xref: /linux/drivers/nvmem/core.c (revision 5281c656d9742acd056d099cc14c482a99628456)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 #include "internals.h"
23 
24 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
25 
26 #define FLAG_COMPAT		BIT(0)
27 struct nvmem_cell_entry {
28 	const char		*name;
29 	int			offset;
30 	size_t			raw_len;
31 	int			bytes;
32 	int			bit_offset;
33 	int			nbits;
34 	nvmem_cell_post_process_t read_post_process;
35 	void			*priv;
36 	struct device_node	*np;
37 	struct nvmem_device	*nvmem;
38 	struct list_head	node;
39 };
40 
41 struct nvmem_cell {
42 	struct nvmem_cell_entry *entry;
43 	const char		*id;
44 	int			index;
45 };
46 
47 static DEFINE_MUTEX(nvmem_mutex);
48 static DEFINE_IDA(nvmem_ida);
49 
50 static DEFINE_MUTEX(nvmem_cell_mutex);
51 static LIST_HEAD(nvmem_cell_tables);
52 
53 static DEFINE_MUTEX(nvmem_lookup_mutex);
54 static LIST_HEAD(nvmem_lookup_list);
55 
56 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
57 
__nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)58 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
59 			    void *val, size_t bytes)
60 {
61 	if (nvmem->reg_read)
62 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
63 
64 	return -EINVAL;
65 }
66 
__nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)67 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
68 			     void *val, size_t bytes)
69 {
70 	int ret;
71 
72 	if (nvmem->reg_write) {
73 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
74 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
75 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
76 		return ret;
77 	}
78 
79 	return -EINVAL;
80 }
81 
nvmem_access_with_keepouts(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes,int write)82 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
83 				      unsigned int offset, void *val,
84 				      size_t bytes, int write)
85 {
86 
87 	unsigned int end = offset + bytes;
88 	unsigned int kend, ksize;
89 	const struct nvmem_keepout *keepout = nvmem->keepout;
90 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
91 	int rc;
92 
93 	/*
94 	 * Skip all keepouts before the range being accessed.
95 	 * Keepouts are sorted.
96 	 */
97 	while ((keepout < keepoutend) && (keepout->end <= offset))
98 		keepout++;
99 
100 	while ((offset < end) && (keepout < keepoutend)) {
101 		/* Access the valid portion before the keepout. */
102 		if (offset < keepout->start) {
103 			kend = min(end, keepout->start);
104 			ksize = kend - offset;
105 			if (write)
106 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
107 			else
108 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
109 
110 			if (rc)
111 				return rc;
112 
113 			offset += ksize;
114 			val += ksize;
115 		}
116 
117 		/*
118 		 * Now we're aligned to the start of this keepout zone. Go
119 		 * through it.
120 		 */
121 		kend = min(end, keepout->end);
122 		ksize = kend - offset;
123 		if (!write)
124 			memset(val, keepout->value, ksize);
125 
126 		val += ksize;
127 		offset += ksize;
128 		keepout++;
129 	}
130 
131 	/*
132 	 * If we ran out of keepouts but there's still stuff to do, send it
133 	 * down directly
134 	 */
135 	if (offset < end) {
136 		ksize = end - offset;
137 		if (write)
138 			return __nvmem_reg_write(nvmem, offset, val, ksize);
139 		else
140 			return __nvmem_reg_read(nvmem, offset, val, ksize);
141 	}
142 
143 	return 0;
144 }
145 
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)146 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
147 			  void *val, size_t bytes)
148 {
149 	if (!nvmem->nkeepout)
150 		return __nvmem_reg_read(nvmem, offset, val, bytes);
151 
152 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
153 }
154 
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)155 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
156 			   void *val, size_t bytes)
157 {
158 	if (!nvmem->nkeepout)
159 		return __nvmem_reg_write(nvmem, offset, val, bytes);
160 
161 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
162 }
163 
164 #ifdef CONFIG_NVMEM_SYSFS
165 static const char * const nvmem_type_str[] = {
166 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
167 	[NVMEM_TYPE_EEPROM] = "EEPROM",
168 	[NVMEM_TYPE_OTP] = "OTP",
169 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
170 	[NVMEM_TYPE_FRAM] = "FRAM",
171 };
172 
173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
174 static struct lock_class_key eeprom_lock_key;
175 #endif
176 
type_show(struct device * dev,struct device_attribute * attr,char * buf)177 static ssize_t type_show(struct device *dev,
178 			 struct device_attribute *attr, char *buf)
179 {
180 	struct nvmem_device *nvmem = to_nvmem_device(dev);
181 
182 	return sysfs_emit(buf, "%s\n", nvmem_type_str[nvmem->type]);
183 }
184 
185 static DEVICE_ATTR_RO(type);
186 
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)187 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
188 			     char *buf)
189 {
190 	struct nvmem_device *nvmem = to_nvmem_device(dev);
191 
192 	return sysfs_emit(buf, "%d\n", nvmem->read_only);
193 }
194 
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)195 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
196 			      const char *buf, size_t count)
197 {
198 	struct nvmem_device *nvmem = to_nvmem_device(dev);
199 	int ret = kstrtobool(buf, &nvmem->read_only);
200 
201 	if (ret < 0)
202 		return ret;
203 
204 	return count;
205 }
206 
207 static DEVICE_ATTR_RW(force_ro);
208 
209 static struct attribute *nvmem_attrs[] = {
210 	&dev_attr_force_ro.attr,
211 	&dev_attr_type.attr,
212 	NULL,
213 };
214 
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)215 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
216 				   const struct bin_attribute *attr, char *buf,
217 				   loff_t pos, size_t count)
218 {
219 	struct device *dev;
220 	struct nvmem_device *nvmem;
221 	int rc;
222 
223 	if (attr->private)
224 		dev = attr->private;
225 	else
226 		dev = kobj_to_dev(kobj);
227 	nvmem = to_nvmem_device(dev);
228 
229 	if (!IS_ALIGNED(pos, nvmem->stride))
230 		return -EINVAL;
231 
232 	if (count < nvmem->word_size)
233 		return -EINVAL;
234 
235 	count = round_down(count, nvmem->word_size);
236 
237 	if (!nvmem->reg_read)
238 		return -EPERM;
239 
240 	rc = nvmem_reg_read(nvmem, pos, buf, count);
241 
242 	if (rc)
243 		return rc;
244 
245 	return count;
246 }
247 
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)248 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
249 				    const struct bin_attribute *attr, char *buf,
250 				    loff_t pos, size_t count)
251 {
252 	struct device *dev;
253 	struct nvmem_device *nvmem;
254 	int rc;
255 
256 	if (attr->private)
257 		dev = attr->private;
258 	else
259 		dev = kobj_to_dev(kobj);
260 	nvmem = to_nvmem_device(dev);
261 
262 	if (!IS_ALIGNED(pos, nvmem->stride))
263 		return -EINVAL;
264 
265 	if (count < nvmem->word_size)
266 		return -EINVAL;
267 
268 	count = round_down(count, nvmem->word_size);
269 
270 	if (!nvmem->reg_write || nvmem->read_only)
271 		return -EPERM;
272 
273 	rc = nvmem_reg_write(nvmem, pos, buf, count);
274 
275 	if (rc)
276 		return rc;
277 
278 	return count;
279 }
280 
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)281 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
282 {
283 	umode_t mode = 0400;
284 
285 	if (!nvmem->root_only)
286 		mode |= 0044;
287 
288 	if (!nvmem->read_only)
289 		mode |= 0200;
290 
291 	if (!nvmem->reg_write)
292 		mode &= ~0200;
293 
294 	if (!nvmem->reg_read)
295 		mode &= ~0444;
296 
297 	return mode;
298 }
299 
nvmem_bin_attr_is_visible(struct kobject * kobj,const struct bin_attribute * attr,int i)300 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
301 					 const struct bin_attribute *attr,
302 					 int i)
303 {
304 	struct device *dev = kobj_to_dev(kobj);
305 	struct nvmem_device *nvmem = to_nvmem_device(dev);
306 
307 	return nvmem_bin_attr_get_umode(nvmem);
308 }
309 
nvmem_bin_attr_size(struct kobject * kobj,const struct bin_attribute * attr,int i)310 static size_t nvmem_bin_attr_size(struct kobject *kobj,
311 				  const struct bin_attribute *attr,
312 				  int i)
313 {
314 	struct device *dev = kobj_to_dev(kobj);
315 	struct nvmem_device *nvmem = to_nvmem_device(dev);
316 
317 	return nvmem->size;
318 }
319 
nvmem_attr_is_visible(struct kobject * kobj,struct attribute * attr,int i)320 static umode_t nvmem_attr_is_visible(struct kobject *kobj,
321 				     struct attribute *attr, int i)
322 {
323 	struct device *dev = kobj_to_dev(kobj);
324 	struct nvmem_device *nvmem = to_nvmem_device(dev);
325 
326 	/*
327 	 * If the device has no .reg_write operation, do not allow
328 	 * configuration as read-write.
329 	 * If the device is set as read-only by configuration, it
330 	 * can be forced into read-write mode using the 'force_ro'
331 	 * attribute.
332 	 */
333 	if (attr == &dev_attr_force_ro.attr && !nvmem->reg_write)
334 		return 0;	/* Attribute not visible */
335 
336 	return attr->mode;
337 }
338 
339 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
340 					    const char *id, int index);
341 
nvmem_cell_attr_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t pos,size_t count)342 static ssize_t nvmem_cell_attr_read(struct file *filp, struct kobject *kobj,
343 				    const struct bin_attribute *attr, char *buf,
344 				    loff_t pos, size_t count)
345 {
346 	struct nvmem_cell_entry *entry;
347 	struct nvmem_cell *cell = NULL;
348 	size_t cell_sz, read_len;
349 	void *content;
350 
351 	entry = attr->private;
352 	cell = nvmem_create_cell(entry, entry->name, 0);
353 	if (IS_ERR(cell))
354 		return PTR_ERR(cell);
355 
356 	if (!cell)
357 		return -EINVAL;
358 
359 	content = nvmem_cell_read(cell, &cell_sz);
360 	if (IS_ERR(content)) {
361 		read_len = PTR_ERR(content);
362 		goto destroy_cell;
363 	}
364 
365 	read_len = min_t(unsigned int, cell_sz - pos, count);
366 	memcpy(buf, content + pos, read_len);
367 	kfree(content);
368 
369 destroy_cell:
370 	kfree_const(cell->id);
371 	kfree(cell);
372 
373 	return read_len;
374 }
375 
376 /* default read/write permissions */
377 static const struct bin_attribute bin_attr_rw_nvmem = {
378 	.attr	= {
379 		.name	= "nvmem",
380 		.mode	= 0644,
381 	},
382 	.read_new	= bin_attr_nvmem_read,
383 	.write_new	= bin_attr_nvmem_write,
384 };
385 
386 static const struct bin_attribute *const nvmem_bin_attributes[] = {
387 	&bin_attr_rw_nvmem,
388 	NULL,
389 };
390 
391 static const struct attribute_group nvmem_bin_group = {
392 	.bin_attrs_new	= nvmem_bin_attributes,
393 	.attrs		= nvmem_attrs,
394 	.is_bin_visible = nvmem_bin_attr_is_visible,
395 	.bin_size	= nvmem_bin_attr_size,
396 	.is_visible	= nvmem_attr_is_visible,
397 };
398 
399 static const struct attribute_group *nvmem_dev_groups[] = {
400 	&nvmem_bin_group,
401 	NULL,
402 };
403 
404 static const struct bin_attribute bin_attr_nvmem_eeprom_compat = {
405 	.attr	= {
406 		.name	= "eeprom",
407 	},
408 	.read_new	= bin_attr_nvmem_read,
409 	.write_new	= bin_attr_nvmem_write,
410 };
411 
412 /*
413  * nvmem_setup_compat() - Create an additional binary entry in
414  * drivers sys directory, to be backwards compatible with the older
415  * drivers/misc/eeprom drivers.
416  */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)417 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
418 				    const struct nvmem_config *config)
419 {
420 	int rval;
421 
422 	if (!config->compat)
423 		return 0;
424 
425 	if (!config->base_dev)
426 		return -EINVAL;
427 
428 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
429 	if (config->type == NVMEM_TYPE_FRAM)
430 		nvmem->eeprom.attr.name = "fram";
431 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
432 	nvmem->eeprom.size = nvmem->size;
433 #ifdef CONFIG_DEBUG_LOCK_ALLOC
434 	nvmem->eeprom.attr.key = &eeprom_lock_key;
435 #endif
436 	nvmem->eeprom.private = &nvmem->dev;
437 	nvmem->base_dev = config->base_dev;
438 
439 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
440 	if (rval) {
441 		dev_err(&nvmem->dev,
442 			"Failed to create eeprom binary file %d\n", rval);
443 		return rval;
444 	}
445 
446 	nvmem->flags |= FLAG_COMPAT;
447 
448 	return 0;
449 }
450 
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)451 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
452 			      const struct nvmem_config *config)
453 {
454 	if (config->compat)
455 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
456 }
457 
nvmem_populate_sysfs_cells(struct nvmem_device * nvmem)458 static int nvmem_populate_sysfs_cells(struct nvmem_device *nvmem)
459 {
460 	struct attribute_group group = {
461 		.name	= "cells",
462 	};
463 	struct nvmem_cell_entry *entry;
464 	const struct bin_attribute **pattrs;
465 	struct bin_attribute *attrs;
466 	unsigned int ncells = 0, i = 0;
467 	int ret = 0;
468 
469 	mutex_lock(&nvmem_mutex);
470 
471 	if (list_empty(&nvmem->cells) || nvmem->sysfs_cells_populated)
472 		goto unlock_mutex;
473 
474 	/* Allocate an array of attributes with a sentinel */
475 	ncells = list_count_nodes(&nvmem->cells);
476 	pattrs = devm_kcalloc(&nvmem->dev, ncells + 1,
477 			      sizeof(struct bin_attribute *), GFP_KERNEL);
478 	if (!pattrs) {
479 		ret = -ENOMEM;
480 		goto unlock_mutex;
481 	}
482 
483 	attrs = devm_kcalloc(&nvmem->dev, ncells, sizeof(struct bin_attribute), GFP_KERNEL);
484 	if (!attrs) {
485 		ret = -ENOMEM;
486 		goto unlock_mutex;
487 	}
488 
489 	/* Initialize each attribute to take the name and size of the cell */
490 	list_for_each_entry(entry, &nvmem->cells, node) {
491 		sysfs_bin_attr_init(&attrs[i]);
492 		attrs[i].attr.name = devm_kasprintf(&nvmem->dev, GFP_KERNEL,
493 						    "%s@%x,%x", entry->name,
494 						    entry->offset,
495 						    entry->bit_offset);
496 		attrs[i].attr.mode = 0444 & nvmem_bin_attr_get_umode(nvmem);
497 		attrs[i].size = entry->bytes;
498 		attrs[i].read_new = &nvmem_cell_attr_read;
499 		attrs[i].private = entry;
500 		if (!attrs[i].attr.name) {
501 			ret = -ENOMEM;
502 			goto unlock_mutex;
503 		}
504 
505 		pattrs[i] = &attrs[i];
506 		i++;
507 	}
508 
509 	group.bin_attrs_new = pattrs;
510 
511 	ret = device_add_group(&nvmem->dev, &group);
512 	if (ret)
513 		goto unlock_mutex;
514 
515 	nvmem->sysfs_cells_populated = true;
516 
517 unlock_mutex:
518 	mutex_unlock(&nvmem_mutex);
519 
520 	return ret;
521 }
522 
523 #else /* CONFIG_NVMEM_SYSFS */
524 
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)525 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
526 				    const struct nvmem_config *config)
527 {
528 	return -ENOSYS;
529 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)530 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
531 				      const struct nvmem_config *config)
532 {
533 }
534 
535 #endif /* CONFIG_NVMEM_SYSFS */
536 
nvmem_release(struct device * dev)537 static void nvmem_release(struct device *dev)
538 {
539 	struct nvmem_device *nvmem = to_nvmem_device(dev);
540 
541 	ida_free(&nvmem_ida, nvmem->id);
542 	gpiod_put(nvmem->wp_gpio);
543 	kfree(nvmem);
544 }
545 
546 static const struct device_type nvmem_provider_type = {
547 	.release	= nvmem_release,
548 };
549 
550 static struct bus_type nvmem_bus_type = {
551 	.name		= "nvmem",
552 };
553 
nvmem_cell_entry_drop(struct nvmem_cell_entry * cell)554 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
555 {
556 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
557 	mutex_lock(&nvmem_mutex);
558 	list_del(&cell->node);
559 	mutex_unlock(&nvmem_mutex);
560 	of_node_put(cell->np);
561 	kfree_const(cell->name);
562 	kfree(cell);
563 }
564 
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)565 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
566 {
567 	struct nvmem_cell_entry *cell, *p;
568 
569 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
570 		nvmem_cell_entry_drop(cell);
571 }
572 
nvmem_cell_entry_add(struct nvmem_cell_entry * cell)573 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
574 {
575 	mutex_lock(&nvmem_mutex);
576 	list_add_tail(&cell->node, &cell->nvmem->cells);
577 	mutex_unlock(&nvmem_mutex);
578 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
579 }
580 
nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)581 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
582 						     const struct nvmem_cell_info *info,
583 						     struct nvmem_cell_entry *cell)
584 {
585 	cell->nvmem = nvmem;
586 	cell->offset = info->offset;
587 	cell->raw_len = info->raw_len ?: info->bytes;
588 	cell->bytes = info->bytes;
589 	cell->name = info->name;
590 	cell->read_post_process = info->read_post_process;
591 	cell->priv = info->priv;
592 
593 	cell->bit_offset = info->bit_offset;
594 	cell->nbits = info->nbits;
595 	cell->np = info->np;
596 
597 	if (cell->nbits) {
598 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
599 					   BITS_PER_BYTE);
600 		cell->raw_len = ALIGN(cell->bytes, nvmem->word_size);
601 	}
602 
603 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
604 		dev_err(&nvmem->dev,
605 			"cell %s unaligned to nvmem stride %d\n",
606 			cell->name ?: "<unknown>", nvmem->stride);
607 		return -EINVAL;
608 	}
609 
610 	if (!IS_ALIGNED(cell->raw_len, nvmem->word_size)) {
611 		dev_err(&nvmem->dev,
612 			"cell %s raw len %zd unaligned to nvmem word size %d\n",
613 			cell->name ?: "<unknown>", cell->raw_len,
614 			nvmem->word_size);
615 
616 		if (info->raw_len)
617 			return -EINVAL;
618 
619 		cell->raw_len = ALIGN(cell->raw_len, nvmem->word_size);
620 	}
621 
622 	return 0;
623 }
624 
nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)625 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
626 					       const struct nvmem_cell_info *info,
627 					       struct nvmem_cell_entry *cell)
628 {
629 	int err;
630 
631 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
632 	if (err)
633 		return err;
634 
635 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
636 	if (!cell->name)
637 		return -ENOMEM;
638 
639 	return 0;
640 }
641 
642 /**
643  * nvmem_add_one_cell() - Add one cell information to an nvmem device
644  *
645  * @nvmem: nvmem device to add cells to.
646  * @info: nvmem cell info to add to the device
647  *
648  * Return: 0 or negative error code on failure.
649  */
nvmem_add_one_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info)650 int nvmem_add_one_cell(struct nvmem_device *nvmem,
651 		       const struct nvmem_cell_info *info)
652 {
653 	struct nvmem_cell_entry *cell;
654 	int rval;
655 
656 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
657 	if (!cell)
658 		return -ENOMEM;
659 
660 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
661 	if (rval) {
662 		kfree(cell);
663 		return rval;
664 	}
665 
666 	nvmem_cell_entry_add(cell);
667 
668 	return 0;
669 }
670 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
671 
672 /**
673  * nvmem_add_cells() - Add cell information to an nvmem device
674  *
675  * @nvmem: nvmem device to add cells to.
676  * @info: nvmem cell info to add to the device
677  * @ncells: number of cells in info
678  *
679  * Return: 0 or negative error code on failure.
680  */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)681 static int nvmem_add_cells(struct nvmem_device *nvmem,
682 		    const struct nvmem_cell_info *info,
683 		    int ncells)
684 {
685 	int i, rval;
686 
687 	for (i = 0; i < ncells; i++) {
688 		rval = nvmem_add_one_cell(nvmem, &info[i]);
689 		if (rval)
690 			return rval;
691 	}
692 
693 	return 0;
694 }
695 
696 /**
697  * nvmem_register_notifier() - Register a notifier block for nvmem events.
698  *
699  * @nb: notifier block to be called on nvmem events.
700  *
701  * Return: 0 on success, negative error number on failure.
702  */
nvmem_register_notifier(struct notifier_block * nb)703 int nvmem_register_notifier(struct notifier_block *nb)
704 {
705 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
706 }
707 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
708 
709 /**
710  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
711  *
712  * @nb: notifier block to be unregistered.
713  *
714  * Return: 0 on success, negative error number on failure.
715  */
nvmem_unregister_notifier(struct notifier_block * nb)716 int nvmem_unregister_notifier(struct notifier_block *nb)
717 {
718 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
719 }
720 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
721 
nvmem_add_cells_from_table(struct nvmem_device * nvmem)722 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
723 {
724 	const struct nvmem_cell_info *info;
725 	struct nvmem_cell_table *table;
726 	struct nvmem_cell_entry *cell;
727 	int rval = 0, i;
728 
729 	mutex_lock(&nvmem_cell_mutex);
730 	list_for_each_entry(table, &nvmem_cell_tables, node) {
731 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
732 			for (i = 0; i < table->ncells; i++) {
733 				info = &table->cells[i];
734 
735 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
736 				if (!cell) {
737 					rval = -ENOMEM;
738 					goto out;
739 				}
740 
741 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
742 				if (rval) {
743 					kfree(cell);
744 					goto out;
745 				}
746 
747 				nvmem_cell_entry_add(cell);
748 			}
749 		}
750 	}
751 
752 out:
753 	mutex_unlock(&nvmem_cell_mutex);
754 	return rval;
755 }
756 
757 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_name(struct nvmem_device * nvmem,const char * cell_id)758 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
759 {
760 	struct nvmem_cell_entry *iter, *cell = NULL;
761 
762 	mutex_lock(&nvmem_mutex);
763 	list_for_each_entry(iter, &nvmem->cells, node) {
764 		if (strcmp(cell_id, iter->name) == 0) {
765 			cell = iter;
766 			break;
767 		}
768 	}
769 	mutex_unlock(&nvmem_mutex);
770 
771 	return cell;
772 }
773 
nvmem_validate_keepouts(struct nvmem_device * nvmem)774 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
775 {
776 	unsigned int cur = 0;
777 	const struct nvmem_keepout *keepout = nvmem->keepout;
778 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
779 
780 	while (keepout < keepoutend) {
781 		/* Ensure keepouts are sorted and don't overlap. */
782 		if (keepout->start < cur) {
783 			dev_err(&nvmem->dev,
784 				"Keepout regions aren't sorted or overlap.\n");
785 
786 			return -ERANGE;
787 		}
788 
789 		if (keepout->end < keepout->start) {
790 			dev_err(&nvmem->dev,
791 				"Invalid keepout region.\n");
792 
793 			return -EINVAL;
794 		}
795 
796 		/*
797 		 * Validate keepouts (and holes between) don't violate
798 		 * word_size constraints.
799 		 */
800 		if ((keepout->end - keepout->start < nvmem->word_size) ||
801 		    ((keepout->start != cur) &&
802 		     (keepout->start - cur < nvmem->word_size))) {
803 
804 			dev_err(&nvmem->dev,
805 				"Keepout regions violate word_size constraints.\n");
806 
807 			return -ERANGE;
808 		}
809 
810 		/* Validate keepouts don't violate stride (alignment). */
811 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
812 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
813 
814 			dev_err(&nvmem->dev,
815 				"Keepout regions violate stride.\n");
816 
817 			return -EINVAL;
818 		}
819 
820 		cur = keepout->end;
821 		keepout++;
822 	}
823 
824 	return 0;
825 }
826 
nvmem_add_cells_from_dt(struct nvmem_device * nvmem,struct device_node * np)827 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
828 {
829 	struct device *dev = &nvmem->dev;
830 	struct device_node *child;
831 	const __be32 *addr;
832 	int len, ret;
833 
834 	for_each_child_of_node(np, child) {
835 		struct nvmem_cell_info info = {0};
836 
837 		addr = of_get_property(child, "reg", &len);
838 		if (!addr)
839 			continue;
840 		if (len < 2 * sizeof(u32)) {
841 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
842 			of_node_put(child);
843 			return -EINVAL;
844 		}
845 
846 		info.offset = be32_to_cpup(addr++);
847 		info.bytes = be32_to_cpup(addr);
848 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
849 
850 		addr = of_get_property(child, "bits", &len);
851 		if (addr && len == (2 * sizeof(u32))) {
852 			info.bit_offset = be32_to_cpup(addr++);
853 			info.nbits = be32_to_cpup(addr);
854 			if (info.bit_offset >= BITS_PER_BYTE * info.bytes ||
855 			    info.nbits < 1 ||
856 			    info.bit_offset + info.nbits > BITS_PER_BYTE * info.bytes) {
857 				dev_err(dev, "nvmem: invalid bits on %pOF\n", child);
858 				of_node_put(child);
859 				return -EINVAL;
860 			}
861 		}
862 
863 		info.np = of_node_get(child);
864 
865 		if (nvmem->fixup_dt_cell_info)
866 			nvmem->fixup_dt_cell_info(nvmem, &info);
867 
868 		ret = nvmem_add_one_cell(nvmem, &info);
869 		kfree(info.name);
870 		if (ret) {
871 			of_node_put(child);
872 			return ret;
873 		}
874 	}
875 
876 	return 0;
877 }
878 
nvmem_add_cells_from_legacy_of(struct nvmem_device * nvmem)879 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
880 {
881 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
882 }
883 
nvmem_add_cells_from_fixed_layout(struct nvmem_device * nvmem)884 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
885 {
886 	struct device_node *layout_np;
887 	int err = 0;
888 
889 	layout_np = of_nvmem_layout_get_container(nvmem);
890 	if (!layout_np)
891 		return 0;
892 
893 	if (of_device_is_compatible(layout_np, "fixed-layout"))
894 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
895 
896 	of_node_put(layout_np);
897 
898 	return err;
899 }
900 
nvmem_layout_register(struct nvmem_layout * layout)901 int nvmem_layout_register(struct nvmem_layout *layout)
902 {
903 	int ret;
904 
905 	if (!layout->add_cells)
906 		return -EINVAL;
907 
908 	/* Populate the cells */
909 	ret = layout->add_cells(layout);
910 	if (ret)
911 		return ret;
912 
913 #ifdef CONFIG_NVMEM_SYSFS
914 	ret = nvmem_populate_sysfs_cells(layout->nvmem);
915 	if (ret) {
916 		nvmem_device_remove_all_cells(layout->nvmem);
917 		return ret;
918 	}
919 #endif
920 
921 	return 0;
922 }
923 EXPORT_SYMBOL_GPL(nvmem_layout_register);
924 
nvmem_layout_unregister(struct nvmem_layout * layout)925 void nvmem_layout_unregister(struct nvmem_layout *layout)
926 {
927 	/* Keep the API even with an empty stub in case we need it later */
928 }
929 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
930 
931 /**
932  * nvmem_register() - Register a nvmem device for given nvmem_config.
933  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
934  *
935  * @config: nvmem device configuration with which nvmem device is created.
936  *
937  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
938  * on success.
939  */
940 
nvmem_register(const struct nvmem_config * config)941 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
942 {
943 	struct nvmem_device *nvmem;
944 	int rval;
945 
946 	if (!config->dev)
947 		return ERR_PTR(-EINVAL);
948 
949 	if (!config->reg_read && !config->reg_write)
950 		return ERR_PTR(-EINVAL);
951 
952 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
953 	if (!nvmem)
954 		return ERR_PTR(-ENOMEM);
955 
956 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
957 	if (rval < 0) {
958 		kfree(nvmem);
959 		return ERR_PTR(rval);
960 	}
961 
962 	nvmem->id = rval;
963 
964 	nvmem->dev.type = &nvmem_provider_type;
965 	nvmem->dev.bus = &nvmem_bus_type;
966 	nvmem->dev.parent = config->dev;
967 
968 	device_initialize(&nvmem->dev);
969 
970 	if (!config->ignore_wp)
971 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
972 						    GPIOD_OUT_HIGH);
973 	if (IS_ERR(nvmem->wp_gpio)) {
974 		rval = PTR_ERR(nvmem->wp_gpio);
975 		nvmem->wp_gpio = NULL;
976 		goto err_put_device;
977 	}
978 
979 	kref_init(&nvmem->refcnt);
980 	INIT_LIST_HEAD(&nvmem->cells);
981 	nvmem->fixup_dt_cell_info = config->fixup_dt_cell_info;
982 
983 	nvmem->owner = config->owner;
984 	if (!nvmem->owner && config->dev->driver)
985 		nvmem->owner = config->dev->driver->owner;
986 	nvmem->stride = config->stride ?: 1;
987 	nvmem->word_size = config->word_size ?: 1;
988 	nvmem->size = config->size;
989 	nvmem->root_only = config->root_only;
990 	nvmem->priv = config->priv;
991 	nvmem->type = config->type;
992 	nvmem->reg_read = config->reg_read;
993 	nvmem->reg_write = config->reg_write;
994 	nvmem->keepout = config->keepout;
995 	nvmem->nkeepout = config->nkeepout;
996 	if (config->of_node)
997 		nvmem->dev.of_node = config->of_node;
998 	else
999 		nvmem->dev.of_node = config->dev->of_node;
1000 
1001 	switch (config->id) {
1002 	case NVMEM_DEVID_NONE:
1003 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
1004 		break;
1005 	case NVMEM_DEVID_AUTO:
1006 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
1007 		break;
1008 	default:
1009 		rval = dev_set_name(&nvmem->dev, "%s%d",
1010 			     config->name ? : "nvmem",
1011 			     config->name ? config->id : nvmem->id);
1012 		break;
1013 	}
1014 
1015 	if (rval)
1016 		goto err_put_device;
1017 
1018 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
1019 			   config->read_only || !nvmem->reg_write;
1020 
1021 #ifdef CONFIG_NVMEM_SYSFS
1022 	nvmem->dev.groups = nvmem_dev_groups;
1023 #endif
1024 
1025 	if (nvmem->nkeepout) {
1026 		rval = nvmem_validate_keepouts(nvmem);
1027 		if (rval)
1028 			goto err_put_device;
1029 	}
1030 
1031 	if (config->compat) {
1032 		rval = nvmem_sysfs_setup_compat(nvmem, config);
1033 		if (rval)
1034 			goto err_put_device;
1035 	}
1036 
1037 	if (config->cells) {
1038 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
1039 		if (rval)
1040 			goto err_remove_cells;
1041 	}
1042 
1043 	rval = nvmem_add_cells_from_table(nvmem);
1044 	if (rval)
1045 		goto err_remove_cells;
1046 
1047 	if (config->add_legacy_fixed_of_cells) {
1048 		rval = nvmem_add_cells_from_legacy_of(nvmem);
1049 		if (rval)
1050 			goto err_remove_cells;
1051 	}
1052 
1053 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1054 	if (rval)
1055 		goto err_remove_cells;
1056 
1057 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1058 
1059 	rval = device_add(&nvmem->dev);
1060 	if (rval)
1061 		goto err_remove_cells;
1062 
1063 	rval = nvmem_populate_layout(nvmem);
1064 	if (rval)
1065 		goto err_remove_dev;
1066 
1067 #ifdef CONFIG_NVMEM_SYSFS
1068 	rval = nvmem_populate_sysfs_cells(nvmem);
1069 	if (rval)
1070 		goto err_destroy_layout;
1071 #endif
1072 
1073 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1074 
1075 	return nvmem;
1076 
1077 #ifdef CONFIG_NVMEM_SYSFS
1078 err_destroy_layout:
1079 	nvmem_destroy_layout(nvmem);
1080 #endif
1081 err_remove_dev:
1082 	device_del(&nvmem->dev);
1083 err_remove_cells:
1084 	nvmem_device_remove_all_cells(nvmem);
1085 	if (config->compat)
1086 		nvmem_sysfs_remove_compat(nvmem, config);
1087 err_put_device:
1088 	put_device(&nvmem->dev);
1089 
1090 	return ERR_PTR(rval);
1091 }
1092 EXPORT_SYMBOL_GPL(nvmem_register);
1093 
nvmem_device_release(struct kref * kref)1094 static void nvmem_device_release(struct kref *kref)
1095 {
1096 	struct nvmem_device *nvmem;
1097 
1098 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1099 
1100 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1101 
1102 	if (nvmem->flags & FLAG_COMPAT)
1103 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1104 
1105 	nvmem_device_remove_all_cells(nvmem);
1106 	nvmem_destroy_layout(nvmem);
1107 	device_unregister(&nvmem->dev);
1108 }
1109 
1110 /**
1111  * nvmem_unregister() - Unregister previously registered nvmem device
1112  *
1113  * @nvmem: Pointer to previously registered nvmem device.
1114  */
nvmem_unregister(struct nvmem_device * nvmem)1115 void nvmem_unregister(struct nvmem_device *nvmem)
1116 {
1117 	if (nvmem)
1118 		kref_put(&nvmem->refcnt, nvmem_device_release);
1119 }
1120 EXPORT_SYMBOL_GPL(nvmem_unregister);
1121 
devm_nvmem_unregister(void * nvmem)1122 static void devm_nvmem_unregister(void *nvmem)
1123 {
1124 	nvmem_unregister(nvmem);
1125 }
1126 
1127 /**
1128  * devm_nvmem_register() - Register a managed nvmem device for given
1129  * nvmem_config.
1130  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1131  *
1132  * @dev: Device that uses the nvmem device.
1133  * @config: nvmem device configuration with which nvmem device is created.
1134  *
1135  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1136  * on success.
1137  */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)1138 struct nvmem_device *devm_nvmem_register(struct device *dev,
1139 					 const struct nvmem_config *config)
1140 {
1141 	struct nvmem_device *nvmem;
1142 	int ret;
1143 
1144 	nvmem = nvmem_register(config);
1145 	if (IS_ERR(nvmem))
1146 		return nvmem;
1147 
1148 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1149 	if (ret)
1150 		return ERR_PTR(ret);
1151 
1152 	return nvmem;
1153 }
1154 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1155 
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))1156 static struct nvmem_device *__nvmem_device_get(void *data,
1157 			int (*match)(struct device *dev, const void *data))
1158 {
1159 	struct nvmem_device *nvmem = NULL;
1160 	struct device *dev;
1161 
1162 	mutex_lock(&nvmem_mutex);
1163 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1164 	if (dev)
1165 		nvmem = to_nvmem_device(dev);
1166 	mutex_unlock(&nvmem_mutex);
1167 	if (!nvmem)
1168 		return ERR_PTR(-EPROBE_DEFER);
1169 
1170 	if (!try_module_get(nvmem->owner)) {
1171 		dev_err(&nvmem->dev,
1172 			"could not increase module refcount for cell %s\n",
1173 			nvmem_dev_name(nvmem));
1174 
1175 		put_device(&nvmem->dev);
1176 		return ERR_PTR(-EINVAL);
1177 	}
1178 
1179 	kref_get(&nvmem->refcnt);
1180 
1181 	return nvmem;
1182 }
1183 
__nvmem_device_put(struct nvmem_device * nvmem)1184 static void __nvmem_device_put(struct nvmem_device *nvmem)
1185 {
1186 	put_device(&nvmem->dev);
1187 	module_put(nvmem->owner);
1188 	kref_put(&nvmem->refcnt, nvmem_device_release);
1189 }
1190 
1191 #if IS_ENABLED(CONFIG_OF)
1192 /**
1193  * of_nvmem_device_get() - Get nvmem device from a given id
1194  *
1195  * @np: Device tree node that uses the nvmem device.
1196  * @id: nvmem name from nvmem-names property.
1197  *
1198  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1199  * on success.
1200  */
of_nvmem_device_get(struct device_node * np,const char * id)1201 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1202 {
1203 
1204 	struct device_node *nvmem_np;
1205 	struct nvmem_device *nvmem;
1206 	int index = 0;
1207 
1208 	if (id)
1209 		index = of_property_match_string(np, "nvmem-names", id);
1210 
1211 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1212 	if (!nvmem_np)
1213 		return ERR_PTR(-ENOENT);
1214 
1215 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1216 	of_node_put(nvmem_np);
1217 	return nvmem;
1218 }
1219 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1220 #endif
1221 
1222 /**
1223  * nvmem_device_get() - Get nvmem device from a given id
1224  *
1225  * @dev: Device that uses the nvmem device.
1226  * @dev_name: name of the requested nvmem device.
1227  *
1228  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1229  * on success.
1230  */
nvmem_device_get(struct device * dev,const char * dev_name)1231 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1232 {
1233 	if (dev->of_node) { /* try dt first */
1234 		struct nvmem_device *nvmem;
1235 
1236 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1237 
1238 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1239 			return nvmem;
1240 
1241 	}
1242 
1243 	return __nvmem_device_get((void *)dev_name, device_match_name);
1244 }
1245 EXPORT_SYMBOL_GPL(nvmem_device_get);
1246 
1247 /**
1248  * nvmem_device_find() - Find nvmem device with matching function
1249  *
1250  * @data: Data to pass to match function
1251  * @match: Callback function to check device
1252  *
1253  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1254  * on success.
1255  */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))1256 struct nvmem_device *nvmem_device_find(void *data,
1257 			int (*match)(struct device *dev, const void *data))
1258 {
1259 	return __nvmem_device_get(data, match);
1260 }
1261 EXPORT_SYMBOL_GPL(nvmem_device_find);
1262 
devm_nvmem_device_match(struct device * dev,void * res,void * data)1263 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1264 {
1265 	struct nvmem_device **nvmem = res;
1266 
1267 	if (WARN_ON(!nvmem || !*nvmem))
1268 		return 0;
1269 
1270 	return *nvmem == data;
1271 }
1272 
devm_nvmem_device_release(struct device * dev,void * res)1273 static void devm_nvmem_device_release(struct device *dev, void *res)
1274 {
1275 	nvmem_device_put(*(struct nvmem_device **)res);
1276 }
1277 
1278 /**
1279  * devm_nvmem_device_put() - put already got nvmem device
1280  *
1281  * @dev: Device that uses the nvmem device.
1282  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1283  * that needs to be released.
1284  */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)1285 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1286 {
1287 	int ret;
1288 
1289 	ret = devres_release(dev, devm_nvmem_device_release,
1290 			     devm_nvmem_device_match, nvmem);
1291 
1292 	WARN_ON(ret);
1293 }
1294 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1295 
1296 /**
1297  * nvmem_device_put() - put already got nvmem device
1298  *
1299  * @nvmem: pointer to nvmem device that needs to be released.
1300  */
nvmem_device_put(struct nvmem_device * nvmem)1301 void nvmem_device_put(struct nvmem_device *nvmem)
1302 {
1303 	__nvmem_device_put(nvmem);
1304 }
1305 EXPORT_SYMBOL_GPL(nvmem_device_put);
1306 
1307 /**
1308  * devm_nvmem_device_get() - Get nvmem device of device form a given id
1309  *
1310  * @dev: Device that requests the nvmem device.
1311  * @id: name id for the requested nvmem device.
1312  *
1313  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1314  * on success.  The nvmem_device will be freed by the automatically once the
1315  * device is freed.
1316  */
devm_nvmem_device_get(struct device * dev,const char * id)1317 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1318 {
1319 	struct nvmem_device **ptr, *nvmem;
1320 
1321 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1322 	if (!ptr)
1323 		return ERR_PTR(-ENOMEM);
1324 
1325 	nvmem = nvmem_device_get(dev, id);
1326 	if (!IS_ERR(nvmem)) {
1327 		*ptr = nvmem;
1328 		devres_add(dev, ptr);
1329 	} else {
1330 		devres_free(ptr);
1331 	}
1332 
1333 	return nvmem;
1334 }
1335 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1336 
nvmem_create_cell(struct nvmem_cell_entry * entry,const char * id,int index)1337 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1338 					    const char *id, int index)
1339 {
1340 	struct nvmem_cell *cell;
1341 	const char *name = NULL;
1342 
1343 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1344 	if (!cell)
1345 		return ERR_PTR(-ENOMEM);
1346 
1347 	if (id) {
1348 		name = kstrdup_const(id, GFP_KERNEL);
1349 		if (!name) {
1350 			kfree(cell);
1351 			return ERR_PTR(-ENOMEM);
1352 		}
1353 	}
1354 
1355 	cell->id = name;
1356 	cell->entry = entry;
1357 	cell->index = index;
1358 
1359 	return cell;
1360 }
1361 
1362 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)1363 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1364 {
1365 	struct nvmem_cell_entry *cell_entry;
1366 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1367 	struct nvmem_cell_lookup *lookup;
1368 	struct nvmem_device *nvmem;
1369 	const char *dev_id;
1370 
1371 	if (!dev)
1372 		return ERR_PTR(-EINVAL);
1373 
1374 	dev_id = dev_name(dev);
1375 
1376 	mutex_lock(&nvmem_lookup_mutex);
1377 
1378 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1379 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1380 		    (strcmp(lookup->con_id, con_id) == 0)) {
1381 			/* This is the right entry. */
1382 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1383 						   device_match_name);
1384 			if (IS_ERR(nvmem)) {
1385 				/* Provider may not be registered yet. */
1386 				cell = ERR_CAST(nvmem);
1387 				break;
1388 			}
1389 
1390 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1391 								   lookup->cell_name);
1392 			if (!cell_entry) {
1393 				__nvmem_device_put(nvmem);
1394 				cell = ERR_PTR(-ENOENT);
1395 			} else {
1396 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1397 				if (IS_ERR(cell))
1398 					__nvmem_device_put(nvmem);
1399 			}
1400 			break;
1401 		}
1402 	}
1403 
1404 	mutex_unlock(&nvmem_lookup_mutex);
1405 	return cell;
1406 }
1407 
nvmem_layout_module_put(struct nvmem_device * nvmem)1408 static void nvmem_layout_module_put(struct nvmem_device *nvmem)
1409 {
1410 	if (nvmem->layout && nvmem->layout->dev.driver)
1411 		module_put(nvmem->layout->dev.driver->owner);
1412 }
1413 
1414 #if IS_ENABLED(CONFIG_OF)
1415 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_node(struct nvmem_device * nvmem,struct device_node * np)1416 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1417 {
1418 	struct nvmem_cell_entry *iter, *cell = NULL;
1419 
1420 	mutex_lock(&nvmem_mutex);
1421 	list_for_each_entry(iter, &nvmem->cells, node) {
1422 		if (np == iter->np) {
1423 			cell = iter;
1424 			break;
1425 		}
1426 	}
1427 	mutex_unlock(&nvmem_mutex);
1428 
1429 	return cell;
1430 }
1431 
nvmem_layout_module_get_optional(struct nvmem_device * nvmem)1432 static int nvmem_layout_module_get_optional(struct nvmem_device *nvmem)
1433 {
1434 	if (!nvmem->layout)
1435 		return 0;
1436 
1437 	if (!nvmem->layout->dev.driver ||
1438 	    !try_module_get(nvmem->layout->dev.driver->owner))
1439 		return -EPROBE_DEFER;
1440 
1441 	return 0;
1442 }
1443 
1444 /**
1445  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1446  *
1447  * @np: Device tree node that uses the nvmem cell.
1448  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1449  *      for the cell at index 0 (the lone cell with no accompanying
1450  *      nvmem-cell-names property).
1451  *
1452  * Return: Will be an ERR_PTR() on error or a valid pointer
1453  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1454  * nvmem_cell_put().
1455  */
of_nvmem_cell_get(struct device_node * np,const char * id)1456 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1457 {
1458 	struct device_node *cell_np, *nvmem_np;
1459 	struct nvmem_device *nvmem;
1460 	struct nvmem_cell_entry *cell_entry;
1461 	struct nvmem_cell *cell;
1462 	struct of_phandle_args cell_spec;
1463 	int index = 0;
1464 	int cell_index = 0;
1465 	int ret;
1466 
1467 	/* if cell name exists, find index to the name */
1468 	if (id)
1469 		index = of_property_match_string(np, "nvmem-cell-names", id);
1470 
1471 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1472 						  "#nvmem-cell-cells",
1473 						  index, &cell_spec);
1474 	if (ret)
1475 		return ERR_PTR(-ENOENT);
1476 
1477 	if (cell_spec.args_count > 1)
1478 		return ERR_PTR(-EINVAL);
1479 
1480 	cell_np = cell_spec.np;
1481 	if (cell_spec.args_count)
1482 		cell_index = cell_spec.args[0];
1483 
1484 	nvmem_np = of_get_parent(cell_np);
1485 	if (!nvmem_np) {
1486 		of_node_put(cell_np);
1487 		return ERR_PTR(-EINVAL);
1488 	}
1489 
1490 	/* nvmem layouts produce cells within the nvmem-layout container */
1491 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1492 		nvmem_np = of_get_next_parent(nvmem_np);
1493 		if (!nvmem_np) {
1494 			of_node_put(cell_np);
1495 			return ERR_PTR(-EINVAL);
1496 		}
1497 	}
1498 
1499 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1500 	of_node_put(nvmem_np);
1501 	if (IS_ERR(nvmem)) {
1502 		of_node_put(cell_np);
1503 		return ERR_CAST(nvmem);
1504 	}
1505 
1506 	ret = nvmem_layout_module_get_optional(nvmem);
1507 	if (ret) {
1508 		of_node_put(cell_np);
1509 		__nvmem_device_put(nvmem);
1510 		return ERR_PTR(ret);
1511 	}
1512 
1513 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1514 	of_node_put(cell_np);
1515 	if (!cell_entry) {
1516 		__nvmem_device_put(nvmem);
1517 		nvmem_layout_module_put(nvmem);
1518 		if (nvmem->layout)
1519 			return ERR_PTR(-EPROBE_DEFER);
1520 		else
1521 			return ERR_PTR(-ENOENT);
1522 	}
1523 
1524 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1525 	if (IS_ERR(cell)) {
1526 		__nvmem_device_put(nvmem);
1527 		nvmem_layout_module_put(nvmem);
1528 	}
1529 
1530 	return cell;
1531 }
1532 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1533 #endif
1534 
1535 /**
1536  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1537  *
1538  * @dev: Device that requests the nvmem cell.
1539  * @id: nvmem cell name to get (this corresponds with the name from the
1540  *      nvmem-cell-names property for DT systems and with the con_id from
1541  *      the lookup entry for non-DT systems).
1542  *
1543  * Return: Will be an ERR_PTR() on error or a valid pointer
1544  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1545  * nvmem_cell_put().
1546  */
nvmem_cell_get(struct device * dev,const char * id)1547 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1548 {
1549 	struct nvmem_cell *cell;
1550 
1551 	if (dev->of_node) { /* try dt first */
1552 		cell = of_nvmem_cell_get(dev->of_node, id);
1553 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1554 			return cell;
1555 	}
1556 
1557 	/* NULL cell id only allowed for device tree; invalid otherwise */
1558 	if (!id)
1559 		return ERR_PTR(-EINVAL);
1560 
1561 	return nvmem_cell_get_from_lookup(dev, id);
1562 }
1563 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1564 
devm_nvmem_cell_release(struct device * dev,void * res)1565 static void devm_nvmem_cell_release(struct device *dev, void *res)
1566 {
1567 	nvmem_cell_put(*(struct nvmem_cell **)res);
1568 }
1569 
1570 /**
1571  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1572  *
1573  * @dev: Device that requests the nvmem cell.
1574  * @id: nvmem cell name id to get.
1575  *
1576  * Return: Will be an ERR_PTR() on error or a valid pointer
1577  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1578  * automatically once the device is freed.
1579  */
devm_nvmem_cell_get(struct device * dev,const char * id)1580 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1581 {
1582 	struct nvmem_cell **ptr, *cell;
1583 
1584 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1585 	if (!ptr)
1586 		return ERR_PTR(-ENOMEM);
1587 
1588 	cell = nvmem_cell_get(dev, id);
1589 	if (!IS_ERR(cell)) {
1590 		*ptr = cell;
1591 		devres_add(dev, ptr);
1592 	} else {
1593 		devres_free(ptr);
1594 	}
1595 
1596 	return cell;
1597 }
1598 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1599 
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1600 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1601 {
1602 	struct nvmem_cell **c = res;
1603 
1604 	if (WARN_ON(!c || !*c))
1605 		return 0;
1606 
1607 	return *c == data;
1608 }
1609 
1610 /**
1611  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1612  * from devm_nvmem_cell_get.
1613  *
1614  * @dev: Device that requests the nvmem cell.
1615  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1616  */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1617 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1618 {
1619 	int ret;
1620 
1621 	ret = devres_release(dev, devm_nvmem_cell_release,
1622 				devm_nvmem_cell_match, cell);
1623 
1624 	WARN_ON(ret);
1625 }
1626 EXPORT_SYMBOL(devm_nvmem_cell_put);
1627 
1628 /**
1629  * nvmem_cell_put() - Release previously allocated nvmem cell.
1630  *
1631  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1632  */
nvmem_cell_put(struct nvmem_cell * cell)1633 void nvmem_cell_put(struct nvmem_cell *cell)
1634 {
1635 	struct nvmem_device *nvmem = cell->entry->nvmem;
1636 
1637 	if (cell->id)
1638 		kfree_const(cell->id);
1639 
1640 	kfree(cell);
1641 	__nvmem_device_put(nvmem);
1642 	nvmem_layout_module_put(nvmem);
1643 }
1644 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1645 
nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry * cell,void * buf)1646 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1647 {
1648 	u8 *p, *b;
1649 	int i, extra, bytes_offset;
1650 	int bit_offset = cell->bit_offset;
1651 
1652 	p = b = buf;
1653 
1654 	bytes_offset = bit_offset / BITS_PER_BYTE;
1655 	b += bytes_offset;
1656 	bit_offset %= BITS_PER_BYTE;
1657 
1658 	if (bit_offset % BITS_PER_BYTE) {
1659 		/* First shift */
1660 		*p = *b++ >> bit_offset;
1661 
1662 		/* setup rest of the bytes if any */
1663 		for (i = 1; i < cell->bytes; i++) {
1664 			/* Get bits from next byte and shift them towards msb */
1665 			*p++ |= *b << (BITS_PER_BYTE - bit_offset);
1666 
1667 			*p = *b++ >> bit_offset;
1668 		}
1669 	} else if (p != b) {
1670 		memmove(p, b, cell->bytes - bytes_offset);
1671 		p += cell->bytes - 1;
1672 	} else {
1673 		/* point to the msb */
1674 		p += cell->bytes - 1;
1675 	}
1676 
1677 	/* result fits in less bytes */
1678 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1679 	while (--extra >= 0)
1680 		*p-- = 0;
1681 
1682 	/* clear msb bits if any leftover in the last byte */
1683 	if (cell->nbits % BITS_PER_BYTE)
1684 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1685 }
1686 
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_entry * cell,void * buf,size_t * len,const char * id,int index)1687 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1688 			     struct nvmem_cell_entry *cell,
1689 			     void *buf, size_t *len, const char *id, int index)
1690 {
1691 	int rc;
1692 
1693 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1694 
1695 	if (rc)
1696 		return rc;
1697 
1698 	/* shift bits in-place */
1699 	if (cell->bit_offset || cell->nbits)
1700 		nvmem_shift_read_buffer_in_place(cell, buf);
1701 
1702 	if (cell->read_post_process) {
1703 		rc = cell->read_post_process(cell->priv, id, index,
1704 					     cell->offset, buf, cell->raw_len);
1705 		if (rc)
1706 			return rc;
1707 	}
1708 
1709 	if (len)
1710 		*len = cell->bytes;
1711 
1712 	return 0;
1713 }
1714 
1715 /**
1716  * nvmem_cell_read() - Read a given nvmem cell
1717  *
1718  * @cell: nvmem cell to be read.
1719  * @len: pointer to length of cell which will be populated on successful read;
1720  *	 can be NULL.
1721  *
1722  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1723  * buffer should be freed by the consumer with a kfree().
1724  */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1725 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1726 {
1727 	struct nvmem_cell_entry *entry = cell->entry;
1728 	struct nvmem_device *nvmem = entry->nvmem;
1729 	u8 *buf;
1730 	int rc;
1731 
1732 	if (!nvmem)
1733 		return ERR_PTR(-EINVAL);
1734 
1735 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1736 	if (!buf)
1737 		return ERR_PTR(-ENOMEM);
1738 
1739 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1740 	if (rc) {
1741 		kfree(buf);
1742 		return ERR_PTR(rc);
1743 	}
1744 
1745 	return buf;
1746 }
1747 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1748 
nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry * cell,u8 * _buf,int len)1749 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1750 					     u8 *_buf, int len)
1751 {
1752 	struct nvmem_device *nvmem = cell->nvmem;
1753 	int i, rc, nbits, bit_offset = cell->bit_offset;
1754 	u8 v, *p, *buf, *b, pbyte, pbits;
1755 
1756 	nbits = cell->nbits;
1757 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1758 	if (!buf)
1759 		return ERR_PTR(-ENOMEM);
1760 
1761 	memcpy(buf, _buf, len);
1762 	p = b = buf;
1763 
1764 	if (bit_offset) {
1765 		pbyte = *b;
1766 		*b <<= bit_offset;
1767 
1768 		/* setup the first byte with lsb bits from nvmem */
1769 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1770 		if (rc)
1771 			goto err;
1772 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1773 
1774 		/* setup rest of the byte if any */
1775 		for (i = 1; i < cell->bytes; i++) {
1776 			/* Get last byte bits and shift them towards lsb */
1777 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1778 			pbyte = *b;
1779 			p = b;
1780 			*b <<= bit_offset;
1781 			*b++ |= pbits;
1782 		}
1783 	}
1784 
1785 	/* if it's not end on byte boundary */
1786 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1787 		/* setup the last byte with msb bits from nvmem */
1788 		rc = nvmem_reg_read(nvmem,
1789 				    cell->offset + cell->bytes - 1, &v, 1);
1790 		if (rc)
1791 			goto err;
1792 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1793 
1794 	}
1795 
1796 	return buf;
1797 err:
1798 	kfree(buf);
1799 	return ERR_PTR(rc);
1800 }
1801 
__nvmem_cell_entry_write(struct nvmem_cell_entry * cell,void * buf,size_t len)1802 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1803 {
1804 	struct nvmem_device *nvmem = cell->nvmem;
1805 	int rc;
1806 
1807 	if (!nvmem || nvmem->read_only ||
1808 	    (cell->bit_offset == 0 && len != cell->bytes))
1809 		return -EINVAL;
1810 
1811 	/*
1812 	 * Any cells which have a read_post_process hook are read-only because
1813 	 * we cannot reverse the operation and it might affect other cells,
1814 	 * too.
1815 	 */
1816 	if (cell->read_post_process)
1817 		return -EINVAL;
1818 
1819 	if (cell->bit_offset || cell->nbits) {
1820 		if (len != BITS_TO_BYTES(cell->nbits) && len != cell->bytes)
1821 			return -EINVAL;
1822 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1823 		if (IS_ERR(buf))
1824 			return PTR_ERR(buf);
1825 	}
1826 
1827 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1828 
1829 	/* free the tmp buffer */
1830 	if (cell->bit_offset || cell->nbits)
1831 		kfree(buf);
1832 
1833 	if (rc)
1834 		return rc;
1835 
1836 	return len;
1837 }
1838 
1839 /**
1840  * nvmem_cell_write() - Write to a given nvmem cell
1841  *
1842  * @cell: nvmem cell to be written.
1843  * @buf: Buffer to be written.
1844  * @len: length of buffer to be written to nvmem cell.
1845  *
1846  * Return: length of bytes written or negative on failure.
1847  */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1848 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1849 {
1850 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1851 }
1852 
1853 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1854 
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1855 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1856 				  void *val, size_t count)
1857 {
1858 	struct nvmem_cell *cell;
1859 	void *buf;
1860 	size_t len;
1861 
1862 	cell = nvmem_cell_get(dev, cell_id);
1863 	if (IS_ERR(cell))
1864 		return PTR_ERR(cell);
1865 
1866 	buf = nvmem_cell_read(cell, &len);
1867 	if (IS_ERR(buf)) {
1868 		nvmem_cell_put(cell);
1869 		return PTR_ERR(buf);
1870 	}
1871 	if (len != count) {
1872 		kfree(buf);
1873 		nvmem_cell_put(cell);
1874 		return -EINVAL;
1875 	}
1876 	memcpy(val, buf, count);
1877 	kfree(buf);
1878 	nvmem_cell_put(cell);
1879 
1880 	return 0;
1881 }
1882 
1883 /**
1884  * nvmem_cell_read_u8() - Read a cell value as a u8
1885  *
1886  * @dev: Device that requests the nvmem cell.
1887  * @cell_id: Name of nvmem cell to read.
1888  * @val: pointer to output value.
1889  *
1890  * Return: 0 on success or negative errno.
1891  */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1892 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1893 {
1894 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1895 }
1896 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1897 
1898 /**
1899  * nvmem_cell_read_u16() - Read a cell value as a u16
1900  *
1901  * @dev: Device that requests the nvmem cell.
1902  * @cell_id: Name of nvmem cell to read.
1903  * @val: pointer to output value.
1904  *
1905  * Return: 0 on success or negative errno.
1906  */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1907 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1908 {
1909 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1910 }
1911 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1912 
1913 /**
1914  * nvmem_cell_read_u32() - Read a cell value as a u32
1915  *
1916  * @dev: Device that requests the nvmem cell.
1917  * @cell_id: Name of nvmem cell to read.
1918  * @val: pointer to output value.
1919  *
1920  * Return: 0 on success or negative errno.
1921  */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1922 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1923 {
1924 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1925 }
1926 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1927 
1928 /**
1929  * nvmem_cell_read_u64() - Read a cell value as a u64
1930  *
1931  * @dev: Device that requests the nvmem cell.
1932  * @cell_id: Name of nvmem cell to read.
1933  * @val: pointer to output value.
1934  *
1935  * Return: 0 on success or negative errno.
1936  */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1937 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1938 {
1939 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1940 }
1941 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1942 
nvmem_cell_read_variable_common(struct device * dev,const char * cell_id,size_t max_len,size_t * len)1943 static const void *nvmem_cell_read_variable_common(struct device *dev,
1944 						   const char *cell_id,
1945 						   size_t max_len, size_t *len)
1946 {
1947 	struct nvmem_cell *cell;
1948 	int nbits;
1949 	void *buf;
1950 
1951 	cell = nvmem_cell_get(dev, cell_id);
1952 	if (IS_ERR(cell))
1953 		return cell;
1954 
1955 	nbits = cell->entry->nbits;
1956 	buf = nvmem_cell_read(cell, len);
1957 	nvmem_cell_put(cell);
1958 	if (IS_ERR(buf))
1959 		return buf;
1960 
1961 	/*
1962 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1963 	 * the length of the real data. Throw away the extra junk.
1964 	 */
1965 	if (nbits)
1966 		*len = DIV_ROUND_UP(nbits, 8);
1967 
1968 	if (*len > max_len) {
1969 		kfree(buf);
1970 		return ERR_PTR(-ERANGE);
1971 	}
1972 
1973 	return buf;
1974 }
1975 
1976 /**
1977  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1978  *
1979  * @dev: Device that requests the nvmem cell.
1980  * @cell_id: Name of nvmem cell to read.
1981  * @val: pointer to output value.
1982  *
1983  * Return: 0 on success or negative errno.
1984  */
nvmem_cell_read_variable_le_u32(struct device * dev,const char * cell_id,u32 * val)1985 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1986 				    u32 *val)
1987 {
1988 	size_t len;
1989 	const u8 *buf;
1990 	int i;
1991 
1992 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1993 	if (IS_ERR(buf))
1994 		return PTR_ERR(buf);
1995 
1996 	/* Copy w/ implicit endian conversion */
1997 	*val = 0;
1998 	for (i = 0; i < len; i++)
1999 		*val |= buf[i] << (8 * i);
2000 
2001 	kfree(buf);
2002 
2003 	return 0;
2004 }
2005 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
2006 
2007 /**
2008  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
2009  *
2010  * @dev: Device that requests the nvmem cell.
2011  * @cell_id: Name of nvmem cell to read.
2012  * @val: pointer to output value.
2013  *
2014  * Return: 0 on success or negative errno.
2015  */
nvmem_cell_read_variable_le_u64(struct device * dev,const char * cell_id,u64 * val)2016 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
2017 				    u64 *val)
2018 {
2019 	size_t len;
2020 	const u8 *buf;
2021 	int i;
2022 
2023 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
2024 	if (IS_ERR(buf))
2025 		return PTR_ERR(buf);
2026 
2027 	/* Copy w/ implicit endian conversion */
2028 	*val = 0;
2029 	for (i = 0; i < len; i++)
2030 		*val |= (uint64_t)buf[i] << (8 * i);
2031 
2032 	kfree(buf);
2033 
2034 	return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
2037 
2038 /**
2039  * nvmem_device_cell_read() - Read a given nvmem device and cell
2040  *
2041  * @nvmem: nvmem device to read from.
2042  * @info: nvmem cell info to be read.
2043  * @buf: buffer pointer which will be populated on successful read.
2044  *
2045  * Return: length of successful bytes read on success and negative
2046  * error code on error.
2047  */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2048 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
2049 			   struct nvmem_cell_info *info, void *buf)
2050 {
2051 	struct nvmem_cell_entry cell;
2052 	int rc;
2053 	ssize_t len;
2054 
2055 	if (!nvmem)
2056 		return -EINVAL;
2057 
2058 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2059 	if (rc)
2060 		return rc;
2061 
2062 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
2063 	if (rc)
2064 		return rc;
2065 
2066 	return len;
2067 }
2068 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
2069 
2070 /**
2071  * nvmem_device_cell_write() - Write cell to a given nvmem device
2072  *
2073  * @nvmem: nvmem device to be written to.
2074  * @info: nvmem cell info to be written.
2075  * @buf: buffer to be written to cell.
2076  *
2077  * Return: length of bytes written or negative error code on failure.
2078  */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)2079 int nvmem_device_cell_write(struct nvmem_device *nvmem,
2080 			    struct nvmem_cell_info *info, void *buf)
2081 {
2082 	struct nvmem_cell_entry cell;
2083 	int rc;
2084 
2085 	if (!nvmem)
2086 		return -EINVAL;
2087 
2088 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
2089 	if (rc)
2090 		return rc;
2091 
2092 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2093 }
2094 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2095 
2096 /**
2097  * nvmem_device_read() - Read from a given nvmem device
2098  *
2099  * @nvmem: nvmem device to read from.
2100  * @offset: offset in nvmem device.
2101  * @bytes: number of bytes to read.
2102  * @buf: buffer pointer which will be populated on successful read.
2103  *
2104  * Return: length of successful bytes read on success and negative
2105  * error code on error.
2106  */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2107 int nvmem_device_read(struct nvmem_device *nvmem,
2108 		      unsigned int offset,
2109 		      size_t bytes, void *buf)
2110 {
2111 	int rc;
2112 
2113 	if (!nvmem)
2114 		return -EINVAL;
2115 
2116 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2117 
2118 	if (rc)
2119 		return rc;
2120 
2121 	return bytes;
2122 }
2123 EXPORT_SYMBOL_GPL(nvmem_device_read);
2124 
2125 /**
2126  * nvmem_device_write() - Write cell to a given nvmem device
2127  *
2128  * @nvmem: nvmem device to be written to.
2129  * @offset: offset in nvmem device.
2130  * @bytes: number of bytes to write.
2131  * @buf: buffer to be written.
2132  *
2133  * Return: length of bytes written or negative error code on failure.
2134  */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2135 int nvmem_device_write(struct nvmem_device *nvmem,
2136 		       unsigned int offset,
2137 		       size_t bytes, void *buf)
2138 {
2139 	int rc;
2140 
2141 	if (!nvmem)
2142 		return -EINVAL;
2143 
2144 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2145 
2146 	if (rc)
2147 		return rc;
2148 
2149 
2150 	return bytes;
2151 }
2152 EXPORT_SYMBOL_GPL(nvmem_device_write);
2153 
2154 /**
2155  * nvmem_add_cell_table() - register a table of cell info entries
2156  *
2157  * @table: table of cell info entries
2158  */
nvmem_add_cell_table(struct nvmem_cell_table * table)2159 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2160 {
2161 	mutex_lock(&nvmem_cell_mutex);
2162 	list_add_tail(&table->node, &nvmem_cell_tables);
2163 	mutex_unlock(&nvmem_cell_mutex);
2164 }
2165 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2166 
2167 /**
2168  * nvmem_del_cell_table() - remove a previously registered cell info table
2169  *
2170  * @table: table of cell info entries
2171  */
nvmem_del_cell_table(struct nvmem_cell_table * table)2172 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2173 {
2174 	mutex_lock(&nvmem_cell_mutex);
2175 	list_del(&table->node);
2176 	mutex_unlock(&nvmem_cell_mutex);
2177 }
2178 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2179 
2180 /**
2181  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2182  *
2183  * @entries: array of cell lookup entries
2184  * @nentries: number of cell lookup entries in the array
2185  */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2186 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2187 {
2188 	int i;
2189 
2190 	mutex_lock(&nvmem_lookup_mutex);
2191 	for (i = 0; i < nentries; i++)
2192 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2193 	mutex_unlock(&nvmem_lookup_mutex);
2194 }
2195 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2196 
2197 /**
2198  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2199  *                            entries
2200  *
2201  * @entries: array of cell lookup entries
2202  * @nentries: number of cell lookup entries in the array
2203  */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2204 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2205 {
2206 	int i;
2207 
2208 	mutex_lock(&nvmem_lookup_mutex);
2209 	for (i = 0; i < nentries; i++)
2210 		list_del(&entries[i].node);
2211 	mutex_unlock(&nvmem_lookup_mutex);
2212 }
2213 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2214 
2215 /**
2216  * nvmem_dev_name() - Get the name of a given nvmem device.
2217  *
2218  * @nvmem: nvmem device.
2219  *
2220  * Return: name of the nvmem device.
2221  */
nvmem_dev_name(struct nvmem_device * nvmem)2222 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2223 {
2224 	return dev_name(&nvmem->dev);
2225 }
2226 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2227 
2228 /**
2229  * nvmem_dev_size() - Get the size of a given nvmem device.
2230  *
2231  * @nvmem: nvmem device.
2232  *
2233  * Return: size of the nvmem device.
2234  */
nvmem_dev_size(struct nvmem_device * nvmem)2235 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2236 {
2237 	return nvmem->size;
2238 }
2239 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2240 
nvmem_init(void)2241 static int __init nvmem_init(void)
2242 {
2243 	int ret;
2244 
2245 	ret = bus_register(&nvmem_bus_type);
2246 	if (ret)
2247 		return ret;
2248 
2249 	ret = nvmem_layout_bus_register();
2250 	if (ret)
2251 		bus_unregister(&nvmem_bus_type);
2252 
2253 	return ret;
2254 }
2255 
nvmem_exit(void)2256 static void __exit nvmem_exit(void)
2257 {
2258 	nvmem_layout_bus_unregister();
2259 	bus_unregister(&nvmem_bus_type);
2260 }
2261 
2262 subsys_initcall(nvmem_init);
2263 module_exit(nvmem_exit);
2264 
2265 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2266 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2267 MODULE_DESCRIPTION("nvmem Driver Core");
2268