1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * APM X-Gene MSI Driver
4 *
5 * Copyright (c) 2014, Applied Micro Circuits Corporation
6 * Author: Tanmay Inamdar <tinamdar@apm.com>
7 * Duc Dang <dhdang@apm.com>
8 */
9 #include <linux/cpu.h>
10 #include <linux/interrupt.h>
11 #include <linux/irqdomain.h>
12 #include <linux/module.h>
13 #include <linux/msi.h>
14 #include <linux/irqchip/chained_irq.h>
15 #include <linux/irqchip/irq-msi-lib.h>
16 #include <linux/pci.h>
17 #include <linux/platform_device.h>
18 #include <linux/of_pci.h>
19
20 #define MSI_IR0 0x000000
21 #define MSI_INT0 0x800000
22 #define IDX_PER_GROUP 8
23 #define IRQS_PER_IDX 16
24 #define NR_HW_IRQS 16
25 #define NR_MSI_VEC (IDX_PER_GROUP * IRQS_PER_IDX * NR_HW_IRQS)
26
27 struct xgene_msi_group {
28 struct xgene_msi *msi;
29 int gic_irq;
30 u32 msi_grp;
31 };
32
33 struct xgene_msi {
34 struct device_node *node;
35 struct irq_domain *inner_domain;
36 u64 msi_addr;
37 void __iomem *msi_regs;
38 unsigned long *bitmap;
39 struct mutex bitmap_lock;
40 struct xgene_msi_group *msi_groups;
41 int num_cpus;
42 };
43
44 /* Global data */
45 static struct xgene_msi xgene_msi_ctrl;
46
47 /*
48 * X-Gene v1 has 16 groups of MSI termination registers MSInIRx, where
49 * n is group number (0..F), x is index of registers in each group (0..7)
50 * The register layout is as follows:
51 * MSI0IR0 base_addr
52 * MSI0IR1 base_addr + 0x10000
53 * ... ...
54 * MSI0IR6 base_addr + 0x60000
55 * MSI0IR7 base_addr + 0x70000
56 * MSI1IR0 base_addr + 0x80000
57 * MSI1IR1 base_addr + 0x90000
58 * ... ...
59 * MSI1IR7 base_addr + 0xF0000
60 * MSI2IR0 base_addr + 0x100000
61 * ... ...
62 * MSIFIR0 base_addr + 0x780000
63 * MSIFIR1 base_addr + 0x790000
64 * ... ...
65 * MSIFIR7 base_addr + 0x7F0000
66 * MSIINT0 base_addr + 0x800000
67 * MSIINT1 base_addr + 0x810000
68 * ... ...
69 * MSIINTF base_addr + 0x8F0000
70 *
71 * Each index register supports 16 MSI vectors (0..15) to generate interrupt.
72 * There are total 16 GIC IRQs assigned for these 16 groups of MSI termination
73 * registers.
74 *
75 * Each MSI termination group has 1 MSIINTn register (n is 0..15) to indicate
76 * the MSI pending status caused by 1 of its 8 index registers.
77 */
78
79 /* MSInIRx read helper */
xgene_msi_ir_read(struct xgene_msi * msi,u32 msi_grp,u32 msir_idx)80 static u32 xgene_msi_ir_read(struct xgene_msi *msi,
81 u32 msi_grp, u32 msir_idx)
82 {
83 return readl_relaxed(msi->msi_regs + MSI_IR0 +
84 (msi_grp << 19) + (msir_idx << 16));
85 }
86
87 /* MSIINTn read helper */
xgene_msi_int_read(struct xgene_msi * msi,u32 msi_grp)88 static u32 xgene_msi_int_read(struct xgene_msi *msi, u32 msi_grp)
89 {
90 return readl_relaxed(msi->msi_regs + MSI_INT0 + (msi_grp << 16));
91 }
92
93 /*
94 * With 2048 MSI vectors supported, the MSI message can be constructed using
95 * following scheme:
96 * - Divide into 8 256-vector groups
97 * Group 0: 0-255
98 * Group 1: 256-511
99 * Group 2: 512-767
100 * ...
101 * Group 7: 1792-2047
102 * - Each 256-vector group is divided into 16 16-vector groups
103 * As an example: 16 16-vector groups for 256-vector group 0-255 is
104 * Group 0: 0-15
105 * Group 1: 16-32
106 * ...
107 * Group 15: 240-255
108 * - The termination address of MSI vector in 256-vector group n and 16-vector
109 * group x is the address of MSIxIRn
110 * - The data for MSI vector in 16-vector group x is x
111 */
hwirq_to_reg_set(unsigned long hwirq)112 static u32 hwirq_to_reg_set(unsigned long hwirq)
113 {
114 return (hwirq / (NR_HW_IRQS * IRQS_PER_IDX));
115 }
116
hwirq_to_group(unsigned long hwirq)117 static u32 hwirq_to_group(unsigned long hwirq)
118 {
119 return (hwirq % NR_HW_IRQS);
120 }
121
hwirq_to_msi_data(unsigned long hwirq)122 static u32 hwirq_to_msi_data(unsigned long hwirq)
123 {
124 return ((hwirq / NR_HW_IRQS) % IRQS_PER_IDX);
125 }
126
xgene_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)127 static void xgene_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
128 {
129 struct xgene_msi *msi = irq_data_get_irq_chip_data(data);
130 u32 reg_set = hwirq_to_reg_set(data->hwirq);
131 u32 group = hwirq_to_group(data->hwirq);
132 u64 target_addr = msi->msi_addr + (((8 * group) + reg_set) << 16);
133
134 msg->address_hi = upper_32_bits(target_addr);
135 msg->address_lo = lower_32_bits(target_addr);
136 msg->data = hwirq_to_msi_data(data->hwirq);
137 }
138
139 /*
140 * X-Gene v1 only has 16 MSI GIC IRQs for 2048 MSI vectors. To maintain
141 * the expected behaviour of .set_affinity for each MSI interrupt, the 16
142 * MSI GIC IRQs are statically allocated to 8 X-Gene v1 cores (2 GIC IRQs
143 * for each core). The MSI vector is moved from 1 MSI GIC IRQ to another
144 * MSI GIC IRQ to steer its MSI interrupt to correct X-Gene v1 core. As a
145 * consequence, the total MSI vectors that X-Gene v1 supports will be
146 * reduced to 256 (2048/8) vectors.
147 */
hwirq_to_cpu(unsigned long hwirq)148 static int hwirq_to_cpu(unsigned long hwirq)
149 {
150 return (hwirq % xgene_msi_ctrl.num_cpus);
151 }
152
hwirq_to_canonical_hwirq(unsigned long hwirq)153 static unsigned long hwirq_to_canonical_hwirq(unsigned long hwirq)
154 {
155 return (hwirq - hwirq_to_cpu(hwirq));
156 }
157
xgene_msi_set_affinity(struct irq_data * irqdata,const struct cpumask * mask,bool force)158 static int xgene_msi_set_affinity(struct irq_data *irqdata,
159 const struct cpumask *mask, bool force)
160 {
161 int target_cpu = cpumask_first(mask);
162 int curr_cpu;
163
164 curr_cpu = hwirq_to_cpu(irqdata->hwirq);
165 if (curr_cpu == target_cpu)
166 return IRQ_SET_MASK_OK_DONE;
167
168 /* Update MSI number to target the new CPU */
169 irqdata->hwirq = hwirq_to_canonical_hwirq(irqdata->hwirq) + target_cpu;
170
171 return IRQ_SET_MASK_OK;
172 }
173
174 static struct irq_chip xgene_msi_bottom_irq_chip = {
175 .name = "MSI",
176 .irq_set_affinity = xgene_msi_set_affinity,
177 .irq_compose_msi_msg = xgene_compose_msi_msg,
178 };
179
xgene_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)180 static int xgene_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
181 unsigned int nr_irqs, void *args)
182 {
183 struct xgene_msi *msi = domain->host_data;
184 int msi_irq;
185
186 mutex_lock(&msi->bitmap_lock);
187
188 msi_irq = bitmap_find_next_zero_area(msi->bitmap, NR_MSI_VEC, 0,
189 msi->num_cpus, 0);
190 if (msi_irq < NR_MSI_VEC)
191 bitmap_set(msi->bitmap, msi_irq, msi->num_cpus);
192 else
193 msi_irq = -ENOSPC;
194
195 mutex_unlock(&msi->bitmap_lock);
196
197 if (msi_irq < 0)
198 return msi_irq;
199
200 irq_domain_set_info(domain, virq, msi_irq,
201 &xgene_msi_bottom_irq_chip, domain->host_data,
202 handle_simple_irq, NULL, NULL);
203
204 return 0;
205 }
206
xgene_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)207 static void xgene_irq_domain_free(struct irq_domain *domain,
208 unsigned int virq, unsigned int nr_irqs)
209 {
210 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
211 struct xgene_msi *msi = irq_data_get_irq_chip_data(d);
212 u32 hwirq;
213
214 mutex_lock(&msi->bitmap_lock);
215
216 hwirq = hwirq_to_canonical_hwirq(d->hwirq);
217 bitmap_clear(msi->bitmap, hwirq, msi->num_cpus);
218
219 mutex_unlock(&msi->bitmap_lock);
220
221 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
222 }
223
224 static const struct irq_domain_ops xgene_msi_domain_ops = {
225 .alloc = xgene_irq_domain_alloc,
226 .free = xgene_irq_domain_free,
227 };
228
229 static const struct msi_parent_ops xgene_msi_parent_ops = {
230 .supported_flags = (MSI_GENERIC_FLAGS_MASK |
231 MSI_FLAG_PCI_MSIX),
232 .required_flags = (MSI_FLAG_USE_DEF_DOM_OPS |
233 MSI_FLAG_USE_DEF_CHIP_OPS),
234 .bus_select_token = DOMAIN_BUS_PCI_MSI,
235 .init_dev_msi_info = msi_lib_init_dev_msi_info,
236 };
237
xgene_allocate_domains(struct xgene_msi * msi)238 static int xgene_allocate_domains(struct xgene_msi *msi)
239 {
240 struct irq_domain_info info = {
241 .fwnode = of_fwnode_handle(msi->node),
242 .ops = &xgene_msi_domain_ops,
243 .size = NR_MSI_VEC,
244 .host_data = msi,
245 };
246
247 msi->inner_domain = msi_create_parent_irq_domain(&info, &xgene_msi_parent_ops);
248 return msi->inner_domain ? 0 : -ENOMEM;
249 }
250
xgene_free_domains(struct xgene_msi * msi)251 static void xgene_free_domains(struct xgene_msi *msi)
252 {
253 if (msi->inner_domain)
254 irq_domain_remove(msi->inner_domain);
255 }
256
xgene_msi_init_allocator(struct xgene_msi * xgene_msi)257 static int xgene_msi_init_allocator(struct xgene_msi *xgene_msi)
258 {
259 xgene_msi->bitmap = bitmap_zalloc(NR_MSI_VEC, GFP_KERNEL);
260 if (!xgene_msi->bitmap)
261 return -ENOMEM;
262
263 mutex_init(&xgene_msi->bitmap_lock);
264
265 xgene_msi->msi_groups = kcalloc(NR_HW_IRQS,
266 sizeof(struct xgene_msi_group),
267 GFP_KERNEL);
268 if (!xgene_msi->msi_groups)
269 return -ENOMEM;
270
271 return 0;
272 }
273
xgene_msi_isr(struct irq_desc * desc)274 static void xgene_msi_isr(struct irq_desc *desc)
275 {
276 struct irq_chip *chip = irq_desc_get_chip(desc);
277 struct xgene_msi_group *msi_groups;
278 struct xgene_msi *xgene_msi;
279 int msir_index, msir_val, hw_irq, ret;
280 u32 intr_index, grp_select, msi_grp;
281
282 chained_irq_enter(chip, desc);
283
284 msi_groups = irq_desc_get_handler_data(desc);
285 xgene_msi = msi_groups->msi;
286 msi_grp = msi_groups->msi_grp;
287
288 /*
289 * MSIINTn (n is 0..F) indicates if there is a pending MSI interrupt
290 * If bit x of this register is set (x is 0..7), one or more interrupts
291 * corresponding to MSInIRx is set.
292 */
293 grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
294 while (grp_select) {
295 msir_index = ffs(grp_select) - 1;
296 /*
297 * Calculate MSInIRx address to read to check for interrupts
298 * (refer to termination address and data assignment
299 * described in xgene_compose_msi_msg() )
300 */
301 msir_val = xgene_msi_ir_read(xgene_msi, msi_grp, msir_index);
302 while (msir_val) {
303 intr_index = ffs(msir_val) - 1;
304 /*
305 * Calculate MSI vector number (refer to the termination
306 * address and data assignment described in
307 * xgene_compose_msi_msg function)
308 */
309 hw_irq = (((msir_index * IRQS_PER_IDX) + intr_index) *
310 NR_HW_IRQS) + msi_grp;
311 /*
312 * As we have multiple hw_irq that maps to single MSI,
313 * always look up the virq using the hw_irq as seen from
314 * CPU0
315 */
316 hw_irq = hwirq_to_canonical_hwirq(hw_irq);
317 ret = generic_handle_domain_irq(xgene_msi->inner_domain, hw_irq);
318 WARN_ON_ONCE(ret);
319 msir_val &= ~(1 << intr_index);
320 }
321 grp_select &= ~(1 << msir_index);
322
323 if (!grp_select) {
324 /*
325 * We handled all interrupts happened in this group,
326 * resample this group MSI_INTx register in case
327 * something else has been made pending in the meantime
328 */
329 grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
330 }
331 }
332
333 chained_irq_exit(chip, desc);
334 }
335
336 static enum cpuhp_state pci_xgene_online;
337
xgene_msi_remove(struct platform_device * pdev)338 static void xgene_msi_remove(struct platform_device *pdev)
339 {
340 struct xgene_msi *msi = platform_get_drvdata(pdev);
341
342 if (pci_xgene_online)
343 cpuhp_remove_state(pci_xgene_online);
344 cpuhp_remove_state(CPUHP_PCI_XGENE_DEAD);
345
346 kfree(msi->msi_groups);
347
348 bitmap_free(msi->bitmap);
349 msi->bitmap = NULL;
350
351 xgene_free_domains(msi);
352 }
353
xgene_msi_hwirq_alloc(unsigned int cpu)354 static int xgene_msi_hwirq_alloc(unsigned int cpu)
355 {
356 struct xgene_msi *msi = &xgene_msi_ctrl;
357 struct xgene_msi_group *msi_group;
358 cpumask_var_t mask;
359 int i;
360 int err;
361
362 for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
363 msi_group = &msi->msi_groups[i];
364 if (!msi_group->gic_irq)
365 continue;
366
367 irq_set_chained_handler_and_data(msi_group->gic_irq,
368 xgene_msi_isr, msi_group);
369
370 /*
371 * Statically allocate MSI GIC IRQs to each CPU core.
372 * With 8-core X-Gene v1, 2 MSI GIC IRQs are allocated
373 * to each core.
374 */
375 if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
376 cpumask_clear(mask);
377 cpumask_set_cpu(cpu, mask);
378 err = irq_set_affinity(msi_group->gic_irq, mask);
379 if (err)
380 pr_err("failed to set affinity for GIC IRQ");
381 free_cpumask_var(mask);
382 } else {
383 pr_err("failed to alloc CPU mask for affinity\n");
384 err = -EINVAL;
385 }
386
387 if (err) {
388 irq_set_chained_handler_and_data(msi_group->gic_irq,
389 NULL, NULL);
390 return err;
391 }
392 }
393
394 return 0;
395 }
396
xgene_msi_hwirq_free(unsigned int cpu)397 static int xgene_msi_hwirq_free(unsigned int cpu)
398 {
399 struct xgene_msi *msi = &xgene_msi_ctrl;
400 struct xgene_msi_group *msi_group;
401 int i;
402
403 for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
404 msi_group = &msi->msi_groups[i];
405 if (!msi_group->gic_irq)
406 continue;
407
408 irq_set_chained_handler_and_data(msi_group->gic_irq, NULL,
409 NULL);
410 }
411 return 0;
412 }
413
414 static const struct of_device_id xgene_msi_match_table[] = {
415 {.compatible = "apm,xgene1-msi"},
416 {},
417 };
418
xgene_msi_probe(struct platform_device * pdev)419 static int xgene_msi_probe(struct platform_device *pdev)
420 {
421 struct resource *res;
422 int rc, irq_index;
423 struct xgene_msi *xgene_msi;
424 int virt_msir;
425 u32 msi_val, msi_idx;
426
427 xgene_msi = &xgene_msi_ctrl;
428
429 platform_set_drvdata(pdev, xgene_msi);
430
431 xgene_msi->msi_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
432 if (IS_ERR(xgene_msi->msi_regs)) {
433 rc = PTR_ERR(xgene_msi->msi_regs);
434 goto error;
435 }
436 xgene_msi->msi_addr = res->start;
437 xgene_msi->node = pdev->dev.of_node;
438 xgene_msi->num_cpus = num_possible_cpus();
439
440 rc = xgene_msi_init_allocator(xgene_msi);
441 if (rc) {
442 dev_err(&pdev->dev, "Error allocating MSI bitmap\n");
443 goto error;
444 }
445
446 rc = xgene_allocate_domains(xgene_msi);
447 if (rc) {
448 dev_err(&pdev->dev, "Failed to allocate MSI domain\n");
449 goto error;
450 }
451
452 for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
453 virt_msir = platform_get_irq(pdev, irq_index);
454 if (virt_msir < 0) {
455 rc = virt_msir;
456 goto error;
457 }
458 xgene_msi->msi_groups[irq_index].gic_irq = virt_msir;
459 xgene_msi->msi_groups[irq_index].msi_grp = irq_index;
460 xgene_msi->msi_groups[irq_index].msi = xgene_msi;
461 }
462
463 /*
464 * MSInIRx registers are read-to-clear; before registering
465 * interrupt handlers, read all of them to clear spurious
466 * interrupts that may occur before the driver is probed.
467 */
468 for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
469 for (msi_idx = 0; msi_idx < IDX_PER_GROUP; msi_idx++)
470 xgene_msi_ir_read(xgene_msi, irq_index, msi_idx);
471
472 /* Read MSIINTn to confirm */
473 msi_val = xgene_msi_int_read(xgene_msi, irq_index);
474 if (msi_val) {
475 dev_err(&pdev->dev, "Failed to clear spurious IRQ\n");
476 rc = -EINVAL;
477 goto error;
478 }
479 }
480
481 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "pci/xgene:online",
482 xgene_msi_hwirq_alloc, NULL);
483 if (rc < 0)
484 goto err_cpuhp;
485 pci_xgene_online = rc;
486 rc = cpuhp_setup_state(CPUHP_PCI_XGENE_DEAD, "pci/xgene:dead", NULL,
487 xgene_msi_hwirq_free);
488 if (rc)
489 goto err_cpuhp;
490
491 dev_info(&pdev->dev, "APM X-Gene PCIe MSI driver loaded\n");
492
493 return 0;
494
495 err_cpuhp:
496 dev_err(&pdev->dev, "failed to add CPU MSI notifier\n");
497 error:
498 xgene_msi_remove(pdev);
499 return rc;
500 }
501
502 static struct platform_driver xgene_msi_driver = {
503 .driver = {
504 .name = "xgene-msi",
505 .of_match_table = xgene_msi_match_table,
506 },
507 .probe = xgene_msi_probe,
508 .remove = xgene_msi_remove,
509 };
510
xgene_pcie_msi_init(void)511 static int __init xgene_pcie_msi_init(void)
512 {
513 return platform_driver_register(&xgene_msi_driver);
514 }
515 subsys_initcall(xgene_pcie_msi_init);
516