1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 #include "internals.h"
23
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25
26 #define FLAG_COMPAT BIT(0)
27 struct nvmem_cell_entry {
28 const char *name;
29 int offset;
30 size_t raw_len;
31 int bytes;
32 int bit_offset;
33 int nbits;
34 nvmem_cell_post_process_t read_post_process;
35 void *priv;
36 struct device_node *np;
37 struct nvmem_device *nvmem;
38 struct list_head node;
39 };
40
41 struct nvmem_cell {
42 struct nvmem_cell_entry *entry;
43 const char *id;
44 int index;
45 };
46
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49
50 static DEFINE_MUTEX(nvmem_cell_mutex);
51 static LIST_HEAD(nvmem_cell_tables);
52
53 static DEFINE_MUTEX(nvmem_lookup_mutex);
54 static LIST_HEAD(nvmem_lookup_list);
55
56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57
__nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 void *val, size_t bytes)
60 {
61 if (nvmem->reg_read)
62 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63
64 return -EINVAL;
65 }
66
__nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 void *val, size_t bytes)
69 {
70 int ret;
71
72 if (nvmem->reg_write) {
73 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 return ret;
77 }
78
79 return -EINVAL;
80 }
81
nvmem_access_with_keepouts(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes,int write)82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 unsigned int offset, void *val,
84 size_t bytes, int write)
85 {
86
87 unsigned int end = offset + bytes;
88 unsigned int kend, ksize;
89 const struct nvmem_keepout *keepout = nvmem->keepout;
90 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 int rc;
92
93 /*
94 * Skip all keepouts before the range being accessed.
95 * Keepouts are sorted.
96 */
97 while ((keepout < keepoutend) && (keepout->end <= offset))
98 keepout++;
99
100 while ((offset < end) && (keepout < keepoutend)) {
101 /* Access the valid portion before the keepout. */
102 if (offset < keepout->start) {
103 kend = min(end, keepout->start);
104 ksize = kend - offset;
105 if (write)
106 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 else
108 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109
110 if (rc)
111 return rc;
112
113 offset += ksize;
114 val += ksize;
115 }
116
117 /*
118 * Now we're aligned to the start of this keepout zone. Go
119 * through it.
120 */
121 kend = min(end, keepout->end);
122 ksize = kend - offset;
123 if (!write)
124 memset(val, keepout->value, ksize);
125
126 val += ksize;
127 offset += ksize;
128 keepout++;
129 }
130
131 /*
132 * If we ran out of keepouts but there's still stuff to do, send it
133 * down directly
134 */
135 if (offset < end) {
136 ksize = end - offset;
137 if (write)
138 return __nvmem_reg_write(nvmem, offset, val, ksize);
139 else
140 return __nvmem_reg_read(nvmem, offset, val, ksize);
141 }
142
143 return 0;
144 }
145
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 void *val, size_t bytes)
148 {
149 if (!nvmem->nkeepout)
150 return __nvmem_reg_read(nvmem, offset, val, bytes);
151
152 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153 }
154
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 void *val, size_t bytes)
157 {
158 if (!nvmem->nkeepout)
159 return __nvmem_reg_write(nvmem, offset, val, bytes);
160
161 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162 }
163
164 #ifdef CONFIG_NVMEM_SYSFS
165 static const char * const nvmem_type_str[] = {
166 [NVMEM_TYPE_UNKNOWN] = "Unknown",
167 [NVMEM_TYPE_EEPROM] = "EEPROM",
168 [NVMEM_TYPE_OTP] = "OTP",
169 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 [NVMEM_TYPE_FRAM] = "FRAM",
171 };
172
173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
174 static struct lock_class_key eeprom_lock_key;
175 #endif
176
type_show(struct device * dev,struct device_attribute * attr,char * buf)177 static ssize_t type_show(struct device *dev,
178 struct device_attribute *attr, char *buf)
179 {
180 struct nvmem_device *nvmem = to_nvmem_device(dev);
181
182 return sysfs_emit(buf, "%s\n", nvmem_type_str[nvmem->type]);
183 }
184
185 static DEVICE_ATTR_RO(type);
186
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)187 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
188 char *buf)
189 {
190 struct nvmem_device *nvmem = to_nvmem_device(dev);
191
192 return sysfs_emit(buf, "%d\n", nvmem->read_only);
193 }
194
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)195 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
196 const char *buf, size_t count)
197 {
198 struct nvmem_device *nvmem = to_nvmem_device(dev);
199 int ret = kstrtobool(buf, &nvmem->read_only);
200
201 if (ret < 0)
202 return ret;
203
204 return count;
205 }
206
207 static DEVICE_ATTR_RW(force_ro);
208
209 static struct attribute *nvmem_attrs[] = {
210 &dev_attr_force_ro.attr,
211 &dev_attr_type.attr,
212 NULL,
213 };
214
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)215 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
216 const struct bin_attribute *attr, char *buf,
217 loff_t pos, size_t count)
218 {
219 struct device *dev;
220 struct nvmem_device *nvmem;
221 int rc;
222
223 if (attr->private)
224 dev = attr->private;
225 else
226 dev = kobj_to_dev(kobj);
227 nvmem = to_nvmem_device(dev);
228
229 if (!IS_ALIGNED(pos, nvmem->stride))
230 return -EINVAL;
231
232 if (count < nvmem->word_size)
233 return -EINVAL;
234
235 count = round_down(count, nvmem->word_size);
236
237 if (!nvmem->reg_read)
238 return -EPERM;
239
240 rc = nvmem_reg_read(nvmem, pos, buf, count);
241
242 if (rc)
243 return rc;
244
245 return count;
246 }
247
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)248 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
249 const struct bin_attribute *attr, char *buf,
250 loff_t pos, size_t count)
251 {
252 struct device *dev;
253 struct nvmem_device *nvmem;
254 int rc;
255
256 if (attr->private)
257 dev = attr->private;
258 else
259 dev = kobj_to_dev(kobj);
260 nvmem = to_nvmem_device(dev);
261
262 if (!IS_ALIGNED(pos, nvmem->stride))
263 return -EINVAL;
264
265 if (count < nvmem->word_size)
266 return -EINVAL;
267
268 count = round_down(count, nvmem->word_size);
269
270 if (!nvmem->reg_write || nvmem->read_only)
271 return -EPERM;
272
273 rc = nvmem_reg_write(nvmem, pos, buf, count);
274
275 if (rc)
276 return rc;
277
278 return count;
279 }
280
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)281 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
282 {
283 umode_t mode = 0400;
284
285 if (!nvmem->root_only)
286 mode |= 0044;
287
288 if (!nvmem->read_only)
289 mode |= 0200;
290
291 if (!nvmem->reg_write)
292 mode &= ~0200;
293
294 if (!nvmem->reg_read)
295 mode &= ~0444;
296
297 return mode;
298 }
299
nvmem_bin_attr_is_visible(struct kobject * kobj,const struct bin_attribute * attr,int i)300 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
301 const struct bin_attribute *attr,
302 int i)
303 {
304 struct device *dev = kobj_to_dev(kobj);
305 struct nvmem_device *nvmem = to_nvmem_device(dev);
306
307 return nvmem_bin_attr_get_umode(nvmem);
308 }
309
nvmem_bin_attr_size(struct kobject * kobj,const struct bin_attribute * attr,int i)310 static size_t nvmem_bin_attr_size(struct kobject *kobj,
311 const struct bin_attribute *attr,
312 int i)
313 {
314 struct device *dev = kobj_to_dev(kobj);
315 struct nvmem_device *nvmem = to_nvmem_device(dev);
316
317 return nvmem->size;
318 }
319
nvmem_attr_is_visible(struct kobject * kobj,struct attribute * attr,int i)320 static umode_t nvmem_attr_is_visible(struct kobject *kobj,
321 struct attribute *attr, int i)
322 {
323 struct device *dev = kobj_to_dev(kobj);
324 struct nvmem_device *nvmem = to_nvmem_device(dev);
325
326 /*
327 * If the device has no .reg_write operation, do not allow
328 * configuration as read-write.
329 * If the device is set as read-only by configuration, it
330 * can be forced into read-write mode using the 'force_ro'
331 * attribute.
332 */
333 if (attr == &dev_attr_force_ro.attr && !nvmem->reg_write)
334 return 0; /* Attribute not visible */
335
336 return attr->mode;
337 }
338
339 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
340 const char *id, int index);
341
nvmem_cell_attr_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)342 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
343 const struct bin_attribute *attr, char *buf,
344 loff_t pos, size_t count)
345 {
346 struct nvmem_cell_entry *entry;
347 struct nvmem_cell *cell = NULL;
348 size_t cell_sz, read_len;
349 void *content;
350
351 entry = attr->private;
352 cell = nvmem_create_cell(entry, entry->name, 0);
353 if (IS_ERR(cell))
354 return PTR_ERR(cell);
355
356 if (!cell)
357 return -EINVAL;
358
359 content = nvmem_cell_read(cell, &cell_sz);
360 if (IS_ERR(content)) {
361 read_len = PTR_ERR(content);
362 goto destroy_cell;
363 }
364
365 read_len = min_t(unsigned int, cell_sz - pos, count);
366 memcpy(buf, content + pos, read_len);
367 kfree(content);
368
369 destroy_cell:
370 kfree_const(cell->id);
371 kfree(cell);
372
373 return read_len;
374 }
375
376 /* default read/write permissions */
377 static const struct bin_attribute bin_attr_rw_nvmem = {
378 .attr = {
379 .name = "nvmem",
380 .mode = 0644,
381 },
382 .read_new = bin_attr_nvmem_read,
383 .write_new = bin_attr_nvmem_write,
384 };
385
386 static const struct bin_attribute *const nvmem_bin_attributes[] = {
387 &bin_attr_rw_nvmem,
388 NULL,
389 };
390
391 static const struct attribute_group nvmem_bin_group = {
392 .bin_attrs_new = nvmem_bin_attributes,
393 .attrs = nvmem_attrs,
394 .is_bin_visible = nvmem_bin_attr_is_visible,
395 .bin_size = nvmem_bin_attr_size,
396 .is_visible = nvmem_attr_is_visible,
397 };
398
399 static const struct attribute_group *nvmem_dev_groups[] = {
400 &nvmem_bin_group,
401 NULL,
402 };
403
404 static const struct bin_attribute bin_attr_nvmem_eeprom_compat = {
405 .attr = {
406 .name = "eeprom",
407 },
408 .read_new = bin_attr_nvmem_read,
409 .write_new = bin_attr_nvmem_write,
410 };
411
412 /*
413 * nvmem_setup_compat() - Create an additional binary entry in
414 * drivers sys directory, to be backwards compatible with the older
415 * drivers/misc/eeprom drivers.
416 */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)417 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
418 const struct nvmem_config *config)
419 {
420 int rval;
421
422 if (!config->compat)
423 return 0;
424
425 if (!config->base_dev)
426 return -EINVAL;
427
428 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
429 if (config->type == NVMEM_TYPE_FRAM)
430 nvmem->eeprom.attr.name = "fram";
431 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
432 nvmem->eeprom.size = nvmem->size;
433 #ifdef CONFIG_DEBUG_LOCK_ALLOC
434 nvmem->eeprom.attr.key = &eeprom_lock_key;
435 #endif
436 nvmem->eeprom.private = &nvmem->dev;
437 nvmem->base_dev = config->base_dev;
438
439 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
440 if (rval) {
441 dev_err(&nvmem->dev,
442 "Failed to create eeprom binary file %d\n", rval);
443 return rval;
444 }
445
446 nvmem->flags |= FLAG_COMPAT;
447
448 return 0;
449 }
450
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)451 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
452 const struct nvmem_config *config)
453 {
454 if (config->compat)
455 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
456 }
457
nvmem_populate_sysfs_cells(struct nvmem_device * nvmem)458 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
459 {
460 struct attribute_group group = {
461 .name = "cells",
462 };
463 struct nvmem_cell_entry *entry;
464 const struct bin_attribute **pattrs;
465 struct bin_attribute *attrs;
466 unsigned int ncells = 0, i = 0;
467 int ret = 0;
468
469 mutex_lock(&nvmem_mutex);
470
471 if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated)
472 goto unlock_mutex;
473
474 /* Allocate an array of attributes with a sentinel */
475 ncells = list_count_nodes(&nvmem->cells);
476 pattrs = devm_kcalloc(&nvmem->dev, ncells + 1,
477 sizeof(struct bin_attribute *), GFP_KERNEL);
478 if (!pattrs) {
479 ret = -ENOMEM;
480 goto unlock_mutex;
481 }
482
483 attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
484 if (!attrs) {
485 ret = -ENOMEM;
486 goto unlock_mutex;
487 }
488
489 /* Initialize each attribute to take the name and size of the cell */
490 list_for_each_entry(entry, &nvmem->cells, node) {
491 sysfs_bin_attr_init(&attrs[i]);
492 attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
493 "%s@%x,%x", entry->name,
494 entry->offset,
495 entry->bit_offset);
496 attrs[i].attr.mode = 0444 & nvmem_bin_attr_get_umode(nvmem);
497 attrs[i].size = entry->bytes;
498 attrs[i].read_new = &nvmem_cell_attr_read;
499 attrs[i].private = entry;
500 if (!attrs[i].attr.name) {
501 ret = -ENOMEM;
502 goto unlock_mutex;
503 }
504
505 pattrs[i] = &attrs[i];
506 i++;
507 }
508
509 group.bin_attrs_new = pattrs;
510
511 ret = device_add_group(&nvmem->dev, &group);
512 if (ret)
513 goto unlock_mutex;
514
515 nvmem->sysfs_cells_populated = true;
516
517 unlock_mutex:
518 mutex_unlock(&nvmem_mutex);
519
520 return ret;
521 }
522
523 #else /* CONFIG_NVMEM_SYSFS */
524
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)525 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
526 const struct nvmem_config *config)
527 {
528 return -ENOSYS;
529 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)530 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
531 const struct nvmem_config *config)
532 {
533 }
534
535 #endif /* CONFIG_NVMEM_SYSFS */
536
nvmem_release(struct device * dev)537 static void nvmem_release(struct device *dev)
538 {
539 struct nvmem_device *nvmem = to_nvmem_device(dev);
540
541 ida_free(&nvmem_ida, nvmem->id);
542 gpiod_put(nvmem->wp_gpio);
543 kfree(nvmem);
544 }
545
546 static const struct device_type nvmem_provider_type = {
547 .release = nvmem_release,
548 };
549
550 static struct bus_type nvmem_bus_type = {
551 .name = "nvmem",
552 };
553
nvmem_cell_entry_drop(struct nvmem_cell_entry * cell)554 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
555 {
556 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
557 mutex_lock(&nvmem_mutex);
558 list_del(&cell->node);
559 mutex_unlock(&nvmem_mutex);
560 of_node_put(cell->np);
561 kfree_const(cell->name);
562 kfree(cell);
563 }
564
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)565 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
566 {
567 struct nvmem_cell_entry *cell, *p;
568
569 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
570 nvmem_cell_entry_drop(cell);
571 }
572
nvmem_cell_entry_add(struct nvmem_cell_entry * cell)573 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
574 {
575 mutex_lock(&nvmem_mutex);
576 list_add_tail(&cell->node, &cell->nvmem->cells);
577 mutex_unlock(&nvmem_mutex);
578 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
579 }
580
nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)581 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
582 const struct nvmem_cell_info *info,
583 struct nvmem_cell_entry *cell)
584 {
585 cell->nvmem = nvmem;
586 cell->offset = info->offset;
587 cell->raw_len = info->raw_len ?: info->bytes;
588 cell->bytes = info->bytes;
589 cell->name = info->name;
590 cell->read_post_process = info->read_post_process;
591 cell->priv = info->priv;
592
593 cell->bit_offset = info->bit_offset;
594 cell->nbits = info->nbits;
595 cell->np = info->np;
596
597 if (cell->nbits) {
598 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
599 BITS_PER_BYTE);
600 cell->raw_len = ALIGN(cell->bytes, nvmem->word_size);
601 }
602
603 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
604 dev_err(&nvmem->dev,
605 "cell %s unaligned to nvmem stride %d\n",
606 cell->name ?: "<unknown>", nvmem->stride);
607 return -EINVAL;
608 }
609
610 if (!IS_ALIGNED(cell->raw_len, nvmem->word_size)) {
611 dev_err(&nvmem->dev,
612 "cell %s raw len %zd unaligned to nvmem word size %d\n",
613 cell->name ?: "<unknown>", cell->raw_len,
614 nvmem->word_size);
615
616 if (info->raw_len)
617 return -EINVAL;
618
619 cell->raw_len = ALIGN(cell->raw_len, nvmem->word_size);
620 }
621
622 return 0;
623 }
624
nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)625 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
626 const struct nvmem_cell_info *info,
627 struct nvmem_cell_entry *cell)
628 {
629 int err;
630
631 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
632 if (err)
633 return err;
634
635 cell->name = kstrdup_const(info->name, GFP_KERNEL);
636 if (!cell->name)
637 return -ENOMEM;
638
639 return 0;
640 }
641
642 /**
643 * nvmem_add_one_cell() - Add one cell information to an nvmem device
644 *
645 * @nvmem: nvmem device to add cells to.
646 * @info: nvmem cell info to add to the device
647 *
648 * Return: 0 or negative error code on failure.
649 */
nvmem_add_one_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info)650 int nvmem_add_one_cell(struct nvmem_device *nvmem,
651 const struct nvmem_cell_info *info)
652 {
653 struct nvmem_cell_entry *cell;
654 int rval;
655
656 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
657 if (!cell)
658 return -ENOMEM;
659
660 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
661 if (rval) {
662 kfree(cell);
663 return rval;
664 }
665
666 nvmem_cell_entry_add(cell);
667
668 return 0;
669 }
670 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
671
672 /**
673 * nvmem_add_cells() - Add cell information to an nvmem device
674 *
675 * @nvmem: nvmem device to add cells to.
676 * @info: nvmem cell info to add to the device
677 * @ncells: number of cells in info
678 *
679 * Return: 0 or negative error code on failure.
680 */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)681 static int nvmem_add_cells(struct nvmem_device *nvmem,
682 const struct nvmem_cell_info *info,
683 int ncells)
684 {
685 int i, rval;
686
687 for (i = 0; i < ncells; i++) {
688 rval = nvmem_add_one_cell(nvmem, &info[i]);
689 if (rval)
690 return rval;
691 }
692
693 return 0;
694 }
695
696 /**
697 * nvmem_register_notifier() - Register a notifier block for nvmem events.
698 *
699 * @nb: notifier block to be called on nvmem events.
700 *
701 * Return: 0 on success, negative error number on failure.
702 */
nvmem_register_notifier(struct notifier_block * nb)703 int nvmem_register_notifier(struct notifier_block *nb)
704 {
705 return blocking_notifier_chain_register(&nvmem_notifier, nb);
706 }
707 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
708
709 /**
710 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
711 *
712 * @nb: notifier block to be unregistered.
713 *
714 * Return: 0 on success, negative error number on failure.
715 */
nvmem_unregister_notifier(struct notifier_block * nb)716 int nvmem_unregister_notifier(struct notifier_block *nb)
717 {
718 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
719 }
720 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
721
nvmem_add_cells_from_table(struct nvmem_device * nvmem)722 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
723 {
724 const struct nvmem_cell_info *info;
725 struct nvmem_cell_table *table;
726 struct nvmem_cell_entry *cell;
727 int rval = 0, i;
728
729 mutex_lock(&nvmem_cell_mutex);
730 list_for_each_entry(table, &nvmem_cell_tables, node) {
731 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
732 for (i = 0; i < table->ncells; i++) {
733 info = &table->cells[i];
734
735 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
736 if (!cell) {
737 rval = -ENOMEM;
738 goto out;
739 }
740
741 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
742 if (rval) {
743 kfree(cell);
744 goto out;
745 }
746
747 nvmem_cell_entry_add(cell);
748 }
749 }
750 }
751
752 out:
753 mutex_unlock(&nvmem_cell_mutex);
754 return rval;
755 }
756
757 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_name(struct nvmem_device * nvmem,const char * cell_id)758 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
759 {
760 struct nvmem_cell_entry *iter, *cell = NULL;
761
762 mutex_lock(&nvmem_mutex);
763 list_for_each_entry(iter, &nvmem->cells, node) {
764 if (strcmp(cell_id, iter->name) == 0) {
765 cell = iter;
766 break;
767 }
768 }
769 mutex_unlock(&nvmem_mutex);
770
771 return cell;
772 }
773
nvmem_validate_keepouts(struct nvmem_device * nvmem)774 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
775 {
776 unsigned int cur = 0;
777 const struct nvmem_keepout *keepout = nvmem->keepout;
778 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
779
780 while (keepout < keepoutend) {
781 /* Ensure keepouts are sorted and don't overlap. */
782 if (keepout->start < cur) {
783 dev_err(&nvmem->dev,
784 "Keepout regions aren't sorted or overlap.\n");
785
786 return -ERANGE;
787 }
788
789 if (keepout->end < keepout->start) {
790 dev_err(&nvmem->dev,
791 "Invalid keepout region.\n");
792
793 return -EINVAL;
794 }
795
796 /*
797 * Validate keepouts (and holes between) don't violate
798 * word_size constraints.
799 */
800 if ((keepout->end - keepout->start < nvmem->word_size) ||
801 ((keepout->start != cur) &&
802 (keepout->start - cur < nvmem->word_size))) {
803
804 dev_err(&nvmem->dev,
805 "Keepout regions violate word_size constraints.\n");
806
807 return -ERANGE;
808 }
809
810 /* Validate keepouts don't violate stride (alignment). */
811 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
812 !IS_ALIGNED(keepout->end, nvmem->stride)) {
813
814 dev_err(&nvmem->dev,
815 "Keepout regions violate stride.\n");
816
817 return -EINVAL;
818 }
819
820 cur = keepout->end;
821 keepout++;
822 }
823
824 return 0;
825 }
826
nvmem_add_cells_from_dt(struct nvmem_device * nvmem,struct device_node * np)827 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
828 {
829 struct device *dev = &nvmem->dev;
830 struct device_node *child;
831 const __be32 *addr;
832 int len, ret;
833
834 for_each_child_of_node(np, child) {
835 struct nvmem_cell_info info = {0};
836
837 addr = of_get_property(child, "reg", &len);
838 if (!addr)
839 continue;
840 if (len < 2 * sizeof(u32)) {
841 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
842 of_node_put(child);
843 return -EINVAL;
844 }
845
846 info.offset = be32_to_cpup(addr++);
847 info.bytes = be32_to_cpup(addr);
848 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
849
850 addr = of_get_property(child, "bits", &len);
851 if (addr && len == (2 * sizeof(u32))) {
852 info.bit_offset = be32_to_cpup(addr++);
853 info.nbits = be32_to_cpup(addr);
854 if (info.bit_offset >= BITS_PER_BYTE * info.bytes ||
855 info.nbits < 1 ||
856 info.bit_offset + info.nbits > BITS_PER_BYTE * info.bytes) {
857 dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
858 of_node_put(child);
859 return -EINVAL;
860 }
861 }
862
863 info.np = of_node_get(child);
864
865 if (nvmem->fixup_dt_cell_info)
866 nvmem->fixup_dt_cell_info(nvmem, &info);
867
868 ret = nvmem_add_one_cell(nvmem, &info);
869 kfree(info.name);
870 if (ret) {
871 of_node_put(child);
872 return ret;
873 }
874 }
875
876 return 0;
877 }
878
nvmem_add_cells_from_legacy_of(struct nvmem_device * nvmem)879 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
880 {
881 return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
882 }
883
nvmem_add_cells_from_fixed_layout(struct nvmem_device * nvmem)884 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
885 {
886 struct device_node *layout_np;
887 int err = 0;
888
889 layout_np = of_nvmem_layout_get_container(nvmem);
890 if (!layout_np)
891 return 0;
892
893 if (of_device_is_compatible(layout_np, "fixed-layout"))
894 err = nvmem_add_cells_from_dt(nvmem, layout_np);
895
896 of_node_put(layout_np);
897
898 return err;
899 }
900
nvmem_layout_register(struct nvmem_layout * layout)901 int nvmem_layout_register(struct nvmem_layout *layout)
902 {
903 int ret;
904
905 if (!layout->add_cells)
906 return -EINVAL;
907
908 /* Populate the cells */
909 ret = layout->add_cells(layout);
910 if (ret)
911 return ret;
912
913 #ifdef CONFIG_NVMEM_SYSFS
914 ret = nvmem_populate_sysfs_cells(layout->nvmem);
915 if (ret) {
916 nvmem_device_remove_all_cells(layout->nvmem);
917 return ret;
918 }
919 #endif
920
921 return 0;
922 }
923 EXPORT_SYMBOL_GPL(nvmem_layout_register);
924
nvmem_layout_unregister(struct nvmem_layout * layout)925 void nvmem_layout_unregister(struct nvmem_layout *layout)
926 {
927 /* Keep the API even with an empty stub in case we need it later */
928 }
929 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
930
931 /**
932 * nvmem_register() - Register a nvmem device for given nvmem_config.
933 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
934 *
935 * @config: nvmem device configuration with which nvmem device is created.
936 *
937 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
938 * on success.
939 */
940
nvmem_register(const struct nvmem_config * config)941 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
942 {
943 struct nvmem_device *nvmem;
944 int rval;
945
946 if (!config->dev)
947 return ERR_PTR(-EINVAL);
948
949 if (!config->reg_read && !config->reg_write)
950 return ERR_PTR(-EINVAL);
951
952 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
953 if (!nvmem)
954 return ERR_PTR(-ENOMEM);
955
956 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
957 if (rval < 0) {
958 kfree(nvmem);
959 return ERR_PTR(rval);
960 }
961
962 nvmem->id = rval;
963
964 nvmem->dev.type = &nvmem_provider_type;
965 nvmem->dev.bus = &nvmem_bus_type;
966 nvmem->dev.parent = config->dev;
967
968 device_initialize(&nvmem->dev);
969
970 if (!config->ignore_wp)
971 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
972 GPIOD_OUT_HIGH);
973 if (IS_ERR(nvmem->wp_gpio)) {
974 rval = PTR_ERR(nvmem->wp_gpio);
975 nvmem->wp_gpio = NULL;
976 goto err_put_device;
977 }
978
979 kref_init(&nvmem->refcnt);
980 INIT_LIST_HEAD(&nvmem->cells);
981 nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
982
983 nvmem->owner = config->owner;
984 if (!nvmem->owner && config->dev->driver)
985 nvmem->owner = config->dev->driver->owner;
986 nvmem->stride = config->stride ?: 1;
987 nvmem->word_size = config->word_size ?: 1;
988 nvmem->size = config->size;
989 nvmem->root_only = config->root_only;
990 nvmem->priv = config->priv;
991 nvmem->type = config->type;
992 nvmem->reg_read = config->reg_read;
993 nvmem->reg_write = config->reg_write;
994 nvmem->keepout = config->keepout;
995 nvmem->nkeepout = config->nkeepout;
996 if (config->of_node)
997 nvmem->dev.of_node = config->of_node;
998 else
999 nvmem->dev.of_node = config->dev->of_node;
1000
1001 switch (config->id) {
1002 case NVMEM_DEVID_NONE:
1003 rval = dev_set_name(&nvmem->dev, "%s", config->name);
1004 break;
1005 case NVMEM_DEVID_AUTO:
1006 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
1007 break;
1008 default:
1009 rval = dev_set_name(&nvmem->dev, "%s%d",
1010 config->name ? : "nvmem",
1011 config->name ? config->id : nvmem->id);
1012 break;
1013 }
1014
1015 if (rval)
1016 goto err_put_device;
1017
1018 nvmem->read_only = device_property_present(config->dev, "read-only") ||
1019 config->read_only || !nvmem->reg_write;
1020
1021 #ifdef CONFIG_NVMEM_SYSFS
1022 nvmem->dev.groups = nvmem_dev_groups;
1023 #endif
1024
1025 if (nvmem->nkeepout) {
1026 rval = nvmem_validate_keepouts(nvmem);
1027 if (rval)
1028 goto err_put_device;
1029 }
1030
1031 if (config->compat) {
1032 rval = nvmem_sysfs_setup_compat(nvmem, config);
1033 if (rval)
1034 goto err_put_device;
1035 }
1036
1037 if (config->cells) {
1038 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
1039 if (rval)
1040 goto err_remove_cells;
1041 }
1042
1043 rval = nvmem_add_cells_from_table(nvmem);
1044 if (rval)
1045 goto err_remove_cells;
1046
1047 if (config->add_legacy_fixed_of_cells) {
1048 rval = nvmem_add_cells_from_legacy_of(nvmem);
1049 if (rval)
1050 goto err_remove_cells;
1051 }
1052
1053 rval = nvmem_add_cells_from_fixed_layout(nvmem);
1054 if (rval)
1055 goto err_remove_cells;
1056
1057 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1058
1059 rval = device_add(&nvmem->dev);
1060 if (rval)
1061 goto err_remove_cells;
1062
1063 rval = nvmem_populate_layout(nvmem);
1064 if (rval)
1065 goto err_remove_dev;
1066
1067 #ifdef CONFIG_NVMEM_SYSFS
1068 rval = nvmem_populate_sysfs_cells(nvmem);
1069 if (rval)
1070 goto err_destroy_layout;
1071 #endif
1072
1073 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1074
1075 return nvmem;
1076
1077 #ifdef CONFIG_NVMEM_SYSFS
1078 err_destroy_layout:
1079 nvmem_destroy_layout(nvmem);
1080 #endif
1081 err_remove_dev:
1082 device_del(&nvmem->dev);
1083 err_remove_cells:
1084 nvmem_device_remove_all_cells(nvmem);
1085 if (config->compat)
1086 nvmem_sysfs_remove_compat(nvmem, config);
1087 err_put_device:
1088 put_device(&nvmem->dev);
1089
1090 return ERR_PTR(rval);
1091 }
1092 EXPORT_SYMBOL_GPL(nvmem_register);
1093
nvmem_device_release(struct kref * kref)1094 static void nvmem_device_release(struct kref *kref)
1095 {
1096 struct nvmem_device *nvmem;
1097
1098 nvmem = container_of(kref, struct nvmem_device, refcnt);
1099
1100 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1101
1102 if (nvmem->flags & FLAG_COMPAT)
1103 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1104
1105 nvmem_device_remove_all_cells(nvmem);
1106 nvmem_destroy_layout(nvmem);
1107 device_unregister(&nvmem->dev);
1108 }
1109
1110 /**
1111 * nvmem_unregister() - Unregister previously registered nvmem device
1112 *
1113 * @nvmem: Pointer to previously registered nvmem device.
1114 */
nvmem_unregister(struct nvmem_device * nvmem)1115 void nvmem_unregister(struct nvmem_device *nvmem)
1116 {
1117 if (nvmem)
1118 kref_put(&nvmem->refcnt, nvmem_device_release);
1119 }
1120 EXPORT_SYMBOL_GPL(nvmem_unregister);
1121
devm_nvmem_unregister(void * nvmem)1122 static void devm_nvmem_unregister(void *nvmem)
1123 {
1124 nvmem_unregister(nvmem);
1125 }
1126
1127 /**
1128 * devm_nvmem_register() - Register a managed nvmem device for given
1129 * nvmem_config.
1130 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1131 *
1132 * @dev: Device that uses the nvmem device.
1133 * @config: nvmem device configuration with which nvmem device is created.
1134 *
1135 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1136 * on success.
1137 */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)1138 struct nvmem_device *devm_nvmem_register(struct device *dev,
1139 const struct nvmem_config *config)
1140 {
1141 struct nvmem_device *nvmem;
1142 int ret;
1143
1144 nvmem = nvmem_register(config);
1145 if (IS_ERR(nvmem))
1146 return nvmem;
1147
1148 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1149 if (ret)
1150 return ERR_PTR(ret);
1151
1152 return nvmem;
1153 }
1154 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1155
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))1156 static struct nvmem_device *__nvmem_device_get(void *data,
1157 int (*match)(struct device *dev, const void *data))
1158 {
1159 struct nvmem_device *nvmem = NULL;
1160 struct device *dev;
1161
1162 mutex_lock(&nvmem_mutex);
1163 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1164 if (dev)
1165 nvmem = to_nvmem_device(dev);
1166 mutex_unlock(&nvmem_mutex);
1167 if (!nvmem)
1168 return ERR_PTR(-EPROBE_DEFER);
1169
1170 if (!try_module_get(nvmem->owner)) {
1171 dev_err(&nvmem->dev,
1172 "could not increase module refcount for cell %s\n",
1173 nvmem_dev_name(nvmem));
1174
1175 put_device(&nvmem->dev);
1176 return ERR_PTR(-EINVAL);
1177 }
1178
1179 kref_get(&nvmem->refcnt);
1180
1181 return nvmem;
1182 }
1183
__nvmem_device_put(struct nvmem_device * nvmem)1184 static void __nvmem_device_put(struct nvmem_device *nvmem)
1185 {
1186 put_device(&nvmem->dev);
1187 module_put(nvmem->owner);
1188 kref_put(&nvmem->refcnt, nvmem_device_release);
1189 }
1190
1191 #if IS_ENABLED(CONFIG_OF)
1192 /**
1193 * of_nvmem_device_get() - Get nvmem device from a given id
1194 *
1195 * @np: Device tree node that uses the nvmem device.
1196 * @id: nvmem name from nvmem-names property.
1197 *
1198 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1199 * on success.
1200 */
of_nvmem_device_get(struct device_node * np,const char * id)1201 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1202 {
1203
1204 struct device_node *nvmem_np;
1205 struct nvmem_device *nvmem;
1206 int index = 0;
1207
1208 if (id)
1209 index = of_property_match_string(np, "nvmem-names", id);
1210
1211 nvmem_np = of_parse_phandle(np, "nvmem", index);
1212 if (!nvmem_np)
1213 return ERR_PTR(-ENOENT);
1214
1215 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1216 of_node_put(nvmem_np);
1217 return nvmem;
1218 }
1219 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1220 #endif
1221
1222 /**
1223 * nvmem_device_get() - Get nvmem device from a given id
1224 *
1225 * @dev: Device that uses the nvmem device.
1226 * @dev_name: name of the requested nvmem device.
1227 *
1228 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1229 * on success.
1230 */
nvmem_device_get(struct device * dev,const char * dev_name)1231 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1232 {
1233 if (dev->of_node) { /* try dt first */
1234 struct nvmem_device *nvmem;
1235
1236 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1237
1238 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1239 return nvmem;
1240
1241 }
1242
1243 return __nvmem_device_get((void *)dev_name, device_match_name);
1244 }
1245 EXPORT_SYMBOL_GPL(nvmem_device_get);
1246
1247 /**
1248 * nvmem_device_find() - Find nvmem device with matching function
1249 *
1250 * @data: Data to pass to match function
1251 * @match: Callback function to check device
1252 *
1253 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1254 * on success.
1255 */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))1256 struct nvmem_device *nvmem_device_find(void *data,
1257 int (*match)(struct device *dev, const void *data))
1258 {
1259 return __nvmem_device_get(data, match);
1260 }
1261 EXPORT_SYMBOL_GPL(nvmem_device_find);
1262
devm_nvmem_device_match(struct device * dev,void * res,void * data)1263 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1264 {
1265 struct nvmem_device **nvmem = res;
1266
1267 if (WARN_ON(!nvmem || !*nvmem))
1268 return 0;
1269
1270 return *nvmem == data;
1271 }
1272
devm_nvmem_device_release(struct device * dev,void * res)1273 static void devm_nvmem_device_release(struct device *dev, void *res)
1274 {
1275 nvmem_device_put(*(struct nvmem_device **)res);
1276 }
1277
1278 /**
1279 * devm_nvmem_device_put() - put already got nvmem device
1280 *
1281 * @dev: Device that uses the nvmem device.
1282 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1283 * that needs to be released.
1284 */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)1285 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1286 {
1287 int ret;
1288
1289 ret = devres_release(dev, devm_nvmem_device_release,
1290 devm_nvmem_device_match, nvmem);
1291
1292 WARN_ON(ret);
1293 }
1294 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1295
1296 /**
1297 * nvmem_device_put() - put already got nvmem device
1298 *
1299 * @nvmem: pointer to nvmem device that needs to be released.
1300 */
nvmem_device_put(struct nvmem_device * nvmem)1301 void nvmem_device_put(struct nvmem_device *nvmem)
1302 {
1303 __nvmem_device_put(nvmem);
1304 }
1305 EXPORT_SYMBOL_GPL(nvmem_device_put);
1306
1307 /**
1308 * devm_nvmem_device_get() - Get nvmem device of device form a given id
1309 *
1310 * @dev: Device that requests the nvmem device.
1311 * @id: name id for the requested nvmem device.
1312 *
1313 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1314 * on success. The nvmem_device will be freed by the automatically once the
1315 * device is freed.
1316 */
devm_nvmem_device_get(struct device * dev,const char * id)1317 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1318 {
1319 struct nvmem_device **ptr, *nvmem;
1320
1321 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1322 if (!ptr)
1323 return ERR_PTR(-ENOMEM);
1324
1325 nvmem = nvmem_device_get(dev, id);
1326 if (!IS_ERR(nvmem)) {
1327 *ptr = nvmem;
1328 devres_add(dev, ptr);
1329 } else {
1330 devres_free(ptr);
1331 }
1332
1333 return nvmem;
1334 }
1335 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1336
nvmem_create_cell(struct nvmem_cell_entry * entry,const char * id,int index)1337 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1338 const char *id, int index)
1339 {
1340 struct nvmem_cell *cell;
1341 const char *name = NULL;
1342
1343 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1344 if (!cell)
1345 return ERR_PTR(-ENOMEM);
1346
1347 if (id) {
1348 name = kstrdup_const(id, GFP_KERNEL);
1349 if (!name) {
1350 kfree(cell);
1351 return ERR_PTR(-ENOMEM);
1352 }
1353 }
1354
1355 cell->id = name;
1356 cell->entry = entry;
1357 cell->index = index;
1358
1359 return cell;
1360 }
1361
1362 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)1363 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1364 {
1365 struct nvmem_cell_entry *cell_entry;
1366 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1367 struct nvmem_cell_lookup *lookup;
1368 struct nvmem_device *nvmem;
1369 const char *dev_id;
1370
1371 if (!dev)
1372 return ERR_PTR(-EINVAL);
1373
1374 dev_id = dev_name(dev);
1375
1376 mutex_lock(&nvmem_lookup_mutex);
1377
1378 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1379 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1380 (strcmp(lookup->con_id, con_id) == 0)) {
1381 /* This is the right entry. */
1382 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1383 device_match_name);
1384 if (IS_ERR(nvmem)) {
1385 /* Provider may not be registered yet. */
1386 cell = ERR_CAST(nvmem);
1387 break;
1388 }
1389
1390 cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1391 lookup->cell_name);
1392 if (!cell_entry) {
1393 __nvmem_device_put(nvmem);
1394 cell = ERR_PTR(-ENOENT);
1395 } else {
1396 cell = nvmem_create_cell(cell_entry, con_id, 0);
1397 if (IS_ERR(cell))
1398 __nvmem_device_put(nvmem);
1399 }
1400 break;
1401 }
1402 }
1403
1404 mutex_unlock(&nvmem_lookup_mutex);
1405 return cell;
1406 }
1407
nvmem_layout_module_put(struct nvmem_device * nvmem)1408 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1409 {
1410 if (nvmem->layout && nvmem->layout->dev.driver)
1411 module_put(nvmem->layout->dev.driver->owner);
1412 }
1413
1414 #if IS_ENABLED(CONFIG_OF)
1415 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_node(struct nvmem_device * nvmem,struct device_node * np)1416 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1417 {
1418 struct nvmem_cell_entry *iter, *cell = NULL;
1419
1420 mutex_lock(&nvmem_mutex);
1421 list_for_each_entry(iter, &nvmem->cells, node) {
1422 if (np == iter->np) {
1423 cell = iter;
1424 break;
1425 }
1426 }
1427 mutex_unlock(&nvmem_mutex);
1428
1429 return cell;
1430 }
1431
nvmem_layout_module_get_optional(struct nvmem_device * nvmem)1432 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1433 {
1434 if (!nvmem->layout)
1435 return 0;
1436
1437 if (!nvmem->layout->dev.driver ||
1438 !try_module_get(nvmem->layout->dev.driver->owner))
1439 return -EPROBE_DEFER;
1440
1441 return 0;
1442 }
1443
1444 /**
1445 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1446 *
1447 * @np: Device tree node that uses the nvmem cell.
1448 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1449 * for the cell at index 0 (the lone cell with no accompanying
1450 * nvmem-cell-names property).
1451 *
1452 * Return: Will be an ERR_PTR() on error or a valid pointer
1453 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1454 * nvmem_cell_put().
1455 */
of_nvmem_cell_get(struct device_node * np,const char * id)1456 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1457 {
1458 struct device_node *cell_np, *nvmem_np;
1459 struct nvmem_device *nvmem;
1460 struct nvmem_cell_entry *cell_entry;
1461 struct nvmem_cell *cell;
1462 struct of_phandle_args cell_spec;
1463 int index = 0;
1464 int cell_index = 0;
1465 int ret;
1466
1467 /* if cell name exists, find index to the name */
1468 if (id)
1469 index = of_property_match_string(np, "nvmem-cell-names", id);
1470
1471 ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1472 "#nvmem-cell-cells",
1473 index, &cell_spec);
1474 if (ret)
1475 return ERR_PTR(-ENOENT);
1476
1477 if (cell_spec.args_count > 1)
1478 return ERR_PTR(-EINVAL);
1479
1480 cell_np = cell_spec.np;
1481 if (cell_spec.args_count)
1482 cell_index = cell_spec.args[0];
1483
1484 nvmem_np = of_get_parent(cell_np);
1485 if (!nvmem_np) {
1486 of_node_put(cell_np);
1487 return ERR_PTR(-EINVAL);
1488 }
1489
1490 /* nvmem layouts produce cells within the nvmem-layout container */
1491 if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1492 nvmem_np = of_get_next_parent(nvmem_np);
1493 if (!nvmem_np) {
1494 of_node_put(cell_np);
1495 return ERR_PTR(-EINVAL);
1496 }
1497 }
1498
1499 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1500 of_node_put(nvmem_np);
1501 if (IS_ERR(nvmem)) {
1502 of_node_put(cell_np);
1503 return ERR_CAST(nvmem);
1504 }
1505
1506 ret = nvmem_layout_module_get_optional(nvmem);
1507 if (ret) {
1508 of_node_put(cell_np);
1509 __nvmem_device_put(nvmem);
1510 return ERR_PTR(ret);
1511 }
1512
1513 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1514 of_node_put(cell_np);
1515 if (!cell_entry) {
1516 __nvmem_device_put(nvmem);
1517 nvmem_layout_module_put(nvmem);
1518 if (nvmem->layout)
1519 return ERR_PTR(-EPROBE_DEFER);
1520 else
1521 return ERR_PTR(-ENOENT);
1522 }
1523
1524 cell = nvmem_create_cell(cell_entry, id, cell_index);
1525 if (IS_ERR(cell)) {
1526 __nvmem_device_put(nvmem);
1527 nvmem_layout_module_put(nvmem);
1528 }
1529
1530 return cell;
1531 }
1532 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1533 #endif
1534
1535 /**
1536 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1537 *
1538 * @dev: Device that requests the nvmem cell.
1539 * @id: nvmem cell name to get (this corresponds with the name from the
1540 * nvmem-cell-names property for DT systems and with the con_id from
1541 * the lookup entry for non-DT systems).
1542 *
1543 * Return: Will be an ERR_PTR() on error or a valid pointer
1544 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1545 * nvmem_cell_put().
1546 */
nvmem_cell_get(struct device * dev,const char * id)1547 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1548 {
1549 struct nvmem_cell *cell;
1550
1551 if (dev->of_node) { /* try dt first */
1552 cell = of_nvmem_cell_get(dev->of_node, id);
1553 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1554 return cell;
1555 }
1556
1557 /* NULL cell id only allowed for device tree; invalid otherwise */
1558 if (!id)
1559 return ERR_PTR(-EINVAL);
1560
1561 return nvmem_cell_get_from_lookup(dev, id);
1562 }
1563 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1564
devm_nvmem_cell_release(struct device * dev,void * res)1565 static void devm_nvmem_cell_release(struct device *dev, void *res)
1566 {
1567 nvmem_cell_put(*(struct nvmem_cell **)res);
1568 }
1569
1570 /**
1571 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1572 *
1573 * @dev: Device that requests the nvmem cell.
1574 * @id: nvmem cell name id to get.
1575 *
1576 * Return: Will be an ERR_PTR() on error or a valid pointer
1577 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1578 * automatically once the device is freed.
1579 */
devm_nvmem_cell_get(struct device * dev,const char * id)1580 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1581 {
1582 struct nvmem_cell **ptr, *cell;
1583
1584 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1585 if (!ptr)
1586 return ERR_PTR(-ENOMEM);
1587
1588 cell = nvmem_cell_get(dev, id);
1589 if (!IS_ERR(cell)) {
1590 *ptr = cell;
1591 devres_add(dev, ptr);
1592 } else {
1593 devres_free(ptr);
1594 }
1595
1596 return cell;
1597 }
1598 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1599
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1600 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1601 {
1602 struct nvmem_cell **c = res;
1603
1604 if (WARN_ON(!c || !*c))
1605 return 0;
1606
1607 return *c == data;
1608 }
1609
1610 /**
1611 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1612 * from devm_nvmem_cell_get.
1613 *
1614 * @dev: Device that requests the nvmem cell.
1615 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1616 */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1617 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1618 {
1619 int ret;
1620
1621 ret = devres_release(dev, devm_nvmem_cell_release,
1622 devm_nvmem_cell_match, cell);
1623
1624 WARN_ON(ret);
1625 }
1626 EXPORT_SYMBOL(devm_nvmem_cell_put);
1627
1628 /**
1629 * nvmem_cell_put() - Release previously allocated nvmem cell.
1630 *
1631 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1632 */
nvmem_cell_put(struct nvmem_cell * cell)1633 void nvmem_cell_put(struct nvmem_cell *cell)
1634 {
1635 struct nvmem_device *nvmem = cell->entry->nvmem;
1636
1637 if (cell->id)
1638 kfree_const(cell->id);
1639
1640 kfree(cell);
1641 __nvmem_device_put(nvmem);
1642 nvmem_layout_module_put(nvmem);
1643 }
1644 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1645
nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry * cell,void * buf)1646 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1647 {
1648 u8 *p, *b;
1649 int i, extra, bytes_offset;
1650 int bit_offset = cell->bit_offset;
1651
1652 p = b = buf;
1653
1654 bytes_offset = bit_offset / BITS_PER_BYTE;
1655 b += bytes_offset;
1656 bit_offset %= BITS_PER_BYTE;
1657
1658 if (bit_offset % BITS_PER_BYTE) {
1659 /* First shift */
1660 *p = *b++ >> bit_offset;
1661
1662 /* setup rest of the bytes if any */
1663 for (i = 1; i < cell->bytes; i++) {
1664 /* Get bits from next byte and shift them towards msb */
1665 *p++ |= *b << (BITS_PER_BYTE - bit_offset);
1666
1667 *p = *b++ >> bit_offset;
1668 }
1669 } else if (p != b) {
1670 memmove(p, b, cell->bytes - bytes_offset);
1671 p += cell->bytes - 1;
1672 } else {
1673 /* point to the msb */
1674 p += cell->bytes - 1;
1675 }
1676
1677 /* result fits in less bytes */
1678 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1679 while (--extra >= 0)
1680 *p-- = 0;
1681
1682 /* clear msb bits if any leftover in the last byte */
1683 if (cell->nbits % BITS_PER_BYTE)
1684 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1685 }
1686
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_entry * cell,void * buf,size_t * len,const char * id,int index)1687 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1688 struct nvmem_cell_entry *cell,
1689 void *buf, size_t *len, const char *id, int index)
1690 {
1691 int rc;
1692
1693 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1694
1695 if (rc)
1696 return rc;
1697
1698 /* shift bits in-place */
1699 if (cell->bit_offset || cell->nbits)
1700 nvmem_shift_read_buffer_in_place(cell, buf);
1701
1702 if (cell->read_post_process) {
1703 rc = cell->read_post_process(cell->priv, id, index,
1704 cell->offset, buf, cell->raw_len);
1705 if (rc)
1706 return rc;
1707 }
1708
1709 if (len)
1710 *len = cell->bytes;
1711
1712 return 0;
1713 }
1714
1715 /**
1716 * nvmem_cell_read() - Read a given nvmem cell
1717 *
1718 * @cell: nvmem cell to be read.
1719 * @len: pointer to length of cell which will be populated on successful read;
1720 * can be NULL.
1721 *
1722 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1723 * buffer should be freed by the consumer with a kfree().
1724 */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1725 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1726 {
1727 struct nvmem_cell_entry *entry = cell->entry;
1728 struct nvmem_device *nvmem = entry->nvmem;
1729 u8 *buf;
1730 int rc;
1731
1732 if (!nvmem)
1733 return ERR_PTR(-EINVAL);
1734
1735 buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1736 if (!buf)
1737 return ERR_PTR(-ENOMEM);
1738
1739 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1740 if (rc) {
1741 kfree(buf);
1742 return ERR_PTR(rc);
1743 }
1744
1745 return buf;
1746 }
1747 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1748
nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry * cell,u8 * _buf,int len)1749 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1750 u8 *_buf, int len)
1751 {
1752 struct nvmem_device *nvmem = cell->nvmem;
1753 int i, rc, nbits, bit_offset = cell->bit_offset;
1754 u8 v, *p, *buf, *b, pbyte, pbits;
1755
1756 nbits = cell->nbits;
1757 buf = kzalloc(cell->bytes, GFP_KERNEL);
1758 if (!buf)
1759 return ERR_PTR(-ENOMEM);
1760
1761 memcpy(buf, _buf, len);
1762 p = b = buf;
1763
1764 if (bit_offset) {
1765 pbyte = *b;
1766 *b <<= bit_offset;
1767
1768 /* setup the first byte with lsb bits from nvmem */
1769 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1770 if (rc)
1771 goto err;
1772 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1773
1774 /* setup rest of the byte if any */
1775 for (i = 1; i < cell->bytes; i++) {
1776 /* Get last byte bits and shift them towards lsb */
1777 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1778 pbyte = *b;
1779 p = b;
1780 *b <<= bit_offset;
1781 *b++ |= pbits;
1782 }
1783 }
1784
1785 /* if it's not end on byte boundary */
1786 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1787 /* setup the last byte with msb bits from nvmem */
1788 rc = nvmem_reg_read(nvmem,
1789 cell->offset + cell->bytes - 1, &v, 1);
1790 if (rc)
1791 goto err;
1792 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1793
1794 }
1795
1796 return buf;
1797 err:
1798 kfree(buf);
1799 return ERR_PTR(rc);
1800 }
1801
__nvmem_cell_entry_write(struct nvmem_cell_entry * cell,void * buf,size_t len)1802 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1803 {
1804 struct nvmem_device *nvmem = cell->nvmem;
1805 int rc;
1806
1807 if (!nvmem || nvmem->read_only ||
1808 (cell->bit_offset == 0 && len != cell->bytes))
1809 return -EINVAL;
1810
1811 /*
1812 * Any cells which have a read_post_process hook are read-only because
1813 * we cannot reverse the operation and it might affect other cells,
1814 * too.
1815 */
1816 if (cell->read_post_process)
1817 return -EINVAL;
1818
1819 if (cell->bit_offset || cell->nbits) {
1820 if (len != BITS_TO_BYTES(cell->nbits) && len != cell->bytes)
1821 return -EINVAL;
1822 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1823 if (IS_ERR(buf))
1824 return PTR_ERR(buf);
1825 }
1826
1827 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1828
1829 /* free the tmp buffer */
1830 if (cell->bit_offset || cell->nbits)
1831 kfree(buf);
1832
1833 if (rc)
1834 return rc;
1835
1836 return len;
1837 }
1838
1839 /**
1840 * nvmem_cell_write() - Write to a given nvmem cell
1841 *
1842 * @cell: nvmem cell to be written.
1843 * @buf: Buffer to be written.
1844 * @len: length of buffer to be written to nvmem cell.
1845 *
1846 * Return: length of bytes written or negative on failure.
1847 */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1848 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1849 {
1850 return __nvmem_cell_entry_write(cell->entry, buf, len);
1851 }
1852
1853 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1854
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1855 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1856 void *val, size_t count)
1857 {
1858 struct nvmem_cell *cell;
1859 void *buf;
1860 size_t len;
1861
1862 cell = nvmem_cell_get(dev, cell_id);
1863 if (IS_ERR(cell))
1864 return PTR_ERR(cell);
1865
1866 buf = nvmem_cell_read(cell, &len);
1867 if (IS_ERR(buf)) {
1868 nvmem_cell_put(cell);
1869 return PTR_ERR(buf);
1870 }
1871 if (len != count) {
1872 kfree(buf);
1873 nvmem_cell_put(cell);
1874 return -EINVAL;
1875 }
1876 memcpy(val, buf, count);
1877 kfree(buf);
1878 nvmem_cell_put(cell);
1879
1880 return 0;
1881 }
1882
1883 /**
1884 * nvmem_cell_read_u8() - Read a cell value as a u8
1885 *
1886 * @dev: Device that requests the nvmem cell.
1887 * @cell_id: Name of nvmem cell to read.
1888 * @val: pointer to output value.
1889 *
1890 * Return: 0 on success or negative errno.
1891 */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1892 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1893 {
1894 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1895 }
1896 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1897
1898 /**
1899 * nvmem_cell_read_u16() - Read a cell value as a u16
1900 *
1901 * @dev: Device that requests the nvmem cell.
1902 * @cell_id: Name of nvmem cell to read.
1903 * @val: pointer to output value.
1904 *
1905 * Return: 0 on success or negative errno.
1906 */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1907 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1908 {
1909 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1910 }
1911 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1912
1913 /**
1914 * nvmem_cell_read_u32() - Read a cell value as a u32
1915 *
1916 * @dev: Device that requests the nvmem cell.
1917 * @cell_id: Name of nvmem cell to read.
1918 * @val: pointer to output value.
1919 *
1920 * Return: 0 on success or negative errno.
1921 */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1922 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1923 {
1924 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1925 }
1926 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1927
1928 /**
1929 * nvmem_cell_read_u64() - Read a cell value as a u64
1930 *
1931 * @dev: Device that requests the nvmem cell.
1932 * @cell_id: Name of nvmem cell to read.
1933 * @val: pointer to output value.
1934 *
1935 * Return: 0 on success or negative errno.
1936 */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1937 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1938 {
1939 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1940 }
1941 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1942
nvmem_cell_read_variable_common(struct device * dev,const char * cell_id,size_t max_len,size_t * len)1943 static const void *nvmem_cell_read_variable_common(struct device *dev,
1944 const char *cell_id,
1945 size_t max_len, size_t *len)
1946 {
1947 struct nvmem_cell *cell;
1948 int nbits;
1949 void *buf;
1950
1951 cell = nvmem_cell_get(dev, cell_id);
1952 if (IS_ERR(cell))
1953 return cell;
1954
1955 nbits = cell->entry->nbits;
1956 buf = nvmem_cell_read(cell, len);
1957 nvmem_cell_put(cell);
1958 if (IS_ERR(buf))
1959 return buf;
1960
1961 /*
1962 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1963 * the length of the real data. Throw away the extra junk.
1964 */
1965 if (nbits)
1966 *len = DIV_ROUND_UP(nbits, 8);
1967
1968 if (*len > max_len) {
1969 kfree(buf);
1970 return ERR_PTR(-ERANGE);
1971 }
1972
1973 return buf;
1974 }
1975
1976 /**
1977 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1978 *
1979 * @dev: Device that requests the nvmem cell.
1980 * @cell_id: Name of nvmem cell to read.
1981 * @val: pointer to output value.
1982 *
1983 * Return: 0 on success or negative errno.
1984 */
nvmem_cell_read_variable_le_u32(struct device * dev,const char * cell_id,u32 * val)1985 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1986 u32 *val)
1987 {
1988 size_t len;
1989 const u8 *buf;
1990 int i;
1991
1992 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1993 if (IS_ERR(buf))
1994 return PTR_ERR(buf);
1995
1996 /* Copy w/ implicit endian conversion */
1997 *val = 0;
1998 for (i = 0; i < len; i++)
1999 *val |= buf[i] << (8 * i);
2000
2001 kfree(buf);
2002
2003 return 0;
2004 }
2005 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
2006
2007 /**
2008 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
2009 *
2010 * @dev: Device that requests the nvmem cell.
2011 * @cell_id: Name of nvmem cell to read.
2012 * @val: pointer to output value.
2013 *
2014 * Return: 0 on success or negative errno.
2015 */
nvmem_cell_read_variable_le_u64(struct device * dev,const char * cell_id,u64 * val)2016 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
2017 u64 *val)
2018 {
2019 size_t len;
2020 const u8 *buf;
2021 int i;
2022
2023 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
2024 if (IS_ERR(buf))
2025 return PTR_ERR(buf);
2026
2027 /* Copy w/ implicit endian conversion */
2028 *val = 0;
2029 for (i = 0; i < len; i++)
2030 *val |= (uint64_t)buf[i] << (8 * i);
2031
2032 kfree(buf);
2033
2034 return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
2037
2038 /**
2039 * nvmem_device_cell_read() - Read a given nvmem device and cell
2040 *
2041 * @nvmem: nvmem device to read from.
2042 * @info: nvmem cell info to be read.
2043 * @buf: buffer pointer which will be populated on successful read.
2044 *
2045 * Return: length of successful bytes read on success and negative
2046 * error code on error.
2047 */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2048 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
2049 struct nvmem_cell_info *info, void *buf)
2050 {
2051 struct nvmem_cell_entry cell;
2052 int rc;
2053 ssize_t len;
2054
2055 if (!nvmem)
2056 return -EINVAL;
2057
2058 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2059 if (rc)
2060 return rc;
2061
2062 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2063 if (rc)
2064 return rc;
2065
2066 return len;
2067 }
2068 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2069
2070 /**
2071 * nvmem_device_cell_write() - Write cell to a given nvmem device
2072 *
2073 * @nvmem: nvmem device to be written to.
2074 * @info: nvmem cell info to be written.
2075 * @buf: buffer to be written to cell.
2076 *
2077 * Return: length of bytes written or negative error code on failure.
2078 */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2079 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2080 struct nvmem_cell_info *info, void *buf)
2081 {
2082 struct nvmem_cell_entry cell;
2083 int rc;
2084
2085 if (!nvmem)
2086 return -EINVAL;
2087
2088 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2089 if (rc)
2090 return rc;
2091
2092 return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2093 }
2094 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2095
2096 /**
2097 * nvmem_device_read() - Read from a given nvmem device
2098 *
2099 * @nvmem: nvmem device to read from.
2100 * @offset: offset in nvmem device.
2101 * @bytes: number of bytes to read.
2102 * @buf: buffer pointer which will be populated on successful read.
2103 *
2104 * Return: length of successful bytes read on success and negative
2105 * error code on error.
2106 */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2107 int nvmem_device_read(struct nvmem_device *nvmem,
2108 unsigned int offset,
2109 size_t bytes, void *buf)
2110 {
2111 int rc;
2112
2113 if (!nvmem)
2114 return -EINVAL;
2115
2116 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2117
2118 if (rc)
2119 return rc;
2120
2121 return bytes;
2122 }
2123 EXPORT_SYMBOL_GPL(nvmem_device_read);
2124
2125 /**
2126 * nvmem_device_write() - Write cell to a given nvmem device
2127 *
2128 * @nvmem: nvmem device to be written to.
2129 * @offset: offset in nvmem device.
2130 * @bytes: number of bytes to write.
2131 * @buf: buffer to be written.
2132 *
2133 * Return: length of bytes written or negative error code on failure.
2134 */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2135 int nvmem_device_write(struct nvmem_device *nvmem,
2136 unsigned int offset,
2137 size_t bytes, void *buf)
2138 {
2139 int rc;
2140
2141 if (!nvmem)
2142 return -EINVAL;
2143
2144 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2145
2146 if (rc)
2147 return rc;
2148
2149
2150 return bytes;
2151 }
2152 EXPORT_SYMBOL_GPL(nvmem_device_write);
2153
2154 /**
2155 * nvmem_add_cell_table() - register a table of cell info entries
2156 *
2157 * @table: table of cell info entries
2158 */
nvmem_add_cell_table(struct nvmem_cell_table * table)2159 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2160 {
2161 mutex_lock(&nvmem_cell_mutex);
2162 list_add_tail(&table->node, &nvmem_cell_tables);
2163 mutex_unlock(&nvmem_cell_mutex);
2164 }
2165 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2166
2167 /**
2168 * nvmem_del_cell_table() - remove a previously registered cell info table
2169 *
2170 * @table: table of cell info entries
2171 */
nvmem_del_cell_table(struct nvmem_cell_table * table)2172 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2173 {
2174 mutex_lock(&nvmem_cell_mutex);
2175 list_del(&table->node);
2176 mutex_unlock(&nvmem_cell_mutex);
2177 }
2178 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2179
2180 /**
2181 * nvmem_add_cell_lookups() - register a list of cell lookup entries
2182 *
2183 * @entries: array of cell lookup entries
2184 * @nentries: number of cell lookup entries in the array
2185 */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2186 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2187 {
2188 int i;
2189
2190 mutex_lock(&nvmem_lookup_mutex);
2191 for (i = 0; i < nentries; i++)
2192 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2193 mutex_unlock(&nvmem_lookup_mutex);
2194 }
2195 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2196
2197 /**
2198 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2199 * entries
2200 *
2201 * @entries: array of cell lookup entries
2202 * @nentries: number of cell lookup entries in the array
2203 */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2204 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2205 {
2206 int i;
2207
2208 mutex_lock(&nvmem_lookup_mutex);
2209 for (i = 0; i < nentries; i++)
2210 list_del(&entries[i].node);
2211 mutex_unlock(&nvmem_lookup_mutex);
2212 }
2213 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2214
2215 /**
2216 * nvmem_dev_name() - Get the name of a given nvmem device.
2217 *
2218 * @nvmem: nvmem device.
2219 *
2220 * Return: name of the nvmem device.
2221 */
nvmem_dev_name(struct nvmem_device * nvmem)2222 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2223 {
2224 return dev_name(&nvmem->dev);
2225 }
2226 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2227
2228 /**
2229 * nvmem_dev_size() - Get the size of a given nvmem device.
2230 *
2231 * @nvmem: nvmem device.
2232 *
2233 * Return: size of the nvmem device.
2234 */
nvmem_dev_size(struct nvmem_device * nvmem)2235 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2236 {
2237 return nvmem->size;
2238 }
2239 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2240
nvmem_init(void)2241 static int __init nvmem_init(void)
2242 {
2243 int ret;
2244
2245 ret = bus_register(&nvmem_bus_type);
2246 if (ret)
2247 return ret;
2248
2249 ret = nvmem_layout_bus_register();
2250 if (ret)
2251 bus_unregister(&nvmem_bus_type);
2252
2253 return ret;
2254 }
2255
nvmem_exit(void)2256 static void __exit nvmem_exit(void)
2257 {
2258 nvmem_layout_bus_unregister();
2259 bus_unregister(&nvmem_bus_type);
2260 }
2261
2262 subsys_initcall(nvmem_init);
2263 module_exit(nvmem_exit);
2264
2265 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2266 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2267 MODULE_DESCRIPTION("nvmem Driver Core");
2268