1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
4 * (C) Copyright 2007 Novell Inc.
5 */
6
7 #include <linux/pci.h>
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/device.h>
11 #include <linux/mempolicy.h>
12 #include <linux/string.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/sched/isolation.h>
16 #include <linux/cpu.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/suspend.h>
19 #include <linux/kexec.h>
20 #include <linux/of_device.h>
21 #include <linux/acpi.h>
22 #include <linux/dma-map-ops.h>
23 #include <linux/iommu.h>
24 #include "pci.h"
25 #include "pcie/portdrv.h"
26
27 struct pci_dynid {
28 struct list_head node;
29 struct pci_device_id id;
30 };
31
32 /**
33 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
34 * @drv: target pci driver
35 * @vendor: PCI vendor ID
36 * @device: PCI device ID
37 * @subvendor: PCI subvendor ID
38 * @subdevice: PCI subdevice ID
39 * @class: PCI class
40 * @class_mask: PCI class mask
41 * @driver_data: private driver data
42 *
43 * Adds a new dynamic pci device ID to this driver and causes the
44 * driver to probe for all devices again. @drv must have been
45 * registered prior to calling this function.
46 *
47 * CONTEXT:
48 * Does GFP_KERNEL allocation.
49 *
50 * RETURNS:
51 * 0 on success, -errno on failure.
52 */
pci_add_dynid(struct pci_driver * drv,unsigned int vendor,unsigned int device,unsigned int subvendor,unsigned int subdevice,unsigned int class,unsigned int class_mask,unsigned long driver_data)53 int pci_add_dynid(struct pci_driver *drv,
54 unsigned int vendor, unsigned int device,
55 unsigned int subvendor, unsigned int subdevice,
56 unsigned int class, unsigned int class_mask,
57 unsigned long driver_data)
58 {
59 struct pci_dynid *dynid;
60
61 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
62 if (!dynid)
63 return -ENOMEM;
64
65 dynid->id.vendor = vendor;
66 dynid->id.device = device;
67 dynid->id.subvendor = subvendor;
68 dynid->id.subdevice = subdevice;
69 dynid->id.class = class;
70 dynid->id.class_mask = class_mask;
71 dynid->id.driver_data = driver_data;
72
73 spin_lock(&drv->dynids.lock);
74 list_add_tail(&dynid->node, &drv->dynids.list);
75 spin_unlock(&drv->dynids.lock);
76
77 return driver_attach(&drv->driver);
78 }
79 EXPORT_SYMBOL_GPL(pci_add_dynid);
80
pci_free_dynids(struct pci_driver * drv)81 static void pci_free_dynids(struct pci_driver *drv)
82 {
83 struct pci_dynid *dynid, *n;
84
85 spin_lock(&drv->dynids.lock);
86 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
87 list_del(&dynid->node);
88 kfree(dynid);
89 }
90 spin_unlock(&drv->dynids.lock);
91 }
92
93 /**
94 * pci_match_id - See if a PCI device matches a given pci_id table
95 * @ids: array of PCI device ID structures to search in
96 * @dev: the PCI device structure to match against.
97 *
98 * Used by a driver to check whether a PCI device is in its list of
99 * supported devices. Returns the matching pci_device_id structure or
100 * %NULL if there is no match.
101 *
102 * Deprecated; don't use this as it will not catch any dynamic IDs
103 * that a driver might want to check for.
104 */
pci_match_id(const struct pci_device_id * ids,struct pci_dev * dev)105 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
106 struct pci_dev *dev)
107 {
108 if (ids) {
109 while (ids->vendor || ids->subvendor || ids->class_mask) {
110 if (pci_match_one_device(ids, dev))
111 return ids;
112 ids++;
113 }
114 }
115 return NULL;
116 }
117 EXPORT_SYMBOL(pci_match_id);
118
119 static const struct pci_device_id pci_device_id_any = {
120 .vendor = PCI_ANY_ID,
121 .device = PCI_ANY_ID,
122 .subvendor = PCI_ANY_ID,
123 .subdevice = PCI_ANY_ID,
124 };
125
126 /**
127 * pci_match_device - See if a device matches a driver's list of IDs
128 * @drv: the PCI driver to match against
129 * @dev: the PCI device structure to match against
130 *
131 * Used by a driver to check whether a PCI device is in its list of
132 * supported devices or in the dynids list, which may have been augmented
133 * via the sysfs "new_id" file. Returns the matching pci_device_id
134 * structure or %NULL if there is no match.
135 */
pci_match_device(struct pci_driver * drv,struct pci_dev * dev)136 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
137 struct pci_dev *dev)
138 {
139 struct pci_dynid *dynid;
140 const struct pci_device_id *found_id = NULL, *ids;
141
142 /* When driver_override is set, only bind to the matching driver */
143 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
144 return NULL;
145
146 /* Look at the dynamic ids first, before the static ones */
147 spin_lock(&drv->dynids.lock);
148 list_for_each_entry(dynid, &drv->dynids.list, node) {
149 if (pci_match_one_device(&dynid->id, dev)) {
150 found_id = &dynid->id;
151 break;
152 }
153 }
154 spin_unlock(&drv->dynids.lock);
155
156 if (found_id)
157 return found_id;
158
159 for (ids = drv->id_table; (found_id = pci_match_id(ids, dev));
160 ids = found_id + 1) {
161 /*
162 * The match table is split based on driver_override.
163 * In case override_only was set, enforce driver_override
164 * matching.
165 */
166 if (found_id->override_only) {
167 if (dev->driver_override)
168 return found_id;
169 } else {
170 return found_id;
171 }
172 }
173
174 /* driver_override will always match, send a dummy id */
175 if (dev->driver_override)
176 return &pci_device_id_any;
177 return NULL;
178 }
179
180 /**
181 * new_id_store - sysfs frontend to pci_add_dynid()
182 * @driver: target device driver
183 * @buf: buffer for scanning device ID data
184 * @count: input size
185 *
186 * Allow PCI IDs to be added to an existing driver via sysfs.
187 */
new_id_store(struct device_driver * driver,const char * buf,size_t count)188 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
189 size_t count)
190 {
191 struct pci_driver *pdrv = to_pci_driver(driver);
192 const struct pci_device_id *ids = pdrv->id_table;
193 u32 vendor, device, subvendor = PCI_ANY_ID,
194 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
195 unsigned long driver_data = 0;
196 int fields;
197 int retval = 0;
198
199 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
200 &vendor, &device, &subvendor, &subdevice,
201 &class, &class_mask, &driver_data);
202 if (fields < 2)
203 return -EINVAL;
204
205 if (fields != 7) {
206 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
207 if (!pdev)
208 return -ENOMEM;
209
210 pdev->vendor = vendor;
211 pdev->device = device;
212 pdev->subsystem_vendor = subvendor;
213 pdev->subsystem_device = subdevice;
214 pdev->class = class;
215
216 if (pci_match_device(pdrv, pdev))
217 retval = -EEXIST;
218
219 kfree(pdev);
220
221 if (retval)
222 return retval;
223 }
224
225 /* Only accept driver_data values that match an existing id_table
226 entry */
227 if (ids) {
228 retval = -EINVAL;
229 while (ids->vendor || ids->subvendor || ids->class_mask) {
230 if (driver_data == ids->driver_data) {
231 retval = 0;
232 break;
233 }
234 ids++;
235 }
236 if (retval) /* No match */
237 return retval;
238 }
239
240 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
241 class, class_mask, driver_data);
242 if (retval)
243 return retval;
244 return count;
245 }
246 static DRIVER_ATTR_WO(new_id);
247
248 /**
249 * remove_id_store - remove a PCI device ID from this driver
250 * @driver: target device driver
251 * @buf: buffer for scanning device ID data
252 * @count: input size
253 *
254 * Removes a dynamic pci device ID to this driver.
255 */
remove_id_store(struct device_driver * driver,const char * buf,size_t count)256 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
257 size_t count)
258 {
259 struct pci_dynid *dynid, *n;
260 struct pci_driver *pdrv = to_pci_driver(driver);
261 u32 vendor, device, subvendor = PCI_ANY_ID,
262 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
263 int fields;
264 size_t retval = -ENODEV;
265
266 fields = sscanf(buf, "%x %x %x %x %x %x",
267 &vendor, &device, &subvendor, &subdevice,
268 &class, &class_mask);
269 if (fields < 2)
270 return -EINVAL;
271
272 spin_lock(&pdrv->dynids.lock);
273 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
274 struct pci_device_id *id = &dynid->id;
275 if ((id->vendor == vendor) &&
276 (id->device == device) &&
277 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
278 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
279 !((id->class ^ class) & class_mask)) {
280 list_del(&dynid->node);
281 kfree(dynid);
282 retval = count;
283 break;
284 }
285 }
286 spin_unlock(&pdrv->dynids.lock);
287
288 return retval;
289 }
290 static DRIVER_ATTR_WO(remove_id);
291
292 static struct attribute *pci_drv_attrs[] = {
293 &driver_attr_new_id.attr,
294 &driver_attr_remove_id.attr,
295 NULL,
296 };
297 ATTRIBUTE_GROUPS(pci_drv);
298
299 struct drv_dev_and_id {
300 struct pci_driver *drv;
301 struct pci_dev *dev;
302 const struct pci_device_id *id;
303 };
304
local_pci_probe(void * _ddi)305 static long local_pci_probe(void *_ddi)
306 {
307 struct drv_dev_and_id *ddi = _ddi;
308 struct pci_dev *pci_dev = ddi->dev;
309 struct pci_driver *pci_drv = ddi->drv;
310 struct device *dev = &pci_dev->dev;
311 int rc;
312
313 /*
314 * Unbound PCI devices are always put in D0, regardless of
315 * runtime PM status. During probe, the device is set to
316 * active and the usage count is incremented. If the driver
317 * supports runtime PM, it should call pm_runtime_put_noidle(),
318 * or any other runtime PM helper function decrementing the usage
319 * count, in its probe routine and pm_runtime_get_noresume() in
320 * its remove routine.
321 */
322 pm_runtime_get_sync(dev);
323 pci_dev->driver = pci_drv;
324 rc = pci_drv->probe(pci_dev, ddi->id);
325 if (!rc)
326 return rc;
327 if (rc < 0) {
328 pci_dev->driver = NULL;
329 pm_runtime_put_sync(dev);
330 return rc;
331 }
332 /*
333 * Probe function should return < 0 for failure, 0 for success
334 * Treat values > 0 as success, but warn.
335 */
336 pci_warn(pci_dev, "Driver probe function unexpectedly returned %d\n",
337 rc);
338 return 0;
339 }
340
pci_physfn_is_probed(struct pci_dev * dev)341 static bool pci_physfn_is_probed(struct pci_dev *dev)
342 {
343 #ifdef CONFIG_PCI_IOV
344 return dev->is_virtfn && dev->physfn->is_probed;
345 #else
346 return false;
347 #endif
348 }
349
pci_call_probe(struct pci_driver * drv,struct pci_dev * dev,const struct pci_device_id * id)350 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
351 const struct pci_device_id *id)
352 {
353 int error, node, cpu;
354 struct drv_dev_and_id ddi = { drv, dev, id };
355
356 /*
357 * Execute driver initialization on node where the device is
358 * attached. This way the driver likely allocates its local memory
359 * on the right node.
360 */
361 node = dev_to_node(&dev->dev);
362 dev->is_probed = 1;
363
364 cpu_hotplug_disable();
365
366 /*
367 * Prevent nesting work_on_cpu() for the case where a Virtual Function
368 * device is probed from work_on_cpu() of the Physical device.
369 */
370 if (node < 0 || node >= MAX_NUMNODES || !node_online(node) ||
371 pci_physfn_is_probed(dev)) {
372 cpu = nr_cpu_ids;
373 } else {
374 cpumask_var_t wq_domain_mask;
375
376 if (!zalloc_cpumask_var(&wq_domain_mask, GFP_KERNEL)) {
377 error = -ENOMEM;
378 goto out;
379 }
380 cpumask_and(wq_domain_mask,
381 housekeeping_cpumask(HK_TYPE_WQ),
382 housekeeping_cpumask(HK_TYPE_DOMAIN));
383
384 cpu = cpumask_any_and(cpumask_of_node(node),
385 wq_domain_mask);
386 free_cpumask_var(wq_domain_mask);
387 }
388
389 if (cpu < nr_cpu_ids)
390 error = work_on_cpu(cpu, local_pci_probe, &ddi);
391 else
392 error = local_pci_probe(&ddi);
393 out:
394 dev->is_probed = 0;
395 cpu_hotplug_enable();
396 return error;
397 }
398
399 /**
400 * __pci_device_probe - check if a driver wants to claim a specific PCI device
401 * @drv: driver to call to check if it wants the PCI device
402 * @pci_dev: PCI device being probed
403 *
404 * returns 0 on success, else error.
405 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
406 */
__pci_device_probe(struct pci_driver * drv,struct pci_dev * pci_dev)407 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
408 {
409 const struct pci_device_id *id;
410 int error = 0;
411
412 if (drv->probe) {
413 error = -ENODEV;
414
415 id = pci_match_device(drv, pci_dev);
416 if (id)
417 error = pci_call_probe(drv, pci_dev, id);
418 }
419 return error;
420 }
421
422 #ifdef CONFIG_PCI_IOV
pci_device_can_probe(struct pci_dev * pdev)423 static inline bool pci_device_can_probe(struct pci_dev *pdev)
424 {
425 return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe ||
426 pdev->driver_override);
427 }
428 #else
pci_device_can_probe(struct pci_dev * pdev)429 static inline bool pci_device_can_probe(struct pci_dev *pdev)
430 {
431 return true;
432 }
433 #endif
434
pci_device_probe(struct device * dev)435 static int pci_device_probe(struct device *dev)
436 {
437 int error;
438 struct pci_dev *pci_dev = to_pci_dev(dev);
439 struct pci_driver *drv = to_pci_driver(dev->driver);
440
441 if (!pci_device_can_probe(pci_dev))
442 return -ENODEV;
443
444 pci_assign_irq(pci_dev);
445
446 error = pcibios_alloc_irq(pci_dev);
447 if (error < 0)
448 return error;
449
450 pci_dev_get(pci_dev);
451 error = __pci_device_probe(drv, pci_dev);
452 if (error) {
453 pcibios_free_irq(pci_dev);
454 pci_dev_put(pci_dev);
455 }
456
457 return error;
458 }
459
pci_device_remove(struct device * dev)460 static void pci_device_remove(struct device *dev)
461 {
462 struct pci_dev *pci_dev = to_pci_dev(dev);
463 struct pci_driver *drv = pci_dev->driver;
464
465 if (drv->remove) {
466 pm_runtime_get_sync(dev);
467 /*
468 * If the driver provides a .runtime_idle() callback and it has
469 * started to run already, it may continue to run in parallel
470 * with the code below, so wait until all of the runtime PM
471 * activity has completed.
472 */
473 pm_runtime_barrier(dev);
474 drv->remove(pci_dev);
475 pm_runtime_put_noidle(dev);
476 }
477 pcibios_free_irq(pci_dev);
478 pci_dev->driver = NULL;
479 pci_iov_remove(pci_dev);
480
481 /* Undo the runtime PM settings in local_pci_probe() */
482 pm_runtime_put_sync(dev);
483
484 /*
485 * If the device is still on, set the power state as "unknown",
486 * since it might change by the next time we load the driver.
487 */
488 if (pci_dev->current_state == PCI_D0)
489 pci_dev->current_state = PCI_UNKNOWN;
490
491 /*
492 * We would love to complain here if pci_dev->is_enabled is set, that
493 * the driver should have called pci_disable_device(), but the
494 * unfortunate fact is there are too many odd BIOS and bridge setups
495 * that don't like drivers doing that all of the time.
496 * Oh well, we can dream of sane hardware when we sleep, no matter how
497 * horrible the crap we have to deal with is when we are awake...
498 */
499
500 pci_dev_put(pci_dev);
501 }
502
pci_device_shutdown(struct device * dev)503 static void pci_device_shutdown(struct device *dev)
504 {
505 struct pci_dev *pci_dev = to_pci_dev(dev);
506 struct pci_driver *drv = pci_dev->driver;
507
508 pm_runtime_resume(dev);
509
510 if (drv && drv->shutdown)
511 drv->shutdown(pci_dev);
512
513 /*
514 * If this is a kexec reboot, turn off Bus Master bit on the
515 * device to tell it to not continue to do DMA. Don't touch
516 * devices in D3cold or unknown states.
517 * If it is not a kexec reboot, firmware will hit the PCI
518 * devices with big hammer and stop their DMA any way.
519 */
520 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
521 pci_clear_master(pci_dev);
522 }
523
524 #ifdef CONFIG_PM_SLEEP
525
526 /* Auxiliary functions used for system resume */
527
528 /**
529 * pci_restore_standard_config - restore standard config registers of PCI device
530 * @pci_dev: PCI device to handle
531 */
pci_restore_standard_config(struct pci_dev * pci_dev)532 static int pci_restore_standard_config(struct pci_dev *pci_dev)
533 {
534 pci_update_current_state(pci_dev, PCI_UNKNOWN);
535
536 if (pci_dev->current_state != PCI_D0) {
537 int error = pci_set_power_state(pci_dev, PCI_D0);
538 if (error)
539 return error;
540 }
541
542 pci_restore_state(pci_dev);
543 pci_pme_restore(pci_dev);
544 return 0;
545 }
546 #endif /* CONFIG_PM_SLEEP */
547
548 #ifdef CONFIG_PM
549
550 /* Auxiliary functions used for system resume and run-time resume */
551
pci_pm_default_resume(struct pci_dev * pci_dev)552 static void pci_pm_default_resume(struct pci_dev *pci_dev)
553 {
554 pci_fixup_device(pci_fixup_resume, pci_dev);
555 pci_enable_wake(pci_dev, PCI_D0, false);
556 }
557
pci_pm_default_resume_early(struct pci_dev * pci_dev)558 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
559 {
560 pci_pm_power_up_and_verify_state(pci_dev);
561 pci_restore_state(pci_dev);
562 pci_pme_restore(pci_dev);
563 }
564
pci_pm_bridge_power_up_actions(struct pci_dev * pci_dev)565 static void pci_pm_bridge_power_up_actions(struct pci_dev *pci_dev)
566 {
567 int ret;
568
569 ret = pci_bridge_wait_for_secondary_bus(pci_dev, "resume");
570 if (ret) {
571 /*
572 * The downstream link failed to come up, so mark the
573 * devices below as disconnected to make sure we don't
574 * attempt to resume them.
575 */
576 pci_walk_bus(pci_dev->subordinate, pci_dev_set_disconnected,
577 NULL);
578 return;
579 }
580
581 /*
582 * When powering on a bridge from D3cold, the whole hierarchy may be
583 * powered on into D0uninitialized state, resume them to give them a
584 * chance to suspend again
585 */
586 pci_resume_bus(pci_dev->subordinate);
587 }
588
589 #endif /* CONFIG_PM */
590
591 #ifdef CONFIG_PM_SLEEP
592
593 /*
594 * Default "suspend" method for devices that have no driver provided suspend,
595 * or not even a driver at all (second part).
596 */
pci_pm_set_unknown_state(struct pci_dev * pci_dev)597 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
598 {
599 /*
600 * mark its power state as "unknown", since we don't know if
601 * e.g. the BIOS will change its device state when we suspend.
602 */
603 if (pci_dev->current_state == PCI_D0)
604 pci_dev->current_state = PCI_UNKNOWN;
605 }
606
607 /*
608 * Default "resume" method for devices that have no driver provided resume,
609 * or not even a driver at all (second part).
610 */
pci_pm_reenable_device(struct pci_dev * pci_dev)611 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
612 {
613 int retval;
614
615 /* if the device was enabled before suspend, re-enable */
616 retval = pci_reenable_device(pci_dev);
617 /*
618 * if the device was busmaster before the suspend, make it busmaster
619 * again
620 */
621 if (pci_dev->is_busmaster)
622 pci_set_master(pci_dev);
623
624 return retval;
625 }
626
pci_legacy_suspend(struct device * dev,pm_message_t state)627 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
628 {
629 struct pci_dev *pci_dev = to_pci_dev(dev);
630 struct pci_driver *drv = pci_dev->driver;
631
632 if (drv && drv->suspend) {
633 pci_power_t prev = pci_dev->current_state;
634 int error;
635
636 error = drv->suspend(pci_dev, state);
637 suspend_report_result(dev, drv->suspend, error);
638 if (error)
639 return error;
640
641 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
642 && pci_dev->current_state != PCI_UNKNOWN) {
643 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
644 "PCI PM: Device state not saved by %pS\n",
645 drv->suspend);
646 }
647 }
648
649 pci_fixup_device(pci_fixup_suspend, pci_dev);
650
651 return 0;
652 }
653
pci_legacy_suspend_late(struct device * dev)654 static int pci_legacy_suspend_late(struct device *dev)
655 {
656 struct pci_dev *pci_dev = to_pci_dev(dev);
657
658 if (!pci_dev->state_saved)
659 pci_save_state(pci_dev);
660
661 pci_pm_set_unknown_state(pci_dev);
662
663 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
664
665 return 0;
666 }
667
pci_legacy_resume(struct device * dev)668 static int pci_legacy_resume(struct device *dev)
669 {
670 struct pci_dev *pci_dev = to_pci_dev(dev);
671 struct pci_driver *drv = pci_dev->driver;
672
673 pci_fixup_device(pci_fixup_resume, pci_dev);
674
675 return drv && drv->resume ?
676 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
677 }
678
679 /* Auxiliary functions used by the new power management framework */
680
pci_pm_default_suspend(struct pci_dev * pci_dev)681 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
682 {
683 /* Disable non-bridge devices without PM support */
684 if (!pci_has_subordinate(pci_dev))
685 pci_disable_enabled_device(pci_dev);
686 }
687
pci_has_legacy_pm_support(struct pci_dev * pci_dev)688 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
689 {
690 struct pci_driver *drv = pci_dev->driver;
691 bool ret = drv && (drv->suspend || drv->resume);
692
693 /*
694 * Legacy PM support is used by default, so warn if the new framework is
695 * supported as well. Drivers are supposed to support either the
696 * former, or the latter, but not both at the same time.
697 */
698 pci_WARN(pci_dev, ret && drv->driver.pm, "device %04x:%04x\n",
699 pci_dev->vendor, pci_dev->device);
700
701 return ret;
702 }
703
704 /* New power management framework */
705
pci_pm_prepare(struct device * dev)706 static int pci_pm_prepare(struct device *dev)
707 {
708 struct pci_dev *pci_dev = to_pci_dev(dev);
709 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
710
711 if (pm && pm->prepare) {
712 int error = pm->prepare(dev);
713 if (error < 0)
714 return error;
715
716 if (!error && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
717 return 0;
718 }
719 if (pci_dev_need_resume(pci_dev))
720 return 0;
721
722 /*
723 * The PME setting needs to be adjusted here in case the direct-complete
724 * optimization is used with respect to this device.
725 */
726 pci_dev_adjust_pme(pci_dev);
727 return 1;
728 }
729
pci_pm_complete(struct device * dev)730 static void pci_pm_complete(struct device *dev)
731 {
732 struct pci_dev *pci_dev = to_pci_dev(dev);
733
734 pci_dev_complete_resume(pci_dev);
735 pm_generic_complete(dev);
736
737 /* Resume device if platform firmware has put it in reset-power-on */
738 if (pm_runtime_suspended(dev) && pm_resume_via_firmware()) {
739 pci_power_t pre_sleep_state = pci_dev->current_state;
740
741 pci_refresh_power_state(pci_dev);
742 /*
743 * On platforms with ACPI this check may also trigger for
744 * devices sharing power resources if one of those power
745 * resources has been activated as a result of a change of the
746 * power state of another device sharing it. However, in that
747 * case it is also better to resume the device, in general.
748 */
749 if (pci_dev->current_state < pre_sleep_state)
750 pm_request_resume(dev);
751 }
752 }
753
754 #else /* !CONFIG_PM_SLEEP */
755
756 #define pci_pm_prepare NULL
757 #define pci_pm_complete NULL
758
759 #endif /* !CONFIG_PM_SLEEP */
760
761 #ifdef CONFIG_SUSPEND
pcie_pme_root_status_cleanup(struct pci_dev * pci_dev)762 static void pcie_pme_root_status_cleanup(struct pci_dev *pci_dev)
763 {
764 /*
765 * Some BIOSes forget to clear Root PME Status bits after system
766 * wakeup, which breaks ACPI-based runtime wakeup on PCI Express.
767 * Clear those bits now just in case (shouldn't hurt).
768 */
769 if (pci_is_pcie(pci_dev) &&
770 (pci_pcie_type(pci_dev) == PCI_EXP_TYPE_ROOT_PORT ||
771 pci_pcie_type(pci_dev) == PCI_EXP_TYPE_RC_EC))
772 pcie_clear_root_pme_status(pci_dev);
773 }
774
pci_pm_suspend(struct device * dev)775 static int pci_pm_suspend(struct device *dev)
776 {
777 struct pci_dev *pci_dev = to_pci_dev(dev);
778 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
779
780 pci_dev->skip_bus_pm = false;
781
782 /*
783 * Disabling PTM allows some systems, e.g., Intel mobile chips
784 * since Coffee Lake, to enter a lower-power PM state.
785 */
786 pci_suspend_ptm(pci_dev);
787
788 if (pci_has_legacy_pm_support(pci_dev))
789 return pci_legacy_suspend(dev, PMSG_SUSPEND);
790
791 if (!pm) {
792 pci_pm_default_suspend(pci_dev);
793 return 0;
794 }
795
796 /*
797 * PCI devices suspended at run time may need to be resumed at this
798 * point, because in general it may be necessary to reconfigure them for
799 * system suspend. Namely, if the device is expected to wake up the
800 * system from the sleep state, it may have to be reconfigured for this
801 * purpose, or if the device is not expected to wake up the system from
802 * the sleep state, it should be prevented from signaling wakeup events
803 * going forward.
804 *
805 * Also if the driver of the device does not indicate that its system
806 * suspend callbacks can cope with runtime-suspended devices, it is
807 * better to resume the device from runtime suspend here.
808 */
809 if (!dev_pm_smart_suspend(dev) || pci_dev_need_resume(pci_dev)) {
810 pm_runtime_resume(dev);
811 pci_dev->state_saved = false;
812 } else {
813 pci_dev_adjust_pme(pci_dev);
814 }
815
816 if (pm->suspend) {
817 pci_power_t prev = pci_dev->current_state;
818 int error;
819
820 error = pm->suspend(dev);
821 suspend_report_result(dev, pm->suspend, error);
822 if (error)
823 return error;
824
825 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
826 && pci_dev->current_state != PCI_UNKNOWN) {
827 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
828 "PCI PM: State of device not saved by %pS\n",
829 pm->suspend);
830 }
831 }
832
833 return 0;
834 }
835
pci_pm_suspend_late(struct device * dev)836 static int pci_pm_suspend_late(struct device *dev)
837 {
838 if (dev_pm_skip_suspend(dev))
839 return 0;
840
841 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev));
842
843 return pm_generic_suspend_late(dev);
844 }
845
pci_pm_suspend_noirq(struct device * dev)846 static int pci_pm_suspend_noirq(struct device *dev)
847 {
848 struct pci_dev *pci_dev = to_pci_dev(dev);
849 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
850
851 if (dev_pm_skip_suspend(dev))
852 return 0;
853
854 if (pci_has_legacy_pm_support(pci_dev))
855 return pci_legacy_suspend_late(dev);
856
857 if (!pm) {
858 pci_save_state(pci_dev);
859 goto Fixup;
860 }
861
862 if (pm->suspend_noirq) {
863 pci_power_t prev = pci_dev->current_state;
864 int error;
865
866 error = pm->suspend_noirq(dev);
867 suspend_report_result(dev, pm->suspend_noirq, error);
868 if (error)
869 return error;
870
871 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
872 && pci_dev->current_state != PCI_UNKNOWN) {
873 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
874 "PCI PM: State of device not saved by %pS\n",
875 pm->suspend_noirq);
876 goto Fixup;
877 }
878 }
879
880 if (!pci_dev->state_saved) {
881 pci_save_state(pci_dev);
882
883 /*
884 * If the device is a bridge with a child in D0 below it,
885 * it needs to stay in D0, so check skip_bus_pm to avoid
886 * putting it into a low-power state in that case.
887 */
888 if (!pci_dev->skip_bus_pm && pci_power_manageable(pci_dev))
889 pci_prepare_to_sleep(pci_dev);
890 }
891
892 pci_dbg(pci_dev, "PCI PM: Suspend power state: %s\n",
893 pci_power_name(pci_dev->current_state));
894
895 if (pci_dev->current_state == PCI_D0) {
896 pci_dev->skip_bus_pm = true;
897 /*
898 * Per PCI PM r1.2, table 6-1, a bridge must be in D0 if any
899 * downstream device is in D0, so avoid changing the power state
900 * of the parent bridge by setting the skip_bus_pm flag for it.
901 */
902 if (pci_dev->bus->self)
903 pci_dev->bus->self->skip_bus_pm = true;
904 }
905
906 if (pci_dev->skip_bus_pm && pm_suspend_no_platform()) {
907 pci_dbg(pci_dev, "PCI PM: Skipped\n");
908 goto Fixup;
909 }
910
911 pci_pm_set_unknown_state(pci_dev);
912
913 /*
914 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
915 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
916 * hasn't been quiesced and tries to turn it off. If the controller
917 * is already in D3, this can hang or cause memory corruption.
918 *
919 * Since the value of the COMMAND register doesn't matter once the
920 * device has been suspended, we can safely set it to 0 here.
921 */
922 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
923 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
924
925 Fixup:
926 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
927
928 /*
929 * If the target system sleep state is suspend-to-idle, it is sufficient
930 * to check whether or not the device's wakeup settings are good for
931 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause
932 * pci_pm_complete() to take care of fixing up the device's state
933 * anyway, if need be.
934 */
935 if (device_can_wakeup(dev) && !device_may_wakeup(dev))
936 dev->power.may_skip_resume = false;
937
938 return 0;
939 }
940
pci_pm_resume_noirq(struct device * dev)941 static int pci_pm_resume_noirq(struct device *dev)
942 {
943 struct pci_dev *pci_dev = to_pci_dev(dev);
944 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
945 pci_power_t prev_state = pci_dev->current_state;
946 bool skip_bus_pm = pci_dev->skip_bus_pm;
947
948 if (dev_pm_skip_resume(dev))
949 return 0;
950
951 /*
952 * In the suspend-to-idle case, devices left in D0 during suspend will
953 * stay in D0, so it is not necessary to restore or update their
954 * configuration here and attempting to put them into D0 again is
955 * pointless, so avoid doing that.
956 */
957 if (!(skip_bus_pm && pm_suspend_no_platform()))
958 pci_pm_default_resume_early(pci_dev);
959
960 pci_fixup_device(pci_fixup_resume_early, pci_dev);
961 pcie_pme_root_status_cleanup(pci_dev);
962
963 if (!skip_bus_pm && prev_state == PCI_D3cold)
964 pci_pm_bridge_power_up_actions(pci_dev);
965
966 if (pci_has_legacy_pm_support(pci_dev))
967 return 0;
968
969 if (pm && pm->resume_noirq)
970 return pm->resume_noirq(dev);
971
972 return 0;
973 }
974
pci_pm_resume_early(struct device * dev)975 static int pci_pm_resume_early(struct device *dev)
976 {
977 if (dev_pm_skip_resume(dev))
978 return 0;
979
980 return pm_generic_resume_early(dev);
981 }
982
pci_pm_resume(struct device * dev)983 static int pci_pm_resume(struct device *dev)
984 {
985 struct pci_dev *pci_dev = to_pci_dev(dev);
986 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
987
988 /*
989 * This is necessary for the suspend error path in which resume is
990 * called without restoring the standard config registers of the device.
991 */
992 if (pci_dev->state_saved)
993 pci_restore_standard_config(pci_dev);
994
995 pci_resume_ptm(pci_dev);
996
997 if (pci_has_legacy_pm_support(pci_dev))
998 return pci_legacy_resume(dev);
999
1000 pci_pm_default_resume(pci_dev);
1001
1002 if (pm) {
1003 if (pm->resume)
1004 return pm->resume(dev);
1005 } else {
1006 pci_pm_reenable_device(pci_dev);
1007 }
1008
1009 return 0;
1010 }
1011
1012 #else /* !CONFIG_SUSPEND */
1013
1014 #define pci_pm_suspend NULL
1015 #define pci_pm_suspend_late NULL
1016 #define pci_pm_suspend_noirq NULL
1017 #define pci_pm_resume NULL
1018 #define pci_pm_resume_early NULL
1019 #define pci_pm_resume_noirq NULL
1020
1021 #endif /* !CONFIG_SUSPEND */
1022
1023 #ifdef CONFIG_HIBERNATE_CALLBACKS
1024
pci_pm_freeze(struct device * dev)1025 static int pci_pm_freeze(struct device *dev)
1026 {
1027 struct pci_dev *pci_dev = to_pci_dev(dev);
1028 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1029
1030 if (pci_has_legacy_pm_support(pci_dev))
1031 return pci_legacy_suspend(dev, PMSG_FREEZE);
1032
1033 if (!pm) {
1034 pci_pm_default_suspend(pci_dev);
1035 return 0;
1036 }
1037
1038 /*
1039 * Resume all runtime-suspended devices before creating a snapshot
1040 * image of system memory, because the restore kernel generally cannot
1041 * be expected to always handle them consistently and they need to be
1042 * put into the runtime-active metastate during system resume anyway,
1043 * so it is better to ensure that the state saved in the image will be
1044 * always consistent with that.
1045 */
1046 pm_runtime_resume(dev);
1047 pci_dev->state_saved = false;
1048
1049 if (pm->freeze) {
1050 int error;
1051
1052 error = pm->freeze(dev);
1053 suspend_report_result(dev, pm->freeze, error);
1054 if (error)
1055 return error;
1056 }
1057
1058 return 0;
1059 }
1060
pci_pm_freeze_noirq(struct device * dev)1061 static int pci_pm_freeze_noirq(struct device *dev)
1062 {
1063 struct pci_dev *pci_dev = to_pci_dev(dev);
1064 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1065
1066 if (pci_has_legacy_pm_support(pci_dev))
1067 return pci_legacy_suspend_late(dev);
1068
1069 if (pm && pm->freeze_noirq) {
1070 int error;
1071
1072 error = pm->freeze_noirq(dev);
1073 suspend_report_result(dev, pm->freeze_noirq, error);
1074 if (error)
1075 return error;
1076 }
1077
1078 if (!pci_dev->state_saved)
1079 pci_save_state(pci_dev);
1080
1081 pci_pm_set_unknown_state(pci_dev);
1082
1083 return 0;
1084 }
1085
pci_pm_thaw_noirq(struct device * dev)1086 static int pci_pm_thaw_noirq(struct device *dev)
1087 {
1088 struct pci_dev *pci_dev = to_pci_dev(dev);
1089 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1090
1091 /*
1092 * The pm->thaw_noirq() callback assumes the device has been
1093 * returned to D0 and its config state has been restored.
1094 *
1095 * In addition, pci_restore_state() restores MSI-X state in MMIO
1096 * space, which requires the device to be in D0, so return it to D0
1097 * in case the driver's "freeze" callbacks put it into a low-power
1098 * state.
1099 */
1100 pci_pm_power_up_and_verify_state(pci_dev);
1101 pci_restore_state(pci_dev);
1102
1103 if (pci_has_legacy_pm_support(pci_dev))
1104 return 0;
1105
1106 if (pm && pm->thaw_noirq)
1107 return pm->thaw_noirq(dev);
1108
1109 return 0;
1110 }
1111
pci_pm_thaw(struct device * dev)1112 static int pci_pm_thaw(struct device *dev)
1113 {
1114 struct pci_dev *pci_dev = to_pci_dev(dev);
1115 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1116 int error = 0;
1117
1118 if (pci_has_legacy_pm_support(pci_dev))
1119 return pci_legacy_resume(dev);
1120
1121 if (pm) {
1122 if (pm->thaw)
1123 error = pm->thaw(dev);
1124 } else {
1125 pci_pm_reenable_device(pci_dev);
1126 }
1127
1128 pci_dev->state_saved = false;
1129
1130 return error;
1131 }
1132
pci_pm_poweroff(struct device * dev)1133 static int pci_pm_poweroff(struct device *dev)
1134 {
1135 struct pci_dev *pci_dev = to_pci_dev(dev);
1136 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1137
1138 if (pci_has_legacy_pm_support(pci_dev))
1139 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
1140
1141 if (!pm) {
1142 pci_pm_default_suspend(pci_dev);
1143 return 0;
1144 }
1145
1146 /* The reason to do that is the same as in pci_pm_suspend(). */
1147 if (!dev_pm_smart_suspend(dev) || pci_dev_need_resume(pci_dev)) {
1148 pm_runtime_resume(dev);
1149 pci_dev->state_saved = false;
1150 } else {
1151 pci_dev_adjust_pme(pci_dev);
1152 }
1153
1154 if (pm->poweroff) {
1155 int error;
1156
1157 error = pm->poweroff(dev);
1158 suspend_report_result(dev, pm->poweroff, error);
1159 if (error)
1160 return error;
1161 }
1162
1163 return 0;
1164 }
1165
pci_pm_poweroff_late(struct device * dev)1166 static int pci_pm_poweroff_late(struct device *dev)
1167 {
1168 if (dev_pm_skip_suspend(dev))
1169 return 0;
1170
1171 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev));
1172
1173 return pm_generic_poweroff_late(dev);
1174 }
1175
pci_pm_poweroff_noirq(struct device * dev)1176 static int pci_pm_poweroff_noirq(struct device *dev)
1177 {
1178 struct pci_dev *pci_dev = to_pci_dev(dev);
1179 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1180
1181 if (dev_pm_skip_suspend(dev))
1182 return 0;
1183
1184 if (pci_has_legacy_pm_support(pci_dev))
1185 return pci_legacy_suspend_late(dev);
1186
1187 if (!pm) {
1188 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1189 return 0;
1190 }
1191
1192 if (pm->poweroff_noirq) {
1193 int error;
1194
1195 error = pm->poweroff_noirq(dev);
1196 suspend_report_result(dev, pm->poweroff_noirq, error);
1197 if (error)
1198 return error;
1199 }
1200
1201 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1202 pci_prepare_to_sleep(pci_dev);
1203
1204 /*
1205 * The reason for doing this here is the same as for the analogous code
1206 * in pci_pm_suspend_noirq().
1207 */
1208 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1209 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1210
1211 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1212
1213 return 0;
1214 }
1215
pci_pm_restore_noirq(struct device * dev)1216 static int pci_pm_restore_noirq(struct device *dev)
1217 {
1218 struct pci_dev *pci_dev = to_pci_dev(dev);
1219 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1220
1221 pci_pm_default_resume_early(pci_dev);
1222 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1223
1224 if (pci_has_legacy_pm_support(pci_dev))
1225 return 0;
1226
1227 if (pm && pm->restore_noirq)
1228 return pm->restore_noirq(dev);
1229
1230 return 0;
1231 }
1232
pci_pm_restore(struct device * dev)1233 static int pci_pm_restore(struct device *dev)
1234 {
1235 struct pci_dev *pci_dev = to_pci_dev(dev);
1236 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1237
1238 /*
1239 * This is necessary for the hibernation error path in which restore is
1240 * called without restoring the standard config registers of the device.
1241 */
1242 if (pci_dev->state_saved)
1243 pci_restore_standard_config(pci_dev);
1244
1245 if (pci_has_legacy_pm_support(pci_dev))
1246 return pci_legacy_resume(dev);
1247
1248 pci_pm_default_resume(pci_dev);
1249
1250 if (pm) {
1251 if (pm->restore)
1252 return pm->restore(dev);
1253 } else {
1254 pci_pm_reenable_device(pci_dev);
1255 }
1256
1257 return 0;
1258 }
1259
1260 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1261
1262 #define pci_pm_freeze NULL
1263 #define pci_pm_freeze_noirq NULL
1264 #define pci_pm_thaw NULL
1265 #define pci_pm_thaw_noirq NULL
1266 #define pci_pm_poweroff NULL
1267 #define pci_pm_poweroff_late NULL
1268 #define pci_pm_poweroff_noirq NULL
1269 #define pci_pm_restore NULL
1270 #define pci_pm_restore_noirq NULL
1271
1272 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1273
1274 #ifdef CONFIG_PM
1275
pci_pm_runtime_suspend(struct device * dev)1276 static int pci_pm_runtime_suspend(struct device *dev)
1277 {
1278 struct pci_dev *pci_dev = to_pci_dev(dev);
1279 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1280 pci_power_t prev = pci_dev->current_state;
1281 int error;
1282
1283 pci_suspend_ptm(pci_dev);
1284
1285 /*
1286 * If pci_dev->driver is not set (unbound), we leave the device in D0,
1287 * but it may go to D3cold when the bridge above it runtime suspends.
1288 * Save its config space in case that happens.
1289 */
1290 if (!pci_dev->driver) {
1291 pci_save_state(pci_dev);
1292 return 0;
1293 }
1294
1295 pci_dev->state_saved = false;
1296 if (pm && pm->runtime_suspend) {
1297 error = pm->runtime_suspend(dev);
1298 /*
1299 * -EBUSY and -EAGAIN is used to request the runtime PM core
1300 * to schedule a new suspend, so log the event only with debug
1301 * log level.
1302 */
1303 if (error == -EBUSY || error == -EAGAIN) {
1304 pci_dbg(pci_dev, "can't suspend now (%ps returned %d)\n",
1305 pm->runtime_suspend, error);
1306 return error;
1307 } else if (error) {
1308 pci_err(pci_dev, "can't suspend (%ps returned %d)\n",
1309 pm->runtime_suspend, error);
1310 return error;
1311 }
1312 }
1313
1314 pci_fixup_device(pci_fixup_suspend, pci_dev);
1315
1316 if (pm && pm->runtime_suspend
1317 && !pci_dev->state_saved && pci_dev->current_state != PCI_D0
1318 && pci_dev->current_state != PCI_UNKNOWN) {
1319 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
1320 "PCI PM: State of device not saved by %pS\n",
1321 pm->runtime_suspend);
1322 return 0;
1323 }
1324
1325 if (!pci_dev->state_saved) {
1326 pci_save_state(pci_dev);
1327 pci_finish_runtime_suspend(pci_dev);
1328 }
1329
1330 return 0;
1331 }
1332
pci_pm_runtime_resume(struct device * dev)1333 static int pci_pm_runtime_resume(struct device *dev)
1334 {
1335 struct pci_dev *pci_dev = to_pci_dev(dev);
1336 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1337 pci_power_t prev_state = pci_dev->current_state;
1338 int error = 0;
1339
1340 /*
1341 * Restoring config space is necessary even if the device is not bound
1342 * to a driver because although we left it in D0, it may have gone to
1343 * D3cold when the bridge above it runtime suspended.
1344 */
1345 pci_pm_default_resume_early(pci_dev);
1346 pci_resume_ptm(pci_dev);
1347
1348 if (!pci_dev->driver)
1349 return 0;
1350
1351 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1352 pci_pm_default_resume(pci_dev);
1353
1354 if (prev_state == PCI_D3cold)
1355 pci_pm_bridge_power_up_actions(pci_dev);
1356
1357 if (pm && pm->runtime_resume)
1358 error = pm->runtime_resume(dev);
1359
1360 return error;
1361 }
1362
pci_pm_runtime_idle(struct device * dev)1363 static int pci_pm_runtime_idle(struct device *dev)
1364 {
1365 struct pci_dev *pci_dev = to_pci_dev(dev);
1366 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1367
1368 /*
1369 * If pci_dev->driver is not set (unbound), the device should
1370 * always remain in D0 regardless of the runtime PM status
1371 */
1372 if (!pci_dev->driver)
1373 return 0;
1374
1375 if (pm && pm->runtime_idle)
1376 return pm->runtime_idle(dev);
1377
1378 return 0;
1379 }
1380
1381 static const struct dev_pm_ops pci_dev_pm_ops = {
1382 .prepare = pci_pm_prepare,
1383 .complete = pci_pm_complete,
1384 .suspend = pci_pm_suspend,
1385 .suspend_late = pci_pm_suspend_late,
1386 .resume = pci_pm_resume,
1387 .resume_early = pci_pm_resume_early,
1388 .freeze = pci_pm_freeze,
1389 .thaw = pci_pm_thaw,
1390 .poweroff = pci_pm_poweroff,
1391 .poweroff_late = pci_pm_poweroff_late,
1392 .restore = pci_pm_restore,
1393 .suspend_noirq = pci_pm_suspend_noirq,
1394 .resume_noirq = pci_pm_resume_noirq,
1395 .freeze_noirq = pci_pm_freeze_noirq,
1396 .thaw_noirq = pci_pm_thaw_noirq,
1397 .poweroff_noirq = pci_pm_poweroff_noirq,
1398 .restore_noirq = pci_pm_restore_noirq,
1399 .runtime_suspend = pci_pm_runtime_suspend,
1400 .runtime_resume = pci_pm_runtime_resume,
1401 .runtime_idle = pci_pm_runtime_idle,
1402 };
1403
1404 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1405
1406 #else /* !CONFIG_PM */
1407
1408 #define pci_pm_runtime_suspend NULL
1409 #define pci_pm_runtime_resume NULL
1410 #define pci_pm_runtime_idle NULL
1411
1412 #define PCI_PM_OPS_PTR NULL
1413
1414 #endif /* !CONFIG_PM */
1415
1416 /**
1417 * __pci_register_driver - register a new pci driver
1418 * @drv: the driver structure to register
1419 * @owner: owner module of drv
1420 * @mod_name: module name string
1421 *
1422 * Adds the driver structure to the list of registered drivers.
1423 * Returns a negative value on error, otherwise 0.
1424 * If no error occurred, the driver remains registered even if
1425 * no device was claimed during registration.
1426 */
__pci_register_driver(struct pci_driver * drv,struct module * owner,const char * mod_name)1427 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1428 const char *mod_name)
1429 {
1430 /* initialize common driver fields */
1431 drv->driver.name = drv->name;
1432 drv->driver.bus = &pci_bus_type;
1433 drv->driver.owner = owner;
1434 drv->driver.mod_name = mod_name;
1435 drv->driver.groups = drv->groups;
1436 drv->driver.dev_groups = drv->dev_groups;
1437
1438 spin_lock_init(&drv->dynids.lock);
1439 INIT_LIST_HEAD(&drv->dynids.list);
1440
1441 /* register with core */
1442 return driver_register(&drv->driver);
1443 }
1444 EXPORT_SYMBOL(__pci_register_driver);
1445
1446 /**
1447 * pci_unregister_driver - unregister a pci driver
1448 * @drv: the driver structure to unregister
1449 *
1450 * Deletes the driver structure from the list of registered PCI drivers,
1451 * gives it a chance to clean up by calling its remove() function for
1452 * each device it was responsible for, and marks those devices as
1453 * driverless.
1454 */
1455
pci_unregister_driver(struct pci_driver * drv)1456 void pci_unregister_driver(struct pci_driver *drv)
1457 {
1458 driver_unregister(&drv->driver);
1459 pci_free_dynids(drv);
1460 }
1461 EXPORT_SYMBOL(pci_unregister_driver);
1462
1463 static struct pci_driver pci_compat_driver = {
1464 .name = "compat"
1465 };
1466
1467 /**
1468 * pci_dev_driver - get the pci_driver of a device
1469 * @dev: the device to query
1470 *
1471 * Returns the appropriate pci_driver structure or %NULL if there is no
1472 * registered driver for the device.
1473 */
pci_dev_driver(const struct pci_dev * dev)1474 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1475 {
1476 int i;
1477
1478 if (dev->driver)
1479 return dev->driver;
1480
1481 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1482 if (dev->resource[i].flags & IORESOURCE_BUSY)
1483 return &pci_compat_driver;
1484
1485 return NULL;
1486 }
1487 EXPORT_SYMBOL(pci_dev_driver);
1488
1489 /**
1490 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1491 * @dev: the PCI device structure to match against
1492 * @drv: the device driver to search for matching PCI device id structures
1493 *
1494 * Used by a driver to check whether a PCI device present in the
1495 * system is in its list of supported devices. Returns the matching
1496 * pci_device_id structure or %NULL if there is no match.
1497 */
pci_bus_match(struct device * dev,const struct device_driver * drv)1498 static int pci_bus_match(struct device *dev, const struct device_driver *drv)
1499 {
1500 struct pci_dev *pci_dev = to_pci_dev(dev);
1501 struct pci_driver *pci_drv;
1502 const struct pci_device_id *found_id;
1503
1504 if (pci_dev_binding_disallowed(pci_dev))
1505 return 0;
1506
1507 pci_drv = (struct pci_driver *)to_pci_driver(drv);
1508 found_id = pci_match_device(pci_drv, pci_dev);
1509 if (found_id)
1510 return 1;
1511
1512 return 0;
1513 }
1514
1515 /**
1516 * pci_dev_get - increments the reference count of the pci device structure
1517 * @dev: the device being referenced
1518 *
1519 * Each live reference to a device should be refcounted.
1520 *
1521 * Drivers for PCI devices should normally record such references in
1522 * their probe() methods, when they bind to a device, and release
1523 * them by calling pci_dev_put(), in their disconnect() methods.
1524 *
1525 * A pointer to the device with the incremented reference counter is returned.
1526 */
pci_dev_get(struct pci_dev * dev)1527 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1528 {
1529 if (dev)
1530 get_device(&dev->dev);
1531 return dev;
1532 }
1533 EXPORT_SYMBOL(pci_dev_get);
1534
1535 /**
1536 * pci_dev_put - release a use of the pci device structure
1537 * @dev: device that's been disconnected
1538 *
1539 * Must be called when a user of a device is finished with it. When the last
1540 * user of the device calls this function, the memory of the device is freed.
1541 */
pci_dev_put(struct pci_dev * dev)1542 void pci_dev_put(struct pci_dev *dev)
1543 {
1544 if (dev)
1545 put_device(&dev->dev);
1546 }
1547 EXPORT_SYMBOL(pci_dev_put);
1548
pci_uevent(const struct device * dev,struct kobj_uevent_env * env)1549 static int pci_uevent(const struct device *dev, struct kobj_uevent_env *env)
1550 {
1551 const struct pci_dev *pdev;
1552
1553 if (!dev)
1554 return -ENODEV;
1555
1556 pdev = to_pci_dev(dev);
1557
1558 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1559 return -ENOMEM;
1560
1561 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1562 return -ENOMEM;
1563
1564 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1565 pdev->subsystem_device))
1566 return -ENOMEM;
1567
1568 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1569 return -ENOMEM;
1570
1571 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1572 pdev->vendor, pdev->device,
1573 pdev->subsystem_vendor, pdev->subsystem_device,
1574 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1575 (u8)(pdev->class)))
1576 return -ENOMEM;
1577
1578 return 0;
1579 }
1580
1581 #if defined(CONFIG_PCIEAER) || defined(CONFIG_EEH)
1582 /**
1583 * pci_uevent_ers - emit a uevent during recovery path of PCI device
1584 * @pdev: PCI device undergoing error recovery
1585 * @err_type: type of error event
1586 */
pci_uevent_ers(struct pci_dev * pdev,enum pci_ers_result err_type)1587 void pci_uevent_ers(struct pci_dev *pdev, enum pci_ers_result err_type)
1588 {
1589 int idx = 0;
1590 char *envp[3];
1591
1592 switch (err_type) {
1593 case PCI_ERS_RESULT_NONE:
1594 case PCI_ERS_RESULT_CAN_RECOVER:
1595 envp[idx++] = "ERROR_EVENT=BEGIN_RECOVERY";
1596 envp[idx++] = "DEVICE_ONLINE=0";
1597 break;
1598 case PCI_ERS_RESULT_RECOVERED:
1599 envp[idx++] = "ERROR_EVENT=SUCCESSFUL_RECOVERY";
1600 envp[idx++] = "DEVICE_ONLINE=1";
1601 break;
1602 case PCI_ERS_RESULT_DISCONNECT:
1603 envp[idx++] = "ERROR_EVENT=FAILED_RECOVERY";
1604 envp[idx++] = "DEVICE_ONLINE=0";
1605 break;
1606 default:
1607 break;
1608 }
1609
1610 if (idx > 0) {
1611 envp[idx++] = NULL;
1612 kobject_uevent_env(&pdev->dev.kobj, KOBJ_CHANGE, envp);
1613 }
1614 }
1615 #endif
1616
pci_bus_num_vf(struct device * dev)1617 static int pci_bus_num_vf(struct device *dev)
1618 {
1619 return pci_num_vf(to_pci_dev(dev));
1620 }
1621
1622 /**
1623 * pci_dma_configure - Setup DMA configuration
1624 * @dev: ptr to dev structure
1625 *
1626 * Function to update PCI devices's DMA configuration using the same
1627 * info from the OF node or ACPI node of host bridge's parent (if any).
1628 */
pci_dma_configure(struct device * dev)1629 static int pci_dma_configure(struct device *dev)
1630 {
1631 struct pci_driver *driver = to_pci_driver(dev->driver);
1632 struct device *bridge;
1633 int ret = 0;
1634
1635 bridge = pci_get_host_bridge_device(to_pci_dev(dev));
1636
1637 if (IS_ENABLED(CONFIG_OF) && bridge->parent &&
1638 bridge->parent->of_node) {
1639 ret = of_dma_configure(dev, bridge->parent->of_node, true);
1640 } else if (has_acpi_companion(bridge)) {
1641 struct acpi_device *adev = to_acpi_device_node(bridge->fwnode);
1642
1643 ret = acpi_dma_configure(dev, acpi_get_dma_attr(adev));
1644 }
1645
1646 pci_put_host_bridge_device(bridge);
1647
1648 /* @driver may not be valid when we're called from the IOMMU layer */
1649 if (!ret && dev->driver && !driver->driver_managed_dma) {
1650 ret = iommu_device_use_default_domain(dev);
1651 if (ret)
1652 arch_teardown_dma_ops(dev);
1653 }
1654
1655 return ret;
1656 }
1657
pci_dma_cleanup(struct device * dev)1658 static void pci_dma_cleanup(struct device *dev)
1659 {
1660 struct pci_driver *driver = to_pci_driver(dev->driver);
1661
1662 if (!driver->driver_managed_dma)
1663 iommu_device_unuse_default_domain(dev);
1664 }
1665
1666 /*
1667 * pci_device_irq_get_affinity - get IRQ affinity mask for device
1668 * @dev: ptr to dev structure
1669 * @irq_vec: interrupt vector number
1670 *
1671 * Return the CPU affinity mask for @dev and @irq_vec.
1672 */
pci_device_irq_get_affinity(struct device * dev,unsigned int irq_vec)1673 static const struct cpumask *pci_device_irq_get_affinity(struct device *dev,
1674 unsigned int irq_vec)
1675 {
1676 return pci_irq_get_affinity(to_pci_dev(dev), irq_vec);
1677 }
1678
1679 const struct bus_type pci_bus_type = {
1680 .name = "pci",
1681 .match = pci_bus_match,
1682 .uevent = pci_uevent,
1683 .probe = pci_device_probe,
1684 .remove = pci_device_remove,
1685 .shutdown = pci_device_shutdown,
1686 .irq_get_affinity = pci_device_irq_get_affinity,
1687 .dev_groups = pci_dev_groups,
1688 .bus_groups = pci_bus_groups,
1689 .drv_groups = pci_drv_groups,
1690 .pm = PCI_PM_OPS_PTR,
1691 .num_vf = pci_bus_num_vf,
1692 .dma_configure = pci_dma_configure,
1693 .dma_cleanup = pci_dma_cleanup,
1694 };
1695 EXPORT_SYMBOL(pci_bus_type);
1696
1697 #ifdef CONFIG_PCIEPORTBUS
pcie_port_bus_match(struct device * dev,const struct device_driver * drv)1698 static int pcie_port_bus_match(struct device *dev, const struct device_driver *drv)
1699 {
1700 struct pcie_device *pciedev;
1701 const struct pcie_port_service_driver *driver;
1702
1703 if (drv->bus != &pcie_port_bus_type || dev->bus != &pcie_port_bus_type)
1704 return 0;
1705
1706 pciedev = to_pcie_device(dev);
1707 driver = to_service_driver(drv);
1708
1709 if (driver->service != pciedev->service)
1710 return 0;
1711
1712 if (driver->port_type != PCIE_ANY_PORT &&
1713 driver->port_type != pci_pcie_type(pciedev->port))
1714 return 0;
1715
1716 return 1;
1717 }
1718
1719 const struct bus_type pcie_port_bus_type = {
1720 .name = "pci_express",
1721 .match = pcie_port_bus_match,
1722 };
1723 #endif
1724
pci_driver_init(void)1725 static int __init pci_driver_init(void)
1726 {
1727 int ret;
1728
1729 ret = bus_register(&pci_bus_type);
1730 if (ret)
1731 return ret;
1732
1733 #ifdef CONFIG_PCIEPORTBUS
1734 ret = bus_register(&pcie_port_bus_type);
1735 if (ret)
1736 return ret;
1737 #endif
1738 dma_debug_add_bus(&pci_bus_type);
1739 return 0;
1740 }
1741 postcore_initcall(pci_driver_init);
1742