK		BIT(0)
242 #define FSPI_STS2_AB_LOCK		(FSPI_STS2_BREFLOCK | \
243 					 FSPI_STS2_BSLVLOCK | \
244 					 FSPI_STS2_AREFLOCK | \
245 					 FSPI_STS2_ASLVLOCK)
246 
247 #define FSPI_AHBSPNST			0xEC
248 #define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
249 #define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
250 #define FSPI_AHBSPNST_ACTIVE		BIT(0)
251 
252 #define FSPI_IPRXFSTS			0xF0
253 #define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
254 #define FSPI_IPRXFSTS_FILL(x)		(x)
255 
256 #define FSPI_IPTXFSTS			0xF4
257 #define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
258 #define FSPI_IPTXFSTS_FILL(x)		(x)
259 
260 #define FSPI_RFDR			0x100
261 #define FSPI_TFDR			0x180
262 
263 #define FSPI_LUT_BASE			0x200
264 
265 /* register map end */
266 
267 /* Instruction set for the LUT register. */
268 #define LUT_STOP			0x00
269 #define LUT_CMD				0x01
270 #define LUT_ADDR			0x02
271 #define LUT_CADDR_SDR			0x03
272 #define LUT_MODE			0x04
273 #define LUT_MODE2			0x05
274 #define LUT_MODE4			0x06
275 #define LUT_MODE8			0x07
276 #define LUT_NXP_WRITE			0x08
277 #define LUT_NXP_READ			0x09
278 #define LUT_LEARN_SDR			0x0A
279 #define LUT_DATSZ_SDR			0x0B
280 #define LUT_DUMMY			0x0C
281 #define LUT_DUMMY_RWDS_SDR		0x0D
282 #define LUT_JMP_ON_CS			0x1F
283 #define LUT_CMD_DDR			0x21
284 #define LUT_ADDR_DDR			0x22
285 #define LUT_CADDR_DDR			0x23
286 #define LUT_MODE_DDR			0x24
287 #define LUT_MODE2_DDR			0x25
288 #define LUT_MODE4_DDR			0x26
289 #define LUT_MODE8_DDR			0x27
290 #define LUT_WRITE_DDR			0x28
291 #define LUT_READ_DDR			0x29
292 #define LUT_LEARN_DDR			0x2A
293 #define LUT_DATSZ_DDR			0x2B
294 #define LUT_DUMMY_DDR			0x2C
295 #define LUT_DUMMY_RWDS_DDR		0x2D
296 
297 /*
298  * Calculate number of required PAD bits for LUT register.
299  *
300  * The pad stands for the number of IO lines [0:7].
301  * For example, the octal read needs eight IO lines,
302  * so you should use LUT_PAD(8). This macro
303  * returns 3 i.e. use eight (2^3) IP lines for read.
304  */
305 #define LUT_PAD(x) (fls(x) - 1)
306 
307 /*
308  * Macro for constructing the LUT entries with the following
309  * register layout:
310  *
311  *  ---------------------------------------------------
312  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
313  *  ---------------------------------------------------
314  */
315 #define PAD_SHIFT		8
316 #define INSTR_SHIFT		10
317 #define OPRND_SHIFT		16
318 
319 /* Macros for constructing the LUT register. */
320 #define LUT_DEF(idx, ins, pad, opr)			  \
321 	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
322 	(opr)) << (((idx) % 2) * OPRND_SHIFT))
323 
324 #define POLL_TOUT		5000
325 #define NXP_FSPI_MAX_CHIPSELECT		4
326 #define NXP_FSPI_MIN_IOMAP	SZ_4M
327 
328 #define DCFG_RCWSR1		0x100
329 #define SYS_PLL_RAT		GENMASK(6, 2)
330 
331 /* Access flash memory using IP bus only */
332 #define FSPI_QUIRK_USE_IP_ONLY	BIT(0)
333 
334 struct nxp_fspi_devtype_data {
335 	unsigned int rxfifo;
336 	unsigned int txfifo;
337 	unsigned int ahb_buf_size;
338 	unsigned int quirks;
339 	unsigned int lut_num;
340 	bool little_endian;
341 };
342 
343 static struct nxp_fspi_devtype_data lx2160a_data = {
344 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
345 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
346 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
347 	.quirks = 0,
348 	.lut_num = 32,
349 	.little_endian = true,  /* little-endian    */
350 };
351 
352 static struct nxp_fspi_devtype_data imx8mm_data = {
353 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
354 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
355 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
356 	.quirks = 0,
357 	.lut_num = 32,
358 	.little_endian = true,  /* little-endian    */
359 };
360 
361 static struct nxp_fspi_devtype_data imx8qxp_data = {
362 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
363 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
364 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
365 	.quirks = 0,
366 	.lut_num = 32,
367 	.little_endian = true,  /* little-endian    */
368 };
369 
370 static struct nxp_fspi_devtype_data imx8dxl_data = {
371 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
372 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
373 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
374 	.quirks = FSPI_QUIRK_USE_IP_ONLY,
375 	.lut_num = 32,
376 	.little_endian = true,  /* little-endian    */
377 };
378 
379 static struct nxp_fspi_devtype_data imx8ulp_data = {
380 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
381 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
382 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
383 	.quirks = 0,
384 	.lut_num = 16,
385 	.little_endian = true,  /* little-endian    */
386 };
387 
388 struct nxp_fspi {
389 	void __iomem *iobase;
390 	void __iomem *ahb_addr;
391 	u32 memmap_phy;
392 	u32 memmap_phy_size;
393 	u32 memmap_start;
394 	u32 memmap_len;
395 	struct clk *clk, *clk_en;
396 	struct device *dev;
397 	struct completion c;
398 	struct nxp_fspi_devtype_data *devtype_data;
399 	struct mutex lock;
400 	struct pm_qos_request pm_qos_req;
401 	int selected;
402 #define FSPI_NEED_INIT		(1 << 0)
403 	int flags;
404 };
405 
needs_ip_only(struct nxp_fspi * f)406 static inline int needs_ip_only(struct nxp_fspi *f)
407 {
408 	return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
409 }
410 
411 /*
412  * R/W functions for big- or little-endian registers:
413  * The FSPI controller's endianness is independent of
414  * the CPU core's endianness. So far, although the CPU
415  * core is little-endian the FSPI controller can use
416  * big-endian or little-endian.
417  */
fspi_writel(struct nxp_fspi * f,u32 val,void __iomem * addr)418 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
419 {
420 	if (f->devtype_data->little_endian)
421 		iowrite32(val, addr);
422 	else
423 		iowrite32be(val, addr);
424 }
425 
fspi_readl(struct nxp_fspi * f,void __iomem * addr)426 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
427 {
428 	if (f->devtype_data->little_endian)
429 		return ioread32(addr);
430 	else
431 		return ioread32be(addr);
432 }
433 
nxp_fspi_irq_handler(int irq,void * dev_id)434 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
435 {
436 	struct nxp_fspi *f = dev_id;
437 	u32 reg;
438 
439 	/* clear interrupt */
440 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
441 	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
442 
443 	if (reg & FSPI_INTR_IPCMDDONE)
444 		complete(&f->c);
445 
446 	return IRQ_HANDLED;
447 }
448 
nxp_fspi_check_buswidth(struct nxp_fspi * f,u8 width)449 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
450 {
451 	switch (width) {
452 	case 1:
453 	case 2:
454 	case 4:
455 	case 8:
456 		return 0;
457 	}
458 
459 	return -ENOTSUPP;
460 }
461 
nxp_fspi_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)462 static bool nxp_fspi_supports_op(struct spi_mem *mem,
463 				 const struct spi_mem_op *op)
464 {
465 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
466 	int ret;
467 
468 	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
469 
470 	if (op->addr.nbytes)
471 		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
472 
473 	if (op->dummy.nbytes)
474 		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
475 
476 	if (op->data.nbytes)
477 		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
478 
479 	if (ret)
480 		return false;
481 
482 	/*
483 	 * The number of address bytes should be equal to or less than 4 bytes.
484 	 */
485 	if (op->addr.nbytes > 4)
486 		return false;
487 
488 	/*
489 	 * If requested address value is greater than controller assigned
490 	 * memory mapped space, return error as it didn't fit in the range
491 	 * of assigned address space.
492 	 */
493 	if (op->addr.val >= f->memmap_phy_size)
494 		return false;
495 
496 	/* Max 64 dummy clock cycles supported */
497 	if (op->dummy.buswidth &&
498 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
499 		return false;
500 
501 	/* Max data length, check controller limits and alignment */
502 	if (op->data.dir == SPI_MEM_DATA_IN &&
503 	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
504 	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
505 	      !IS_ALIGNED(op->data.nbytes, 8))))
506 		return false;
507 
508 	if (op->data.dir == SPI_MEM_DATA_OUT &&
509 	    op->data.nbytes > f->devtype_data->txfifo)
510 		return false;
511 
512 	return spi_mem_default_supports_op(mem, op);
513 }
514 
515 /* Instead of busy looping invoke readl_poll_timeout functionality. */
fspi_readl_poll_tout(struct nxp_fspi * f,void __iomem * base,u32 mask,u32 delay_us,u32 timeout_us,bool c)516 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
517 				u32 mask, u32 delay_us,
518 				u32 timeout_us, bool c)
519 {
520 	u32 reg;
521 
522 	if (!f->devtype_data->little_endian)
523 		mask = (u32)cpu_to_be32(mask);
524 
525 	if (c)
526 		return readl_poll_timeout(base, reg, (reg & mask),
527 					  delay_us, timeout_us);
528 	else
529 		return readl_poll_timeout(base, reg, !(reg & mask),
530 					  delay_us, timeout_us);
531 }
532 
533 /*
534  * If the target device content being changed by Write/Erase, need to
535  * invalidate the AHB buffer. This can be achieved by doing the reset
536  * of controller after setting MCR0[SWRESET] bit.
537  */
nxp_fspi_invalid(struct nxp_fspi * f)538 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
539 {
540 	u32 reg;
541 	int ret;
542 
543 	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
544 	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
545 
546 	/* w1c register, wait unit clear */
547 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
548 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
549 	WARN_ON(ret);
550 }
551 
nxp_fspi_prepare_lut(struct nxp_fspi * f,const struct spi_mem_op * op)552 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
553 				 const struct spi_mem_op *op)
554 {
555 	void __iomem *base = f->iobase;
556 	u32 lutval[4] = {};
557 	int lutidx = 1, i;
558 	u32 lut_offset = (f->devtype_data->lut_num - 1) * 4 * 4;
559 	u32 target_lut_reg;
560 
561 	/* cmd */
562 	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
563 			     op->cmd.opcode);
564 
565 	/* addr bytes */
566 	if (op->addr.nbytes) {
567 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
568 					      LUT_PAD(op->addr.buswidth),
569 					      op->addr.nbytes * 8);
570 		lutidx++;
571 	}
572 
573 	/* dummy bytes, if needed */
574 	if (op->dummy.nbytes) {
575 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
576 		/*
577 		 * Due to FlexSPI controller limitation number of PAD for dummy
578 		 * buswidth needs to be programmed as equal to data buswidth.
579 		 */
580 					      LUT_PAD(op->data.buswidth),
581 					      op->dummy.nbytes * 8 /
582 					      op->dummy.buswidth);
583 		lutidx++;
584 	}
585 
586 	/* read/write data bytes */
587 	if (op->data.nbytes) {
588 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
589 					      op->data.dir == SPI_MEM_DATA_IN ?
590 					      LUT_NXP_READ : LUT_NXP_WRITE,
591 					      LUT_PAD(op->data.buswidth),
592 					      0);
593 		lutidx++;
594 	}
595 
596 	/* stop condition. */
597 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
598 
599 	/* unlock LUT */
600 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
601 	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
602 
603 	/* fill LUT */
604 	for (i = 0; i < ARRAY_SIZE(lutval); i++) {
605 		target_lut_reg = FSPI_LUT_BASE + lut_offset + i * 4;
606 		fspi_writel(f, lutval[i], base + target_lut_reg);
607 	}
608 
609 	dev_dbg(f->dev, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n",
610 		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
611 
612 	/* lock LUT */
613 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
614 	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
615 }
616 
nxp_fspi_clk_prep_enable(struct nxp_fspi * f)617 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
618 {
619 	int ret;
620 
621 	if (is_acpi_node(dev_fwnode(f->dev)))
622 		return 0;
623 
624 	ret = clk_prepare_enable(f->clk_en);
625 	if (ret)
626 		return ret;
627 
628 	ret = clk_prepare_enable(f->clk);
629 	if (ret) {
630 		clk_disable_unprepare(f->clk_en);
631 		return ret;
632 	}
633 
634 	return 0;
635 }
636 
nxp_fspi_clk_disable_unprep(struct nxp_fspi * f)637 static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
638 {
639 	if (is_acpi_node(dev_fwnode(f->dev)))
640 		return;
641 
642 	clk_disable_unprepare(f->clk);
643 	clk_disable_unprepare(f->clk_en);
644 
645 	return;
646 }
647 
nxp_fspi_dll_calibration(struct nxp_fspi * f)648 static void nxp_fspi_dll_calibration(struct nxp_fspi *f)
649 {
650 	int ret;
651 
652 	/* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
653 	fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR);
654 	fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR);
655 	fspi_writel(f, 0, f->iobase + FSPI_DLLACR);
656 	fspi_writel(f, 0, f->iobase + FSPI_DLLBCR);
657 
658 	/*
659 	 * Enable the DLL calibration mode.
660 	 * The delay target for slave delay line is:
661 	 *   ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
662 	 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
663 	 * means half of clock cycle of reference clock.
664 	 */
665 	fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF),
666 		    f->iobase + FSPI_DLLACR);
667 	fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF),
668 		    f->iobase + FSPI_DLLBCR);
669 
670 	/* Wait to get REF/SLV lock */
671 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK,
672 				   0, POLL_TOUT, true);
673 	if (ret)
674 		dev_warn(f->dev, "DLL lock failed, please fix it!\n");
675 }
676 
677 /*
678  * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
679  * register and start base address of the target device.
680  *
681  *							    (Higher address)
682  *				--------    <-- FLSHB2CR0
683  *				|  B2  |
684  *				|      |
685  *	B2 start address -->	--------    <-- FLSHB1CR0
686  *				|  B1  |
687  *				|      |
688  *	B1 start address -->	--------    <-- FLSHA2CR0
689  *				|  A2  |
690  *				|      |
691  *	A2 start address -->	--------    <-- FLSHA1CR0
692  *				|  A1  |
693  *				|      |
694  *	A1 start address -->	--------		    (Lower address)
695  *
696  *
697  * Start base address defines the starting address range for given CS and
698  * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS.
699  *
700  * But, different targets are having different combinations of number of CS,
701  * some targets only have single CS or two CS covering controller's full
702  * memory mapped space area.
703  * Thus, implementation is being done as independent of the size and number
704  * of the connected target device.
705  * Assign controller memory mapped space size as the size to the connected
706  * target device.
707  * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
708  * chip-select Flash configuration register.
709  *
710  * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
711  * memory mapped size of the controller.
712  * Value for rest of the CS FLSHxxCR0 register would be zero.
713  *
714  */
nxp_fspi_select_mem(struct nxp_fspi * f,struct spi_device * spi,const struct spi_mem_op * op)715 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi,
716 				const struct spi_mem_op *op)
717 {
718 	unsigned long rate = op->max_freq;
719 	int ret;
720 	uint64_t size_kb;
721 
722 	/*
723 	 * Return, if previously selected target device is same as current
724 	 * requested target device.
725 	 */
726 	if (f->selected == spi_get_chipselect(spi, 0))
727 		return;
728 
729 	/* Reset FLSHxxCR0 registers */
730 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
731 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
732 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
733 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
734 
735 	/* Assign controller memory mapped space as size, KBytes, of flash. */
736 	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
737 
738 	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
739 		    4 * spi_get_chipselect(spi, 0));
740 
741 	dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0));
742 
743 	nxp_fspi_clk_disable_unprep(f);
744 
745 	ret = clk_set_rate(f->clk, rate);
746 	if (ret)
747 		return;
748 
749 	ret = nxp_fspi_clk_prep_enable(f);
750 	if (ret)
751 		return;
752 
753 	/*
754 	 * If clock rate > 100MHz, then switch from DLL override mode to
755 	 * DLL calibration mode.
756 	 */
757 	if (rate > 100000000)
758 		nxp_fspi_dll_calibration(f);
759 
760 	f->selected = spi_get_chipselect(spi, 0);
761 }
762 
nxp_fspi_read_ahb(struct nxp_fspi * f,const struct spi_mem_op * op)763 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
764 {
765 	u32 start = op->addr.val;
766 	u32 len = op->data.nbytes;
767 
768 	/* if necessary, ioremap before AHB read */
769 	if ((!f->ahb_addr) || start < f->memmap_start ||
770 	     start + len > f->memmap_start + f->memmap_len) {
771 		if (f->ahb_addr)
772 			iounmap(f->ahb_addr);
773 
774 		f->memmap_start = start;
775 		f->memmap_len = max_t(u32, len, NXP_FSPI_MIN_IOMAP);
776 
777 		f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
778 					 f->memmap_len);
779 
780 		if (!f->ahb_addr) {
781 			dev_err(f->dev, "failed to alloc memory\n");
782 			return -ENOMEM;
783 		}
784 	}
785 
786 	/* Read out the data directly from the AHB buffer. */
787 	memcpy_fromio(op->data.buf.in,
788 		      f->ahb_addr + start - f->memmap_start, len);
789 
790 	return 0;
791 }
792 
nxp_fspi_fill_txfifo(struct nxp_fspi * f,const struct spi_mem_op * op)793 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
794 				 const struct spi_mem_op *op)
795 {
796 	void __iomem *base = f->iobase;
797 	int i, ret;
798 	u8 *buf = (u8 *) op->data.buf.out;
799 
800 	/* clear the TX FIFO. */
801 	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
802 
803 	/*
804 	 * Default value of water mark level is 8 bytes, hence in single
805 	 * write request controller can write max 8 bytes of data.
806 	 */
807 
808 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
809 		/* Wait for TXFIFO empty */
810 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
811 					   FSPI_INTR_IPTXWE, 0,
812 					   POLL_TOUT, true);
813 		WARN_ON(ret);
814 
815 		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
816 		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
817 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
818 	}
819 
820 	if (i < op->data.nbytes) {
821 		u32 data = 0;
822 		int j;
823 		int remaining = op->data.nbytes - i;
824 		/* Wait for TXFIFO empty */
825 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
826 					   FSPI_INTR_IPTXWE, 0,
827 					   POLL_TOUT, true);
828 		WARN_ON(ret);
829 
830 		for (j = 0; j < ALIGN(remaining, 4); j += 4) {
831 			memcpy(&data, buf + i + j, min_t(int, 4, remaining - j));
832 			fspi_writel(f, data, base + FSPI_TFDR + j);
833 		}
834 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
835 	}
836 }
837 
nxp_fspi_read_rxfifo(struct nxp_fspi * f,const struct spi_mem_op * op)838 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
839 			  const struct spi_mem_op *op)
840 {
841 	void __iomem *base = f->iobase;
842 	int i, ret;
843 	int len = op->data.nbytes;
844 	u8 *buf = (u8 *) op->data.buf.in;
845 
846 	/*
847 	 * Default value of water mark level is 8 bytes, hence in single
848 	 * read request controller can read max 8 bytes of data.
849 	 */
850 	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
851 		/* Wait for RXFIFO available */
852 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
853 					   FSPI_INTR_IPRXWA, 0,
854 					   POLL_TOUT, true);
855 		WARN_ON(ret);
856 
857 		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
858 		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
859 		/* move the FIFO pointer */
860 		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
861 	}
862 
863 	if (i < len) {
864 		u32 tmp;
865 		int size, j;
866 
867 		buf = op->data.buf.in + i;
868 		/* Wait for RXFIFO available */
869 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
870 					   FSPI_INTR_IPRXWA, 0,
871 					   POLL_TOUT, true);
872 		WARN_ON(ret);
873 
874 		len = op->data.nbytes - i;
875 		for (j = 0; j < op->data.nbytes - i; j += 4) {
876 			tmp = fspi_readl(f, base + FSPI_RFDR + j);
877 			size = min(len, 4);
878 			memcpy(buf + j, &tmp, size);
879 			len -= size;
880 		}
881 	}
882 
883 	/* invalid the RXFIFO */
884 	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
885 	/* move the FIFO pointer */
886 	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
887 }
888 
nxp_fspi_do_op(struct nxp_fspi * f,const struct spi_mem_op * op)889 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
890 {
891 	void __iomem *base = f->iobase;
892 	int seqnum = 0;
893 	int err = 0;
894 	u32 reg, seqid_lut;
895 
896 	reg = fspi_readl(f, base + FSPI_IPRXFCR);
897 	/* invalid RXFIFO first */
898 	reg &= ~FSPI_IPRXFCR_DMA_EN;
899 	reg = reg | FSPI_IPRXFCR_CLR;
900 	fspi_writel(f, reg, base + FSPI_IPRXFCR);
901 
902 	init_completion(&f->c);
903 
904 	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
905 	/*
906 	 * Always start the sequence at the same index since we update
907 	 * the LUT at each exec_op() call. And also specify the DATA
908 	 * length, since it's has not been specified in the LUT.
909 	 */
910 	seqid_lut = f->devtype_data->lut_num - 1;
911 	fspi_writel(f, op->data.nbytes |
912 		 (seqid_lut << FSPI_IPCR1_SEQID_SHIFT) |
913 		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
914 		 base + FSPI_IPCR1);
915 
916 	/* Trigger the LUT now. */
917 	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
918 
919 	/* Wait for the interrupt. */
920 	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
921 		err = -ETIMEDOUT;
922 
923 	/* Invoke IP data read, if request is of data read. */
924 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
925 		nxp_fspi_read_rxfifo(f, op);
926 
927 	return err;
928 }
929 
nxp_fspi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)930 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
931 {
932 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
933 	int err = 0;
934 
935 	guard(mutex)(&f->lock);
936 
937 	err = pm_runtime_get_sync(f->dev);
938 	if (err < 0) {
939 		dev_err(f->dev, "Failed to enable clock %d\n", __LINE__);
940 		return err;
941 	}
942 
943 	/* Wait for controller being ready. */
944 	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
945 				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
946 	WARN_ON(err);
947 
948 	nxp_fspi_select_mem(f, mem->spi, op);
949 
950 	nxp_fspi_prepare_lut(f, op);
951 	/*
952 	 * If we have large chunks of data, we read them through the AHB bus by
953 	 * accessing the mapped memory. In all other cases we use IP commands
954 	 * to access the flash. Read via AHB bus may be corrupted due to
955 	 * existence of an errata and therefore discard AHB read in such cases.
956 	 */
957 	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
958 	    op->data.dir == SPI_MEM_DATA_IN &&
959 	    !needs_ip_only(f)) {
960 		err = nxp_fspi_read_ahb(f, op);
961 	} else {
962 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
963 			nxp_fspi_fill_txfifo(f, op);
964 
965 		err = nxp_fspi_do_op(f, op);
966 	}
967 
968 	/* Invalidate the data in the AHB buffer. */
969 	nxp_fspi_invalid(f);
970 
971 	pm_runtime_mark_last_busy(f->dev);
972 	pm_runtime_put_autosuspend(f->dev);
973 
974 	return err;
975 }
976 
nxp_fspi_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)977 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
978 {
979 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
980 
981 	if (op->data.dir == SPI_MEM_DATA_OUT) {
982 		if (op->data.nbytes > f->devtype_data->txfifo)
983 			op->data.nbytes = f->devtype_data->txfifo;
984 	} else {
985 		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
986 			op->data.nbytes = f->devtype_data->ahb_buf_size;
987 		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
988 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
989 	}
990 
991 	/* Limit data bytes to RX FIFO in case of IP read only */
992 	if (op->data.dir == SPI_MEM_DATA_IN &&
993 	    needs_ip_only(f) &&
994 	    op->data.nbytes > f->devtype_data->rxfifo)
995 		op->data.nbytes = f->devtype_data->rxfifo;
996 
997 	return 0;
998 }
999 
erratum_err050568(struct nxp_fspi * f)1000 static void erratum_err050568(struct nxp_fspi *f)
1001 {
1002 	static const struct soc_device_attribute ls1028a_soc_attr[] = {
1003 		{ .family = "QorIQ LS1028A" },
1004 		{ /* sentinel */ }
1005 	};
1006 	struct regmap *map;
1007 	u32 val, sys_pll_ratio;
1008 	int ret;
1009 
1010 	/* Check for LS1028A family */
1011 	if (!soc_device_match(ls1028a_soc_attr)) {
1012 		dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
1013 		return;
1014 	}
1015 
1016 	map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
1017 	if (IS_ERR(map)) {
1018 		dev_err(f->dev, "No syscon regmap\n");
1019 		goto err;
1020 	}
1021 
1022 	ret = regmap_read(map, DCFG_RCWSR1, &val);
1023 	if (ret < 0)
1024 		goto err;
1025 
1026 	sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
1027 	dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
1028 
1029 	/* Use IP bus only if platform clock is 300MHz */
1030 	if (sys_pll_ratio == 3)
1031 		f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
1032 
1033 	return;
1034 
1035 err:
1036 	dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
1037 }
1038 
nxp_fspi_default_setup(struct nxp_fspi * f)1039 static int nxp_fspi_default_setup(struct nxp_fspi *f)
1040 {
1041 	void __iomem *base = f->iobase;
1042 	int ret, i;
1043 	u32 reg, seqid_lut;
1044 
1045 	/* disable and unprepare clock to avoid glitch pass to controller */
1046 	nxp_fspi_clk_disable_unprep(f);
1047 
1048 	/* the default frequency, we will change it later if necessary. */
1049 	ret = clk_set_rate(f->clk, 20000000);
1050 	if (ret)
1051 		return ret;
1052 
1053 	ret = nxp_fspi_clk_prep_enable(f);
1054 	if (ret)
1055 		return ret;
1056 
1057 	/*
1058 	 * ERR050568: Flash access by FlexSPI AHB command may not work with
1059 	 * platform frequency equal to 300 MHz on LS1028A.
1060 	 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
1061 	 * Layerscape LS1028A platform.
1062 	 */
1063 	if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1064 		erratum_err050568(f);
1065 
1066 	/* Reset the module */
1067 	/* w1c register, wait unit clear */
1068 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1069 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1070 	WARN_ON(ret);
1071 
1072 	/* Disable the module */
1073 	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1074 
1075 	/*
1076 	 * Config the DLL register to default value, enable the target clock delay
1077 	 * line delay cell override mode, and use 1 fixed delay cell in DLL delay
1078 	 * chain, this is the suggested setting when clock rate < 100MHz.
1079 	 */
1080 	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1081 	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1082 
1083 	/* enable module */
1084 	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1085 		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1086 		    base + FSPI_MCR0);
1087 
1088 	/*
1089 	 * Disable same device enable bit and configure all target devices
1090 	 * independently.
1091 	 */
1092 	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1093 	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1094 	fspi_writel(f, reg, base + FSPI_MCR2);
1095 
1096 	/* AHB configuration for access buffer 0~7. */
1097 	for (i = 0; i < 7; i++)
1098 		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1099 
1100 	/*
1101 	 * Set ADATSZ with the maximum AHB buffer size to improve the read
1102 	 * performance.
1103 	 */
1104 	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1105 		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1106 
1107 	/* prefetch and no start address alignment limitation */
1108 	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1109 		 base + FSPI_AHBCR);
1110 
1111 	/* Reset the FLSHxCR1 registers. */
1112 	reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
1113 	fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
1114 	fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
1115 	fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
1116 	fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
1117 
1118 	/*
1119 	 * The driver only uses one single LUT entry, that is updated on
1120 	 * each call of exec_op(). Index 0 is preset at boot with a basic
1121 	 * read operation, so let's use the last entry.
1122 	 */
1123 	seqid_lut = f->devtype_data->lut_num - 1;
1124 	/* AHB Read - Set lut sequence ID for all CS. */
1125 	fspi_writel(f, seqid_lut, base + FSPI_FLSHA1CR2);
1126 	fspi_writel(f, seqid_lut, base + FSPI_FLSHA2CR2);
1127 	fspi_writel(f, seqid_lut, base + FSPI_FLSHB1CR2);
1128 	fspi_writel(f, seqid_lut, base + FSPI_FLSHB2CR2);
1129 
1130 	f->selected = -1;
1131 
1132 	/* enable the interrupt */
1133 	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1134 
1135 	return 0;
1136 }
1137 
nxp_fspi_get_name(struct spi_mem * mem)1138 static const char *nxp_fspi_get_name(struct spi_mem *mem)
1139 {
1140 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
1141 	struct device *dev = &mem->spi->dev;
1142 	const char *name;
1143 
1144 	// Set custom name derived from the platform_device of the controller.
1145 	if (of_get_available_child_count(f->dev->of_node) == 1)
1146 		return dev_name(f->dev);
1147 
1148 	name = devm_kasprintf(dev, GFP_KERNEL,
1149 			      "%s-%d", dev_name(f->dev),
1150 			      spi_get_chipselect(mem->spi, 0));
1151 
1152 	if (!name) {
1153 		dev_err(dev, "failed to get memory for custom flash name\n");
1154 		return ERR_PTR(-ENOMEM);
1155 	}
1156 
1157 	return name;
1158 }
1159 
1160 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1161 	.adjust_op_size = nxp_fspi_adjust_op_size,
1162 	.supports_op = nxp_fspi_supports_op,
1163 	.exec_op = nxp_fspi_exec_op,
1164 	.get_name = nxp_fspi_get_name,
1165 };
1166 
1167 static const struct spi_controller_mem_caps nxp_fspi_mem_caps = {
1168 	.per_op_freq = true,
1169 };
1170 
nxp_fspi_cleanup(void * data)1171 static void nxp_fspi_cleanup(void *data)
1172 {
1173 	struct nxp_fspi *f = data;
1174 
1175 	/* enable clock first since there is register access */
1176 	pm_runtime_get_sync(f->dev);
1177 
1178 	/* disable the hardware */
1179 	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1180 
1181 	pm_runtime_disable(f->dev);
1182 	pm_runtime_put_noidle(f->dev);
1183 	nxp_fspi_clk_disable_unprep(f);
1184 
1185 	if (f->ahb_addr)
1186 		iounmap(f->ahb_addr);
1187 }
1188 
nxp_fspi_probe(struct platform_device * pdev)1189 static int nxp_fspi_probe(struct platform_device *pdev)
1190 {
1191 	struct spi_controller *ctlr;
1192 	struct device *dev = &pdev->dev;
1193 	struct device_node *np = dev->of_node;
1194 	struct resource *res;
1195 	struct nxp_fspi *f;
1196 	int ret, irq;
1197 	u32 reg;
1198 
1199 	ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*f));
1200 	if (!ctlr)
1201 		return -ENOMEM;
1202 
1203 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1204 			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1205 
1206 	f = spi_controller_get_devdata(ctlr);
1207 	f->dev = dev;
1208 	f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1209 	if (!f->devtype_data)
1210 		return -ENODEV;
1211 
1212 	platform_set_drvdata(pdev, f);
1213 
1214 	/* find the resources - configuration register address space */
1215 	if (is_acpi_node(dev_fwnode(f->dev)))
1216 		f->iobase = devm_platform_ioremap_resource(pdev, 0);
1217 	else
1218 		f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base");
1219 	if (IS_ERR(f->iobase))
1220 		return PTR_ERR(f->iobase);
1221 
1222 	/* find the resources - controller memory mapped space */
1223 	if (is_acpi_node(dev_fwnode(f->dev)))
1224 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1225 	else
1226 		res = platform_get_resource_byname(pdev,
1227 				IORESOURCE_MEM, "fspi_mmap");
1228 	if (!res)
1229 		return -ENODEV;
1230 
1231 	/* assign memory mapped starting address and mapped size. */
1232 	f->memmap_phy = res->start;
1233 	f->memmap_phy_size = resource_size(res);
1234 
1235 	/* find the clocks */
1236 	if (dev_of_node(&pdev->dev)) {
1237 		f->clk_en = devm_clk_get(dev, "fspi_en");
1238 		if (IS_ERR(f->clk_en))
1239 			return PTR_ERR(f->clk_en);
1240 
1241 		f->clk = devm_clk_get(dev, "fspi");
1242 		if (IS_ERR(f->clk))
1243 			return PTR_ERR(f->clk);
1244 	}
1245 
1246 	/* find the irq */
1247 	irq = platform_get_irq(pdev, 0);
1248 	if (irq < 0)
1249 		return dev_err_probe(dev, irq, "Failed to get irq source");
1250 
1251 	pm_runtime_enable(dev);
1252 	pm_runtime_set_autosuspend_delay(dev, FSPI_RPM_TIMEOUT);
1253 	pm_runtime_use_autosuspend(dev);
1254 
1255 	/* enable clock */
1256 	ret = pm_runtime_get_sync(f->dev);
1257 	if (ret < 0)
1258 		return dev_err_probe(dev, ret, "Failed to enable clock");
1259 
1260 	/* Clear potential interrupts */
1261 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
1262 	if (reg)
1263 		fspi_writel(f, reg, f->iobase + FSPI_INTR);
1264 
1265 	nxp_fspi_default_setup(f);
1266 
1267 	ret = pm_runtime_put_sync(dev);
1268 	if (ret < 0)
1269 		return dev_err_probe(dev, ret, "Failed to disable clock");
1270 
1271 	ret = devm_request_irq(dev, irq,
1272 			nxp_fspi_irq_handler, 0, pdev->name, f);
1273 	if (ret)
1274 		return dev_err_probe(dev, ret, "Failed to request irq\n");
1275 
1276 	devm_mutex_init(dev, &f->lock);
1277 
1278 	ctlr->bus_num = -1;
1279 	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1280 	ctlr->mem_ops = &nxp_fspi_mem_ops;
1281 	ctlr->mem_caps = &nxp_fspi_mem_caps;
1282 	ctlr->dev.of_node = np;
1283 
1284 	ret = devm_add_action_or_reset(dev, nxp_fspi_cleanup, f);
1285 	if (ret)
1286 		return dev_err_probe(dev, ret, "Failed to register nxp_fspi_cleanup\n");
1287 
1288 	return devm_spi_register_controller(&pdev->dev, ctlr);
1289 }
1290 
nxp_fspi_runtime_suspend(struct device * dev)1291 static int nxp_fspi_runtime_suspend(struct device *dev)
1292 {
1293 	struct nxp_fspi *f = dev_get_drvdata(dev);
1294 
1295 	nxp_fspi_clk_disable_unprep(f);
1296 
1297 	return 0;
1298 }
1299 
nxp_fspi_runtime_resume(struct device * dev)1300 static int nxp_fspi_runtime_resume(struct device *dev)
1301 {
1302 	struct nxp_fspi *f = dev_get_drvdata(dev);
1303 	int ret;
1304 
1305 	ret = nxp_fspi_clk_prep_enable(f);
1306 	if (ret)
1307 		return ret;
1308 
1309 	if (f->flags & FSPI_NEED_INIT) {
1310 		nxp_fspi_default_setup(f);
1311 		ret = pinctrl_pm_select_default_state(dev);
1312 		if (ret)
1313 			dev_err(dev, "select flexspi default pinctrl failed!\n");
1314 		f->flags &= ~FSPI_NEED_INIT;
1315 	}
1316 
1317 	return ret;
1318 }
1319 
nxp_fspi_suspend(struct device * dev)1320 static int nxp_fspi_suspend(struct device *dev)
1321 {
1322 	struct nxp_fspi *f = dev_get_drvdata(dev);
1323 	int ret;
1324 
1325 	ret = pinctrl_pm_select_sleep_state(dev);
1326 	if (ret) {
1327 		dev_err(dev, "select flexspi sleep pinctrl failed!\n");
1328 		return ret;
1329 	}
1330 
1331 	f->flags |= FSPI_NEED_INIT;
1332 
1333 	return pm_runtime_force_suspend(dev);
1334 }
1335 
1336 static const struct dev_pm_ops nxp_fspi_pm_ops = {
1337 	RUNTIME_PM_OPS(nxp_fspi_runtime_suspend, nxp_fspi_runtime_resume, NULL)
1338 	SYSTEM_SLEEP_PM_OPS(nxp_fspi_suspend, pm_runtime_force_resume)
1339 };
1340 
1341 static const struct of_device_id nxp_fspi_dt_ids[] = {
1342 	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1343 	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1344 	{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1345 	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1346 	{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1347 	{ .compatible = "nxp,imx8ulp-fspi", .data = (void *)&imx8ulp_data, },
1348 	{ /* sentinel */ }
1349 };
1350 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1351 
1352 #ifdef CONFIG_ACPI
1353 static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1354 	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1355 	{}
1356 };
1357 MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1358 #endif
1359 
1360 static struct platform_driver nxp_fspi_driver = {
1361 	.driver = {
1362 		.name	= "nxp-fspi",
1363 		.of_match_table = nxp_fspi_dt_ids,
1364 		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1365 		.pm = pm_ptr(&nxp_fspi_pm_ops),
1366 	},
1367 	.probe          = nxp_fspi_probe,
1368 };
1369 module_platform_driver(nxp_fspi_driver);
1370 
1371 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1372 MODULE_AUTHOR("NXP Semiconductor");
1373 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1374 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1375 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1376 MODULE_LICENSE("GPL v2");
1377