xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/property.h>
56 #include <linux/mdio.h>
57 #include <linux/phy.h>
58 #include <linux/fec.h>
59 #include <linux/of.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73 
74 #include <asm/cacheflush.h>
75 
76 #include "fec.h"
77 
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 				int cpu, struct xdp_buff *xdp,
82 				u32 dma_sync_len);
83 
84 #define DRIVER_NAME	"fec"
85 
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87 
88 #define FEC_ENET_RSEM_V	0x84
89 #define FEC_ENET_RSFL_V	16
90 #define FEC_ENET_RAEM_V	0x8
91 #define FEC_ENET_RAFL_V	0x8
92 #define FEC_ENET_OPD_V	0xFFF0
93 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
94 
95 #define FEC_ENET_XDP_PASS          0
96 #define FEC_ENET_XDP_CONSUMED      BIT(0)
97 #define FEC_ENET_XDP_TX            BIT(1)
98 #define FEC_ENET_XDP_REDIR         BIT(2)
99 
100 struct fec_devinfo {
101 	u32 quirks;
102 };
103 
104 static const struct fec_devinfo fec_imx25_info = {
105 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
106 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
107 };
108 
109 static const struct fec_devinfo fec_imx27_info = {
110 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
111 		  FEC_QUIRK_HAS_MDIO_C45,
112 };
113 
114 static const struct fec_devinfo fec_imx28_info = {
115 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
116 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
117 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
118 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
119 };
120 
121 static const struct fec_devinfo fec_imx6q_info = {
122 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
125 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
126 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
127 };
128 
129 static const struct fec_devinfo fec_mvf600_info = {
130 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
131 		  FEC_QUIRK_HAS_MDIO_C45,
132 };
133 
134 static const struct fec_devinfo fec_imx6x_info = {
135 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
136 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
137 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
138 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
139 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
140 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
141 		  FEC_QUIRK_HAS_MDIO_C45,
142 };
143 
144 static const struct fec_devinfo fec_imx6ul_info = {
145 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
146 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
147 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
148 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
149 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
150 		  FEC_QUIRK_HAS_MDIO_C45,
151 };
152 
153 static const struct fec_devinfo fec_imx8mq_info = {
154 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
155 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
156 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
157 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
158 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
159 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
160 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
161 		  FEC_QUIRK_HAS_MDIO_C45,
162 };
163 
164 static const struct fec_devinfo fec_imx8qm_info = {
165 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
166 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
167 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
168 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
169 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
170 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
171 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
172 };
173 
174 static const struct fec_devinfo fec_s32v234_info = {
175 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
176 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
177 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
178 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
179 		  FEC_QUIRK_HAS_MDIO_C45,
180 };
181 
182 static struct platform_device_id fec_devtype[] = {
183 	{
184 		/* keep it for coldfire */
185 		.name = DRIVER_NAME,
186 		.driver_data = 0,
187 	}, {
188 		/* sentinel */
189 	}
190 };
191 MODULE_DEVICE_TABLE(platform, fec_devtype);
192 
193 static const struct of_device_id fec_dt_ids[] = {
194 	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
195 	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
196 	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
197 	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
198 	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
199 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
200 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
201 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
202 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
203 	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
204 	{ /* sentinel */ }
205 };
206 MODULE_DEVICE_TABLE(of, fec_dt_ids);
207 
208 static unsigned char macaddr[ETH_ALEN];
209 module_param_array(macaddr, byte, NULL, 0);
210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
211 
212 #if defined(CONFIG_M5272)
213 /*
214  * Some hardware gets it MAC address out of local flash memory.
215  * if this is non-zero then assume it is the address to get MAC from.
216  */
217 #if defined(CONFIG_NETtel)
218 #define	FEC_FLASHMAC	0xf0006006
219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
220 #define	FEC_FLASHMAC	0xf0006000
221 #elif defined(CONFIG_CANCam)
222 #define	FEC_FLASHMAC	0xf0020000
223 #elif defined (CONFIG_M5272C3)
224 #define	FEC_FLASHMAC	(0xffe04000 + 4)
225 #elif defined(CONFIG_MOD5272)
226 #define FEC_FLASHMAC	0xffc0406b
227 #else
228 #define	FEC_FLASHMAC	0
229 #endif
230 #endif /* CONFIG_M5272 */
231 
232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
233  *
234  * 2048 byte skbufs are allocated. However, alignment requirements
235  * varies between FEC variants. Worst case is 64, so round down by 64.
236  */
237 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
238 #define PKT_MINBUF_SIZE		64
239 
240 /* FEC receive acceleration */
241 #define FEC_RACC_IPDIS		BIT(1)
242 #define FEC_RACC_PRODIS		BIT(2)
243 #define FEC_RACC_SHIFT16	BIT(7)
244 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
245 
246 /* MIB Control Register */
247 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
248 
249 /*
250  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
251  * size bits. Other FEC hardware does not, so we need to take that into
252  * account when setting it.
253  */
254 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
255     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
256     defined(CONFIG_ARM64)
257 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
258 #else
259 #define	OPT_FRAME_SIZE	0
260 #endif
261 
262 /* FEC MII MMFR bits definition */
263 #define FEC_MMFR_ST		(1 << 30)
264 #define FEC_MMFR_ST_C45		(0)
265 #define FEC_MMFR_OP_READ	(2 << 28)
266 #define FEC_MMFR_OP_READ_C45	(3 << 28)
267 #define FEC_MMFR_OP_WRITE	(1 << 28)
268 #define FEC_MMFR_OP_ADDR_WRITE	(0)
269 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
270 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
271 #define FEC_MMFR_TA		(2 << 16)
272 #define FEC_MMFR_DATA(v)	(v & 0xffff)
273 /* FEC ECR bits definition */
274 #define FEC_ECR_RESET           BIT(0)
275 #define FEC_ECR_ETHEREN         BIT(1)
276 #define FEC_ECR_MAGICEN         BIT(2)
277 #define FEC_ECR_SLEEP           BIT(3)
278 #define FEC_ECR_EN1588          BIT(4)
279 #define FEC_ECR_BYTESWP         BIT(8)
280 /* FEC RCR bits definition */
281 #define FEC_RCR_LOOP            BIT(0)
282 #define FEC_RCR_HALFDPX         BIT(1)
283 #define FEC_RCR_MII             BIT(2)
284 #define FEC_RCR_PROMISC         BIT(3)
285 #define FEC_RCR_BC_REJ          BIT(4)
286 #define FEC_RCR_FLOWCTL         BIT(5)
287 #define FEC_RCR_RMII            BIT(8)
288 #define FEC_RCR_10BASET         BIT(9)
289 /* TX WMARK bits */
290 #define FEC_TXWMRK_STRFWD       BIT(8)
291 
292 #define FEC_MII_TIMEOUT		30000 /* us */
293 
294 /* Transmitter timeout */
295 #define TX_TIMEOUT (2 * HZ)
296 
297 #define FEC_PAUSE_FLAG_AUTONEG	0x1
298 #define FEC_PAUSE_FLAG_ENABLE	0x2
299 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
300 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
301 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
302 
303 /* Max number of allowed TCP segments for software TSO */
304 #define FEC_MAX_TSO_SEGS	100
305 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
306 
307 #define IS_TSO_HEADER(txq, addr) \
308 	((addr >= txq->tso_hdrs_dma) && \
309 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
310 
311 static int mii_cnt;
312 
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)313 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
314 					     struct bufdesc_prop *bd)
315 {
316 	return (bdp >= bd->last) ? bd->base
317 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
318 }
319 
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)320 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
321 					     struct bufdesc_prop *bd)
322 {
323 	return (bdp <= bd->base) ? bd->last
324 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
325 }
326 
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)327 static int fec_enet_get_bd_index(struct bufdesc *bdp,
328 				 struct bufdesc_prop *bd)
329 {
330 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
331 }
332 
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)333 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
334 {
335 	int entries;
336 
337 	entries = (((const char *)txq->dirty_tx -
338 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
339 
340 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
341 }
342 
swap_buffer(void * bufaddr,int len)343 static void swap_buffer(void *bufaddr, int len)
344 {
345 	int i;
346 	unsigned int *buf = bufaddr;
347 
348 	for (i = 0; i < len; i += 4, buf++)
349 		swab32s(buf);
350 }
351 
fec_dump(struct net_device * ndev)352 static void fec_dump(struct net_device *ndev)
353 {
354 	struct fec_enet_private *fep = netdev_priv(ndev);
355 	struct bufdesc *bdp;
356 	struct fec_enet_priv_tx_q *txq;
357 	int index = 0;
358 
359 	netdev_info(ndev, "TX ring dump\n");
360 	pr_info("Nr     SC     addr       len  SKB\n");
361 
362 	txq = fep->tx_queue[0];
363 	bdp = txq->bd.base;
364 
365 	do {
366 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
367 			index,
368 			bdp == txq->bd.cur ? 'S' : ' ',
369 			bdp == txq->dirty_tx ? 'H' : ' ',
370 			fec16_to_cpu(bdp->cbd_sc),
371 			fec32_to_cpu(bdp->cbd_bufaddr),
372 			fec16_to_cpu(bdp->cbd_datlen),
373 			txq->tx_buf[index].buf_p);
374 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
375 		index++;
376 	} while (bdp != txq->bd.base);
377 }
378 
379 /*
380  * Coldfire does not support DMA coherent allocations, and has historically used
381  * a band-aid with a manual flush in fec_enet_rx_queue.
382  */
383 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)384 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
385 		gfp_t gfp)
386 {
387 	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
388 }
389 
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)390 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
391 		dma_addr_t handle)
392 {
393 	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
394 }
395 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)396 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
397 		gfp_t gfp)
398 {
399 	return dma_alloc_coherent(dev, size, handle, gfp);
400 }
401 
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)402 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
403 		dma_addr_t handle)
404 {
405 	dma_free_coherent(dev, size, cpu_addr, handle);
406 }
407 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
408 
409 struct fec_dma_devres {
410 	size_t		size;
411 	void		*vaddr;
412 	dma_addr_t	dma_handle;
413 };
414 
fec_dmam_release(struct device * dev,void * res)415 static void fec_dmam_release(struct device *dev, void *res)
416 {
417 	struct fec_dma_devres *this = res;
418 
419 	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
420 }
421 
fec_dmam_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)422 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
423 		gfp_t gfp)
424 {
425 	struct fec_dma_devres *dr;
426 	void *vaddr;
427 
428 	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
429 	if (!dr)
430 		return NULL;
431 	vaddr = fec_dma_alloc(dev, size, handle, gfp);
432 	if (!vaddr) {
433 		devres_free(dr);
434 		return NULL;
435 	}
436 	dr->vaddr = vaddr;
437 	dr->dma_handle = *handle;
438 	dr->size = size;
439 	devres_add(dev, dr);
440 	return vaddr;
441 }
442 
is_ipv4_pkt(struct sk_buff * skb)443 static inline bool is_ipv4_pkt(struct sk_buff *skb)
444 {
445 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
446 }
447 
448 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)449 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
450 {
451 	/* Only run for packets requiring a checksum. */
452 	if (skb->ip_summed != CHECKSUM_PARTIAL)
453 		return 0;
454 
455 	if (unlikely(skb_cow_head(skb, 0)))
456 		return -1;
457 
458 	if (is_ipv4_pkt(skb))
459 		ip_hdr(skb)->check = 0;
460 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
461 
462 	return 0;
463 }
464 
465 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)466 fec_enet_create_page_pool(struct fec_enet_private *fep,
467 			  struct fec_enet_priv_rx_q *rxq, int size)
468 {
469 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
470 	struct page_pool_params pp_params = {
471 		.order = 0,
472 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
473 		.pool_size = size,
474 		.nid = dev_to_node(&fep->pdev->dev),
475 		.dev = &fep->pdev->dev,
476 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
477 		.offset = FEC_ENET_XDP_HEADROOM,
478 		.max_len = FEC_ENET_RX_FRSIZE,
479 	};
480 	int err;
481 
482 	rxq->page_pool = page_pool_create(&pp_params);
483 	if (IS_ERR(rxq->page_pool)) {
484 		err = PTR_ERR(rxq->page_pool);
485 		rxq->page_pool = NULL;
486 		return err;
487 	}
488 
489 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
490 	if (err < 0)
491 		goto err_free_pp;
492 
493 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
494 					 rxq->page_pool);
495 	if (err)
496 		goto err_unregister_rxq;
497 
498 	return 0;
499 
500 err_unregister_rxq:
501 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
502 err_free_pp:
503 	page_pool_destroy(rxq->page_pool);
504 	rxq->page_pool = NULL;
505 	return err;
506 }
507 
508 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)509 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
510 			     struct sk_buff *skb,
511 			     struct net_device *ndev)
512 {
513 	struct fec_enet_private *fep = netdev_priv(ndev);
514 	struct bufdesc *bdp = txq->bd.cur;
515 	struct bufdesc_ex *ebdp;
516 	int nr_frags = skb_shinfo(skb)->nr_frags;
517 	int frag, frag_len;
518 	unsigned short status;
519 	unsigned int estatus = 0;
520 	skb_frag_t *this_frag;
521 	unsigned int index;
522 	void *bufaddr;
523 	dma_addr_t addr;
524 	int i;
525 
526 	for (frag = 0; frag < nr_frags; frag++) {
527 		this_frag = &skb_shinfo(skb)->frags[frag];
528 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
529 		ebdp = (struct bufdesc_ex *)bdp;
530 
531 		status = fec16_to_cpu(bdp->cbd_sc);
532 		status &= ~BD_ENET_TX_STATS;
533 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
534 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
535 
536 		/* Handle the last BD specially */
537 		if (frag == nr_frags - 1) {
538 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
539 			if (fep->bufdesc_ex) {
540 				estatus |= BD_ENET_TX_INT;
541 				if (unlikely(skb_shinfo(skb)->tx_flags &
542 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
543 					estatus |= BD_ENET_TX_TS;
544 			}
545 		}
546 
547 		if (fep->bufdesc_ex) {
548 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
549 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
550 			if (skb->ip_summed == CHECKSUM_PARTIAL)
551 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
552 
553 			ebdp->cbd_bdu = 0;
554 			ebdp->cbd_esc = cpu_to_fec32(estatus);
555 		}
556 
557 		bufaddr = skb_frag_address(this_frag);
558 
559 		index = fec_enet_get_bd_index(bdp, &txq->bd);
560 		if (((unsigned long) bufaddr) & fep->tx_align ||
561 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
562 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
563 			bufaddr = txq->tx_bounce[index];
564 
565 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
566 				swap_buffer(bufaddr, frag_len);
567 		}
568 
569 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
570 				      DMA_TO_DEVICE);
571 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
572 			if (net_ratelimit())
573 				netdev_err(ndev, "Tx DMA memory map failed\n");
574 			goto dma_mapping_error;
575 		}
576 
577 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
578 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
579 		/* Make sure the updates to rest of the descriptor are
580 		 * performed before transferring ownership.
581 		 */
582 		wmb();
583 		bdp->cbd_sc = cpu_to_fec16(status);
584 	}
585 
586 	return bdp;
587 dma_mapping_error:
588 	bdp = txq->bd.cur;
589 	for (i = 0; i < frag; i++) {
590 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
591 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
592 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
593 	}
594 	return ERR_PTR(-ENOMEM);
595 }
596 
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)597 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
598 				   struct sk_buff *skb, struct net_device *ndev)
599 {
600 	struct fec_enet_private *fep = netdev_priv(ndev);
601 	int nr_frags = skb_shinfo(skb)->nr_frags;
602 	struct bufdesc *bdp, *last_bdp;
603 	void *bufaddr;
604 	dma_addr_t addr;
605 	unsigned short status;
606 	unsigned short buflen;
607 	unsigned int estatus = 0;
608 	unsigned int index;
609 	int entries_free;
610 
611 	entries_free = fec_enet_get_free_txdesc_num(txq);
612 	if (entries_free < MAX_SKB_FRAGS + 1) {
613 		dev_kfree_skb_any(skb);
614 		if (net_ratelimit())
615 			netdev_err(ndev, "NOT enough BD for SG!\n");
616 		return NETDEV_TX_OK;
617 	}
618 
619 	/* Protocol checksum off-load for TCP and UDP. */
620 	if (fec_enet_clear_csum(skb, ndev)) {
621 		dev_kfree_skb_any(skb);
622 		return NETDEV_TX_OK;
623 	}
624 
625 	/* Fill in a Tx ring entry */
626 	bdp = txq->bd.cur;
627 	last_bdp = bdp;
628 	status = fec16_to_cpu(bdp->cbd_sc);
629 	status &= ~BD_ENET_TX_STATS;
630 
631 	/* Set buffer length and buffer pointer */
632 	bufaddr = skb->data;
633 	buflen = skb_headlen(skb);
634 
635 	index = fec_enet_get_bd_index(bdp, &txq->bd);
636 	if (((unsigned long) bufaddr) & fep->tx_align ||
637 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
638 		memcpy(txq->tx_bounce[index], skb->data, buflen);
639 		bufaddr = txq->tx_bounce[index];
640 
641 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
642 			swap_buffer(bufaddr, buflen);
643 	}
644 
645 	/* Push the data cache so the CPM does not get stale memory data. */
646 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
647 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
648 		dev_kfree_skb_any(skb);
649 		if (net_ratelimit())
650 			netdev_err(ndev, "Tx DMA memory map failed\n");
651 		return NETDEV_TX_OK;
652 	}
653 
654 	if (nr_frags) {
655 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
656 		if (IS_ERR(last_bdp)) {
657 			dma_unmap_single(&fep->pdev->dev, addr,
658 					 buflen, DMA_TO_DEVICE);
659 			dev_kfree_skb_any(skb);
660 			return NETDEV_TX_OK;
661 		}
662 	} else {
663 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
664 		if (fep->bufdesc_ex) {
665 			estatus = BD_ENET_TX_INT;
666 			if (unlikely(skb_shinfo(skb)->tx_flags &
667 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
668 				estatus |= BD_ENET_TX_TS;
669 		}
670 	}
671 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
672 	bdp->cbd_datlen = cpu_to_fec16(buflen);
673 
674 	if (fep->bufdesc_ex) {
675 
676 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
677 
678 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
679 			fep->hwts_tx_en))
680 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
681 
682 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
683 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
684 
685 		if (skb->ip_summed == CHECKSUM_PARTIAL)
686 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
687 
688 		ebdp->cbd_bdu = 0;
689 		ebdp->cbd_esc = cpu_to_fec32(estatus);
690 	}
691 
692 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
693 	/* Save skb pointer */
694 	txq->tx_buf[index].buf_p = skb;
695 
696 	/* Make sure the updates to rest of the descriptor are performed before
697 	 * transferring ownership.
698 	 */
699 	wmb();
700 
701 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
702 	 * it's the last BD of the frame, and to put the CRC on the end.
703 	 */
704 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
705 	bdp->cbd_sc = cpu_to_fec16(status);
706 
707 	/* If this was the last BD in the ring, start at the beginning again. */
708 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
709 
710 	skb_tx_timestamp(skb);
711 
712 	/* Make sure the update to bdp is performed before txq->bd.cur. */
713 	wmb();
714 	txq->bd.cur = bdp;
715 
716 	/* Trigger transmission start */
717 	writel(0, txq->bd.reg_desc_active);
718 
719 	return 0;
720 }
721 
722 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)723 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
724 			  struct net_device *ndev,
725 			  struct bufdesc *bdp, int index, char *data,
726 			  int size, bool last_tcp, bool is_last)
727 {
728 	struct fec_enet_private *fep = netdev_priv(ndev);
729 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
730 	unsigned short status;
731 	unsigned int estatus = 0;
732 	dma_addr_t addr;
733 
734 	status = fec16_to_cpu(bdp->cbd_sc);
735 	status &= ~BD_ENET_TX_STATS;
736 
737 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
738 
739 	if (((unsigned long) data) & fep->tx_align ||
740 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
741 		memcpy(txq->tx_bounce[index], data, size);
742 		data = txq->tx_bounce[index];
743 
744 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
745 			swap_buffer(data, size);
746 	}
747 
748 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
749 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
750 		dev_kfree_skb_any(skb);
751 		if (net_ratelimit())
752 			netdev_err(ndev, "Tx DMA memory map failed\n");
753 		return NETDEV_TX_OK;
754 	}
755 
756 	bdp->cbd_datlen = cpu_to_fec16(size);
757 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
758 
759 	if (fep->bufdesc_ex) {
760 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
761 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
762 		if (skb->ip_summed == CHECKSUM_PARTIAL)
763 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
764 		ebdp->cbd_bdu = 0;
765 		ebdp->cbd_esc = cpu_to_fec32(estatus);
766 	}
767 
768 	/* Handle the last BD specially */
769 	if (last_tcp)
770 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
771 	if (is_last) {
772 		status |= BD_ENET_TX_INTR;
773 		if (fep->bufdesc_ex)
774 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
775 	}
776 
777 	bdp->cbd_sc = cpu_to_fec16(status);
778 
779 	return 0;
780 }
781 
782 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)783 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
784 			 struct sk_buff *skb, struct net_device *ndev,
785 			 struct bufdesc *bdp, int index)
786 {
787 	struct fec_enet_private *fep = netdev_priv(ndev);
788 	int hdr_len = skb_tcp_all_headers(skb);
789 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
790 	void *bufaddr;
791 	unsigned long dmabuf;
792 	unsigned short status;
793 	unsigned int estatus = 0;
794 
795 	status = fec16_to_cpu(bdp->cbd_sc);
796 	status &= ~BD_ENET_TX_STATS;
797 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
798 
799 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
800 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
801 	if (((unsigned long)bufaddr) & fep->tx_align ||
802 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
803 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
804 		bufaddr = txq->tx_bounce[index];
805 
806 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
807 			swap_buffer(bufaddr, hdr_len);
808 
809 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
810 					hdr_len, DMA_TO_DEVICE);
811 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
812 			dev_kfree_skb_any(skb);
813 			if (net_ratelimit())
814 				netdev_err(ndev, "Tx DMA memory map failed\n");
815 			return NETDEV_TX_OK;
816 		}
817 	}
818 
819 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
820 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
821 
822 	if (fep->bufdesc_ex) {
823 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
824 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
825 		if (skb->ip_summed == CHECKSUM_PARTIAL)
826 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
827 		ebdp->cbd_bdu = 0;
828 		ebdp->cbd_esc = cpu_to_fec32(estatus);
829 	}
830 
831 	bdp->cbd_sc = cpu_to_fec16(status);
832 
833 	return 0;
834 }
835 
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)836 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
837 				   struct sk_buff *skb,
838 				   struct net_device *ndev)
839 {
840 	struct fec_enet_private *fep = netdev_priv(ndev);
841 	int hdr_len, total_len, data_left;
842 	struct bufdesc *bdp = txq->bd.cur;
843 	struct bufdesc *tmp_bdp;
844 	struct bufdesc_ex *ebdp;
845 	struct tso_t tso;
846 	unsigned int index = 0;
847 	int ret;
848 
849 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
850 		dev_kfree_skb_any(skb);
851 		if (net_ratelimit())
852 			netdev_err(ndev, "NOT enough BD for TSO!\n");
853 		return NETDEV_TX_OK;
854 	}
855 
856 	/* Protocol checksum off-load for TCP and UDP. */
857 	if (fec_enet_clear_csum(skb, ndev)) {
858 		dev_kfree_skb_any(skb);
859 		return NETDEV_TX_OK;
860 	}
861 
862 	/* Initialize the TSO handler, and prepare the first payload */
863 	hdr_len = tso_start(skb, &tso);
864 
865 	total_len = skb->len - hdr_len;
866 	while (total_len > 0) {
867 		char *hdr;
868 
869 		index = fec_enet_get_bd_index(bdp, &txq->bd);
870 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
871 		total_len -= data_left;
872 
873 		/* prepare packet headers: MAC + IP + TCP */
874 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
875 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
876 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
877 		if (ret)
878 			goto err_release;
879 
880 		while (data_left > 0) {
881 			int size;
882 
883 			size = min_t(int, tso.size, data_left);
884 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
885 			index = fec_enet_get_bd_index(bdp, &txq->bd);
886 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
887 							bdp, index,
888 							tso.data, size,
889 							size == data_left,
890 							total_len == 0);
891 			if (ret)
892 				goto err_release;
893 
894 			data_left -= size;
895 			tso_build_data(skb, &tso, size);
896 		}
897 
898 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
899 	}
900 
901 	/* Save skb pointer */
902 	txq->tx_buf[index].buf_p = skb;
903 
904 	skb_tx_timestamp(skb);
905 	txq->bd.cur = bdp;
906 
907 	/* Trigger transmission start */
908 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
909 	    !readl(txq->bd.reg_desc_active) ||
910 	    !readl(txq->bd.reg_desc_active) ||
911 	    !readl(txq->bd.reg_desc_active) ||
912 	    !readl(txq->bd.reg_desc_active))
913 		writel(0, txq->bd.reg_desc_active);
914 
915 	return 0;
916 
917 err_release:
918 	/* Release all used data descriptors for TSO */
919 	tmp_bdp = txq->bd.cur;
920 
921 	while (tmp_bdp != bdp) {
922 		/* Unmap data buffers */
923 		if (tmp_bdp->cbd_bufaddr &&
924 		    !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
925 			dma_unmap_single(&fep->pdev->dev,
926 					 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
927 					 fec16_to_cpu(tmp_bdp->cbd_datlen),
928 					 DMA_TO_DEVICE);
929 
930 		/* Clear standard buffer descriptor fields */
931 		tmp_bdp->cbd_sc = 0;
932 		tmp_bdp->cbd_datlen = 0;
933 		tmp_bdp->cbd_bufaddr = 0;
934 
935 		/* Handle extended descriptor if enabled */
936 		if (fep->bufdesc_ex) {
937 			ebdp = (struct bufdesc_ex *)tmp_bdp;
938 			ebdp->cbd_esc = 0;
939 		}
940 
941 		tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
942 	}
943 
944 	dev_kfree_skb_any(skb);
945 
946 	return ret;
947 }
948 
949 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)950 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
951 {
952 	struct fec_enet_private *fep = netdev_priv(ndev);
953 	int entries_free;
954 	unsigned short queue;
955 	struct fec_enet_priv_tx_q *txq;
956 	struct netdev_queue *nq;
957 	int ret;
958 
959 	queue = skb_get_queue_mapping(skb);
960 	txq = fep->tx_queue[queue];
961 	nq = netdev_get_tx_queue(ndev, queue);
962 
963 	if (skb_is_gso(skb))
964 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
965 	else
966 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
967 	if (ret)
968 		return ret;
969 
970 	entries_free = fec_enet_get_free_txdesc_num(txq);
971 	if (entries_free <= txq->tx_stop_threshold)
972 		netif_tx_stop_queue(nq);
973 
974 	return NETDEV_TX_OK;
975 }
976 
977 /* Init RX & TX buffer descriptors
978  */
fec_enet_bd_init(struct net_device * dev)979 static void fec_enet_bd_init(struct net_device *dev)
980 {
981 	struct fec_enet_private *fep = netdev_priv(dev);
982 	struct fec_enet_priv_tx_q *txq;
983 	struct fec_enet_priv_rx_q *rxq;
984 	struct bufdesc *bdp;
985 	unsigned int i;
986 	unsigned int q;
987 
988 	for (q = 0; q < fep->num_rx_queues; q++) {
989 		/* Initialize the receive buffer descriptors. */
990 		rxq = fep->rx_queue[q];
991 		bdp = rxq->bd.base;
992 
993 		for (i = 0; i < rxq->bd.ring_size; i++) {
994 
995 			/* Initialize the BD for every fragment in the page. */
996 			if (bdp->cbd_bufaddr)
997 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
998 			else
999 				bdp->cbd_sc = cpu_to_fec16(0);
1000 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1001 		}
1002 
1003 		/* Set the last buffer to wrap */
1004 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1005 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1006 
1007 		rxq->bd.cur = rxq->bd.base;
1008 	}
1009 
1010 	for (q = 0; q < fep->num_tx_queues; q++) {
1011 		/* ...and the same for transmit */
1012 		txq = fep->tx_queue[q];
1013 		bdp = txq->bd.base;
1014 		txq->bd.cur = bdp;
1015 
1016 		for (i = 0; i < txq->bd.ring_size; i++) {
1017 			/* Initialize the BD for every fragment in the page. */
1018 			bdp->cbd_sc = cpu_to_fec16(0);
1019 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1020 				if (bdp->cbd_bufaddr &&
1021 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1022 					dma_unmap_single(&fep->pdev->dev,
1023 							 fec32_to_cpu(bdp->cbd_bufaddr),
1024 							 fec16_to_cpu(bdp->cbd_datlen),
1025 							 DMA_TO_DEVICE);
1026 				if (txq->tx_buf[i].buf_p)
1027 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1028 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1029 				if (bdp->cbd_bufaddr)
1030 					dma_unmap_single(&fep->pdev->dev,
1031 							 fec32_to_cpu(bdp->cbd_bufaddr),
1032 							 fec16_to_cpu(bdp->cbd_datlen),
1033 							 DMA_TO_DEVICE);
1034 
1035 				if (txq->tx_buf[i].buf_p)
1036 					xdp_return_frame(txq->tx_buf[i].buf_p);
1037 			} else {
1038 				struct page *page = txq->tx_buf[i].buf_p;
1039 
1040 				if (page)
1041 					page_pool_put_page(page->pp, page, 0, false);
1042 			}
1043 
1044 			txq->tx_buf[i].buf_p = NULL;
1045 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1046 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1047 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1048 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1049 		}
1050 
1051 		/* Set the last buffer to wrap */
1052 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1053 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1054 		txq->dirty_tx = bdp;
1055 	}
1056 }
1057 
fec_enet_active_rxring(struct net_device * ndev)1058 static void fec_enet_active_rxring(struct net_device *ndev)
1059 {
1060 	struct fec_enet_private *fep = netdev_priv(ndev);
1061 	int i;
1062 
1063 	for (i = 0; i < fep->num_rx_queues; i++)
1064 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1065 }
1066 
fec_enet_enable_ring(struct net_device * ndev)1067 static void fec_enet_enable_ring(struct net_device *ndev)
1068 {
1069 	struct fec_enet_private *fep = netdev_priv(ndev);
1070 	struct fec_enet_priv_tx_q *txq;
1071 	struct fec_enet_priv_rx_q *rxq;
1072 	int i;
1073 
1074 	for (i = 0; i < fep->num_rx_queues; i++) {
1075 		rxq = fep->rx_queue[i];
1076 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1077 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1078 
1079 		/* enable DMA1/2 */
1080 		if (i)
1081 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1082 			       fep->hwp + FEC_RCMR(i));
1083 	}
1084 
1085 	for (i = 0; i < fep->num_tx_queues; i++) {
1086 		txq = fep->tx_queue[i];
1087 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1088 
1089 		/* enable DMA1/2 */
1090 		if (i)
1091 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1092 			       fep->hwp + FEC_DMA_CFG(i));
1093 	}
1094 }
1095 
1096 /* Whack a reset.  We should wait for this.
1097  * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1098  * instead of reset MAC itself.
1099  */
fec_ctrl_reset(struct fec_enet_private * fep,bool allow_wol)1100 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol)
1101 {
1102 	u32 val;
1103 
1104 	if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1105 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1106 		    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1107 			writel(0, fep->hwp + FEC_ECNTRL);
1108 		} else {
1109 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1110 			udelay(10);
1111 		}
1112 	} else {
1113 		val = readl(fep->hwp + FEC_ECNTRL);
1114 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1115 		writel(val, fep->hwp + FEC_ECNTRL);
1116 	}
1117 }
1118 
1119 /*
1120  * This function is called to start or restart the FEC during a link
1121  * change, transmit timeout, or to reconfigure the FEC.  The network
1122  * packet processing for this device must be stopped before this call.
1123  */
1124 static void
fec_restart(struct net_device * ndev)1125 fec_restart(struct net_device *ndev)
1126 {
1127 	struct fec_enet_private *fep = netdev_priv(ndev);
1128 	u32 temp_mac[2];
1129 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1130 	u32 ecntl = FEC_ECR_ETHEREN;
1131 
1132 	if (fep->bufdesc_ex)
1133 		fec_ptp_save_state(fep);
1134 
1135 	fec_ctrl_reset(fep, false);
1136 
1137 	/*
1138 	 * enet-mac reset will reset mac address registers too,
1139 	 * so need to reconfigure it.
1140 	 */
1141 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1142 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1143 	       fep->hwp + FEC_ADDR_LOW);
1144 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1145 	       fep->hwp + FEC_ADDR_HIGH);
1146 
1147 	/* Clear any outstanding interrupt, except MDIO. */
1148 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1149 
1150 	fec_enet_bd_init(ndev);
1151 
1152 	fec_enet_enable_ring(ndev);
1153 
1154 	/* Enable MII mode */
1155 	if (fep->full_duplex == DUPLEX_FULL) {
1156 		/* FD enable */
1157 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1158 	} else {
1159 		/* No Rcv on Xmit */
1160 		rcntl |= 0x02;
1161 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1162 	}
1163 
1164 	/* Set MII speed */
1165 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1166 
1167 #if !defined(CONFIG_M5272)
1168 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1169 		u32 val = readl(fep->hwp + FEC_RACC);
1170 
1171 		/* align IP header */
1172 		val |= FEC_RACC_SHIFT16;
1173 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1174 			/* set RX checksum */
1175 			val |= FEC_RACC_OPTIONS;
1176 		else
1177 			val &= ~FEC_RACC_OPTIONS;
1178 		writel(val, fep->hwp + FEC_RACC);
1179 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1180 	}
1181 #endif
1182 
1183 	/*
1184 	 * The phy interface and speed need to get configured
1185 	 * differently on enet-mac.
1186 	 */
1187 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1188 		/* Enable flow control and length check */
1189 		rcntl |= 0x40000000 | 0x00000020;
1190 
1191 		/* RGMII, RMII or MII */
1192 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1193 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1194 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1195 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1196 			rcntl |= (1 << 6);
1197 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1198 			rcntl |= FEC_RCR_RMII;
1199 		else
1200 			rcntl &= ~FEC_RCR_RMII;
1201 
1202 		/* 1G, 100M or 10M */
1203 		if (ndev->phydev) {
1204 			if (ndev->phydev->speed == SPEED_1000)
1205 				ecntl |= (1 << 5);
1206 			else if (ndev->phydev->speed == SPEED_100)
1207 				rcntl &= ~FEC_RCR_10BASET;
1208 			else
1209 				rcntl |= FEC_RCR_10BASET;
1210 		}
1211 	} else {
1212 #ifdef FEC_MIIGSK_ENR
1213 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1214 			u32 cfgr;
1215 			/* disable the gasket and wait */
1216 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1217 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1218 				udelay(1);
1219 
1220 			/*
1221 			 * configure the gasket:
1222 			 *   RMII, 50 MHz, no loopback, no echo
1223 			 *   MII, 25 MHz, no loopback, no echo
1224 			 */
1225 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1226 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1227 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1228 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1229 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1230 
1231 			/* re-enable the gasket */
1232 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1233 		}
1234 #endif
1235 	}
1236 
1237 #if !defined(CONFIG_M5272)
1238 	/* enable pause frame*/
1239 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1240 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1241 	     ndev->phydev && ndev->phydev->pause)) {
1242 		rcntl |= FEC_RCR_FLOWCTL;
1243 
1244 		/* set FIFO threshold parameter to reduce overrun */
1245 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1246 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1247 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1248 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1249 
1250 		/* OPD */
1251 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1252 	} else {
1253 		rcntl &= ~FEC_RCR_FLOWCTL;
1254 	}
1255 #endif /* !defined(CONFIG_M5272) */
1256 
1257 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1258 
1259 	/* Setup multicast filter. */
1260 	set_multicast_list(ndev);
1261 #ifndef CONFIG_M5272
1262 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1263 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1264 #endif
1265 
1266 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1267 		/* enable ENET endian swap */
1268 		ecntl |= FEC_ECR_BYTESWP;
1269 		/* enable ENET store and forward mode */
1270 		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1271 	}
1272 
1273 	if (fep->bufdesc_ex)
1274 		ecntl |= FEC_ECR_EN1588;
1275 
1276 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1277 	    fep->rgmii_txc_dly)
1278 		ecntl |= FEC_ENET_TXC_DLY;
1279 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1280 	    fep->rgmii_rxc_dly)
1281 		ecntl |= FEC_ENET_RXC_DLY;
1282 
1283 #ifndef CONFIG_M5272
1284 	/* Enable the MIB statistic event counters */
1285 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1286 #endif
1287 
1288 	/* And last, enable the transmit and receive processing */
1289 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1290 	fec_enet_active_rxring(ndev);
1291 
1292 	if (fep->bufdesc_ex) {
1293 		fec_ptp_start_cyclecounter(ndev);
1294 		fec_ptp_restore_state(fep);
1295 	}
1296 
1297 	/* Enable interrupts we wish to service */
1298 	if (fep->link)
1299 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1300 	else
1301 		writel(0, fep->hwp + FEC_IMASK);
1302 
1303 	/* Init the interrupt coalescing */
1304 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1305 		fec_enet_itr_coal_set(ndev);
1306 }
1307 
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1308 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1309 {
1310 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1311 	      of_machine_is_compatible("fsl,imx8qxp") ||
1312 	      of_machine_is_compatible("fsl,imx8dxl")))
1313 		return 0;
1314 
1315 	return imx_scu_get_handle(&fep->ipc_handle);
1316 }
1317 
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1318 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1319 {
1320 	struct device_node *np = fep->pdev->dev.of_node;
1321 	u32 rsrc_id, val;
1322 	int idx;
1323 
1324 	if (!np || !fep->ipc_handle)
1325 		return;
1326 
1327 	idx = of_alias_get_id(np, "ethernet");
1328 	if (idx < 0)
1329 		idx = 0;
1330 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1331 
1332 	val = enabled ? 1 : 0;
1333 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1334 }
1335 
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1336 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1337 {
1338 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1339 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1340 
1341 	if (stop_gpr->gpr) {
1342 		if (enabled)
1343 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1344 					   BIT(stop_gpr->bit),
1345 					   BIT(stop_gpr->bit));
1346 		else
1347 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1348 					   BIT(stop_gpr->bit), 0);
1349 	} else if (pdata && pdata->sleep_mode_enable) {
1350 		pdata->sleep_mode_enable(enabled);
1351 	} else {
1352 		fec_enet_ipg_stop_set(fep, enabled);
1353 	}
1354 }
1355 
fec_irqs_disable(struct net_device * ndev)1356 static void fec_irqs_disable(struct net_device *ndev)
1357 {
1358 	struct fec_enet_private *fep = netdev_priv(ndev);
1359 
1360 	writel(0, fep->hwp + FEC_IMASK);
1361 }
1362 
fec_irqs_disable_except_wakeup(struct net_device * ndev)1363 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1364 {
1365 	struct fec_enet_private *fep = netdev_priv(ndev);
1366 
1367 	writel(0, fep->hwp + FEC_IMASK);
1368 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1369 }
1370 
1371 static void
fec_stop(struct net_device * ndev)1372 fec_stop(struct net_device *ndev)
1373 {
1374 	struct fec_enet_private *fep = netdev_priv(ndev);
1375 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1376 	u32 val;
1377 
1378 	/* We cannot expect a graceful transmit stop without link !!! */
1379 	if (fep->link) {
1380 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1381 		udelay(10);
1382 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1383 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1384 	}
1385 
1386 	if (fep->bufdesc_ex)
1387 		fec_ptp_save_state(fep);
1388 
1389 	fec_ctrl_reset(fep, true);
1390 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1391 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1392 
1393 	/* We have to keep ENET enabled to have MII interrupt stay working */
1394 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1395 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1396 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1397 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1398 	}
1399 
1400 	if (fep->bufdesc_ex) {
1401 		val = readl(fep->hwp + FEC_ECNTRL);
1402 		val |= FEC_ECR_EN1588;
1403 		writel(val, fep->hwp + FEC_ECNTRL);
1404 
1405 		fec_ptp_start_cyclecounter(ndev);
1406 		fec_ptp_restore_state(fep);
1407 	}
1408 }
1409 
1410 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1411 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1412 {
1413 	struct fec_enet_private *fep = netdev_priv(ndev);
1414 
1415 	fec_dump(ndev);
1416 
1417 	ndev->stats.tx_errors++;
1418 
1419 	schedule_work(&fep->tx_timeout_work);
1420 }
1421 
fec_enet_timeout_work(struct work_struct * work)1422 static void fec_enet_timeout_work(struct work_struct *work)
1423 {
1424 	struct fec_enet_private *fep =
1425 		container_of(work, struct fec_enet_private, tx_timeout_work);
1426 	struct net_device *ndev = fep->netdev;
1427 
1428 	rtnl_lock();
1429 	if (netif_device_present(ndev) || netif_running(ndev)) {
1430 		napi_disable(&fep->napi);
1431 		netif_tx_lock_bh(ndev);
1432 		fec_restart(ndev);
1433 		netif_tx_wake_all_queues(ndev);
1434 		netif_tx_unlock_bh(ndev);
1435 		napi_enable(&fep->napi);
1436 	}
1437 	rtnl_unlock();
1438 }
1439 
1440 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1441 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1442 	struct skb_shared_hwtstamps *hwtstamps)
1443 {
1444 	unsigned long flags;
1445 	u64 ns;
1446 
1447 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1448 	ns = timecounter_cyc2time(&fep->tc, ts);
1449 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1450 
1451 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1452 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1453 }
1454 
1455 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1456 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1457 {
1458 	struct	fec_enet_private *fep;
1459 	struct xdp_frame *xdpf;
1460 	struct bufdesc *bdp;
1461 	unsigned short status;
1462 	struct	sk_buff	*skb;
1463 	struct fec_enet_priv_tx_q *txq;
1464 	struct netdev_queue *nq;
1465 	int	index = 0;
1466 	int	entries_free;
1467 	struct page *page;
1468 	int frame_len;
1469 
1470 	fep = netdev_priv(ndev);
1471 
1472 	txq = fep->tx_queue[queue_id];
1473 	/* get next bdp of dirty_tx */
1474 	nq = netdev_get_tx_queue(ndev, queue_id);
1475 	bdp = txq->dirty_tx;
1476 
1477 	/* get next bdp of dirty_tx */
1478 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1479 
1480 	while (bdp != READ_ONCE(txq->bd.cur)) {
1481 		/* Order the load of bd.cur and cbd_sc */
1482 		rmb();
1483 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1484 		if (status & BD_ENET_TX_READY)
1485 			break;
1486 
1487 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1488 
1489 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1490 			skb = txq->tx_buf[index].buf_p;
1491 			if (bdp->cbd_bufaddr &&
1492 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1493 				dma_unmap_single(&fep->pdev->dev,
1494 						 fec32_to_cpu(bdp->cbd_bufaddr),
1495 						 fec16_to_cpu(bdp->cbd_datlen),
1496 						 DMA_TO_DEVICE);
1497 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1498 			if (!skb)
1499 				goto tx_buf_done;
1500 		} else {
1501 			/* Tx processing cannot call any XDP (or page pool) APIs if
1502 			 * the "budget" is 0. Because NAPI is called with budget of
1503 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1504 			 * however, we can't use the page pool from IRQ context.
1505 			 */
1506 			if (unlikely(!budget))
1507 				break;
1508 
1509 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1510 				xdpf = txq->tx_buf[index].buf_p;
1511 				if (bdp->cbd_bufaddr)
1512 					dma_unmap_single(&fep->pdev->dev,
1513 							 fec32_to_cpu(bdp->cbd_bufaddr),
1514 							 fec16_to_cpu(bdp->cbd_datlen),
1515 							 DMA_TO_DEVICE);
1516 			} else {
1517 				page = txq->tx_buf[index].buf_p;
1518 			}
1519 
1520 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1521 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1522 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1523 				goto tx_buf_done;
1524 			}
1525 
1526 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1527 		}
1528 
1529 		/* Check for errors. */
1530 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1531 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1532 				   BD_ENET_TX_CSL)) {
1533 			ndev->stats.tx_errors++;
1534 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1535 				ndev->stats.tx_heartbeat_errors++;
1536 			if (status & BD_ENET_TX_LC)  /* Late collision */
1537 				ndev->stats.tx_window_errors++;
1538 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1539 				ndev->stats.tx_aborted_errors++;
1540 			if (status & BD_ENET_TX_UN)  /* Underrun */
1541 				ndev->stats.tx_fifo_errors++;
1542 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1543 				ndev->stats.tx_carrier_errors++;
1544 		} else {
1545 			ndev->stats.tx_packets++;
1546 
1547 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1548 				ndev->stats.tx_bytes += skb->len;
1549 			else
1550 				ndev->stats.tx_bytes += frame_len;
1551 		}
1552 
1553 		/* Deferred means some collisions occurred during transmit,
1554 		 * but we eventually sent the packet OK.
1555 		 */
1556 		if (status & BD_ENET_TX_DEF)
1557 			ndev->stats.collisions++;
1558 
1559 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1560 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1561 			 * are to time stamp the packet, so we still need to check time
1562 			 * stamping enabled flag.
1563 			 */
1564 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1565 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1566 				struct skb_shared_hwtstamps shhwtstamps;
1567 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1568 
1569 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1570 				skb_tstamp_tx(skb, &shhwtstamps);
1571 			}
1572 
1573 			/* Free the sk buffer associated with this last transmit */
1574 			napi_consume_skb(skb, budget);
1575 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1576 			xdp_return_frame_rx_napi(xdpf);
1577 		} else { /* recycle pages of XDP_TX frames */
1578 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1579 			page_pool_put_page(page->pp, page, 0, true);
1580 		}
1581 
1582 		txq->tx_buf[index].buf_p = NULL;
1583 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1584 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1585 
1586 tx_buf_done:
1587 		/* Make sure the update to bdp and tx_buf are performed
1588 		 * before dirty_tx
1589 		 */
1590 		wmb();
1591 		txq->dirty_tx = bdp;
1592 
1593 		/* Update pointer to next buffer descriptor to be transmitted */
1594 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1595 
1596 		/* Since we have freed up a buffer, the ring is no longer full
1597 		 */
1598 		if (netif_tx_queue_stopped(nq)) {
1599 			entries_free = fec_enet_get_free_txdesc_num(txq);
1600 			if (entries_free >= txq->tx_wake_threshold)
1601 				netif_tx_wake_queue(nq);
1602 		}
1603 	}
1604 
1605 	/* ERR006358: Keep the transmitter going */
1606 	if (bdp != txq->bd.cur &&
1607 	    readl(txq->bd.reg_desc_active) == 0)
1608 		writel(0, txq->bd.reg_desc_active);
1609 }
1610 
fec_enet_tx(struct net_device * ndev,int budget)1611 static void fec_enet_tx(struct net_device *ndev, int budget)
1612 {
1613 	struct fec_enet_private *fep = netdev_priv(ndev);
1614 	int i;
1615 
1616 	/* Make sure that AVB queues are processed first. */
1617 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1618 		fec_enet_tx_queue(ndev, i, budget);
1619 }
1620 
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1621 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1622 				struct bufdesc *bdp, int index)
1623 {
1624 	struct page *new_page;
1625 	dma_addr_t phys_addr;
1626 
1627 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1628 	if (unlikely(!new_page))
1629 		return -ENOMEM;
1630 
1631 	rxq->rx_skb_info[index].page = new_page;
1632 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1633 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1634 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1635 
1636 	return 0;
1637 }
1638 
1639 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1640 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1641 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1642 {
1643 	unsigned int sync, len = xdp->data_end - xdp->data;
1644 	u32 ret = FEC_ENET_XDP_PASS;
1645 	struct page *page;
1646 	int err;
1647 	u32 act;
1648 
1649 	act = bpf_prog_run_xdp(prog, xdp);
1650 
1651 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1652 	 * max len CPU touch
1653 	 */
1654 	sync = xdp->data_end - xdp->data;
1655 	sync = max(sync, len);
1656 
1657 	switch (act) {
1658 	case XDP_PASS:
1659 		rxq->stats[RX_XDP_PASS]++;
1660 		ret = FEC_ENET_XDP_PASS;
1661 		break;
1662 
1663 	case XDP_REDIRECT:
1664 		rxq->stats[RX_XDP_REDIRECT]++;
1665 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1666 		if (unlikely(err))
1667 			goto xdp_err;
1668 
1669 		ret = FEC_ENET_XDP_REDIR;
1670 		break;
1671 
1672 	case XDP_TX:
1673 		rxq->stats[RX_XDP_TX]++;
1674 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1675 		if (unlikely(err)) {
1676 			rxq->stats[RX_XDP_TX_ERRORS]++;
1677 			goto xdp_err;
1678 		}
1679 
1680 		ret = FEC_ENET_XDP_TX;
1681 		break;
1682 
1683 	default:
1684 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1685 		fallthrough;
1686 
1687 	case XDP_ABORTED:
1688 		fallthrough;    /* handle aborts by dropping packet */
1689 
1690 	case XDP_DROP:
1691 		rxq->stats[RX_XDP_DROP]++;
1692 xdp_err:
1693 		ret = FEC_ENET_XDP_CONSUMED;
1694 		page = virt_to_head_page(xdp->data);
1695 		page_pool_put_page(rxq->page_pool, page, sync, true);
1696 		if (act != XDP_DROP)
1697 			trace_xdp_exception(fep->netdev, prog, act);
1698 		break;
1699 	}
1700 
1701 	return ret;
1702 }
1703 
1704 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1705  * When we update through the ring, if the next incoming buffer has
1706  * not been given to the system, we just set the empty indicator,
1707  * effectively tossing the packet.
1708  */
1709 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1710 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1711 {
1712 	struct fec_enet_private *fep = netdev_priv(ndev);
1713 	struct fec_enet_priv_rx_q *rxq;
1714 	struct bufdesc *bdp;
1715 	unsigned short status;
1716 	struct  sk_buff *skb;
1717 	ushort	pkt_len;
1718 	__u8 *data;
1719 	int	pkt_received = 0;
1720 	struct	bufdesc_ex *ebdp = NULL;
1721 	bool	vlan_packet_rcvd = false;
1722 	u16	vlan_tag;
1723 	int	index = 0;
1724 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1725 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1726 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1727 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1728 	int cpu = smp_processor_id();
1729 	struct xdp_buff xdp;
1730 	struct page *page;
1731 	__fec32 cbd_bufaddr;
1732 	u32 sub_len = 4;
1733 
1734 #if !defined(CONFIG_M5272)
1735 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1736 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1737 	 */
1738 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1739 		data_start += 2;
1740 		sub_len += 2;
1741 	}
1742 #endif
1743 
1744 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1745 	/*
1746 	 * Hacky flush of all caches instead of using the DMA API for the TSO
1747 	 * headers.
1748 	 */
1749 	flush_cache_all();
1750 #endif
1751 	rxq = fep->rx_queue[queue_id];
1752 
1753 	/* First, grab all of the stats for the incoming packet.
1754 	 * These get messed up if we get called due to a busy condition.
1755 	 */
1756 	bdp = rxq->bd.cur;
1757 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1758 
1759 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1760 
1761 		if (pkt_received >= budget)
1762 			break;
1763 		pkt_received++;
1764 
1765 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1766 
1767 		/* Check for errors. */
1768 		status ^= BD_ENET_RX_LAST;
1769 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1770 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1771 			   BD_ENET_RX_CL)) {
1772 			ndev->stats.rx_errors++;
1773 			if (status & BD_ENET_RX_OV) {
1774 				/* FIFO overrun */
1775 				ndev->stats.rx_fifo_errors++;
1776 				goto rx_processing_done;
1777 			}
1778 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1779 						| BD_ENET_RX_LAST)) {
1780 				/* Frame too long or too short. */
1781 				ndev->stats.rx_length_errors++;
1782 				if (status & BD_ENET_RX_LAST)
1783 					netdev_err(ndev, "rcv is not +last\n");
1784 			}
1785 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1786 				ndev->stats.rx_crc_errors++;
1787 			/* Report late collisions as a frame error. */
1788 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1789 				ndev->stats.rx_frame_errors++;
1790 			goto rx_processing_done;
1791 		}
1792 
1793 		/* Process the incoming frame. */
1794 		ndev->stats.rx_packets++;
1795 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1796 		ndev->stats.rx_bytes += pkt_len;
1797 
1798 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1799 		page = rxq->rx_skb_info[index].page;
1800 		cbd_bufaddr = bdp->cbd_bufaddr;
1801 		if (fec_enet_update_cbd(rxq, bdp, index)) {
1802 			ndev->stats.rx_dropped++;
1803 			goto rx_processing_done;
1804 		}
1805 
1806 		dma_sync_single_for_cpu(&fep->pdev->dev,
1807 					fec32_to_cpu(cbd_bufaddr),
1808 					pkt_len,
1809 					DMA_FROM_DEVICE);
1810 		prefetch(page_address(page));
1811 
1812 		if (xdp_prog) {
1813 			xdp_buff_clear_frags_flag(&xdp);
1814 			/* subtract 16bit shift and FCS */
1815 			xdp_prepare_buff(&xdp, page_address(page),
1816 					 data_start, pkt_len - sub_len, false);
1817 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1818 			xdp_result |= ret;
1819 			if (ret != FEC_ENET_XDP_PASS)
1820 				goto rx_processing_done;
1821 		}
1822 
1823 		/* The packet length includes FCS, but we don't want to
1824 		 * include that when passing upstream as it messes up
1825 		 * bridging applications.
1826 		 */
1827 		skb = build_skb(page_address(page), PAGE_SIZE);
1828 		if (unlikely(!skb)) {
1829 			page_pool_recycle_direct(rxq->page_pool, page);
1830 			ndev->stats.rx_dropped++;
1831 
1832 			netdev_err_once(ndev, "build_skb failed!\n");
1833 			goto rx_processing_done;
1834 		}
1835 
1836 		skb_reserve(skb, data_start);
1837 		skb_put(skb, pkt_len - sub_len);
1838 		skb_mark_for_recycle(skb);
1839 
1840 		if (unlikely(need_swap)) {
1841 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1842 			swap_buffer(data, pkt_len);
1843 		}
1844 		data = skb->data;
1845 
1846 		/* Extract the enhanced buffer descriptor */
1847 		ebdp = NULL;
1848 		if (fep->bufdesc_ex)
1849 			ebdp = (struct bufdesc_ex *)bdp;
1850 
1851 		/* If this is a VLAN packet remove the VLAN Tag */
1852 		vlan_packet_rcvd = false;
1853 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1854 		    fep->bufdesc_ex &&
1855 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1856 			/* Push and remove the vlan tag */
1857 			struct vlan_hdr *vlan_header =
1858 					(struct vlan_hdr *) (data + ETH_HLEN);
1859 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1860 
1861 			vlan_packet_rcvd = true;
1862 
1863 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1864 			skb_pull(skb, VLAN_HLEN);
1865 		}
1866 
1867 		skb->protocol = eth_type_trans(skb, ndev);
1868 
1869 		/* Get receive timestamp from the skb */
1870 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1871 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1872 					  skb_hwtstamps(skb));
1873 
1874 		if (fep->bufdesc_ex &&
1875 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1876 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1877 				/* don't check it */
1878 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1879 			} else {
1880 				skb_checksum_none_assert(skb);
1881 			}
1882 		}
1883 
1884 		/* Handle received VLAN packets */
1885 		if (vlan_packet_rcvd)
1886 			__vlan_hwaccel_put_tag(skb,
1887 					       htons(ETH_P_8021Q),
1888 					       vlan_tag);
1889 
1890 		skb_record_rx_queue(skb, queue_id);
1891 		napi_gro_receive(&fep->napi, skb);
1892 
1893 rx_processing_done:
1894 		/* Clear the status flags for this buffer */
1895 		status &= ~BD_ENET_RX_STATS;
1896 
1897 		/* Mark the buffer empty */
1898 		status |= BD_ENET_RX_EMPTY;
1899 
1900 		if (fep->bufdesc_ex) {
1901 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1902 
1903 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1904 			ebdp->cbd_prot = 0;
1905 			ebdp->cbd_bdu = 0;
1906 		}
1907 		/* Make sure the updates to rest of the descriptor are
1908 		 * performed before transferring ownership.
1909 		 */
1910 		wmb();
1911 		bdp->cbd_sc = cpu_to_fec16(status);
1912 
1913 		/* Update BD pointer to next entry */
1914 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1915 
1916 		/* Doing this here will keep the FEC running while we process
1917 		 * incoming frames.  On a heavily loaded network, we should be
1918 		 * able to keep up at the expense of system resources.
1919 		 */
1920 		writel(0, rxq->bd.reg_desc_active);
1921 	}
1922 	rxq->bd.cur = bdp;
1923 
1924 	if (xdp_result & FEC_ENET_XDP_REDIR)
1925 		xdp_do_flush();
1926 
1927 	return pkt_received;
1928 }
1929 
fec_enet_rx(struct net_device * ndev,int budget)1930 static int fec_enet_rx(struct net_device *ndev, int budget)
1931 {
1932 	struct fec_enet_private *fep = netdev_priv(ndev);
1933 	int i, done = 0;
1934 
1935 	/* Make sure that AVB queues are processed first. */
1936 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1937 		done += fec_enet_rx_queue(ndev, budget - done, i);
1938 
1939 	return done;
1940 }
1941 
fec_enet_collect_events(struct fec_enet_private * fep)1942 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1943 {
1944 	uint int_events;
1945 
1946 	int_events = readl(fep->hwp + FEC_IEVENT);
1947 
1948 	/* Don't clear MDIO events, we poll for those */
1949 	int_events &= ~FEC_ENET_MII;
1950 
1951 	writel(int_events, fep->hwp + FEC_IEVENT);
1952 
1953 	return int_events != 0;
1954 }
1955 
1956 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1957 fec_enet_interrupt(int irq, void *dev_id)
1958 {
1959 	struct net_device *ndev = dev_id;
1960 	struct fec_enet_private *fep = netdev_priv(ndev);
1961 	irqreturn_t ret = IRQ_NONE;
1962 
1963 	if (fec_enet_collect_events(fep) && fep->link) {
1964 		ret = IRQ_HANDLED;
1965 
1966 		if (napi_schedule_prep(&fep->napi)) {
1967 			/* Disable interrupts */
1968 			writel(0, fep->hwp + FEC_IMASK);
1969 			__napi_schedule(&fep->napi);
1970 		}
1971 	}
1972 
1973 	return ret;
1974 }
1975 
fec_enet_rx_napi(struct napi_struct * napi,int budget)1976 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1977 {
1978 	struct net_device *ndev = napi->dev;
1979 	struct fec_enet_private *fep = netdev_priv(ndev);
1980 	int done = 0;
1981 
1982 	do {
1983 		done += fec_enet_rx(ndev, budget - done);
1984 		fec_enet_tx(ndev, budget);
1985 	} while ((done < budget) && fec_enet_collect_events(fep));
1986 
1987 	if (done < budget) {
1988 		napi_complete_done(napi, done);
1989 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1990 	}
1991 
1992 	return done;
1993 }
1994 
1995 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1996 static int fec_get_mac(struct net_device *ndev)
1997 {
1998 	struct fec_enet_private *fep = netdev_priv(ndev);
1999 	unsigned char *iap, tmpaddr[ETH_ALEN];
2000 	int ret;
2001 
2002 	/*
2003 	 * try to get mac address in following order:
2004 	 *
2005 	 * 1) module parameter via kernel command line in form
2006 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2007 	 */
2008 	iap = macaddr;
2009 
2010 	/*
2011 	 * 2) from device tree data
2012 	 */
2013 	if (!is_valid_ether_addr(iap)) {
2014 		struct device_node *np = fep->pdev->dev.of_node;
2015 		if (np) {
2016 			ret = of_get_mac_address(np, tmpaddr);
2017 			if (!ret)
2018 				iap = tmpaddr;
2019 			else if (ret == -EPROBE_DEFER)
2020 				return ret;
2021 		}
2022 	}
2023 
2024 	/*
2025 	 * 3) from flash or fuse (via platform data)
2026 	 */
2027 	if (!is_valid_ether_addr(iap)) {
2028 #ifdef CONFIG_M5272
2029 		if (FEC_FLASHMAC)
2030 			iap = (unsigned char *)FEC_FLASHMAC;
2031 #else
2032 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2033 
2034 		if (pdata)
2035 			iap = (unsigned char *)&pdata->mac;
2036 #endif
2037 	}
2038 
2039 	/*
2040 	 * 4) FEC mac registers set by bootloader
2041 	 */
2042 	if (!is_valid_ether_addr(iap)) {
2043 		*((__be32 *) &tmpaddr[0]) =
2044 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2045 		*((__be16 *) &tmpaddr[4]) =
2046 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2047 		iap = &tmpaddr[0];
2048 	}
2049 
2050 	/*
2051 	 * 5) random mac address
2052 	 */
2053 	if (!is_valid_ether_addr(iap)) {
2054 		/* Report it and use a random ethernet address instead */
2055 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2056 		eth_hw_addr_random(ndev);
2057 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2058 			 ndev->dev_addr);
2059 		return 0;
2060 	}
2061 
2062 	/* Adjust MAC if using macaddr */
2063 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2064 
2065 	return 0;
2066 }
2067 
2068 /* ------------------------------------------------------------------------- */
2069 
2070 /*
2071  * Phy section
2072  */
2073 
2074 /* LPI Sleep Ts count base on tx clk (clk_ref).
2075  * The lpi sleep cnt value = X us / (cycle_ns).
2076  */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)2077 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2078 {
2079 	struct fec_enet_private *fep = netdev_priv(ndev);
2080 
2081 	return us * (fep->clk_ref_rate / 1000) / 1000;
2082 }
2083 
fec_enet_eee_mode_set(struct net_device * ndev,u32 lpi_timer,bool enable)2084 static int fec_enet_eee_mode_set(struct net_device *ndev, u32 lpi_timer,
2085 				 bool enable)
2086 {
2087 	struct fec_enet_private *fep = netdev_priv(ndev);
2088 	unsigned int sleep_cycle, wake_cycle;
2089 
2090 	if (enable) {
2091 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, lpi_timer);
2092 		wake_cycle = sleep_cycle;
2093 	} else {
2094 		sleep_cycle = 0;
2095 		wake_cycle = 0;
2096 	}
2097 
2098 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2099 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2100 
2101 	return 0;
2102 }
2103 
fec_enet_adjust_link(struct net_device * ndev)2104 static void fec_enet_adjust_link(struct net_device *ndev)
2105 {
2106 	struct fec_enet_private *fep = netdev_priv(ndev);
2107 	struct phy_device *phy_dev = ndev->phydev;
2108 	int status_change = 0;
2109 
2110 	/*
2111 	 * If the netdev is down, or is going down, we're not interested
2112 	 * in link state events, so just mark our idea of the link as down
2113 	 * and ignore the event.
2114 	 */
2115 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2116 		fep->link = 0;
2117 	} else if (phy_dev->link) {
2118 		if (!fep->link) {
2119 			fep->link = phy_dev->link;
2120 			status_change = 1;
2121 		}
2122 
2123 		if (fep->full_duplex != phy_dev->duplex) {
2124 			fep->full_duplex = phy_dev->duplex;
2125 			status_change = 1;
2126 		}
2127 
2128 		if (phy_dev->speed != fep->speed) {
2129 			fep->speed = phy_dev->speed;
2130 			status_change = 1;
2131 		}
2132 
2133 		/* if any of the above changed restart the FEC */
2134 		if (status_change) {
2135 			netif_stop_queue(ndev);
2136 			napi_disable(&fep->napi);
2137 			netif_tx_lock_bh(ndev);
2138 			fec_restart(ndev);
2139 			netif_tx_wake_all_queues(ndev);
2140 			netif_tx_unlock_bh(ndev);
2141 			napi_enable(&fep->napi);
2142 		}
2143 		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2144 			fec_enet_eee_mode_set(ndev,
2145 					      phy_dev->eee_cfg.tx_lpi_timer,
2146 					      phy_dev->enable_tx_lpi);
2147 	} else {
2148 		if (fep->link) {
2149 			netif_stop_queue(ndev);
2150 			napi_disable(&fep->napi);
2151 			netif_tx_lock_bh(ndev);
2152 			fec_stop(ndev);
2153 			netif_tx_unlock_bh(ndev);
2154 			napi_enable(&fep->napi);
2155 			fep->link = phy_dev->link;
2156 			status_change = 1;
2157 		}
2158 	}
2159 
2160 	if (status_change)
2161 		phy_print_status(phy_dev);
2162 }
2163 
fec_enet_mdio_wait(struct fec_enet_private * fep)2164 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2165 {
2166 	uint ievent;
2167 	int ret;
2168 
2169 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2170 					ievent & FEC_ENET_MII, 2, 30000);
2171 
2172 	if (!ret)
2173 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2174 
2175 	return ret;
2176 }
2177 
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2178 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2179 {
2180 	struct fec_enet_private *fep = bus->priv;
2181 	struct device *dev = &fep->pdev->dev;
2182 	int ret = 0, frame_start, frame_addr, frame_op;
2183 
2184 	ret = pm_runtime_resume_and_get(dev);
2185 	if (ret < 0)
2186 		return ret;
2187 
2188 	/* C22 read */
2189 	frame_op = FEC_MMFR_OP_READ;
2190 	frame_start = FEC_MMFR_ST;
2191 	frame_addr = regnum;
2192 
2193 	/* start a read op */
2194 	writel(frame_start | frame_op |
2195 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2196 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2197 
2198 	/* wait for end of transfer */
2199 	ret = fec_enet_mdio_wait(fep);
2200 	if (ret) {
2201 		netdev_err(fep->netdev, "MDIO read timeout\n");
2202 		goto out;
2203 	}
2204 
2205 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2206 
2207 out:
2208 	pm_runtime_mark_last_busy(dev);
2209 	pm_runtime_put_autosuspend(dev);
2210 
2211 	return ret;
2212 }
2213 
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2214 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2215 				  int devad, int regnum)
2216 {
2217 	struct fec_enet_private *fep = bus->priv;
2218 	struct device *dev = &fep->pdev->dev;
2219 	int ret = 0, frame_start, frame_op;
2220 
2221 	ret = pm_runtime_resume_and_get(dev);
2222 	if (ret < 0)
2223 		return ret;
2224 
2225 	frame_start = FEC_MMFR_ST_C45;
2226 
2227 	/* write address */
2228 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2229 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2230 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2231 	       fep->hwp + FEC_MII_DATA);
2232 
2233 	/* wait for end of transfer */
2234 	ret = fec_enet_mdio_wait(fep);
2235 	if (ret) {
2236 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2237 		goto out;
2238 	}
2239 
2240 	frame_op = FEC_MMFR_OP_READ_C45;
2241 
2242 	/* start a read op */
2243 	writel(frame_start | frame_op |
2244 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2245 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2246 
2247 	/* wait for end of transfer */
2248 	ret = fec_enet_mdio_wait(fep);
2249 	if (ret) {
2250 		netdev_err(fep->netdev, "MDIO read timeout\n");
2251 		goto out;
2252 	}
2253 
2254 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2255 
2256 out:
2257 	pm_runtime_mark_last_busy(dev);
2258 	pm_runtime_put_autosuspend(dev);
2259 
2260 	return ret;
2261 }
2262 
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2263 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2264 				   u16 value)
2265 {
2266 	struct fec_enet_private *fep = bus->priv;
2267 	struct device *dev = &fep->pdev->dev;
2268 	int ret, frame_start, frame_addr;
2269 
2270 	ret = pm_runtime_resume_and_get(dev);
2271 	if (ret < 0)
2272 		return ret;
2273 
2274 	/* C22 write */
2275 	frame_start = FEC_MMFR_ST;
2276 	frame_addr = regnum;
2277 
2278 	/* start a write op */
2279 	writel(frame_start | FEC_MMFR_OP_WRITE |
2280 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2281 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2282 	       fep->hwp + FEC_MII_DATA);
2283 
2284 	/* wait for end of transfer */
2285 	ret = fec_enet_mdio_wait(fep);
2286 	if (ret)
2287 		netdev_err(fep->netdev, "MDIO write timeout\n");
2288 
2289 	pm_runtime_mark_last_busy(dev);
2290 	pm_runtime_put_autosuspend(dev);
2291 
2292 	return ret;
2293 }
2294 
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2295 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2296 				   int devad, int regnum, u16 value)
2297 {
2298 	struct fec_enet_private *fep = bus->priv;
2299 	struct device *dev = &fep->pdev->dev;
2300 	int ret, frame_start;
2301 
2302 	ret = pm_runtime_resume_and_get(dev);
2303 	if (ret < 0)
2304 		return ret;
2305 
2306 	frame_start = FEC_MMFR_ST_C45;
2307 
2308 	/* write address */
2309 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2310 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2311 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2312 	       fep->hwp + FEC_MII_DATA);
2313 
2314 	/* wait for end of transfer */
2315 	ret = fec_enet_mdio_wait(fep);
2316 	if (ret) {
2317 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2318 		goto out;
2319 	}
2320 
2321 	/* start a write op */
2322 	writel(frame_start | FEC_MMFR_OP_WRITE |
2323 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2324 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2325 	       fep->hwp + FEC_MII_DATA);
2326 
2327 	/* wait for end of transfer */
2328 	ret = fec_enet_mdio_wait(fep);
2329 	if (ret)
2330 		netdev_err(fep->netdev, "MDIO write timeout\n");
2331 
2332 out:
2333 	pm_runtime_mark_last_busy(dev);
2334 	pm_runtime_put_autosuspend(dev);
2335 
2336 	return ret;
2337 }
2338 
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2339 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2340 {
2341 	struct fec_enet_private *fep = netdev_priv(ndev);
2342 	struct phy_device *phy_dev = ndev->phydev;
2343 
2344 	if (phy_dev) {
2345 		phy_reset_after_clk_enable(phy_dev);
2346 	} else if (fep->phy_node) {
2347 		/*
2348 		 * If the PHY still is not bound to the MAC, but there is
2349 		 * OF PHY node and a matching PHY device instance already,
2350 		 * use the OF PHY node to obtain the PHY device instance,
2351 		 * and then use that PHY device instance when triggering
2352 		 * the PHY reset.
2353 		 */
2354 		phy_dev = of_phy_find_device(fep->phy_node);
2355 		phy_reset_after_clk_enable(phy_dev);
2356 		put_device(&phy_dev->mdio.dev);
2357 	}
2358 }
2359 
fec_enet_clk_enable(struct net_device * ndev,bool enable)2360 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2361 {
2362 	struct fec_enet_private *fep = netdev_priv(ndev);
2363 	int ret;
2364 
2365 	if (enable) {
2366 		ret = clk_prepare_enable(fep->clk_enet_out);
2367 		if (ret)
2368 			return ret;
2369 
2370 		if (fep->clk_ptp) {
2371 			mutex_lock(&fep->ptp_clk_mutex);
2372 			ret = clk_prepare_enable(fep->clk_ptp);
2373 			if (ret) {
2374 				mutex_unlock(&fep->ptp_clk_mutex);
2375 				goto failed_clk_ptp;
2376 			} else {
2377 				fep->ptp_clk_on = true;
2378 			}
2379 			mutex_unlock(&fep->ptp_clk_mutex);
2380 		}
2381 
2382 		ret = clk_prepare_enable(fep->clk_ref);
2383 		if (ret)
2384 			goto failed_clk_ref;
2385 
2386 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2387 		if (ret)
2388 			goto failed_clk_2x_txclk;
2389 
2390 		fec_enet_phy_reset_after_clk_enable(ndev);
2391 	} else {
2392 		clk_disable_unprepare(fep->clk_enet_out);
2393 		if (fep->clk_ptp) {
2394 			mutex_lock(&fep->ptp_clk_mutex);
2395 			clk_disable_unprepare(fep->clk_ptp);
2396 			fep->ptp_clk_on = false;
2397 			mutex_unlock(&fep->ptp_clk_mutex);
2398 		}
2399 		clk_disable_unprepare(fep->clk_ref);
2400 		clk_disable_unprepare(fep->clk_2x_txclk);
2401 	}
2402 
2403 	return 0;
2404 
2405 failed_clk_2x_txclk:
2406 	if (fep->clk_ref)
2407 		clk_disable_unprepare(fep->clk_ref);
2408 failed_clk_ref:
2409 	if (fep->clk_ptp) {
2410 		mutex_lock(&fep->ptp_clk_mutex);
2411 		clk_disable_unprepare(fep->clk_ptp);
2412 		fep->ptp_clk_on = false;
2413 		mutex_unlock(&fep->ptp_clk_mutex);
2414 	}
2415 failed_clk_ptp:
2416 	clk_disable_unprepare(fep->clk_enet_out);
2417 
2418 	return ret;
2419 }
2420 
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2421 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2422 				      struct device_node *np)
2423 {
2424 	u32 rgmii_tx_delay, rgmii_rx_delay;
2425 
2426 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2427 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2428 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2429 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2430 			return -EINVAL;
2431 		} else if (rgmii_tx_delay == 2000) {
2432 			fep->rgmii_txc_dly = true;
2433 		}
2434 	}
2435 
2436 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2437 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2438 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2439 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2440 			return -EINVAL;
2441 		} else if (rgmii_rx_delay == 2000) {
2442 			fep->rgmii_rxc_dly = true;
2443 		}
2444 	}
2445 
2446 	return 0;
2447 }
2448 
fec_enet_mii_probe(struct net_device * ndev)2449 static int fec_enet_mii_probe(struct net_device *ndev)
2450 {
2451 	struct fec_enet_private *fep = netdev_priv(ndev);
2452 	struct phy_device *phy_dev = NULL;
2453 	char mdio_bus_id[MII_BUS_ID_SIZE];
2454 	char phy_name[MII_BUS_ID_SIZE + 3];
2455 	int phy_id;
2456 	int dev_id = fep->dev_id;
2457 
2458 	if (fep->phy_node) {
2459 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2460 					 &fec_enet_adjust_link, 0,
2461 					 fep->phy_interface);
2462 		if (!phy_dev) {
2463 			netdev_err(ndev, "Unable to connect to phy\n");
2464 			return -ENODEV;
2465 		}
2466 	} else {
2467 		/* check for attached phy */
2468 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2469 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2470 				continue;
2471 			if (dev_id--)
2472 				continue;
2473 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2474 			break;
2475 		}
2476 
2477 		if (phy_id >= PHY_MAX_ADDR) {
2478 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2479 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2480 			phy_id = 0;
2481 		}
2482 
2483 		snprintf(phy_name, sizeof(phy_name),
2484 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2485 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2486 				      fep->phy_interface);
2487 	}
2488 
2489 	if (IS_ERR(phy_dev)) {
2490 		netdev_err(ndev, "could not attach to PHY\n");
2491 		return PTR_ERR(phy_dev);
2492 	}
2493 
2494 	/* mask with MAC supported features */
2495 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2496 		phy_set_max_speed(phy_dev, 1000);
2497 		phy_remove_link_mode(phy_dev,
2498 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2499 #if !defined(CONFIG_M5272)
2500 		phy_support_sym_pause(phy_dev);
2501 #endif
2502 	}
2503 	else
2504 		phy_set_max_speed(phy_dev, 100);
2505 
2506 	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2507 		phy_support_eee(phy_dev);
2508 
2509 	fep->link = 0;
2510 	fep->full_duplex = 0;
2511 
2512 	phy_attached_info(phy_dev);
2513 
2514 	return 0;
2515 }
2516 
fec_enet_mii_init(struct platform_device * pdev)2517 static int fec_enet_mii_init(struct platform_device *pdev)
2518 {
2519 	static struct mii_bus *fec0_mii_bus;
2520 	struct net_device *ndev = platform_get_drvdata(pdev);
2521 	struct fec_enet_private *fep = netdev_priv(ndev);
2522 	bool suppress_preamble = false;
2523 	struct phy_device *phydev;
2524 	struct device_node *node;
2525 	int err = -ENXIO;
2526 	u32 mii_speed, holdtime;
2527 	u32 bus_freq;
2528 	int addr;
2529 
2530 	/*
2531 	 * The i.MX28 dual fec interfaces are not equal.
2532 	 * Here are the differences:
2533 	 *
2534 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2535 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2536 	 *  - external phys can only be configured by fec0
2537 	 *
2538 	 * That is to say fec1 can not work independently. It only works
2539 	 * when fec0 is working. The reason behind this design is that the
2540 	 * second interface is added primarily for Switch mode.
2541 	 *
2542 	 * Because of the last point above, both phys are attached on fec0
2543 	 * mdio interface in board design, and need to be configured by
2544 	 * fec0 mii_bus.
2545 	 */
2546 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2547 		/* fec1 uses fec0 mii_bus */
2548 		if (mii_cnt && fec0_mii_bus) {
2549 			fep->mii_bus = fec0_mii_bus;
2550 			mii_cnt++;
2551 			return 0;
2552 		}
2553 		return -ENOENT;
2554 	}
2555 
2556 	bus_freq = 2500000; /* 2.5MHz by default */
2557 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2558 	if (node) {
2559 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2560 		suppress_preamble = of_property_read_bool(node,
2561 							  "suppress-preamble");
2562 	}
2563 
2564 	/*
2565 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2566 	 *
2567 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2568 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2569 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2570 	 * document.
2571 	 */
2572 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2573 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2574 		mii_speed--;
2575 	if (mii_speed > 63) {
2576 		dev_err(&pdev->dev,
2577 			"fec clock (%lu) too fast to get right mii speed\n",
2578 			clk_get_rate(fep->clk_ipg));
2579 		err = -EINVAL;
2580 		goto err_out;
2581 	}
2582 
2583 	/*
2584 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2585 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2586 	 * versions are RAZ there, so just ignore the difference and write the
2587 	 * register always.
2588 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2589 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2590 	 * output.
2591 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2592 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2593 	 * holdtime cannot result in a value greater than 3.
2594 	 */
2595 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2596 
2597 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2598 
2599 	if (suppress_preamble)
2600 		fep->phy_speed |= BIT(7);
2601 
2602 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2603 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2604 		 * MII event generation condition:
2605 		 * - writing MSCR:
2606 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2607 		 *	  mscr_reg_data_in[7:0] != 0
2608 		 * - writing MMFR:
2609 		 *	- mscr[7:0]_not_zero
2610 		 */
2611 		writel(0, fep->hwp + FEC_MII_DATA);
2612 	}
2613 
2614 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2615 
2616 	/* Clear any pending transaction complete indication */
2617 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2618 
2619 	fep->mii_bus = mdiobus_alloc();
2620 	if (fep->mii_bus == NULL) {
2621 		err = -ENOMEM;
2622 		goto err_out;
2623 	}
2624 
2625 	fep->mii_bus->name = "fec_enet_mii_bus";
2626 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2627 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2628 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2629 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2630 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2631 	}
2632 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2633 		pdev->name, fep->dev_id + 1);
2634 	fep->mii_bus->priv = fep;
2635 	fep->mii_bus->parent = &pdev->dev;
2636 
2637 	err = of_mdiobus_register(fep->mii_bus, node);
2638 	if (err)
2639 		goto err_out_free_mdiobus;
2640 	of_node_put(node);
2641 
2642 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2643 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2644 		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2645 		if (phydev)
2646 			phydev->mac_managed_pm = true;
2647 	}
2648 
2649 	mii_cnt++;
2650 
2651 	/* save fec0 mii_bus */
2652 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2653 		fec0_mii_bus = fep->mii_bus;
2654 
2655 	return 0;
2656 
2657 err_out_free_mdiobus:
2658 	mdiobus_free(fep->mii_bus);
2659 err_out:
2660 	of_node_put(node);
2661 	return err;
2662 }
2663 
fec_enet_mii_remove(struct fec_enet_private * fep)2664 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2665 {
2666 	if (--mii_cnt == 0) {
2667 		mdiobus_unregister(fep->mii_bus);
2668 		mdiobus_free(fep->mii_bus);
2669 	}
2670 }
2671 
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2672 static void fec_enet_get_drvinfo(struct net_device *ndev,
2673 				 struct ethtool_drvinfo *info)
2674 {
2675 	struct fec_enet_private *fep = netdev_priv(ndev);
2676 
2677 	strscpy(info->driver, fep->pdev->dev.driver->name,
2678 		sizeof(info->driver));
2679 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2680 }
2681 
fec_enet_get_regs_len(struct net_device * ndev)2682 static int fec_enet_get_regs_len(struct net_device *ndev)
2683 {
2684 	struct fec_enet_private *fep = netdev_priv(ndev);
2685 	struct resource *r;
2686 	int s = 0;
2687 
2688 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2689 	if (r)
2690 		s = resource_size(r);
2691 
2692 	return s;
2693 }
2694 
2695 /* List of registers that can be safety be read to dump them with ethtool */
2696 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2697 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2698 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2699 static __u32 fec_enet_register_version = 2;
2700 static u32 fec_enet_register_offset[] = {
2701 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2702 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2703 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2704 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2705 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2706 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2707 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2708 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2709 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2710 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2711 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2712 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2713 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2714 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2715 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2716 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2717 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2718 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2719 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2720 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2721 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2722 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2723 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2724 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2725 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2726 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2727 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2728 };
2729 /* for i.MX6ul */
2730 static u32 fec_enet_register_offset_6ul[] = {
2731 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2732 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2733 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2734 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2735 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2736 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2737 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2738 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2739 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2740 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2741 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2742 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2743 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2744 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2745 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2746 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2747 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2748 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2749 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2750 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2751 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2752 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2753 };
2754 #else
2755 static __u32 fec_enet_register_version = 1;
2756 static u32 fec_enet_register_offset[] = {
2757 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2758 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2759 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2760 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2761 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2762 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2763 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2764 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2765 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2766 };
2767 #endif
2768 
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2769 static void fec_enet_get_regs(struct net_device *ndev,
2770 			      struct ethtool_regs *regs, void *regbuf)
2771 {
2772 	struct fec_enet_private *fep = netdev_priv(ndev);
2773 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2774 	struct device *dev = &fep->pdev->dev;
2775 	u32 *buf = (u32 *)regbuf;
2776 	u32 i, off;
2777 	int ret;
2778 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2779 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2780 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2781 	u32 *reg_list;
2782 	u32 reg_cnt;
2783 
2784 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2785 		reg_list = fec_enet_register_offset;
2786 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2787 	} else {
2788 		reg_list = fec_enet_register_offset_6ul;
2789 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2790 	}
2791 #else
2792 	/* coldfire */
2793 	static u32 *reg_list = fec_enet_register_offset;
2794 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2795 #endif
2796 	ret = pm_runtime_resume_and_get(dev);
2797 	if (ret < 0)
2798 		return;
2799 
2800 	regs->version = fec_enet_register_version;
2801 
2802 	memset(buf, 0, regs->len);
2803 
2804 	for (i = 0; i < reg_cnt; i++) {
2805 		off = reg_list[i];
2806 
2807 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2808 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2809 			continue;
2810 
2811 		off >>= 2;
2812 		buf[off] = readl(&theregs[off]);
2813 	}
2814 
2815 	pm_runtime_mark_last_busy(dev);
2816 	pm_runtime_put_autosuspend(dev);
2817 }
2818 
fec_enet_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)2819 static int fec_enet_get_ts_info(struct net_device *ndev,
2820 				struct kernel_ethtool_ts_info *info)
2821 {
2822 	struct fec_enet_private *fep = netdev_priv(ndev);
2823 
2824 	if (fep->bufdesc_ex) {
2825 
2826 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2827 					SOF_TIMESTAMPING_TX_HARDWARE |
2828 					SOF_TIMESTAMPING_RX_HARDWARE |
2829 					SOF_TIMESTAMPING_RAW_HARDWARE;
2830 		if (fep->ptp_clock)
2831 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2832 
2833 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2834 				 (1 << HWTSTAMP_TX_ON);
2835 
2836 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2837 				   (1 << HWTSTAMP_FILTER_ALL);
2838 		return 0;
2839 	} else {
2840 		return ethtool_op_get_ts_info(ndev, info);
2841 	}
2842 }
2843 
2844 #if !defined(CONFIG_M5272)
2845 
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2846 static void fec_enet_get_pauseparam(struct net_device *ndev,
2847 				    struct ethtool_pauseparam *pause)
2848 {
2849 	struct fec_enet_private *fep = netdev_priv(ndev);
2850 
2851 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2852 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2853 	pause->rx_pause = pause->tx_pause;
2854 }
2855 
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2856 static int fec_enet_set_pauseparam(struct net_device *ndev,
2857 				   struct ethtool_pauseparam *pause)
2858 {
2859 	struct fec_enet_private *fep = netdev_priv(ndev);
2860 
2861 	if (!ndev->phydev)
2862 		return -ENODEV;
2863 
2864 	if (pause->tx_pause != pause->rx_pause) {
2865 		netdev_info(ndev,
2866 			"hardware only support enable/disable both tx and rx");
2867 		return -EINVAL;
2868 	}
2869 
2870 	fep->pause_flag = 0;
2871 
2872 	/* tx pause must be same as rx pause */
2873 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2874 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2875 
2876 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2877 			  pause->autoneg);
2878 
2879 	if (pause->autoneg) {
2880 		if (netif_running(ndev))
2881 			fec_stop(ndev);
2882 		phy_start_aneg(ndev->phydev);
2883 	}
2884 	if (netif_running(ndev)) {
2885 		napi_disable(&fep->napi);
2886 		netif_tx_lock_bh(ndev);
2887 		fec_restart(ndev);
2888 		netif_tx_wake_all_queues(ndev);
2889 		netif_tx_unlock_bh(ndev);
2890 		napi_enable(&fep->napi);
2891 	}
2892 
2893 	return 0;
2894 }
2895 
2896 static const struct fec_stat {
2897 	char name[ETH_GSTRING_LEN];
2898 	u16 offset;
2899 } fec_stats[] = {
2900 	/* RMON TX */
2901 	{ "tx_dropped", RMON_T_DROP },
2902 	{ "tx_packets", RMON_T_PACKETS },
2903 	{ "tx_broadcast", RMON_T_BC_PKT },
2904 	{ "tx_multicast", RMON_T_MC_PKT },
2905 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2906 	{ "tx_undersize", RMON_T_UNDERSIZE },
2907 	{ "tx_oversize", RMON_T_OVERSIZE },
2908 	{ "tx_fragment", RMON_T_FRAG },
2909 	{ "tx_jabber", RMON_T_JAB },
2910 	{ "tx_collision", RMON_T_COL },
2911 	{ "tx_64byte", RMON_T_P64 },
2912 	{ "tx_65to127byte", RMON_T_P65TO127 },
2913 	{ "tx_128to255byte", RMON_T_P128TO255 },
2914 	{ "tx_256to511byte", RMON_T_P256TO511 },
2915 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2916 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2917 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2918 	{ "tx_octets", RMON_T_OCTETS },
2919 
2920 	/* IEEE TX */
2921 	{ "IEEE_tx_drop", IEEE_T_DROP },
2922 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2923 	{ "IEEE_tx_1col", IEEE_T_1COL },
2924 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2925 	{ "IEEE_tx_def", IEEE_T_DEF },
2926 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2927 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2928 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2929 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2930 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2931 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2932 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2933 
2934 	/* RMON RX */
2935 	{ "rx_packets", RMON_R_PACKETS },
2936 	{ "rx_broadcast", RMON_R_BC_PKT },
2937 	{ "rx_multicast", RMON_R_MC_PKT },
2938 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2939 	{ "rx_undersize", RMON_R_UNDERSIZE },
2940 	{ "rx_oversize", RMON_R_OVERSIZE },
2941 	{ "rx_fragment", RMON_R_FRAG },
2942 	{ "rx_jabber", RMON_R_JAB },
2943 	{ "rx_64byte", RMON_R_P64 },
2944 	{ "rx_65to127byte", RMON_R_P65TO127 },
2945 	{ "rx_128to255byte", RMON_R_P128TO255 },
2946 	{ "rx_256to511byte", RMON_R_P256TO511 },
2947 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2948 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2949 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2950 	{ "rx_octets", RMON_R_OCTETS },
2951 
2952 	/* IEEE RX */
2953 	{ "IEEE_rx_drop", IEEE_R_DROP },
2954 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2955 	{ "IEEE_rx_crc", IEEE_R_CRC },
2956 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2957 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2958 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2959 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2960 };
2961 
2962 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2963 
2964 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2965 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2966 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2967 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2968 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2969 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2970 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2971 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2972 };
2973 
fec_enet_update_ethtool_stats(struct net_device * dev)2974 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2975 {
2976 	struct fec_enet_private *fep = netdev_priv(dev);
2977 	int i;
2978 
2979 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2980 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2981 }
2982 
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2983 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2984 {
2985 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2986 	struct fec_enet_priv_rx_q *rxq;
2987 	int i, j;
2988 
2989 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2990 		rxq = fep->rx_queue[i];
2991 
2992 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2993 			xdp_stats[j] += rxq->stats[j];
2994 	}
2995 
2996 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2997 }
2998 
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)2999 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3000 {
3001 #ifdef CONFIG_PAGE_POOL_STATS
3002 	struct page_pool_stats stats = {};
3003 	struct fec_enet_priv_rx_q *rxq;
3004 	int i;
3005 
3006 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3007 		rxq = fep->rx_queue[i];
3008 
3009 		if (!rxq->page_pool)
3010 			continue;
3011 
3012 		page_pool_get_stats(rxq->page_pool, &stats);
3013 	}
3014 
3015 	page_pool_ethtool_stats_get(data, &stats);
3016 #endif
3017 }
3018 
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3019 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3020 				       struct ethtool_stats *stats, u64 *data)
3021 {
3022 	struct fec_enet_private *fep = netdev_priv(dev);
3023 
3024 	if (netif_running(dev))
3025 		fec_enet_update_ethtool_stats(dev);
3026 
3027 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3028 	data += FEC_STATS_SIZE / sizeof(u64);
3029 
3030 	fec_enet_get_xdp_stats(fep, data);
3031 	data += XDP_STATS_TOTAL;
3032 
3033 	fec_enet_page_pool_stats(fep, data);
3034 }
3035 
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)3036 static void fec_enet_get_strings(struct net_device *netdev,
3037 	u32 stringset, u8 *data)
3038 {
3039 	int i;
3040 	switch (stringset) {
3041 	case ETH_SS_STATS:
3042 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3043 			ethtool_puts(&data, fec_stats[i].name);
3044 		}
3045 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3046 			ethtool_puts(&data, fec_xdp_stat_strs[i]);
3047 		}
3048 		page_pool_ethtool_stats_get_strings(data);
3049 
3050 		break;
3051 	case ETH_SS_TEST:
3052 		net_selftest_get_strings(data);
3053 		break;
3054 	}
3055 }
3056 
fec_enet_get_sset_count(struct net_device * dev,int sset)3057 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3058 {
3059 	int count;
3060 
3061 	switch (sset) {
3062 	case ETH_SS_STATS:
3063 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3064 		count += page_pool_ethtool_stats_get_count();
3065 		return count;
3066 
3067 	case ETH_SS_TEST:
3068 		return net_selftest_get_count();
3069 	default:
3070 		return -EOPNOTSUPP;
3071 	}
3072 }
3073 
fec_enet_clear_ethtool_stats(struct net_device * dev)3074 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3075 {
3076 	struct fec_enet_private *fep = netdev_priv(dev);
3077 	struct fec_enet_priv_rx_q *rxq;
3078 	int i, j;
3079 
3080 	/* Disable MIB statistics counters */
3081 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3082 
3083 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3084 		writel(0, fep->hwp + fec_stats[i].offset);
3085 
3086 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3087 		rxq = fep->rx_queue[i];
3088 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3089 			rxq->stats[j] = 0;
3090 	}
3091 
3092 	/* Don't disable MIB statistics counters */
3093 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3094 }
3095 
3096 #else	/* !defined(CONFIG_M5272) */
3097 #define FEC_STATS_SIZE	0
fec_enet_update_ethtool_stats(struct net_device * dev)3098 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3099 {
3100 }
3101 
fec_enet_clear_ethtool_stats(struct net_device * dev)3102 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3103 {
3104 }
3105 #endif /* !defined(CONFIG_M5272) */
3106 
3107 /* ITR clock source is enet system clock (clk_ahb).
3108  * TCTT unit is cycle_ns * 64 cycle
3109  * So, the ICTT value = X us / (cycle_ns * 64)
3110  */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3111 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3112 {
3113 	struct fec_enet_private *fep = netdev_priv(ndev);
3114 
3115 	return us * (fep->itr_clk_rate / 64000) / 1000;
3116 }
3117 
3118 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3119 static void fec_enet_itr_coal_set(struct net_device *ndev)
3120 {
3121 	struct fec_enet_private *fep = netdev_priv(ndev);
3122 	int rx_itr, tx_itr;
3123 
3124 	/* Must be greater than zero to avoid unpredictable behavior */
3125 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3126 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3127 		return;
3128 
3129 	/* Select enet system clock as Interrupt Coalescing
3130 	 * timer Clock Source
3131 	 */
3132 	rx_itr = FEC_ITR_CLK_SEL;
3133 	tx_itr = FEC_ITR_CLK_SEL;
3134 
3135 	/* set ICFT and ICTT */
3136 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3137 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3138 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3139 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3140 
3141 	rx_itr |= FEC_ITR_EN;
3142 	tx_itr |= FEC_ITR_EN;
3143 
3144 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3145 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3146 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3147 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3148 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3149 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3150 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3151 	}
3152 }
3153 
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3154 static int fec_enet_get_coalesce(struct net_device *ndev,
3155 				 struct ethtool_coalesce *ec,
3156 				 struct kernel_ethtool_coalesce *kernel_coal,
3157 				 struct netlink_ext_ack *extack)
3158 {
3159 	struct fec_enet_private *fep = netdev_priv(ndev);
3160 
3161 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3162 		return -EOPNOTSUPP;
3163 
3164 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3165 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3166 
3167 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3168 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3169 
3170 	return 0;
3171 }
3172 
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3173 static int fec_enet_set_coalesce(struct net_device *ndev,
3174 				 struct ethtool_coalesce *ec,
3175 				 struct kernel_ethtool_coalesce *kernel_coal,
3176 				 struct netlink_ext_ack *extack)
3177 {
3178 	struct fec_enet_private *fep = netdev_priv(ndev);
3179 	struct device *dev = &fep->pdev->dev;
3180 	unsigned int cycle;
3181 
3182 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3183 		return -EOPNOTSUPP;
3184 
3185 	if (ec->rx_max_coalesced_frames > 255) {
3186 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3187 		return -EINVAL;
3188 	}
3189 
3190 	if (ec->tx_max_coalesced_frames > 255) {
3191 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3192 		return -EINVAL;
3193 	}
3194 
3195 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3196 	if (cycle > 0xFFFF) {
3197 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3198 		return -EINVAL;
3199 	}
3200 
3201 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3202 	if (cycle > 0xFFFF) {
3203 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3204 		return -EINVAL;
3205 	}
3206 
3207 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3208 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3209 
3210 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3211 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3212 
3213 	fec_enet_itr_coal_set(ndev);
3214 
3215 	return 0;
3216 }
3217 
3218 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_keee * edata)3219 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3220 {
3221 	struct fec_enet_private *fep = netdev_priv(ndev);
3222 
3223 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3224 		return -EOPNOTSUPP;
3225 
3226 	if (!netif_running(ndev))
3227 		return -ENETDOWN;
3228 
3229 	return phy_ethtool_get_eee(ndev->phydev, edata);
3230 }
3231 
3232 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_keee * edata)3233 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3234 {
3235 	struct fec_enet_private *fep = netdev_priv(ndev);
3236 
3237 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3238 		return -EOPNOTSUPP;
3239 
3240 	if (!netif_running(ndev))
3241 		return -ENETDOWN;
3242 
3243 	return phy_ethtool_set_eee(ndev->phydev, edata);
3244 }
3245 
3246 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3247 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3248 {
3249 	struct fec_enet_private *fep = netdev_priv(ndev);
3250 
3251 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3252 		wol->supported = WAKE_MAGIC;
3253 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3254 	} else {
3255 		wol->supported = wol->wolopts = 0;
3256 	}
3257 }
3258 
3259 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3260 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3261 {
3262 	struct fec_enet_private *fep = netdev_priv(ndev);
3263 
3264 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3265 		return -EINVAL;
3266 
3267 	if (wol->wolopts & ~WAKE_MAGIC)
3268 		return -EINVAL;
3269 
3270 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3271 	if (device_may_wakeup(&ndev->dev))
3272 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3273 	else
3274 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3275 
3276 	return 0;
3277 }
3278 
3279 static const struct ethtool_ops fec_enet_ethtool_ops = {
3280 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3281 				     ETHTOOL_COALESCE_MAX_FRAMES,
3282 	.get_drvinfo		= fec_enet_get_drvinfo,
3283 	.get_regs_len		= fec_enet_get_regs_len,
3284 	.get_regs		= fec_enet_get_regs,
3285 	.nway_reset		= phy_ethtool_nway_reset,
3286 	.get_link		= ethtool_op_get_link,
3287 	.get_coalesce		= fec_enet_get_coalesce,
3288 	.set_coalesce		= fec_enet_set_coalesce,
3289 #ifndef CONFIG_M5272
3290 	.get_pauseparam		= fec_enet_get_pauseparam,
3291 	.set_pauseparam		= fec_enet_set_pauseparam,
3292 	.get_strings		= fec_enet_get_strings,
3293 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3294 	.get_sset_count		= fec_enet_get_sset_count,
3295 #endif
3296 	.get_ts_info		= fec_enet_get_ts_info,
3297 	.get_wol		= fec_enet_get_wol,
3298 	.set_wol		= fec_enet_set_wol,
3299 	.get_eee		= fec_enet_get_eee,
3300 	.set_eee		= fec_enet_set_eee,
3301 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3302 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3303 	.self_test		= net_selftest,
3304 };
3305 
fec_enet_free_buffers(struct net_device * ndev)3306 static void fec_enet_free_buffers(struct net_device *ndev)
3307 {
3308 	struct fec_enet_private *fep = netdev_priv(ndev);
3309 	unsigned int i;
3310 	struct fec_enet_priv_tx_q *txq;
3311 	struct fec_enet_priv_rx_q *rxq;
3312 	unsigned int q;
3313 
3314 	for (q = 0; q < fep->num_rx_queues; q++) {
3315 		rxq = fep->rx_queue[q];
3316 		for (i = 0; i < rxq->bd.ring_size; i++)
3317 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3318 
3319 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3320 			rxq->stats[i] = 0;
3321 
3322 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3323 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3324 		page_pool_destroy(rxq->page_pool);
3325 		rxq->page_pool = NULL;
3326 	}
3327 
3328 	for (q = 0; q < fep->num_tx_queues; q++) {
3329 		txq = fep->tx_queue[q];
3330 		for (i = 0; i < txq->bd.ring_size; i++) {
3331 			kfree(txq->tx_bounce[i]);
3332 			txq->tx_bounce[i] = NULL;
3333 
3334 			if (!txq->tx_buf[i].buf_p) {
3335 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3336 				continue;
3337 			}
3338 
3339 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3340 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3341 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3342 				xdp_return_frame(txq->tx_buf[i].buf_p);
3343 			} else {
3344 				struct page *page = txq->tx_buf[i].buf_p;
3345 
3346 				page_pool_put_page(page->pp, page, 0, false);
3347 			}
3348 
3349 			txq->tx_buf[i].buf_p = NULL;
3350 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3351 		}
3352 	}
3353 }
3354 
fec_enet_free_queue(struct net_device * ndev)3355 static void fec_enet_free_queue(struct net_device *ndev)
3356 {
3357 	struct fec_enet_private *fep = netdev_priv(ndev);
3358 	int i;
3359 	struct fec_enet_priv_tx_q *txq;
3360 
3361 	for (i = 0; i < fep->num_tx_queues; i++)
3362 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3363 			txq = fep->tx_queue[i];
3364 			fec_dma_free(&fep->pdev->dev,
3365 				     txq->bd.ring_size * TSO_HEADER_SIZE,
3366 				     txq->tso_hdrs, txq->tso_hdrs_dma);
3367 		}
3368 
3369 	for (i = 0; i < fep->num_rx_queues; i++)
3370 		kfree(fep->rx_queue[i]);
3371 	for (i = 0; i < fep->num_tx_queues; i++)
3372 		kfree(fep->tx_queue[i]);
3373 }
3374 
fec_enet_alloc_queue(struct net_device * ndev)3375 static int fec_enet_alloc_queue(struct net_device *ndev)
3376 {
3377 	struct fec_enet_private *fep = netdev_priv(ndev);
3378 	int i;
3379 	int ret = 0;
3380 	struct fec_enet_priv_tx_q *txq;
3381 
3382 	for (i = 0; i < fep->num_tx_queues; i++) {
3383 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3384 		if (!txq) {
3385 			ret = -ENOMEM;
3386 			goto alloc_failed;
3387 		}
3388 
3389 		fep->tx_queue[i] = txq;
3390 		txq->bd.ring_size = TX_RING_SIZE;
3391 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3392 
3393 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3394 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3395 
3396 		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3397 					txq->bd.ring_size * TSO_HEADER_SIZE,
3398 					&txq->tso_hdrs_dma, GFP_KERNEL);
3399 		if (!txq->tso_hdrs) {
3400 			ret = -ENOMEM;
3401 			goto alloc_failed;
3402 		}
3403 	}
3404 
3405 	for (i = 0; i < fep->num_rx_queues; i++) {
3406 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3407 					   GFP_KERNEL);
3408 		if (!fep->rx_queue[i]) {
3409 			ret = -ENOMEM;
3410 			goto alloc_failed;
3411 		}
3412 
3413 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3414 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3415 	}
3416 	return ret;
3417 
3418 alloc_failed:
3419 	fec_enet_free_queue(ndev);
3420 	return ret;
3421 }
3422 
3423 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3424 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3425 {
3426 	struct fec_enet_private *fep = netdev_priv(ndev);
3427 	struct fec_enet_priv_rx_q *rxq;
3428 	dma_addr_t phys_addr;
3429 	struct bufdesc	*bdp;
3430 	struct page *page;
3431 	int i, err;
3432 
3433 	rxq = fep->rx_queue[queue];
3434 	bdp = rxq->bd.base;
3435 
3436 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3437 	if (err < 0) {
3438 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3439 		return err;
3440 	}
3441 
3442 	for (i = 0; i < rxq->bd.ring_size; i++) {
3443 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3444 		if (!page)
3445 			goto err_alloc;
3446 
3447 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3448 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3449 
3450 		rxq->rx_skb_info[i].page = page;
3451 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3452 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3453 
3454 		if (fep->bufdesc_ex) {
3455 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3456 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3457 		}
3458 
3459 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3460 	}
3461 
3462 	/* Set the last buffer to wrap. */
3463 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3464 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3465 	return 0;
3466 
3467  err_alloc:
3468 	fec_enet_free_buffers(ndev);
3469 	return -ENOMEM;
3470 }
3471 
3472 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3473 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3474 {
3475 	struct fec_enet_private *fep = netdev_priv(ndev);
3476 	unsigned int i;
3477 	struct bufdesc  *bdp;
3478 	struct fec_enet_priv_tx_q *txq;
3479 
3480 	txq = fep->tx_queue[queue];
3481 	bdp = txq->bd.base;
3482 	for (i = 0; i < txq->bd.ring_size; i++) {
3483 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3484 		if (!txq->tx_bounce[i])
3485 			goto err_alloc;
3486 
3487 		bdp->cbd_sc = cpu_to_fec16(0);
3488 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3489 
3490 		if (fep->bufdesc_ex) {
3491 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3492 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3493 		}
3494 
3495 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3496 	}
3497 
3498 	/* Set the last buffer to wrap. */
3499 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3500 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3501 
3502 	return 0;
3503 
3504  err_alloc:
3505 	fec_enet_free_buffers(ndev);
3506 	return -ENOMEM;
3507 }
3508 
fec_enet_alloc_buffers(struct net_device * ndev)3509 static int fec_enet_alloc_buffers(struct net_device *ndev)
3510 {
3511 	struct fec_enet_private *fep = netdev_priv(ndev);
3512 	unsigned int i;
3513 
3514 	for (i = 0; i < fep->num_rx_queues; i++)
3515 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3516 			return -ENOMEM;
3517 
3518 	for (i = 0; i < fep->num_tx_queues; i++)
3519 		if (fec_enet_alloc_txq_buffers(ndev, i))
3520 			return -ENOMEM;
3521 	return 0;
3522 }
3523 
3524 static int
fec_enet_open(struct net_device * ndev)3525 fec_enet_open(struct net_device *ndev)
3526 {
3527 	struct fec_enet_private *fep = netdev_priv(ndev);
3528 	int ret;
3529 	bool reset_again;
3530 
3531 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3532 	if (ret < 0)
3533 		return ret;
3534 
3535 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3536 	ret = fec_enet_clk_enable(ndev, true);
3537 	if (ret)
3538 		goto clk_enable;
3539 
3540 	/* During the first fec_enet_open call the PHY isn't probed at this
3541 	 * point. Therefore the phy_reset_after_clk_enable() call within
3542 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3543 	 * sure the PHY is working correctly we check if we need to reset again
3544 	 * later when the PHY is probed
3545 	 */
3546 	if (ndev->phydev && ndev->phydev->drv)
3547 		reset_again = false;
3548 	else
3549 		reset_again = true;
3550 
3551 	/* I should reset the ring buffers here, but I don't yet know
3552 	 * a simple way to do that.
3553 	 */
3554 
3555 	ret = fec_enet_alloc_buffers(ndev);
3556 	if (ret)
3557 		goto err_enet_alloc;
3558 
3559 	/* Init MAC prior to mii bus probe */
3560 	fec_restart(ndev);
3561 
3562 	/* Call phy_reset_after_clk_enable() again if it failed during
3563 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3564 	 */
3565 	if (reset_again)
3566 		fec_enet_phy_reset_after_clk_enable(ndev);
3567 
3568 	/* Probe and connect to PHY when open the interface */
3569 	ret = fec_enet_mii_probe(ndev);
3570 	if (ret)
3571 		goto err_enet_mii_probe;
3572 
3573 	if (fep->quirks & FEC_QUIRK_ERR006687)
3574 		imx6q_cpuidle_fec_irqs_used();
3575 
3576 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3577 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3578 
3579 	napi_enable(&fep->napi);
3580 	phy_start(ndev->phydev);
3581 	netif_tx_start_all_queues(ndev);
3582 
3583 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3584 				 FEC_WOL_FLAG_ENABLE);
3585 
3586 	return 0;
3587 
3588 err_enet_mii_probe:
3589 	fec_enet_free_buffers(ndev);
3590 err_enet_alloc:
3591 	fec_enet_clk_enable(ndev, false);
3592 clk_enable:
3593 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3594 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3595 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3596 	return ret;
3597 }
3598 
3599 static int
fec_enet_close(struct net_device * ndev)3600 fec_enet_close(struct net_device *ndev)
3601 {
3602 	struct fec_enet_private *fep = netdev_priv(ndev);
3603 
3604 	phy_stop(ndev->phydev);
3605 
3606 	if (netif_device_present(ndev)) {
3607 		napi_disable(&fep->napi);
3608 		netif_tx_disable(ndev);
3609 		fec_stop(ndev);
3610 	}
3611 
3612 	phy_disconnect(ndev->phydev);
3613 
3614 	if (fep->quirks & FEC_QUIRK_ERR006687)
3615 		imx6q_cpuidle_fec_irqs_unused();
3616 
3617 	fec_enet_update_ethtool_stats(ndev);
3618 
3619 	fec_enet_clk_enable(ndev, false);
3620 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3621 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3622 
3623 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3624 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3625 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3626 
3627 	fec_enet_free_buffers(ndev);
3628 
3629 	return 0;
3630 }
3631 
3632 /* Set or clear the multicast filter for this adaptor.
3633  * Skeleton taken from sunlance driver.
3634  * The CPM Ethernet implementation allows Multicast as well as individual
3635  * MAC address filtering.  Some of the drivers check to make sure it is
3636  * a group multicast address, and discard those that are not.  I guess I
3637  * will do the same for now, but just remove the test if you want
3638  * individual filtering as well (do the upper net layers want or support
3639  * this kind of feature?).
3640  */
3641 
3642 #define FEC_HASH_BITS	6		/* #bits in hash */
3643 
set_multicast_list(struct net_device * ndev)3644 static void set_multicast_list(struct net_device *ndev)
3645 {
3646 	struct fec_enet_private *fep = netdev_priv(ndev);
3647 	struct netdev_hw_addr *ha;
3648 	unsigned int crc, tmp;
3649 	unsigned char hash;
3650 	unsigned int hash_high = 0, hash_low = 0;
3651 
3652 	if (ndev->flags & IFF_PROMISC) {
3653 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3654 		tmp |= 0x8;
3655 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3656 		return;
3657 	}
3658 
3659 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3660 	tmp &= ~0x8;
3661 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3662 
3663 	if (ndev->flags & IFF_ALLMULTI) {
3664 		/* Catch all multicast addresses, so set the
3665 		 * filter to all 1's
3666 		 */
3667 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3668 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3669 
3670 		return;
3671 	}
3672 
3673 	/* Add the addresses in hash register */
3674 	netdev_for_each_mc_addr(ha, ndev) {
3675 		/* calculate crc32 value of mac address */
3676 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3677 
3678 		/* only upper 6 bits (FEC_HASH_BITS) are used
3679 		 * which point to specific bit in the hash registers
3680 		 */
3681 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3682 
3683 		if (hash > 31)
3684 			hash_high |= 1 << (hash - 32);
3685 		else
3686 			hash_low |= 1 << hash;
3687 	}
3688 
3689 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3690 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3691 }
3692 
3693 /* Set a MAC change in hardware. */
3694 static int
fec_set_mac_address(struct net_device * ndev,void * p)3695 fec_set_mac_address(struct net_device *ndev, void *p)
3696 {
3697 	struct fec_enet_private *fep = netdev_priv(ndev);
3698 	struct sockaddr *addr = p;
3699 
3700 	if (addr) {
3701 		if (!is_valid_ether_addr(addr->sa_data))
3702 			return -EADDRNOTAVAIL;
3703 		eth_hw_addr_set(ndev, addr->sa_data);
3704 	}
3705 
3706 	/* Add netif status check here to avoid system hang in below case:
3707 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3708 	 * After ethx down, fec all clocks are gated off and then register
3709 	 * access causes system hang.
3710 	 */
3711 	if (!netif_running(ndev))
3712 		return 0;
3713 
3714 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3715 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3716 		fep->hwp + FEC_ADDR_LOW);
3717 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3718 		fep->hwp + FEC_ADDR_HIGH);
3719 	return 0;
3720 }
3721 
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3722 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3723 	netdev_features_t features)
3724 {
3725 	struct fec_enet_private *fep = netdev_priv(netdev);
3726 	netdev_features_t changed = features ^ netdev->features;
3727 
3728 	netdev->features = features;
3729 
3730 	/* Receive checksum has been changed */
3731 	if (changed & NETIF_F_RXCSUM) {
3732 		if (features & NETIF_F_RXCSUM)
3733 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3734 		else
3735 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3736 	}
3737 }
3738 
fec_set_features(struct net_device * netdev,netdev_features_t features)3739 static int fec_set_features(struct net_device *netdev,
3740 	netdev_features_t features)
3741 {
3742 	struct fec_enet_private *fep = netdev_priv(netdev);
3743 	netdev_features_t changed = features ^ netdev->features;
3744 
3745 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3746 		napi_disable(&fep->napi);
3747 		netif_tx_lock_bh(netdev);
3748 		fec_stop(netdev);
3749 		fec_enet_set_netdev_features(netdev, features);
3750 		fec_restart(netdev);
3751 		netif_tx_wake_all_queues(netdev);
3752 		netif_tx_unlock_bh(netdev);
3753 		napi_enable(&fep->napi);
3754 	} else {
3755 		fec_enet_set_netdev_features(netdev, features);
3756 	}
3757 
3758 	return 0;
3759 }
3760 
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3761 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3762 				 struct net_device *sb_dev)
3763 {
3764 	struct fec_enet_private *fep = netdev_priv(ndev);
3765 	u16 vlan_tag = 0;
3766 
3767 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3768 		return netdev_pick_tx(ndev, skb, NULL);
3769 
3770 	/* VLAN is present in the payload.*/
3771 	if (eth_type_vlan(skb->protocol)) {
3772 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3773 
3774 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3775 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3776 	} else if (skb_vlan_tag_present(skb)) {
3777 		vlan_tag = skb->vlan_tci;
3778 	} else {
3779 		return vlan_tag;
3780 	}
3781 
3782 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3783 }
3784 
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3785 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3786 {
3787 	struct fec_enet_private *fep = netdev_priv(dev);
3788 	bool is_run = netif_running(dev);
3789 	struct bpf_prog *old_prog;
3790 
3791 	switch (bpf->command) {
3792 	case XDP_SETUP_PROG:
3793 		/* No need to support the SoCs that require to
3794 		 * do the frame swap because the performance wouldn't be
3795 		 * better than the skb mode.
3796 		 */
3797 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3798 			return -EOPNOTSUPP;
3799 
3800 		if (!bpf->prog)
3801 			xdp_features_clear_redirect_target(dev);
3802 
3803 		if (is_run) {
3804 			napi_disable(&fep->napi);
3805 			netif_tx_disable(dev);
3806 		}
3807 
3808 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3809 		if (old_prog)
3810 			bpf_prog_put(old_prog);
3811 
3812 		fec_restart(dev);
3813 
3814 		if (is_run) {
3815 			napi_enable(&fep->napi);
3816 			netif_tx_start_all_queues(dev);
3817 		}
3818 
3819 		if (bpf->prog)
3820 			xdp_features_set_redirect_target(dev, false);
3821 
3822 		return 0;
3823 
3824 	case XDP_SETUP_XSK_POOL:
3825 		return -EOPNOTSUPP;
3826 
3827 	default:
3828 		return -EOPNOTSUPP;
3829 	}
3830 }
3831 
3832 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3833 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3834 {
3835 	if (unlikely(index < 0))
3836 		return 0;
3837 
3838 	return (index % fep->num_tx_queues);
3839 }
3840 
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3841 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3842 				   struct fec_enet_priv_tx_q *txq,
3843 				   void *frame, u32 dma_sync_len,
3844 				   bool ndo_xmit)
3845 {
3846 	unsigned int index, status, estatus;
3847 	struct bufdesc *bdp;
3848 	dma_addr_t dma_addr;
3849 	int entries_free;
3850 	u16 frame_len;
3851 
3852 	entries_free = fec_enet_get_free_txdesc_num(txq);
3853 	if (entries_free < MAX_SKB_FRAGS + 1) {
3854 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3855 		return -EBUSY;
3856 	}
3857 
3858 	/* Fill in a Tx ring entry */
3859 	bdp = txq->bd.cur;
3860 	status = fec16_to_cpu(bdp->cbd_sc);
3861 	status &= ~BD_ENET_TX_STATS;
3862 
3863 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3864 
3865 	if (ndo_xmit) {
3866 		struct xdp_frame *xdpf = frame;
3867 
3868 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3869 					  xdpf->len, DMA_TO_DEVICE);
3870 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3871 			return -ENOMEM;
3872 
3873 		frame_len = xdpf->len;
3874 		txq->tx_buf[index].buf_p = xdpf;
3875 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3876 	} else {
3877 		struct xdp_buff *xdpb = frame;
3878 		struct page *page;
3879 
3880 		page = virt_to_page(xdpb->data);
3881 		dma_addr = page_pool_get_dma_addr(page) +
3882 			   (xdpb->data - xdpb->data_hard_start);
3883 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3884 					   dma_sync_len, DMA_BIDIRECTIONAL);
3885 		frame_len = xdpb->data_end - xdpb->data;
3886 		txq->tx_buf[index].buf_p = page;
3887 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3888 	}
3889 
3890 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3891 	if (fep->bufdesc_ex)
3892 		estatus = BD_ENET_TX_INT;
3893 
3894 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3895 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3896 
3897 	if (fep->bufdesc_ex) {
3898 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3899 
3900 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3901 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3902 
3903 		ebdp->cbd_bdu = 0;
3904 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3905 	}
3906 
3907 	/* Make sure the updates to rest of the descriptor are performed before
3908 	 * transferring ownership.
3909 	 */
3910 	dma_wmb();
3911 
3912 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3913 	 * it's the last BD of the frame, and to put the CRC on the end.
3914 	 */
3915 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3916 	bdp->cbd_sc = cpu_to_fec16(status);
3917 
3918 	/* If this was the last BD in the ring, start at the beginning again. */
3919 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3920 
3921 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3922 	dma_wmb();
3923 
3924 	txq->bd.cur = bdp;
3925 
3926 	/* Trigger transmission start */
3927 	writel(0, txq->bd.reg_desc_active);
3928 
3929 	return 0;
3930 }
3931 
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3932 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3933 				int cpu, struct xdp_buff *xdp,
3934 				u32 dma_sync_len)
3935 {
3936 	struct fec_enet_priv_tx_q *txq;
3937 	struct netdev_queue *nq;
3938 	int queue, ret;
3939 
3940 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3941 	txq = fep->tx_queue[queue];
3942 	nq = netdev_get_tx_queue(fep->netdev, queue);
3943 
3944 	__netif_tx_lock(nq, cpu);
3945 
3946 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3947 	txq_trans_cond_update(nq);
3948 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3949 
3950 	__netif_tx_unlock(nq);
3951 
3952 	return ret;
3953 }
3954 
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3955 static int fec_enet_xdp_xmit(struct net_device *dev,
3956 			     int num_frames,
3957 			     struct xdp_frame **frames,
3958 			     u32 flags)
3959 {
3960 	struct fec_enet_private *fep = netdev_priv(dev);
3961 	struct fec_enet_priv_tx_q *txq;
3962 	int cpu = smp_processor_id();
3963 	unsigned int sent_frames = 0;
3964 	struct netdev_queue *nq;
3965 	unsigned int queue;
3966 	int i;
3967 
3968 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3969 	txq = fep->tx_queue[queue];
3970 	nq = netdev_get_tx_queue(fep->netdev, queue);
3971 
3972 	__netif_tx_lock(nq, cpu);
3973 
3974 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3975 	txq_trans_cond_update(nq);
3976 	for (i = 0; i < num_frames; i++) {
3977 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3978 			break;
3979 		sent_frames++;
3980 	}
3981 
3982 	__netif_tx_unlock(nq);
3983 
3984 	return sent_frames;
3985 }
3986 
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3987 static int fec_hwtstamp_get(struct net_device *ndev,
3988 			    struct kernel_hwtstamp_config *config)
3989 {
3990 	struct fec_enet_private *fep = netdev_priv(ndev);
3991 
3992 	if (!netif_running(ndev))
3993 		return -EINVAL;
3994 
3995 	if (!fep->bufdesc_ex)
3996 		return -EOPNOTSUPP;
3997 
3998 	fec_ptp_get(ndev, config);
3999 
4000 	return 0;
4001 }
4002 
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4003 static int fec_hwtstamp_set(struct net_device *ndev,
4004 			    struct kernel_hwtstamp_config *config,
4005 			    struct netlink_ext_ack *extack)
4006 {
4007 	struct fec_enet_private *fep = netdev_priv(ndev);
4008 
4009 	if (!netif_running(ndev))
4010 		return -EINVAL;
4011 
4012 	if (!fep->bufdesc_ex)
4013 		return -EOPNOTSUPP;
4014 
4015 	return fec_ptp_set(ndev, config, extack);
4016 }
4017 
4018 static const struct net_device_ops fec_netdev_ops = {
4019 	.ndo_open		= fec_enet_open,
4020 	.ndo_stop		= fec_enet_close,
4021 	.ndo_start_xmit		= fec_enet_start_xmit,
4022 	.ndo_select_queue       = fec_enet_select_queue,
4023 	.ndo_set_rx_mode	= set_multicast_list,
4024 	.ndo_validate_addr	= eth_validate_addr,
4025 	.ndo_tx_timeout		= fec_timeout,
4026 	.ndo_set_mac_address	= fec_set_mac_address,
4027 	.ndo_eth_ioctl		= phy_do_ioctl_running,
4028 	.ndo_set_features	= fec_set_features,
4029 	.ndo_bpf		= fec_enet_bpf,
4030 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4031 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4032 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4033 };
4034 
4035 static const unsigned short offset_des_active_rxq[] = {
4036 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4037 };
4038 
4039 static const unsigned short offset_des_active_txq[] = {
4040 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4041 };
4042 
4043  /*
4044   * XXX:  We need to clean up on failure exits here.
4045   *
4046   */
fec_enet_init(struct net_device * ndev)4047 static int fec_enet_init(struct net_device *ndev)
4048 {
4049 	struct fec_enet_private *fep = netdev_priv(ndev);
4050 	struct bufdesc *cbd_base;
4051 	dma_addr_t bd_dma;
4052 	int bd_size;
4053 	unsigned int i;
4054 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4055 			sizeof(struct bufdesc);
4056 	unsigned dsize_log2 = __fls(dsize);
4057 	int ret;
4058 
4059 	WARN_ON(dsize != (1 << dsize_log2));
4060 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4061 	fep->rx_align = 0xf;
4062 	fep->tx_align = 0xf;
4063 #else
4064 	fep->rx_align = 0x3;
4065 	fep->tx_align = 0x3;
4066 #endif
4067 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4068 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4069 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4070 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4071 
4072 	/* Check mask of the streaming and coherent API */
4073 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4074 	if (ret < 0) {
4075 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4076 		return ret;
4077 	}
4078 
4079 	ret = fec_enet_alloc_queue(ndev);
4080 	if (ret)
4081 		return ret;
4082 
4083 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4084 
4085 	/* Allocate memory for buffer descriptors. */
4086 	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4087 				  GFP_KERNEL);
4088 	if (!cbd_base) {
4089 		ret = -ENOMEM;
4090 		goto free_queue_mem;
4091 	}
4092 
4093 	/* Get the Ethernet address */
4094 	ret = fec_get_mac(ndev);
4095 	if (ret)
4096 		goto free_queue_mem;
4097 
4098 	/* Set receive and transmit descriptor base. */
4099 	for (i = 0; i < fep->num_rx_queues; i++) {
4100 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4101 		unsigned size = dsize * rxq->bd.ring_size;
4102 
4103 		rxq->bd.qid = i;
4104 		rxq->bd.base = cbd_base;
4105 		rxq->bd.cur = cbd_base;
4106 		rxq->bd.dma = bd_dma;
4107 		rxq->bd.dsize = dsize;
4108 		rxq->bd.dsize_log2 = dsize_log2;
4109 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4110 		bd_dma += size;
4111 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4112 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4113 	}
4114 
4115 	for (i = 0; i < fep->num_tx_queues; i++) {
4116 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4117 		unsigned size = dsize * txq->bd.ring_size;
4118 
4119 		txq->bd.qid = i;
4120 		txq->bd.base = cbd_base;
4121 		txq->bd.cur = cbd_base;
4122 		txq->bd.dma = bd_dma;
4123 		txq->bd.dsize = dsize;
4124 		txq->bd.dsize_log2 = dsize_log2;
4125 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4126 		bd_dma += size;
4127 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4128 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4129 	}
4130 
4131 
4132 	/* The FEC Ethernet specific entries in the device structure */
4133 	ndev->watchdog_timeo = TX_TIMEOUT;
4134 	ndev->netdev_ops = &fec_netdev_ops;
4135 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4136 
4137 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4138 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4139 
4140 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4141 		/* enable hw VLAN support */
4142 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4143 
4144 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4145 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4146 
4147 		/* enable hw accelerator */
4148 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4149 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4150 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4151 	}
4152 
4153 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4154 		fep->tx_align = 0;
4155 		fep->rx_align = 0x3f;
4156 	}
4157 
4158 	ndev->hw_features = ndev->features;
4159 
4160 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4161 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4162 				     NETDEV_XDP_ACT_REDIRECT;
4163 
4164 	fec_restart(ndev);
4165 
4166 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4167 		fec_enet_clear_ethtool_stats(ndev);
4168 	else
4169 		fec_enet_update_ethtool_stats(ndev);
4170 
4171 	return 0;
4172 
4173 free_queue_mem:
4174 	fec_enet_free_queue(ndev);
4175 	return ret;
4176 }
4177 
fec_enet_deinit(struct net_device * ndev)4178 static void fec_enet_deinit(struct net_device *ndev)
4179 {
4180 	struct fec_enet_private *fep = netdev_priv(ndev);
4181 
4182 	netif_napi_del(&fep->napi);
4183 	fec_enet_free_queue(ndev);
4184 }
4185 
4186 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4187 static int fec_reset_phy(struct platform_device *pdev)
4188 {
4189 	struct gpio_desc *phy_reset;
4190 	int msec = 1, phy_post_delay = 0;
4191 	struct device_node *np = pdev->dev.of_node;
4192 	int err;
4193 
4194 	if (!np)
4195 		return 0;
4196 
4197 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4198 	/* A sane reset duration should not be longer than 1s */
4199 	if (!err && msec > 1000)
4200 		msec = 1;
4201 
4202 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4203 	/* valid reset duration should be less than 1s */
4204 	if (!err && phy_post_delay > 1000)
4205 		return -EINVAL;
4206 
4207 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4208 					    GPIOD_OUT_HIGH);
4209 	if (IS_ERR(phy_reset))
4210 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4211 				     "failed to get phy-reset-gpios\n");
4212 
4213 	if (!phy_reset)
4214 		return 0;
4215 
4216 	if (msec > 20)
4217 		msleep(msec);
4218 	else
4219 		usleep_range(msec * 1000, msec * 1000 + 1000);
4220 
4221 	gpiod_set_value_cansleep(phy_reset, 0);
4222 
4223 	if (!phy_post_delay)
4224 		return 0;
4225 
4226 	if (phy_post_delay > 20)
4227 		msleep(phy_post_delay);
4228 	else
4229 		usleep_range(phy_post_delay * 1000,
4230 			     phy_post_delay * 1000 + 1000);
4231 
4232 	return 0;
4233 }
4234 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4235 static int fec_reset_phy(struct platform_device *pdev)
4236 {
4237 	/*
4238 	 * In case of platform probe, the reset has been done
4239 	 * by machine code.
4240 	 */
4241 	return 0;
4242 }
4243 #endif /* CONFIG_OF */
4244 
4245 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4246 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4247 {
4248 	struct device_node *np = pdev->dev.of_node;
4249 
4250 	*num_tx = *num_rx = 1;
4251 
4252 	if (!np || !of_device_is_available(np))
4253 		return;
4254 
4255 	/* parse the num of tx and rx queues */
4256 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4257 
4258 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4259 
4260 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4261 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4262 			 *num_tx);
4263 		*num_tx = 1;
4264 		return;
4265 	}
4266 
4267 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4268 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4269 			 *num_rx);
4270 		*num_rx = 1;
4271 		return;
4272 	}
4273 
4274 }
4275 
fec_enet_get_irq_cnt(struct platform_device * pdev)4276 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4277 {
4278 	int irq_cnt = platform_irq_count(pdev);
4279 
4280 	if (irq_cnt > FEC_IRQ_NUM)
4281 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4282 	else if (irq_cnt == 2)
4283 		irq_cnt = 1;	/* last for pps */
4284 	else if (irq_cnt <= 0)
4285 		irq_cnt = 1;	/* At least 1 irq is needed */
4286 	return irq_cnt;
4287 }
4288 
fec_enet_get_wakeup_irq(struct platform_device * pdev)4289 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4290 {
4291 	struct net_device *ndev = platform_get_drvdata(pdev);
4292 	struct fec_enet_private *fep = netdev_priv(ndev);
4293 
4294 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4295 		fep->wake_irq = fep->irq[2];
4296 	else
4297 		fep->wake_irq = fep->irq[0];
4298 }
4299 
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4300 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4301 				   struct device_node *np)
4302 {
4303 	struct device_node *gpr_np;
4304 	u32 out_val[3];
4305 	int ret = 0;
4306 
4307 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4308 	if (!gpr_np)
4309 		return 0;
4310 
4311 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4312 					 ARRAY_SIZE(out_val));
4313 	if (ret) {
4314 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4315 		goto out;
4316 	}
4317 
4318 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4319 	if (IS_ERR(fep->stop_gpr.gpr)) {
4320 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4321 		ret = PTR_ERR(fep->stop_gpr.gpr);
4322 		fep->stop_gpr.gpr = NULL;
4323 		goto out;
4324 	}
4325 
4326 	fep->stop_gpr.reg = out_val[1];
4327 	fep->stop_gpr.bit = out_val[2];
4328 
4329 out:
4330 	of_node_put(gpr_np);
4331 
4332 	return ret;
4333 }
4334 
4335 static int
fec_probe(struct platform_device * pdev)4336 fec_probe(struct platform_device *pdev)
4337 {
4338 	struct fec_enet_private *fep;
4339 	struct fec_platform_data *pdata;
4340 	phy_interface_t interface;
4341 	struct net_device *ndev;
4342 	int i, irq, ret = 0;
4343 	static int dev_id;
4344 	struct device_node *np = pdev->dev.of_node, *phy_node;
4345 	int num_tx_qs;
4346 	int num_rx_qs;
4347 	char irq_name[8];
4348 	int irq_cnt;
4349 	const struct fec_devinfo *dev_info;
4350 
4351 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4352 
4353 	/* Init network device */
4354 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4355 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4356 	if (!ndev)
4357 		return -ENOMEM;
4358 
4359 	SET_NETDEV_DEV(ndev, &pdev->dev);
4360 
4361 	/* setup board info structure */
4362 	fep = netdev_priv(ndev);
4363 
4364 	dev_info = device_get_match_data(&pdev->dev);
4365 	if (!dev_info)
4366 		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4367 	if (dev_info)
4368 		fep->quirks = dev_info->quirks;
4369 
4370 	fep->netdev = ndev;
4371 	fep->num_rx_queues = num_rx_qs;
4372 	fep->num_tx_queues = num_tx_qs;
4373 
4374 #if !defined(CONFIG_M5272)
4375 	/* default enable pause frame auto negotiation */
4376 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4377 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4378 #endif
4379 
4380 	/* Select default pin state */
4381 	pinctrl_pm_select_default_state(&pdev->dev);
4382 
4383 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4384 	if (IS_ERR(fep->hwp)) {
4385 		ret = PTR_ERR(fep->hwp);
4386 		goto failed_ioremap;
4387 	}
4388 
4389 	fep->pdev = pdev;
4390 	fep->dev_id = dev_id++;
4391 
4392 	platform_set_drvdata(pdev, ndev);
4393 
4394 	if ((of_machine_is_compatible("fsl,imx6q") ||
4395 	     of_machine_is_compatible("fsl,imx6dl")) &&
4396 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4397 		fep->quirks |= FEC_QUIRK_ERR006687;
4398 
4399 	ret = fec_enet_ipc_handle_init(fep);
4400 	if (ret)
4401 		goto failed_ipc_init;
4402 
4403 	if (of_property_read_bool(np, "fsl,magic-packet"))
4404 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4405 
4406 	ret = fec_enet_init_stop_mode(fep, np);
4407 	if (ret)
4408 		goto failed_stop_mode;
4409 
4410 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4411 	if (!phy_node && of_phy_is_fixed_link(np)) {
4412 		ret = of_phy_register_fixed_link(np);
4413 		if (ret < 0) {
4414 			dev_err(&pdev->dev,
4415 				"broken fixed-link specification\n");
4416 			goto failed_phy;
4417 		}
4418 		phy_node = of_node_get(np);
4419 	}
4420 	fep->phy_node = phy_node;
4421 
4422 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4423 	if (ret) {
4424 		pdata = dev_get_platdata(&pdev->dev);
4425 		if (pdata)
4426 			fep->phy_interface = pdata->phy;
4427 		else
4428 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4429 	} else {
4430 		fep->phy_interface = interface;
4431 	}
4432 
4433 	ret = fec_enet_parse_rgmii_delay(fep, np);
4434 	if (ret)
4435 		goto failed_rgmii_delay;
4436 
4437 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4438 	if (IS_ERR(fep->clk_ipg)) {
4439 		ret = PTR_ERR(fep->clk_ipg);
4440 		goto failed_clk;
4441 	}
4442 
4443 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4444 	if (IS_ERR(fep->clk_ahb)) {
4445 		ret = PTR_ERR(fep->clk_ahb);
4446 		goto failed_clk;
4447 	}
4448 
4449 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4450 
4451 	/* enet_out is optional, depends on board */
4452 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4453 	if (IS_ERR(fep->clk_enet_out)) {
4454 		ret = PTR_ERR(fep->clk_enet_out);
4455 		goto failed_clk;
4456 	}
4457 
4458 	fep->ptp_clk_on = false;
4459 	mutex_init(&fep->ptp_clk_mutex);
4460 
4461 	/* clk_ref is optional, depends on board */
4462 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4463 	if (IS_ERR(fep->clk_ref)) {
4464 		ret = PTR_ERR(fep->clk_ref);
4465 		goto failed_clk;
4466 	}
4467 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4468 
4469 	/* clk_2x_txclk is optional, depends on board */
4470 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4471 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4472 		if (IS_ERR(fep->clk_2x_txclk))
4473 			fep->clk_2x_txclk = NULL;
4474 	}
4475 
4476 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4477 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4478 	if (IS_ERR(fep->clk_ptp)) {
4479 		fep->clk_ptp = NULL;
4480 		fep->bufdesc_ex = false;
4481 	}
4482 
4483 	ret = fec_enet_clk_enable(ndev, true);
4484 	if (ret)
4485 		goto failed_clk;
4486 
4487 	ret = clk_prepare_enable(fep->clk_ipg);
4488 	if (ret)
4489 		goto failed_clk_ipg;
4490 	ret = clk_prepare_enable(fep->clk_ahb);
4491 	if (ret)
4492 		goto failed_clk_ahb;
4493 
4494 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4495 	if (!IS_ERR(fep->reg_phy)) {
4496 		ret = regulator_enable(fep->reg_phy);
4497 		if (ret) {
4498 			dev_err(&pdev->dev,
4499 				"Failed to enable phy regulator: %d\n", ret);
4500 			goto failed_regulator;
4501 		}
4502 	} else {
4503 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4504 			ret = -EPROBE_DEFER;
4505 			goto failed_regulator;
4506 		}
4507 		fep->reg_phy = NULL;
4508 	}
4509 
4510 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4511 	pm_runtime_use_autosuspend(&pdev->dev);
4512 	pm_runtime_get_noresume(&pdev->dev);
4513 	pm_runtime_set_active(&pdev->dev);
4514 	pm_runtime_enable(&pdev->dev);
4515 
4516 	ret = fec_reset_phy(pdev);
4517 	if (ret)
4518 		goto failed_reset;
4519 
4520 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4521 	if (fep->bufdesc_ex)
4522 		fec_ptp_init(pdev, irq_cnt);
4523 
4524 	ret = fec_enet_init(ndev);
4525 	if (ret)
4526 		goto failed_init;
4527 
4528 	for (i = 0; i < irq_cnt; i++) {
4529 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4530 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4531 		if (irq < 0)
4532 			irq = platform_get_irq(pdev, i);
4533 		if (irq < 0) {
4534 			ret = irq;
4535 			goto failed_irq;
4536 		}
4537 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4538 				       0, pdev->name, ndev);
4539 		if (ret)
4540 			goto failed_irq;
4541 
4542 		fep->irq[i] = irq;
4543 	}
4544 
4545 	/* Decide which interrupt line is wakeup capable */
4546 	fec_enet_get_wakeup_irq(pdev);
4547 
4548 	ret = fec_enet_mii_init(pdev);
4549 	if (ret)
4550 		goto failed_mii_init;
4551 
4552 	/* Carrier starts down, phylib will bring it up */
4553 	netif_carrier_off(ndev);
4554 	fec_enet_clk_enable(ndev, false);
4555 	pinctrl_pm_select_sleep_state(&pdev->dev);
4556 
4557 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4558 
4559 	ret = register_netdev(ndev);
4560 	if (ret)
4561 		goto failed_register;
4562 
4563 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4564 			   FEC_WOL_HAS_MAGIC_PACKET);
4565 
4566 	if (fep->bufdesc_ex && fep->ptp_clock)
4567 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4568 
4569 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4570 
4571 	pm_runtime_mark_last_busy(&pdev->dev);
4572 	pm_runtime_put_autosuspend(&pdev->dev);
4573 
4574 	return 0;
4575 
4576 failed_register:
4577 	fec_enet_mii_remove(fep);
4578 failed_mii_init:
4579 failed_irq:
4580 	fec_enet_deinit(ndev);
4581 failed_init:
4582 	fec_ptp_stop(pdev);
4583 failed_reset:
4584 	pm_runtime_put_noidle(&pdev->dev);
4585 	pm_runtime_disable(&pdev->dev);
4586 	if (fep->reg_phy)
4587 		regulator_disable(fep->reg_phy);
4588 failed_regulator:
4589 	clk_disable_unprepare(fep->clk_ahb);
4590 failed_clk_ahb:
4591 	clk_disable_unprepare(fep->clk_ipg);
4592 failed_clk_ipg:
4593 	fec_enet_clk_enable(ndev, false);
4594 failed_clk:
4595 failed_rgmii_delay:
4596 	if (of_phy_is_fixed_link(np))
4597 		of_phy_deregister_fixed_link(np);
4598 	of_node_put(phy_node);
4599 failed_stop_mode:
4600 failed_ipc_init:
4601 failed_phy:
4602 	dev_id--;
4603 failed_ioremap:
4604 	free_netdev(ndev);
4605 
4606 	return ret;
4607 }
4608 
4609 static void
fec_drv_remove(struct platform_device * pdev)4610 fec_drv_remove(struct platform_device *pdev)
4611 {
4612 	struct net_device *ndev = platform_get_drvdata(pdev);
4613 	struct fec_enet_private *fep = netdev_priv(ndev);
4614 	struct device_node *np = pdev->dev.of_node;
4615 	int ret;
4616 
4617 	ret = pm_runtime_get_sync(&pdev->dev);
4618 	if (ret < 0)
4619 		dev_err(&pdev->dev,
4620 			"Failed to resume device in remove callback (%pe)\n",
4621 			ERR_PTR(ret));
4622 
4623 	cancel_work_sync(&fep->tx_timeout_work);
4624 	fec_ptp_stop(pdev);
4625 	unregister_netdev(ndev);
4626 	fec_enet_mii_remove(fep);
4627 	if (fep->reg_phy)
4628 		regulator_disable(fep->reg_phy);
4629 
4630 	if (of_phy_is_fixed_link(np))
4631 		of_phy_deregister_fixed_link(np);
4632 	of_node_put(fep->phy_node);
4633 
4634 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4635 	 * disabling them again.
4636 	 */
4637 	if (ret >= 0) {
4638 		clk_disable_unprepare(fep->clk_ahb);
4639 		clk_disable_unprepare(fep->clk_ipg);
4640 	}
4641 	pm_runtime_put_noidle(&pdev->dev);
4642 	pm_runtime_disable(&pdev->dev);
4643 
4644 	fec_enet_deinit(ndev);
4645 	free_netdev(ndev);
4646 }
4647 
fec_suspend(struct device * dev)4648 static int fec_suspend(struct device *dev)
4649 {
4650 	struct net_device *ndev = dev_get_drvdata(dev);
4651 	struct fec_enet_private *fep = netdev_priv(ndev);
4652 	int ret;
4653 
4654 	rtnl_lock();
4655 	if (netif_running(ndev)) {
4656 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4657 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4658 		phy_stop(ndev->phydev);
4659 		napi_disable(&fep->napi);
4660 		netif_tx_lock_bh(ndev);
4661 		netif_device_detach(ndev);
4662 		netif_tx_unlock_bh(ndev);
4663 		fec_stop(ndev);
4664 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4665 			fec_irqs_disable(ndev);
4666 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4667 		} else {
4668 			fec_irqs_disable_except_wakeup(ndev);
4669 			if (fep->wake_irq > 0) {
4670 				disable_irq(fep->wake_irq);
4671 				enable_irq_wake(fep->wake_irq);
4672 			}
4673 			fec_enet_stop_mode(fep, true);
4674 		}
4675 		/* It's safe to disable clocks since interrupts are masked */
4676 		fec_enet_clk_enable(ndev, false);
4677 
4678 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4679 		if (fep->rpm_active) {
4680 			ret = pm_runtime_force_suspend(dev);
4681 			if (ret < 0) {
4682 				rtnl_unlock();
4683 				return ret;
4684 			}
4685 		}
4686 	}
4687 	rtnl_unlock();
4688 
4689 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4690 		regulator_disable(fep->reg_phy);
4691 
4692 	/* SOC supply clock to phy, when clock is disabled, phy link down
4693 	 * SOC control phy regulator, when regulator is disabled, phy link down
4694 	 */
4695 	if (fep->clk_enet_out || fep->reg_phy)
4696 		fep->link = 0;
4697 
4698 	return 0;
4699 }
4700 
fec_resume(struct device * dev)4701 static int fec_resume(struct device *dev)
4702 {
4703 	struct net_device *ndev = dev_get_drvdata(dev);
4704 	struct fec_enet_private *fep = netdev_priv(ndev);
4705 	int ret;
4706 	int val;
4707 
4708 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4709 		ret = regulator_enable(fep->reg_phy);
4710 		if (ret)
4711 			return ret;
4712 	}
4713 
4714 	rtnl_lock();
4715 	if (netif_running(ndev)) {
4716 		if (fep->rpm_active)
4717 			pm_runtime_force_resume(dev);
4718 
4719 		ret = fec_enet_clk_enable(ndev, true);
4720 		if (ret) {
4721 			rtnl_unlock();
4722 			goto failed_clk;
4723 		}
4724 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4725 			fec_enet_stop_mode(fep, false);
4726 			if (fep->wake_irq) {
4727 				disable_irq_wake(fep->wake_irq);
4728 				enable_irq(fep->wake_irq);
4729 			}
4730 
4731 			val = readl(fep->hwp + FEC_ECNTRL);
4732 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4733 			writel(val, fep->hwp + FEC_ECNTRL);
4734 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4735 		} else {
4736 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4737 		}
4738 		fec_restart(ndev);
4739 		netif_tx_lock_bh(ndev);
4740 		netif_device_attach(ndev);
4741 		netif_tx_unlock_bh(ndev);
4742 		napi_enable(&fep->napi);
4743 		phy_init_hw(ndev->phydev);
4744 		phy_start(ndev->phydev);
4745 	}
4746 	rtnl_unlock();
4747 
4748 	return 0;
4749 
4750 failed_clk:
4751 	if (fep->reg_phy)
4752 		regulator_disable(fep->reg_phy);
4753 	return ret;
4754 }
4755 
fec_runtime_suspend(struct device * dev)4756 static int fec_runtime_suspend(struct device *dev)
4757 {
4758 	struct net_device *ndev = dev_get_drvdata(dev);
4759 	struct fec_enet_private *fep = netdev_priv(ndev);
4760 
4761 	clk_disable_unprepare(fep->clk_ahb);
4762 	clk_disable_unprepare(fep->clk_ipg);
4763 
4764 	return 0;
4765 }
4766 
fec_runtime_resume(struct device * dev)4767 static int fec_runtime_resume(struct device *dev)
4768 {
4769 	struct net_device *ndev = dev_get_drvdata(dev);
4770 	struct fec_enet_private *fep = netdev_priv(ndev);
4771 	int ret;
4772 
4773 	ret = clk_prepare_enable(fep->clk_ahb);
4774 	if (ret)
4775 		return ret;
4776 	ret = clk_prepare_enable(fep->clk_ipg);
4777 	if (ret)
4778 		goto failed_clk_ipg;
4779 
4780 	return 0;
4781 
4782 failed_clk_ipg:
4783 	clk_disable_unprepare(fep->clk_ahb);
4784 	return ret;
4785 }
4786 
4787 static const struct dev_pm_ops fec_pm_ops = {
4788 	SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4789 	RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4790 };
4791 
4792 static struct platform_driver fec_driver = {
4793 	.driver	= {
4794 		.name	= DRIVER_NAME,
4795 		.pm	= pm_ptr(&fec_pm_ops),
4796 		.of_match_table = fec_dt_ids,
4797 		.suppress_bind_attrs = true,
4798 	},
4799 	.id_table = fec_devtype,
4800 	.probe	= fec_probe,
4801 	.remove = fec_drv_remove,
4802 };
4803 
4804 module_platform_driver(fec_driver);
4805 
4806 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4807 MODULE_LICENSE("GPL");
4808