1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/property.h>
56 #include <linux/mdio.h>
57 #include <linux/phy.h>
58 #include <linux/fec.h>
59 #include <linux/of.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73
74 #include <asm/cacheflush.h>
75
76 #include "fec.h"
77
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 int cpu, struct xdp_buff *xdp,
82 u32 dma_sync_len);
83
84 #define DRIVER_NAME "fec"
85
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87
88 #define FEC_ENET_RSEM_V 0x84
89 #define FEC_ENET_RSFL_V 16
90 #define FEC_ENET_RAEM_V 0x8
91 #define FEC_ENET_RAFL_V 0x8
92 #define FEC_ENET_OPD_V 0xFFF0
93 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
94
95 #define FEC_ENET_XDP_PASS 0
96 #define FEC_ENET_XDP_CONSUMED BIT(0)
97 #define FEC_ENET_XDP_TX BIT(1)
98 #define FEC_ENET_XDP_REDIR BIT(2)
99
100 struct fec_devinfo {
101 u32 quirks;
102 };
103
104 static const struct fec_devinfo fec_imx25_info = {
105 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
106 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
107 };
108
109 static const struct fec_devinfo fec_imx27_info = {
110 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
111 FEC_QUIRK_HAS_MDIO_C45,
112 };
113
114 static const struct fec_devinfo fec_imx28_info = {
115 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
116 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
117 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
118 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
119 };
120
121 static const struct fec_devinfo fec_imx6q_info = {
122 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
125 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
126 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
127 };
128
129 static const struct fec_devinfo fec_mvf600_info = {
130 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
131 FEC_QUIRK_HAS_MDIO_C45,
132 };
133
134 static const struct fec_devinfo fec_imx6x_info = {
135 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
136 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
137 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
138 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
139 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
140 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
141 FEC_QUIRK_HAS_MDIO_C45,
142 };
143
144 static const struct fec_devinfo fec_imx6ul_info = {
145 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
146 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
147 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
148 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
149 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
150 FEC_QUIRK_HAS_MDIO_C45,
151 };
152
153 static const struct fec_devinfo fec_imx8mq_info = {
154 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
155 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
156 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
157 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
158 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
159 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
160 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
161 FEC_QUIRK_HAS_MDIO_C45,
162 };
163
164 static const struct fec_devinfo fec_imx8qm_info = {
165 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
166 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
167 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
168 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
169 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
170 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
171 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
172 };
173
174 static const struct fec_devinfo fec_s32v234_info = {
175 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
176 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
177 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
178 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
179 FEC_QUIRK_HAS_MDIO_C45,
180 };
181
182 static struct platform_device_id fec_devtype[] = {
183 {
184 /* keep it for coldfire */
185 .name = DRIVER_NAME,
186 .driver_data = 0,
187 }, {
188 /* sentinel */
189 }
190 };
191 MODULE_DEVICE_TABLE(platform, fec_devtype);
192
193 static const struct of_device_id fec_dt_ids[] = {
194 { .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
195 { .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
196 { .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
197 { .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
198 { .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
199 { .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
200 { .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
201 { .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
202 { .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
203 { .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
204 { /* sentinel */ }
205 };
206 MODULE_DEVICE_TABLE(of, fec_dt_ids);
207
208 static unsigned char macaddr[ETH_ALEN];
209 module_param_array(macaddr, byte, NULL, 0);
210 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
211
212 #if defined(CONFIG_M5272)
213 /*
214 * Some hardware gets it MAC address out of local flash memory.
215 * if this is non-zero then assume it is the address to get MAC from.
216 */
217 #if defined(CONFIG_NETtel)
218 #define FEC_FLASHMAC 0xf0006006
219 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
220 #define FEC_FLASHMAC 0xf0006000
221 #elif defined(CONFIG_CANCam)
222 #define FEC_FLASHMAC 0xf0020000
223 #elif defined (CONFIG_M5272C3)
224 #define FEC_FLASHMAC (0xffe04000 + 4)
225 #elif defined(CONFIG_MOD5272)
226 #define FEC_FLASHMAC 0xffc0406b
227 #else
228 #define FEC_FLASHMAC 0
229 #endif
230 #endif /* CONFIG_M5272 */
231
232 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
233 *
234 * 2048 byte skbufs are allocated. However, alignment requirements
235 * varies between FEC variants. Worst case is 64, so round down by 64.
236 */
237 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
238 #define PKT_MINBUF_SIZE 64
239
240 /* FEC receive acceleration */
241 #define FEC_RACC_IPDIS BIT(1)
242 #define FEC_RACC_PRODIS BIT(2)
243 #define FEC_RACC_SHIFT16 BIT(7)
244 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
245
246 /* MIB Control Register */
247 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
248
249 /*
250 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
251 * size bits. Other FEC hardware does not, so we need to take that into
252 * account when setting it.
253 */
254 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
255 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
256 defined(CONFIG_ARM64)
257 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
258 #else
259 #define OPT_FRAME_SIZE 0
260 #endif
261
262 /* FEC MII MMFR bits definition */
263 #define FEC_MMFR_ST (1 << 30)
264 #define FEC_MMFR_ST_C45 (0)
265 #define FEC_MMFR_OP_READ (2 << 28)
266 #define FEC_MMFR_OP_READ_C45 (3 << 28)
267 #define FEC_MMFR_OP_WRITE (1 << 28)
268 #define FEC_MMFR_OP_ADDR_WRITE (0)
269 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
270 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
271 #define FEC_MMFR_TA (2 << 16)
272 #define FEC_MMFR_DATA(v) (v & 0xffff)
273 /* FEC ECR bits definition */
274 #define FEC_ECR_RESET BIT(0)
275 #define FEC_ECR_ETHEREN BIT(1)
276 #define FEC_ECR_MAGICEN BIT(2)
277 #define FEC_ECR_SLEEP BIT(3)
278 #define FEC_ECR_EN1588 BIT(4)
279 #define FEC_ECR_BYTESWP BIT(8)
280 /* FEC RCR bits definition */
281 #define FEC_RCR_LOOP BIT(0)
282 #define FEC_RCR_HALFDPX BIT(1)
283 #define FEC_RCR_MII BIT(2)
284 #define FEC_RCR_PROMISC BIT(3)
285 #define FEC_RCR_BC_REJ BIT(4)
286 #define FEC_RCR_FLOWCTL BIT(5)
287 #define FEC_RCR_RMII BIT(8)
288 #define FEC_RCR_10BASET BIT(9)
289 /* TX WMARK bits */
290 #define FEC_TXWMRK_STRFWD BIT(8)
291
292 #define FEC_MII_TIMEOUT 30000 /* us */
293
294 /* Transmitter timeout */
295 #define TX_TIMEOUT (2 * HZ)
296
297 #define FEC_PAUSE_FLAG_AUTONEG 0x1
298 #define FEC_PAUSE_FLAG_ENABLE 0x2
299 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
300 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
301 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
302
303 /* Max number of allowed TCP segments for software TSO */
304 #define FEC_MAX_TSO_SEGS 100
305 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
306
307 #define IS_TSO_HEADER(txq, addr) \
308 ((addr >= txq->tso_hdrs_dma) && \
309 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
310
311 static int mii_cnt;
312
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)313 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
314 struct bufdesc_prop *bd)
315 {
316 return (bdp >= bd->last) ? bd->base
317 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
318 }
319
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)320 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
321 struct bufdesc_prop *bd)
322 {
323 return (bdp <= bd->base) ? bd->last
324 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
325 }
326
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)327 static int fec_enet_get_bd_index(struct bufdesc *bdp,
328 struct bufdesc_prop *bd)
329 {
330 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
331 }
332
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)333 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
334 {
335 int entries;
336
337 entries = (((const char *)txq->dirty_tx -
338 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
339
340 return entries >= 0 ? entries : entries + txq->bd.ring_size;
341 }
342
swap_buffer(void * bufaddr,int len)343 static void swap_buffer(void *bufaddr, int len)
344 {
345 int i;
346 unsigned int *buf = bufaddr;
347
348 for (i = 0; i < len; i += 4, buf++)
349 swab32s(buf);
350 }
351
fec_dump(struct net_device * ndev)352 static void fec_dump(struct net_device *ndev)
353 {
354 struct fec_enet_private *fep = netdev_priv(ndev);
355 struct bufdesc *bdp;
356 struct fec_enet_priv_tx_q *txq;
357 int index = 0;
358
359 netdev_info(ndev, "TX ring dump\n");
360 pr_info("Nr SC addr len SKB\n");
361
362 txq = fep->tx_queue[0];
363 bdp = txq->bd.base;
364
365 do {
366 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
367 index,
368 bdp == txq->bd.cur ? 'S' : ' ',
369 bdp == txq->dirty_tx ? 'H' : ' ',
370 fec16_to_cpu(bdp->cbd_sc),
371 fec32_to_cpu(bdp->cbd_bufaddr),
372 fec16_to_cpu(bdp->cbd_datlen),
373 txq->tx_buf[index].buf_p);
374 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
375 index++;
376 } while (bdp != txq->bd.base);
377 }
378
379 /*
380 * Coldfire does not support DMA coherent allocations, and has historically used
381 * a band-aid with a manual flush in fec_enet_rx_queue.
382 */
383 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)384 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
385 gfp_t gfp)
386 {
387 return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
388 }
389
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)390 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
391 dma_addr_t handle)
392 {
393 dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
394 }
395 #else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
fec_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)396 static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
397 gfp_t gfp)
398 {
399 return dma_alloc_coherent(dev, size, handle, gfp);
400 }
401
fec_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle)402 static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
403 dma_addr_t handle)
404 {
405 dma_free_coherent(dev, size, cpu_addr, handle);
406 }
407 #endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
408
409 struct fec_dma_devres {
410 size_t size;
411 void *vaddr;
412 dma_addr_t dma_handle;
413 };
414
fec_dmam_release(struct device * dev,void * res)415 static void fec_dmam_release(struct device *dev, void *res)
416 {
417 struct fec_dma_devres *this = res;
418
419 fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
420 }
421
fec_dmam_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)422 static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
423 gfp_t gfp)
424 {
425 struct fec_dma_devres *dr;
426 void *vaddr;
427
428 dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
429 if (!dr)
430 return NULL;
431 vaddr = fec_dma_alloc(dev, size, handle, gfp);
432 if (!vaddr) {
433 devres_free(dr);
434 return NULL;
435 }
436 dr->vaddr = vaddr;
437 dr->dma_handle = *handle;
438 dr->size = size;
439 devres_add(dev, dr);
440 return vaddr;
441 }
442
is_ipv4_pkt(struct sk_buff * skb)443 static inline bool is_ipv4_pkt(struct sk_buff *skb)
444 {
445 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
446 }
447
448 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)449 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
450 {
451 /* Only run for packets requiring a checksum. */
452 if (skb->ip_summed != CHECKSUM_PARTIAL)
453 return 0;
454
455 if (unlikely(skb_cow_head(skb, 0)))
456 return -1;
457
458 if (is_ipv4_pkt(skb))
459 ip_hdr(skb)->check = 0;
460 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
461
462 return 0;
463 }
464
465 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)466 fec_enet_create_page_pool(struct fec_enet_private *fep,
467 struct fec_enet_priv_rx_q *rxq, int size)
468 {
469 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
470 struct page_pool_params pp_params = {
471 .order = 0,
472 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
473 .pool_size = size,
474 .nid = dev_to_node(&fep->pdev->dev),
475 .dev = &fep->pdev->dev,
476 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
477 .offset = FEC_ENET_XDP_HEADROOM,
478 .max_len = FEC_ENET_RX_FRSIZE,
479 };
480 int err;
481
482 rxq->page_pool = page_pool_create(&pp_params);
483 if (IS_ERR(rxq->page_pool)) {
484 err = PTR_ERR(rxq->page_pool);
485 rxq->page_pool = NULL;
486 return err;
487 }
488
489 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
490 if (err < 0)
491 goto err_free_pp;
492
493 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
494 rxq->page_pool);
495 if (err)
496 goto err_unregister_rxq;
497
498 return 0;
499
500 err_unregister_rxq:
501 xdp_rxq_info_unreg(&rxq->xdp_rxq);
502 err_free_pp:
503 page_pool_destroy(rxq->page_pool);
504 rxq->page_pool = NULL;
505 return err;
506 }
507
508 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)509 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
510 struct sk_buff *skb,
511 struct net_device *ndev)
512 {
513 struct fec_enet_private *fep = netdev_priv(ndev);
514 struct bufdesc *bdp = txq->bd.cur;
515 struct bufdesc_ex *ebdp;
516 int nr_frags = skb_shinfo(skb)->nr_frags;
517 int frag, frag_len;
518 unsigned short status;
519 unsigned int estatus = 0;
520 skb_frag_t *this_frag;
521 unsigned int index;
522 void *bufaddr;
523 dma_addr_t addr;
524 int i;
525
526 for (frag = 0; frag < nr_frags; frag++) {
527 this_frag = &skb_shinfo(skb)->frags[frag];
528 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
529 ebdp = (struct bufdesc_ex *)bdp;
530
531 status = fec16_to_cpu(bdp->cbd_sc);
532 status &= ~BD_ENET_TX_STATS;
533 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
534 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
535
536 /* Handle the last BD specially */
537 if (frag == nr_frags - 1) {
538 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
539 if (fep->bufdesc_ex) {
540 estatus |= BD_ENET_TX_INT;
541 if (unlikely(skb_shinfo(skb)->tx_flags &
542 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
543 estatus |= BD_ENET_TX_TS;
544 }
545 }
546
547 if (fep->bufdesc_ex) {
548 if (fep->quirks & FEC_QUIRK_HAS_AVB)
549 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
550 if (skb->ip_summed == CHECKSUM_PARTIAL)
551 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
552
553 ebdp->cbd_bdu = 0;
554 ebdp->cbd_esc = cpu_to_fec32(estatus);
555 }
556
557 bufaddr = skb_frag_address(this_frag);
558
559 index = fec_enet_get_bd_index(bdp, &txq->bd);
560 if (((unsigned long) bufaddr) & fep->tx_align ||
561 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
562 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
563 bufaddr = txq->tx_bounce[index];
564
565 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
566 swap_buffer(bufaddr, frag_len);
567 }
568
569 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
570 DMA_TO_DEVICE);
571 if (dma_mapping_error(&fep->pdev->dev, addr)) {
572 if (net_ratelimit())
573 netdev_err(ndev, "Tx DMA memory map failed\n");
574 goto dma_mapping_error;
575 }
576
577 bdp->cbd_bufaddr = cpu_to_fec32(addr);
578 bdp->cbd_datlen = cpu_to_fec16(frag_len);
579 /* Make sure the updates to rest of the descriptor are
580 * performed before transferring ownership.
581 */
582 wmb();
583 bdp->cbd_sc = cpu_to_fec16(status);
584 }
585
586 return bdp;
587 dma_mapping_error:
588 bdp = txq->bd.cur;
589 for (i = 0; i < frag; i++) {
590 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
591 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
592 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
593 }
594 return ERR_PTR(-ENOMEM);
595 }
596
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)597 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
598 struct sk_buff *skb, struct net_device *ndev)
599 {
600 struct fec_enet_private *fep = netdev_priv(ndev);
601 int nr_frags = skb_shinfo(skb)->nr_frags;
602 struct bufdesc *bdp, *last_bdp;
603 void *bufaddr;
604 dma_addr_t addr;
605 unsigned short status;
606 unsigned short buflen;
607 unsigned int estatus = 0;
608 unsigned int index;
609 int entries_free;
610
611 entries_free = fec_enet_get_free_txdesc_num(txq);
612 if (entries_free < MAX_SKB_FRAGS + 1) {
613 dev_kfree_skb_any(skb);
614 if (net_ratelimit())
615 netdev_err(ndev, "NOT enough BD for SG!\n");
616 return NETDEV_TX_OK;
617 }
618
619 /* Protocol checksum off-load for TCP and UDP. */
620 if (fec_enet_clear_csum(skb, ndev)) {
621 dev_kfree_skb_any(skb);
622 return NETDEV_TX_OK;
623 }
624
625 /* Fill in a Tx ring entry */
626 bdp = txq->bd.cur;
627 last_bdp = bdp;
628 status = fec16_to_cpu(bdp->cbd_sc);
629 status &= ~BD_ENET_TX_STATS;
630
631 /* Set buffer length and buffer pointer */
632 bufaddr = skb->data;
633 buflen = skb_headlen(skb);
634
635 index = fec_enet_get_bd_index(bdp, &txq->bd);
636 if (((unsigned long) bufaddr) & fep->tx_align ||
637 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
638 memcpy(txq->tx_bounce[index], skb->data, buflen);
639 bufaddr = txq->tx_bounce[index];
640
641 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
642 swap_buffer(bufaddr, buflen);
643 }
644
645 /* Push the data cache so the CPM does not get stale memory data. */
646 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
647 if (dma_mapping_error(&fep->pdev->dev, addr)) {
648 dev_kfree_skb_any(skb);
649 if (net_ratelimit())
650 netdev_err(ndev, "Tx DMA memory map failed\n");
651 return NETDEV_TX_OK;
652 }
653
654 if (nr_frags) {
655 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
656 if (IS_ERR(last_bdp)) {
657 dma_unmap_single(&fep->pdev->dev, addr,
658 buflen, DMA_TO_DEVICE);
659 dev_kfree_skb_any(skb);
660 return NETDEV_TX_OK;
661 }
662 } else {
663 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
664 if (fep->bufdesc_ex) {
665 estatus = BD_ENET_TX_INT;
666 if (unlikely(skb_shinfo(skb)->tx_flags &
667 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
668 estatus |= BD_ENET_TX_TS;
669 }
670 }
671 bdp->cbd_bufaddr = cpu_to_fec32(addr);
672 bdp->cbd_datlen = cpu_to_fec16(buflen);
673
674 if (fep->bufdesc_ex) {
675
676 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
677
678 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
679 fep->hwts_tx_en))
680 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
681
682 if (fep->quirks & FEC_QUIRK_HAS_AVB)
683 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
684
685 if (skb->ip_summed == CHECKSUM_PARTIAL)
686 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
687
688 ebdp->cbd_bdu = 0;
689 ebdp->cbd_esc = cpu_to_fec32(estatus);
690 }
691
692 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
693 /* Save skb pointer */
694 txq->tx_buf[index].buf_p = skb;
695
696 /* Make sure the updates to rest of the descriptor are performed before
697 * transferring ownership.
698 */
699 wmb();
700
701 /* Send it on its way. Tell FEC it's ready, interrupt when done,
702 * it's the last BD of the frame, and to put the CRC on the end.
703 */
704 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
705 bdp->cbd_sc = cpu_to_fec16(status);
706
707 /* If this was the last BD in the ring, start at the beginning again. */
708 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
709
710 skb_tx_timestamp(skb);
711
712 /* Make sure the update to bdp is performed before txq->bd.cur. */
713 wmb();
714 txq->bd.cur = bdp;
715
716 /* Trigger transmission start */
717 writel(0, txq->bd.reg_desc_active);
718
719 return 0;
720 }
721
722 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)723 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
724 struct net_device *ndev,
725 struct bufdesc *bdp, int index, char *data,
726 int size, bool last_tcp, bool is_last)
727 {
728 struct fec_enet_private *fep = netdev_priv(ndev);
729 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
730 unsigned short status;
731 unsigned int estatus = 0;
732 dma_addr_t addr;
733
734 status = fec16_to_cpu(bdp->cbd_sc);
735 status &= ~BD_ENET_TX_STATS;
736
737 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
738
739 if (((unsigned long) data) & fep->tx_align ||
740 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
741 memcpy(txq->tx_bounce[index], data, size);
742 data = txq->tx_bounce[index];
743
744 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
745 swap_buffer(data, size);
746 }
747
748 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
749 if (dma_mapping_error(&fep->pdev->dev, addr)) {
750 dev_kfree_skb_any(skb);
751 if (net_ratelimit())
752 netdev_err(ndev, "Tx DMA memory map failed\n");
753 return NETDEV_TX_OK;
754 }
755
756 bdp->cbd_datlen = cpu_to_fec16(size);
757 bdp->cbd_bufaddr = cpu_to_fec32(addr);
758
759 if (fep->bufdesc_ex) {
760 if (fep->quirks & FEC_QUIRK_HAS_AVB)
761 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
762 if (skb->ip_summed == CHECKSUM_PARTIAL)
763 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
764 ebdp->cbd_bdu = 0;
765 ebdp->cbd_esc = cpu_to_fec32(estatus);
766 }
767
768 /* Handle the last BD specially */
769 if (last_tcp)
770 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
771 if (is_last) {
772 status |= BD_ENET_TX_INTR;
773 if (fep->bufdesc_ex)
774 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
775 }
776
777 bdp->cbd_sc = cpu_to_fec16(status);
778
779 return 0;
780 }
781
782 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)783 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
784 struct sk_buff *skb, struct net_device *ndev,
785 struct bufdesc *bdp, int index)
786 {
787 struct fec_enet_private *fep = netdev_priv(ndev);
788 int hdr_len = skb_tcp_all_headers(skb);
789 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
790 void *bufaddr;
791 unsigned long dmabuf;
792 unsigned short status;
793 unsigned int estatus = 0;
794
795 status = fec16_to_cpu(bdp->cbd_sc);
796 status &= ~BD_ENET_TX_STATS;
797 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
798
799 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
800 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
801 if (((unsigned long)bufaddr) & fep->tx_align ||
802 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
803 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
804 bufaddr = txq->tx_bounce[index];
805
806 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
807 swap_buffer(bufaddr, hdr_len);
808
809 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
810 hdr_len, DMA_TO_DEVICE);
811 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
812 dev_kfree_skb_any(skb);
813 if (net_ratelimit())
814 netdev_err(ndev, "Tx DMA memory map failed\n");
815 return NETDEV_TX_OK;
816 }
817 }
818
819 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
820 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
821
822 if (fep->bufdesc_ex) {
823 if (fep->quirks & FEC_QUIRK_HAS_AVB)
824 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
825 if (skb->ip_summed == CHECKSUM_PARTIAL)
826 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
827 ebdp->cbd_bdu = 0;
828 ebdp->cbd_esc = cpu_to_fec32(estatus);
829 }
830
831 bdp->cbd_sc = cpu_to_fec16(status);
832
833 return 0;
834 }
835
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)836 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
837 struct sk_buff *skb,
838 struct net_device *ndev)
839 {
840 struct fec_enet_private *fep = netdev_priv(ndev);
841 int hdr_len, total_len, data_left;
842 struct bufdesc *bdp = txq->bd.cur;
843 struct bufdesc *tmp_bdp;
844 struct bufdesc_ex *ebdp;
845 struct tso_t tso;
846 unsigned int index = 0;
847 int ret;
848
849 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
850 dev_kfree_skb_any(skb);
851 if (net_ratelimit())
852 netdev_err(ndev, "NOT enough BD for TSO!\n");
853 return NETDEV_TX_OK;
854 }
855
856 /* Protocol checksum off-load for TCP and UDP. */
857 if (fec_enet_clear_csum(skb, ndev)) {
858 dev_kfree_skb_any(skb);
859 return NETDEV_TX_OK;
860 }
861
862 /* Initialize the TSO handler, and prepare the first payload */
863 hdr_len = tso_start(skb, &tso);
864
865 total_len = skb->len - hdr_len;
866 while (total_len > 0) {
867 char *hdr;
868
869 index = fec_enet_get_bd_index(bdp, &txq->bd);
870 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
871 total_len -= data_left;
872
873 /* prepare packet headers: MAC + IP + TCP */
874 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
875 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
876 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
877 if (ret)
878 goto err_release;
879
880 while (data_left > 0) {
881 int size;
882
883 size = min_t(int, tso.size, data_left);
884 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
885 index = fec_enet_get_bd_index(bdp, &txq->bd);
886 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
887 bdp, index,
888 tso.data, size,
889 size == data_left,
890 total_len == 0);
891 if (ret)
892 goto err_release;
893
894 data_left -= size;
895 tso_build_data(skb, &tso, size);
896 }
897
898 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
899 }
900
901 /* Save skb pointer */
902 txq->tx_buf[index].buf_p = skb;
903
904 skb_tx_timestamp(skb);
905 txq->bd.cur = bdp;
906
907 /* Trigger transmission start */
908 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
909 !readl(txq->bd.reg_desc_active) ||
910 !readl(txq->bd.reg_desc_active) ||
911 !readl(txq->bd.reg_desc_active) ||
912 !readl(txq->bd.reg_desc_active))
913 writel(0, txq->bd.reg_desc_active);
914
915 return 0;
916
917 err_release:
918 /* Release all used data descriptors for TSO */
919 tmp_bdp = txq->bd.cur;
920
921 while (tmp_bdp != bdp) {
922 /* Unmap data buffers */
923 if (tmp_bdp->cbd_bufaddr &&
924 !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
925 dma_unmap_single(&fep->pdev->dev,
926 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
927 fec16_to_cpu(tmp_bdp->cbd_datlen),
928 DMA_TO_DEVICE);
929
930 /* Clear standard buffer descriptor fields */
931 tmp_bdp->cbd_sc = 0;
932 tmp_bdp->cbd_datlen = 0;
933 tmp_bdp->cbd_bufaddr = 0;
934
935 /* Handle extended descriptor if enabled */
936 if (fep->bufdesc_ex) {
937 ebdp = (struct bufdesc_ex *)tmp_bdp;
938 ebdp->cbd_esc = 0;
939 }
940
941 tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
942 }
943
944 dev_kfree_skb_any(skb);
945
946 return ret;
947 }
948
949 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)950 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
951 {
952 struct fec_enet_private *fep = netdev_priv(ndev);
953 int entries_free;
954 unsigned short queue;
955 struct fec_enet_priv_tx_q *txq;
956 struct netdev_queue *nq;
957 int ret;
958
959 queue = skb_get_queue_mapping(skb);
960 txq = fep->tx_queue[queue];
961 nq = netdev_get_tx_queue(ndev, queue);
962
963 if (skb_is_gso(skb))
964 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
965 else
966 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
967 if (ret)
968 return ret;
969
970 entries_free = fec_enet_get_free_txdesc_num(txq);
971 if (entries_free <= txq->tx_stop_threshold)
972 netif_tx_stop_queue(nq);
973
974 return NETDEV_TX_OK;
975 }
976
977 /* Init RX & TX buffer descriptors
978 */
fec_enet_bd_init(struct net_device * dev)979 static void fec_enet_bd_init(struct net_device *dev)
980 {
981 struct fec_enet_private *fep = netdev_priv(dev);
982 struct fec_enet_priv_tx_q *txq;
983 struct fec_enet_priv_rx_q *rxq;
984 struct bufdesc *bdp;
985 unsigned int i;
986 unsigned int q;
987
988 for (q = 0; q < fep->num_rx_queues; q++) {
989 /* Initialize the receive buffer descriptors. */
990 rxq = fep->rx_queue[q];
991 bdp = rxq->bd.base;
992
993 for (i = 0; i < rxq->bd.ring_size; i++) {
994
995 /* Initialize the BD for every fragment in the page. */
996 if (bdp->cbd_bufaddr)
997 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
998 else
999 bdp->cbd_sc = cpu_to_fec16(0);
1000 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1001 }
1002
1003 /* Set the last buffer to wrap */
1004 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1005 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1006
1007 rxq->bd.cur = rxq->bd.base;
1008 }
1009
1010 for (q = 0; q < fep->num_tx_queues; q++) {
1011 /* ...and the same for transmit */
1012 txq = fep->tx_queue[q];
1013 bdp = txq->bd.base;
1014 txq->bd.cur = bdp;
1015
1016 for (i = 0; i < txq->bd.ring_size; i++) {
1017 /* Initialize the BD for every fragment in the page. */
1018 bdp->cbd_sc = cpu_to_fec16(0);
1019 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1020 if (bdp->cbd_bufaddr &&
1021 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1022 dma_unmap_single(&fep->pdev->dev,
1023 fec32_to_cpu(bdp->cbd_bufaddr),
1024 fec16_to_cpu(bdp->cbd_datlen),
1025 DMA_TO_DEVICE);
1026 if (txq->tx_buf[i].buf_p)
1027 dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1028 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1029 if (bdp->cbd_bufaddr)
1030 dma_unmap_single(&fep->pdev->dev,
1031 fec32_to_cpu(bdp->cbd_bufaddr),
1032 fec16_to_cpu(bdp->cbd_datlen),
1033 DMA_TO_DEVICE);
1034
1035 if (txq->tx_buf[i].buf_p)
1036 xdp_return_frame(txq->tx_buf[i].buf_p);
1037 } else {
1038 struct page *page = txq->tx_buf[i].buf_p;
1039
1040 if (page)
1041 page_pool_put_page(page->pp, page, 0, false);
1042 }
1043
1044 txq->tx_buf[i].buf_p = NULL;
1045 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1046 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1047 bdp->cbd_bufaddr = cpu_to_fec32(0);
1048 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1049 }
1050
1051 /* Set the last buffer to wrap */
1052 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1053 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1054 txq->dirty_tx = bdp;
1055 }
1056 }
1057
fec_enet_active_rxring(struct net_device * ndev)1058 static void fec_enet_active_rxring(struct net_device *ndev)
1059 {
1060 struct fec_enet_private *fep = netdev_priv(ndev);
1061 int i;
1062
1063 for (i = 0; i < fep->num_rx_queues; i++)
1064 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1065 }
1066
fec_enet_enable_ring(struct net_device * ndev)1067 static void fec_enet_enable_ring(struct net_device *ndev)
1068 {
1069 struct fec_enet_private *fep = netdev_priv(ndev);
1070 struct fec_enet_priv_tx_q *txq;
1071 struct fec_enet_priv_rx_q *rxq;
1072 int i;
1073
1074 for (i = 0; i < fep->num_rx_queues; i++) {
1075 rxq = fep->rx_queue[i];
1076 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1077 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1078
1079 /* enable DMA1/2 */
1080 if (i)
1081 writel(RCMR_MATCHEN | RCMR_CMP(i),
1082 fep->hwp + FEC_RCMR(i));
1083 }
1084
1085 for (i = 0; i < fep->num_tx_queues; i++) {
1086 txq = fep->tx_queue[i];
1087 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1088
1089 /* enable DMA1/2 */
1090 if (i)
1091 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1092 fep->hwp + FEC_DMA_CFG(i));
1093 }
1094 }
1095
1096 /* Whack a reset. We should wait for this.
1097 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1098 * instead of reset MAC itself.
1099 */
fec_ctrl_reset(struct fec_enet_private * fep,bool allow_wol)1100 static void fec_ctrl_reset(struct fec_enet_private *fep, bool allow_wol)
1101 {
1102 u32 val;
1103
1104 if (!allow_wol || !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1105 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1106 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1107 writel(0, fep->hwp + FEC_ECNTRL);
1108 } else {
1109 writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1110 udelay(10);
1111 }
1112 } else {
1113 val = readl(fep->hwp + FEC_ECNTRL);
1114 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1115 writel(val, fep->hwp + FEC_ECNTRL);
1116 }
1117 }
1118
1119 /*
1120 * This function is called to start or restart the FEC during a link
1121 * change, transmit timeout, or to reconfigure the FEC. The network
1122 * packet processing for this device must be stopped before this call.
1123 */
1124 static void
fec_restart(struct net_device * ndev)1125 fec_restart(struct net_device *ndev)
1126 {
1127 struct fec_enet_private *fep = netdev_priv(ndev);
1128 u32 temp_mac[2];
1129 u32 rcntl = OPT_FRAME_SIZE | 0x04;
1130 u32 ecntl = FEC_ECR_ETHEREN;
1131
1132 if (fep->bufdesc_ex)
1133 fec_ptp_save_state(fep);
1134
1135 fec_ctrl_reset(fep, false);
1136
1137 /*
1138 * enet-mac reset will reset mac address registers too,
1139 * so need to reconfigure it.
1140 */
1141 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1142 writel((__force u32)cpu_to_be32(temp_mac[0]),
1143 fep->hwp + FEC_ADDR_LOW);
1144 writel((__force u32)cpu_to_be32(temp_mac[1]),
1145 fep->hwp + FEC_ADDR_HIGH);
1146
1147 /* Clear any outstanding interrupt, except MDIO. */
1148 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1149
1150 fec_enet_bd_init(ndev);
1151
1152 fec_enet_enable_ring(ndev);
1153
1154 /* Enable MII mode */
1155 if (fep->full_duplex == DUPLEX_FULL) {
1156 /* FD enable */
1157 writel(0x04, fep->hwp + FEC_X_CNTRL);
1158 } else {
1159 /* No Rcv on Xmit */
1160 rcntl |= 0x02;
1161 writel(0x0, fep->hwp + FEC_X_CNTRL);
1162 }
1163
1164 /* Set MII speed */
1165 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1166
1167 #if !defined(CONFIG_M5272)
1168 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1169 u32 val = readl(fep->hwp + FEC_RACC);
1170
1171 /* align IP header */
1172 val |= FEC_RACC_SHIFT16;
1173 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1174 /* set RX checksum */
1175 val |= FEC_RACC_OPTIONS;
1176 else
1177 val &= ~FEC_RACC_OPTIONS;
1178 writel(val, fep->hwp + FEC_RACC);
1179 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1180 }
1181 #endif
1182
1183 /*
1184 * The phy interface and speed need to get configured
1185 * differently on enet-mac.
1186 */
1187 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1188 /* Enable flow control and length check */
1189 rcntl |= 0x40000000 | 0x00000020;
1190
1191 /* RGMII, RMII or MII */
1192 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1193 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1194 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1195 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1196 rcntl |= (1 << 6);
1197 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1198 rcntl |= FEC_RCR_RMII;
1199 else
1200 rcntl &= ~FEC_RCR_RMII;
1201
1202 /* 1G, 100M or 10M */
1203 if (ndev->phydev) {
1204 if (ndev->phydev->speed == SPEED_1000)
1205 ecntl |= (1 << 5);
1206 else if (ndev->phydev->speed == SPEED_100)
1207 rcntl &= ~FEC_RCR_10BASET;
1208 else
1209 rcntl |= FEC_RCR_10BASET;
1210 }
1211 } else {
1212 #ifdef FEC_MIIGSK_ENR
1213 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1214 u32 cfgr;
1215 /* disable the gasket and wait */
1216 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1217 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1218 udelay(1);
1219
1220 /*
1221 * configure the gasket:
1222 * RMII, 50 MHz, no loopback, no echo
1223 * MII, 25 MHz, no loopback, no echo
1224 */
1225 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1226 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1227 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1228 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1229 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1230
1231 /* re-enable the gasket */
1232 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1233 }
1234 #endif
1235 }
1236
1237 #if !defined(CONFIG_M5272)
1238 /* enable pause frame*/
1239 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1240 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1241 ndev->phydev && ndev->phydev->pause)) {
1242 rcntl |= FEC_RCR_FLOWCTL;
1243
1244 /* set FIFO threshold parameter to reduce overrun */
1245 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1246 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1247 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1248 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1249
1250 /* OPD */
1251 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1252 } else {
1253 rcntl &= ~FEC_RCR_FLOWCTL;
1254 }
1255 #endif /* !defined(CONFIG_M5272) */
1256
1257 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1258
1259 /* Setup multicast filter. */
1260 set_multicast_list(ndev);
1261 #ifndef CONFIG_M5272
1262 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1263 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1264 #endif
1265
1266 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1267 /* enable ENET endian swap */
1268 ecntl |= FEC_ECR_BYTESWP;
1269 /* enable ENET store and forward mode */
1270 writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1271 }
1272
1273 if (fep->bufdesc_ex)
1274 ecntl |= FEC_ECR_EN1588;
1275
1276 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1277 fep->rgmii_txc_dly)
1278 ecntl |= FEC_ENET_TXC_DLY;
1279 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1280 fep->rgmii_rxc_dly)
1281 ecntl |= FEC_ENET_RXC_DLY;
1282
1283 #ifndef CONFIG_M5272
1284 /* Enable the MIB statistic event counters */
1285 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1286 #endif
1287
1288 /* And last, enable the transmit and receive processing */
1289 writel(ecntl, fep->hwp + FEC_ECNTRL);
1290 fec_enet_active_rxring(ndev);
1291
1292 if (fep->bufdesc_ex) {
1293 fec_ptp_start_cyclecounter(ndev);
1294 fec_ptp_restore_state(fep);
1295 }
1296
1297 /* Enable interrupts we wish to service */
1298 if (fep->link)
1299 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1300 else
1301 writel(0, fep->hwp + FEC_IMASK);
1302
1303 /* Init the interrupt coalescing */
1304 if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1305 fec_enet_itr_coal_set(ndev);
1306 }
1307
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1308 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1309 {
1310 if (!(of_machine_is_compatible("fsl,imx8qm") ||
1311 of_machine_is_compatible("fsl,imx8qxp") ||
1312 of_machine_is_compatible("fsl,imx8dxl")))
1313 return 0;
1314
1315 return imx_scu_get_handle(&fep->ipc_handle);
1316 }
1317
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1318 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1319 {
1320 struct device_node *np = fep->pdev->dev.of_node;
1321 u32 rsrc_id, val;
1322 int idx;
1323
1324 if (!np || !fep->ipc_handle)
1325 return;
1326
1327 idx = of_alias_get_id(np, "ethernet");
1328 if (idx < 0)
1329 idx = 0;
1330 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1331
1332 val = enabled ? 1 : 0;
1333 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1334 }
1335
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1336 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1337 {
1338 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1339 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1340
1341 if (stop_gpr->gpr) {
1342 if (enabled)
1343 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1344 BIT(stop_gpr->bit),
1345 BIT(stop_gpr->bit));
1346 else
1347 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1348 BIT(stop_gpr->bit), 0);
1349 } else if (pdata && pdata->sleep_mode_enable) {
1350 pdata->sleep_mode_enable(enabled);
1351 } else {
1352 fec_enet_ipg_stop_set(fep, enabled);
1353 }
1354 }
1355
fec_irqs_disable(struct net_device * ndev)1356 static void fec_irqs_disable(struct net_device *ndev)
1357 {
1358 struct fec_enet_private *fep = netdev_priv(ndev);
1359
1360 writel(0, fep->hwp + FEC_IMASK);
1361 }
1362
fec_irqs_disable_except_wakeup(struct net_device * ndev)1363 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1364 {
1365 struct fec_enet_private *fep = netdev_priv(ndev);
1366
1367 writel(0, fep->hwp + FEC_IMASK);
1368 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1369 }
1370
1371 static void
fec_stop(struct net_device * ndev)1372 fec_stop(struct net_device *ndev)
1373 {
1374 struct fec_enet_private *fep = netdev_priv(ndev);
1375 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1376 u32 val;
1377
1378 /* We cannot expect a graceful transmit stop without link !!! */
1379 if (fep->link) {
1380 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1381 udelay(10);
1382 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1383 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1384 }
1385
1386 if (fep->bufdesc_ex)
1387 fec_ptp_save_state(fep);
1388
1389 fec_ctrl_reset(fep, true);
1390 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1391 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1392
1393 /* We have to keep ENET enabled to have MII interrupt stay working */
1394 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1395 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1396 writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1397 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1398 }
1399
1400 if (fep->bufdesc_ex) {
1401 val = readl(fep->hwp + FEC_ECNTRL);
1402 val |= FEC_ECR_EN1588;
1403 writel(val, fep->hwp + FEC_ECNTRL);
1404
1405 fec_ptp_start_cyclecounter(ndev);
1406 fec_ptp_restore_state(fep);
1407 }
1408 }
1409
1410 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1411 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1412 {
1413 struct fec_enet_private *fep = netdev_priv(ndev);
1414
1415 fec_dump(ndev);
1416
1417 ndev->stats.tx_errors++;
1418
1419 schedule_work(&fep->tx_timeout_work);
1420 }
1421
fec_enet_timeout_work(struct work_struct * work)1422 static void fec_enet_timeout_work(struct work_struct *work)
1423 {
1424 struct fec_enet_private *fep =
1425 container_of(work, struct fec_enet_private, tx_timeout_work);
1426 struct net_device *ndev = fep->netdev;
1427
1428 rtnl_lock();
1429 if (netif_device_present(ndev) || netif_running(ndev)) {
1430 napi_disable(&fep->napi);
1431 netif_tx_lock_bh(ndev);
1432 fec_restart(ndev);
1433 netif_tx_wake_all_queues(ndev);
1434 netif_tx_unlock_bh(ndev);
1435 napi_enable(&fep->napi);
1436 }
1437 rtnl_unlock();
1438 }
1439
1440 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1441 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1442 struct skb_shared_hwtstamps *hwtstamps)
1443 {
1444 unsigned long flags;
1445 u64 ns;
1446
1447 spin_lock_irqsave(&fep->tmreg_lock, flags);
1448 ns = timecounter_cyc2time(&fep->tc, ts);
1449 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1450
1451 memset(hwtstamps, 0, sizeof(*hwtstamps));
1452 hwtstamps->hwtstamp = ns_to_ktime(ns);
1453 }
1454
1455 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1456 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1457 {
1458 struct fec_enet_private *fep;
1459 struct xdp_frame *xdpf;
1460 struct bufdesc *bdp;
1461 unsigned short status;
1462 struct sk_buff *skb;
1463 struct fec_enet_priv_tx_q *txq;
1464 struct netdev_queue *nq;
1465 int index = 0;
1466 int entries_free;
1467 struct page *page;
1468 int frame_len;
1469
1470 fep = netdev_priv(ndev);
1471
1472 txq = fep->tx_queue[queue_id];
1473 /* get next bdp of dirty_tx */
1474 nq = netdev_get_tx_queue(ndev, queue_id);
1475 bdp = txq->dirty_tx;
1476
1477 /* get next bdp of dirty_tx */
1478 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1479
1480 while (bdp != READ_ONCE(txq->bd.cur)) {
1481 /* Order the load of bd.cur and cbd_sc */
1482 rmb();
1483 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1484 if (status & BD_ENET_TX_READY)
1485 break;
1486
1487 index = fec_enet_get_bd_index(bdp, &txq->bd);
1488
1489 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1490 skb = txq->tx_buf[index].buf_p;
1491 if (bdp->cbd_bufaddr &&
1492 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1493 dma_unmap_single(&fep->pdev->dev,
1494 fec32_to_cpu(bdp->cbd_bufaddr),
1495 fec16_to_cpu(bdp->cbd_datlen),
1496 DMA_TO_DEVICE);
1497 bdp->cbd_bufaddr = cpu_to_fec32(0);
1498 if (!skb)
1499 goto tx_buf_done;
1500 } else {
1501 /* Tx processing cannot call any XDP (or page pool) APIs if
1502 * the "budget" is 0. Because NAPI is called with budget of
1503 * 0 (such as netpoll) indicates we may be in an IRQ context,
1504 * however, we can't use the page pool from IRQ context.
1505 */
1506 if (unlikely(!budget))
1507 break;
1508
1509 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1510 xdpf = txq->tx_buf[index].buf_p;
1511 if (bdp->cbd_bufaddr)
1512 dma_unmap_single(&fep->pdev->dev,
1513 fec32_to_cpu(bdp->cbd_bufaddr),
1514 fec16_to_cpu(bdp->cbd_datlen),
1515 DMA_TO_DEVICE);
1516 } else {
1517 page = txq->tx_buf[index].buf_p;
1518 }
1519
1520 bdp->cbd_bufaddr = cpu_to_fec32(0);
1521 if (unlikely(!txq->tx_buf[index].buf_p)) {
1522 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1523 goto tx_buf_done;
1524 }
1525
1526 frame_len = fec16_to_cpu(bdp->cbd_datlen);
1527 }
1528
1529 /* Check for errors. */
1530 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1531 BD_ENET_TX_RL | BD_ENET_TX_UN |
1532 BD_ENET_TX_CSL)) {
1533 ndev->stats.tx_errors++;
1534 if (status & BD_ENET_TX_HB) /* No heartbeat */
1535 ndev->stats.tx_heartbeat_errors++;
1536 if (status & BD_ENET_TX_LC) /* Late collision */
1537 ndev->stats.tx_window_errors++;
1538 if (status & BD_ENET_TX_RL) /* Retrans limit */
1539 ndev->stats.tx_aborted_errors++;
1540 if (status & BD_ENET_TX_UN) /* Underrun */
1541 ndev->stats.tx_fifo_errors++;
1542 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1543 ndev->stats.tx_carrier_errors++;
1544 } else {
1545 ndev->stats.tx_packets++;
1546
1547 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1548 ndev->stats.tx_bytes += skb->len;
1549 else
1550 ndev->stats.tx_bytes += frame_len;
1551 }
1552
1553 /* Deferred means some collisions occurred during transmit,
1554 * but we eventually sent the packet OK.
1555 */
1556 if (status & BD_ENET_TX_DEF)
1557 ndev->stats.collisions++;
1558
1559 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1560 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1561 * are to time stamp the packet, so we still need to check time
1562 * stamping enabled flag.
1563 */
1564 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1565 fep->hwts_tx_en) && fep->bufdesc_ex) {
1566 struct skb_shared_hwtstamps shhwtstamps;
1567 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1568
1569 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1570 skb_tstamp_tx(skb, &shhwtstamps);
1571 }
1572
1573 /* Free the sk buffer associated with this last transmit */
1574 napi_consume_skb(skb, budget);
1575 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1576 xdp_return_frame_rx_napi(xdpf);
1577 } else { /* recycle pages of XDP_TX frames */
1578 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1579 page_pool_put_page(page->pp, page, 0, true);
1580 }
1581
1582 txq->tx_buf[index].buf_p = NULL;
1583 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1584 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1585
1586 tx_buf_done:
1587 /* Make sure the update to bdp and tx_buf are performed
1588 * before dirty_tx
1589 */
1590 wmb();
1591 txq->dirty_tx = bdp;
1592
1593 /* Update pointer to next buffer descriptor to be transmitted */
1594 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1595
1596 /* Since we have freed up a buffer, the ring is no longer full
1597 */
1598 if (netif_tx_queue_stopped(nq)) {
1599 entries_free = fec_enet_get_free_txdesc_num(txq);
1600 if (entries_free >= txq->tx_wake_threshold)
1601 netif_tx_wake_queue(nq);
1602 }
1603 }
1604
1605 /* ERR006358: Keep the transmitter going */
1606 if (bdp != txq->bd.cur &&
1607 readl(txq->bd.reg_desc_active) == 0)
1608 writel(0, txq->bd.reg_desc_active);
1609 }
1610
fec_enet_tx(struct net_device * ndev,int budget)1611 static void fec_enet_tx(struct net_device *ndev, int budget)
1612 {
1613 struct fec_enet_private *fep = netdev_priv(ndev);
1614 int i;
1615
1616 /* Make sure that AVB queues are processed first. */
1617 for (i = fep->num_tx_queues - 1; i >= 0; i--)
1618 fec_enet_tx_queue(ndev, i, budget);
1619 }
1620
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1621 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1622 struct bufdesc *bdp, int index)
1623 {
1624 struct page *new_page;
1625 dma_addr_t phys_addr;
1626
1627 new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1628 if (unlikely(!new_page))
1629 return -ENOMEM;
1630
1631 rxq->rx_skb_info[index].page = new_page;
1632 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1633 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1634 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1635
1636 return 0;
1637 }
1638
1639 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1640 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1641 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1642 {
1643 unsigned int sync, len = xdp->data_end - xdp->data;
1644 u32 ret = FEC_ENET_XDP_PASS;
1645 struct page *page;
1646 int err;
1647 u32 act;
1648
1649 act = bpf_prog_run_xdp(prog, xdp);
1650
1651 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1652 * max len CPU touch
1653 */
1654 sync = xdp->data_end - xdp->data;
1655 sync = max(sync, len);
1656
1657 switch (act) {
1658 case XDP_PASS:
1659 rxq->stats[RX_XDP_PASS]++;
1660 ret = FEC_ENET_XDP_PASS;
1661 break;
1662
1663 case XDP_REDIRECT:
1664 rxq->stats[RX_XDP_REDIRECT]++;
1665 err = xdp_do_redirect(fep->netdev, xdp, prog);
1666 if (unlikely(err))
1667 goto xdp_err;
1668
1669 ret = FEC_ENET_XDP_REDIR;
1670 break;
1671
1672 case XDP_TX:
1673 rxq->stats[RX_XDP_TX]++;
1674 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1675 if (unlikely(err)) {
1676 rxq->stats[RX_XDP_TX_ERRORS]++;
1677 goto xdp_err;
1678 }
1679
1680 ret = FEC_ENET_XDP_TX;
1681 break;
1682
1683 default:
1684 bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1685 fallthrough;
1686
1687 case XDP_ABORTED:
1688 fallthrough; /* handle aborts by dropping packet */
1689
1690 case XDP_DROP:
1691 rxq->stats[RX_XDP_DROP]++;
1692 xdp_err:
1693 ret = FEC_ENET_XDP_CONSUMED;
1694 page = virt_to_head_page(xdp->data);
1695 page_pool_put_page(rxq->page_pool, page, sync, true);
1696 if (act != XDP_DROP)
1697 trace_xdp_exception(fep->netdev, prog, act);
1698 break;
1699 }
1700
1701 return ret;
1702 }
1703
1704 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1705 * When we update through the ring, if the next incoming buffer has
1706 * not been given to the system, we just set the empty indicator,
1707 * effectively tossing the packet.
1708 */
1709 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1710 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1711 {
1712 struct fec_enet_private *fep = netdev_priv(ndev);
1713 struct fec_enet_priv_rx_q *rxq;
1714 struct bufdesc *bdp;
1715 unsigned short status;
1716 struct sk_buff *skb;
1717 ushort pkt_len;
1718 __u8 *data;
1719 int pkt_received = 0;
1720 struct bufdesc_ex *ebdp = NULL;
1721 bool vlan_packet_rcvd = false;
1722 u16 vlan_tag;
1723 int index = 0;
1724 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1725 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1726 u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1727 u32 data_start = FEC_ENET_XDP_HEADROOM;
1728 int cpu = smp_processor_id();
1729 struct xdp_buff xdp;
1730 struct page *page;
1731 __fec32 cbd_bufaddr;
1732 u32 sub_len = 4;
1733
1734 #if !defined(CONFIG_M5272)
1735 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1736 * FEC_RACC_SHIFT16 is set by default in the probe function.
1737 */
1738 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1739 data_start += 2;
1740 sub_len += 2;
1741 }
1742 #endif
1743
1744 #if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1745 /*
1746 * Hacky flush of all caches instead of using the DMA API for the TSO
1747 * headers.
1748 */
1749 flush_cache_all();
1750 #endif
1751 rxq = fep->rx_queue[queue_id];
1752
1753 /* First, grab all of the stats for the incoming packet.
1754 * These get messed up if we get called due to a busy condition.
1755 */
1756 bdp = rxq->bd.cur;
1757 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1758
1759 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1760
1761 if (pkt_received >= budget)
1762 break;
1763 pkt_received++;
1764
1765 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1766
1767 /* Check for errors. */
1768 status ^= BD_ENET_RX_LAST;
1769 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1770 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1771 BD_ENET_RX_CL)) {
1772 ndev->stats.rx_errors++;
1773 if (status & BD_ENET_RX_OV) {
1774 /* FIFO overrun */
1775 ndev->stats.rx_fifo_errors++;
1776 goto rx_processing_done;
1777 }
1778 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1779 | BD_ENET_RX_LAST)) {
1780 /* Frame too long or too short. */
1781 ndev->stats.rx_length_errors++;
1782 if (status & BD_ENET_RX_LAST)
1783 netdev_err(ndev, "rcv is not +last\n");
1784 }
1785 if (status & BD_ENET_RX_CR) /* CRC Error */
1786 ndev->stats.rx_crc_errors++;
1787 /* Report late collisions as a frame error. */
1788 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1789 ndev->stats.rx_frame_errors++;
1790 goto rx_processing_done;
1791 }
1792
1793 /* Process the incoming frame. */
1794 ndev->stats.rx_packets++;
1795 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1796 ndev->stats.rx_bytes += pkt_len;
1797
1798 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1799 page = rxq->rx_skb_info[index].page;
1800 cbd_bufaddr = bdp->cbd_bufaddr;
1801 if (fec_enet_update_cbd(rxq, bdp, index)) {
1802 ndev->stats.rx_dropped++;
1803 goto rx_processing_done;
1804 }
1805
1806 dma_sync_single_for_cpu(&fep->pdev->dev,
1807 fec32_to_cpu(cbd_bufaddr),
1808 pkt_len,
1809 DMA_FROM_DEVICE);
1810 prefetch(page_address(page));
1811
1812 if (xdp_prog) {
1813 xdp_buff_clear_frags_flag(&xdp);
1814 /* subtract 16bit shift and FCS */
1815 xdp_prepare_buff(&xdp, page_address(page),
1816 data_start, pkt_len - sub_len, false);
1817 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1818 xdp_result |= ret;
1819 if (ret != FEC_ENET_XDP_PASS)
1820 goto rx_processing_done;
1821 }
1822
1823 /* The packet length includes FCS, but we don't want to
1824 * include that when passing upstream as it messes up
1825 * bridging applications.
1826 */
1827 skb = build_skb(page_address(page), PAGE_SIZE);
1828 if (unlikely(!skb)) {
1829 page_pool_recycle_direct(rxq->page_pool, page);
1830 ndev->stats.rx_dropped++;
1831
1832 netdev_err_once(ndev, "build_skb failed!\n");
1833 goto rx_processing_done;
1834 }
1835
1836 skb_reserve(skb, data_start);
1837 skb_put(skb, pkt_len - sub_len);
1838 skb_mark_for_recycle(skb);
1839
1840 if (unlikely(need_swap)) {
1841 data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1842 swap_buffer(data, pkt_len);
1843 }
1844 data = skb->data;
1845
1846 /* Extract the enhanced buffer descriptor */
1847 ebdp = NULL;
1848 if (fep->bufdesc_ex)
1849 ebdp = (struct bufdesc_ex *)bdp;
1850
1851 /* If this is a VLAN packet remove the VLAN Tag */
1852 vlan_packet_rcvd = false;
1853 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1854 fep->bufdesc_ex &&
1855 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1856 /* Push and remove the vlan tag */
1857 struct vlan_hdr *vlan_header =
1858 (struct vlan_hdr *) (data + ETH_HLEN);
1859 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1860
1861 vlan_packet_rcvd = true;
1862
1863 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1864 skb_pull(skb, VLAN_HLEN);
1865 }
1866
1867 skb->protocol = eth_type_trans(skb, ndev);
1868
1869 /* Get receive timestamp from the skb */
1870 if (fep->hwts_rx_en && fep->bufdesc_ex)
1871 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1872 skb_hwtstamps(skb));
1873
1874 if (fep->bufdesc_ex &&
1875 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1876 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1877 /* don't check it */
1878 skb->ip_summed = CHECKSUM_UNNECESSARY;
1879 } else {
1880 skb_checksum_none_assert(skb);
1881 }
1882 }
1883
1884 /* Handle received VLAN packets */
1885 if (vlan_packet_rcvd)
1886 __vlan_hwaccel_put_tag(skb,
1887 htons(ETH_P_8021Q),
1888 vlan_tag);
1889
1890 skb_record_rx_queue(skb, queue_id);
1891 napi_gro_receive(&fep->napi, skb);
1892
1893 rx_processing_done:
1894 /* Clear the status flags for this buffer */
1895 status &= ~BD_ENET_RX_STATS;
1896
1897 /* Mark the buffer empty */
1898 status |= BD_ENET_RX_EMPTY;
1899
1900 if (fep->bufdesc_ex) {
1901 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1902
1903 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1904 ebdp->cbd_prot = 0;
1905 ebdp->cbd_bdu = 0;
1906 }
1907 /* Make sure the updates to rest of the descriptor are
1908 * performed before transferring ownership.
1909 */
1910 wmb();
1911 bdp->cbd_sc = cpu_to_fec16(status);
1912
1913 /* Update BD pointer to next entry */
1914 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1915
1916 /* Doing this here will keep the FEC running while we process
1917 * incoming frames. On a heavily loaded network, we should be
1918 * able to keep up at the expense of system resources.
1919 */
1920 writel(0, rxq->bd.reg_desc_active);
1921 }
1922 rxq->bd.cur = bdp;
1923
1924 if (xdp_result & FEC_ENET_XDP_REDIR)
1925 xdp_do_flush();
1926
1927 return pkt_received;
1928 }
1929
fec_enet_rx(struct net_device * ndev,int budget)1930 static int fec_enet_rx(struct net_device *ndev, int budget)
1931 {
1932 struct fec_enet_private *fep = netdev_priv(ndev);
1933 int i, done = 0;
1934
1935 /* Make sure that AVB queues are processed first. */
1936 for (i = fep->num_rx_queues - 1; i >= 0; i--)
1937 done += fec_enet_rx_queue(ndev, budget - done, i);
1938
1939 return done;
1940 }
1941
fec_enet_collect_events(struct fec_enet_private * fep)1942 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1943 {
1944 uint int_events;
1945
1946 int_events = readl(fep->hwp + FEC_IEVENT);
1947
1948 /* Don't clear MDIO events, we poll for those */
1949 int_events &= ~FEC_ENET_MII;
1950
1951 writel(int_events, fep->hwp + FEC_IEVENT);
1952
1953 return int_events != 0;
1954 }
1955
1956 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1957 fec_enet_interrupt(int irq, void *dev_id)
1958 {
1959 struct net_device *ndev = dev_id;
1960 struct fec_enet_private *fep = netdev_priv(ndev);
1961 irqreturn_t ret = IRQ_NONE;
1962
1963 if (fec_enet_collect_events(fep) && fep->link) {
1964 ret = IRQ_HANDLED;
1965
1966 if (napi_schedule_prep(&fep->napi)) {
1967 /* Disable interrupts */
1968 writel(0, fep->hwp + FEC_IMASK);
1969 __napi_schedule(&fep->napi);
1970 }
1971 }
1972
1973 return ret;
1974 }
1975
fec_enet_rx_napi(struct napi_struct * napi,int budget)1976 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1977 {
1978 struct net_device *ndev = napi->dev;
1979 struct fec_enet_private *fep = netdev_priv(ndev);
1980 int done = 0;
1981
1982 do {
1983 done += fec_enet_rx(ndev, budget - done);
1984 fec_enet_tx(ndev, budget);
1985 } while ((done < budget) && fec_enet_collect_events(fep));
1986
1987 if (done < budget) {
1988 napi_complete_done(napi, done);
1989 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1990 }
1991
1992 return done;
1993 }
1994
1995 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1996 static int fec_get_mac(struct net_device *ndev)
1997 {
1998 struct fec_enet_private *fep = netdev_priv(ndev);
1999 unsigned char *iap, tmpaddr[ETH_ALEN];
2000 int ret;
2001
2002 /*
2003 * try to get mac address in following order:
2004 *
2005 * 1) module parameter via kernel command line in form
2006 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2007 */
2008 iap = macaddr;
2009
2010 /*
2011 * 2) from device tree data
2012 */
2013 if (!is_valid_ether_addr(iap)) {
2014 struct device_node *np = fep->pdev->dev.of_node;
2015 if (np) {
2016 ret = of_get_mac_address(np, tmpaddr);
2017 if (!ret)
2018 iap = tmpaddr;
2019 else if (ret == -EPROBE_DEFER)
2020 return ret;
2021 }
2022 }
2023
2024 /*
2025 * 3) from flash or fuse (via platform data)
2026 */
2027 if (!is_valid_ether_addr(iap)) {
2028 #ifdef CONFIG_M5272
2029 if (FEC_FLASHMAC)
2030 iap = (unsigned char *)FEC_FLASHMAC;
2031 #else
2032 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2033
2034 if (pdata)
2035 iap = (unsigned char *)&pdata->mac;
2036 #endif
2037 }
2038
2039 /*
2040 * 4) FEC mac registers set by bootloader
2041 */
2042 if (!is_valid_ether_addr(iap)) {
2043 *((__be32 *) &tmpaddr[0]) =
2044 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2045 *((__be16 *) &tmpaddr[4]) =
2046 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2047 iap = &tmpaddr[0];
2048 }
2049
2050 /*
2051 * 5) random mac address
2052 */
2053 if (!is_valid_ether_addr(iap)) {
2054 /* Report it and use a random ethernet address instead */
2055 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2056 eth_hw_addr_random(ndev);
2057 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2058 ndev->dev_addr);
2059 return 0;
2060 }
2061
2062 /* Adjust MAC if using macaddr */
2063 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2064
2065 return 0;
2066 }
2067
2068 /* ------------------------------------------------------------------------- */
2069
2070 /*
2071 * Phy section
2072 */
2073
2074 /* LPI Sleep Ts count base on tx clk (clk_ref).
2075 * The lpi sleep cnt value = X us / (cycle_ns).
2076 */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)2077 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2078 {
2079 struct fec_enet_private *fep = netdev_priv(ndev);
2080
2081 return us * (fep->clk_ref_rate / 1000) / 1000;
2082 }
2083
fec_enet_eee_mode_set(struct net_device * ndev,u32 lpi_timer,bool enable)2084 static int fec_enet_eee_mode_set(struct net_device *ndev, u32 lpi_timer,
2085 bool enable)
2086 {
2087 struct fec_enet_private *fep = netdev_priv(ndev);
2088 unsigned int sleep_cycle, wake_cycle;
2089
2090 if (enable) {
2091 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, lpi_timer);
2092 wake_cycle = sleep_cycle;
2093 } else {
2094 sleep_cycle = 0;
2095 wake_cycle = 0;
2096 }
2097
2098 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2099 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2100
2101 return 0;
2102 }
2103
fec_enet_adjust_link(struct net_device * ndev)2104 static void fec_enet_adjust_link(struct net_device *ndev)
2105 {
2106 struct fec_enet_private *fep = netdev_priv(ndev);
2107 struct phy_device *phy_dev = ndev->phydev;
2108 int status_change = 0;
2109
2110 /*
2111 * If the netdev is down, or is going down, we're not interested
2112 * in link state events, so just mark our idea of the link as down
2113 * and ignore the event.
2114 */
2115 if (!netif_running(ndev) || !netif_device_present(ndev)) {
2116 fep->link = 0;
2117 } else if (phy_dev->link) {
2118 if (!fep->link) {
2119 fep->link = phy_dev->link;
2120 status_change = 1;
2121 }
2122
2123 if (fep->full_duplex != phy_dev->duplex) {
2124 fep->full_duplex = phy_dev->duplex;
2125 status_change = 1;
2126 }
2127
2128 if (phy_dev->speed != fep->speed) {
2129 fep->speed = phy_dev->speed;
2130 status_change = 1;
2131 }
2132
2133 /* if any of the above changed restart the FEC */
2134 if (status_change) {
2135 netif_stop_queue(ndev);
2136 napi_disable(&fep->napi);
2137 netif_tx_lock_bh(ndev);
2138 fec_restart(ndev);
2139 netif_tx_wake_all_queues(ndev);
2140 netif_tx_unlock_bh(ndev);
2141 napi_enable(&fep->napi);
2142 }
2143 if (fep->quirks & FEC_QUIRK_HAS_EEE)
2144 fec_enet_eee_mode_set(ndev,
2145 phy_dev->eee_cfg.tx_lpi_timer,
2146 phy_dev->enable_tx_lpi);
2147 } else {
2148 if (fep->link) {
2149 netif_stop_queue(ndev);
2150 napi_disable(&fep->napi);
2151 netif_tx_lock_bh(ndev);
2152 fec_stop(ndev);
2153 netif_tx_unlock_bh(ndev);
2154 napi_enable(&fep->napi);
2155 fep->link = phy_dev->link;
2156 status_change = 1;
2157 }
2158 }
2159
2160 if (status_change)
2161 phy_print_status(phy_dev);
2162 }
2163
fec_enet_mdio_wait(struct fec_enet_private * fep)2164 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2165 {
2166 uint ievent;
2167 int ret;
2168
2169 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2170 ievent & FEC_ENET_MII, 2, 30000);
2171
2172 if (!ret)
2173 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2174
2175 return ret;
2176 }
2177
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2178 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2179 {
2180 struct fec_enet_private *fep = bus->priv;
2181 struct device *dev = &fep->pdev->dev;
2182 int ret = 0, frame_start, frame_addr, frame_op;
2183
2184 ret = pm_runtime_resume_and_get(dev);
2185 if (ret < 0)
2186 return ret;
2187
2188 /* C22 read */
2189 frame_op = FEC_MMFR_OP_READ;
2190 frame_start = FEC_MMFR_ST;
2191 frame_addr = regnum;
2192
2193 /* start a read op */
2194 writel(frame_start | frame_op |
2195 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2196 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2197
2198 /* wait for end of transfer */
2199 ret = fec_enet_mdio_wait(fep);
2200 if (ret) {
2201 netdev_err(fep->netdev, "MDIO read timeout\n");
2202 goto out;
2203 }
2204
2205 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2206
2207 out:
2208 pm_runtime_mark_last_busy(dev);
2209 pm_runtime_put_autosuspend(dev);
2210
2211 return ret;
2212 }
2213
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2214 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2215 int devad, int regnum)
2216 {
2217 struct fec_enet_private *fep = bus->priv;
2218 struct device *dev = &fep->pdev->dev;
2219 int ret = 0, frame_start, frame_op;
2220
2221 ret = pm_runtime_resume_and_get(dev);
2222 if (ret < 0)
2223 return ret;
2224
2225 frame_start = FEC_MMFR_ST_C45;
2226
2227 /* write address */
2228 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2229 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2230 FEC_MMFR_TA | (regnum & 0xFFFF),
2231 fep->hwp + FEC_MII_DATA);
2232
2233 /* wait for end of transfer */
2234 ret = fec_enet_mdio_wait(fep);
2235 if (ret) {
2236 netdev_err(fep->netdev, "MDIO address write timeout\n");
2237 goto out;
2238 }
2239
2240 frame_op = FEC_MMFR_OP_READ_C45;
2241
2242 /* start a read op */
2243 writel(frame_start | frame_op |
2244 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2245 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2246
2247 /* wait for end of transfer */
2248 ret = fec_enet_mdio_wait(fep);
2249 if (ret) {
2250 netdev_err(fep->netdev, "MDIO read timeout\n");
2251 goto out;
2252 }
2253
2254 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2255
2256 out:
2257 pm_runtime_mark_last_busy(dev);
2258 pm_runtime_put_autosuspend(dev);
2259
2260 return ret;
2261 }
2262
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2263 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2264 u16 value)
2265 {
2266 struct fec_enet_private *fep = bus->priv;
2267 struct device *dev = &fep->pdev->dev;
2268 int ret, frame_start, frame_addr;
2269
2270 ret = pm_runtime_resume_and_get(dev);
2271 if (ret < 0)
2272 return ret;
2273
2274 /* C22 write */
2275 frame_start = FEC_MMFR_ST;
2276 frame_addr = regnum;
2277
2278 /* start a write op */
2279 writel(frame_start | FEC_MMFR_OP_WRITE |
2280 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2281 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2282 fep->hwp + FEC_MII_DATA);
2283
2284 /* wait for end of transfer */
2285 ret = fec_enet_mdio_wait(fep);
2286 if (ret)
2287 netdev_err(fep->netdev, "MDIO write timeout\n");
2288
2289 pm_runtime_mark_last_busy(dev);
2290 pm_runtime_put_autosuspend(dev);
2291
2292 return ret;
2293 }
2294
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2295 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2296 int devad, int regnum, u16 value)
2297 {
2298 struct fec_enet_private *fep = bus->priv;
2299 struct device *dev = &fep->pdev->dev;
2300 int ret, frame_start;
2301
2302 ret = pm_runtime_resume_and_get(dev);
2303 if (ret < 0)
2304 return ret;
2305
2306 frame_start = FEC_MMFR_ST_C45;
2307
2308 /* write address */
2309 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2310 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2311 FEC_MMFR_TA | (regnum & 0xFFFF),
2312 fep->hwp + FEC_MII_DATA);
2313
2314 /* wait for end of transfer */
2315 ret = fec_enet_mdio_wait(fep);
2316 if (ret) {
2317 netdev_err(fep->netdev, "MDIO address write timeout\n");
2318 goto out;
2319 }
2320
2321 /* start a write op */
2322 writel(frame_start | FEC_MMFR_OP_WRITE |
2323 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2324 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2325 fep->hwp + FEC_MII_DATA);
2326
2327 /* wait for end of transfer */
2328 ret = fec_enet_mdio_wait(fep);
2329 if (ret)
2330 netdev_err(fep->netdev, "MDIO write timeout\n");
2331
2332 out:
2333 pm_runtime_mark_last_busy(dev);
2334 pm_runtime_put_autosuspend(dev);
2335
2336 return ret;
2337 }
2338
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2339 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2340 {
2341 struct fec_enet_private *fep = netdev_priv(ndev);
2342 struct phy_device *phy_dev = ndev->phydev;
2343
2344 if (phy_dev) {
2345 phy_reset_after_clk_enable(phy_dev);
2346 } else if (fep->phy_node) {
2347 /*
2348 * If the PHY still is not bound to the MAC, but there is
2349 * OF PHY node and a matching PHY device instance already,
2350 * use the OF PHY node to obtain the PHY device instance,
2351 * and then use that PHY device instance when triggering
2352 * the PHY reset.
2353 */
2354 phy_dev = of_phy_find_device(fep->phy_node);
2355 phy_reset_after_clk_enable(phy_dev);
2356 put_device(&phy_dev->mdio.dev);
2357 }
2358 }
2359
fec_enet_clk_enable(struct net_device * ndev,bool enable)2360 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2361 {
2362 struct fec_enet_private *fep = netdev_priv(ndev);
2363 int ret;
2364
2365 if (enable) {
2366 ret = clk_prepare_enable(fep->clk_enet_out);
2367 if (ret)
2368 return ret;
2369
2370 if (fep->clk_ptp) {
2371 mutex_lock(&fep->ptp_clk_mutex);
2372 ret = clk_prepare_enable(fep->clk_ptp);
2373 if (ret) {
2374 mutex_unlock(&fep->ptp_clk_mutex);
2375 goto failed_clk_ptp;
2376 } else {
2377 fep->ptp_clk_on = true;
2378 }
2379 mutex_unlock(&fep->ptp_clk_mutex);
2380 }
2381
2382 ret = clk_prepare_enable(fep->clk_ref);
2383 if (ret)
2384 goto failed_clk_ref;
2385
2386 ret = clk_prepare_enable(fep->clk_2x_txclk);
2387 if (ret)
2388 goto failed_clk_2x_txclk;
2389
2390 fec_enet_phy_reset_after_clk_enable(ndev);
2391 } else {
2392 clk_disable_unprepare(fep->clk_enet_out);
2393 if (fep->clk_ptp) {
2394 mutex_lock(&fep->ptp_clk_mutex);
2395 clk_disable_unprepare(fep->clk_ptp);
2396 fep->ptp_clk_on = false;
2397 mutex_unlock(&fep->ptp_clk_mutex);
2398 }
2399 clk_disable_unprepare(fep->clk_ref);
2400 clk_disable_unprepare(fep->clk_2x_txclk);
2401 }
2402
2403 return 0;
2404
2405 failed_clk_2x_txclk:
2406 if (fep->clk_ref)
2407 clk_disable_unprepare(fep->clk_ref);
2408 failed_clk_ref:
2409 if (fep->clk_ptp) {
2410 mutex_lock(&fep->ptp_clk_mutex);
2411 clk_disable_unprepare(fep->clk_ptp);
2412 fep->ptp_clk_on = false;
2413 mutex_unlock(&fep->ptp_clk_mutex);
2414 }
2415 failed_clk_ptp:
2416 clk_disable_unprepare(fep->clk_enet_out);
2417
2418 return ret;
2419 }
2420
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2421 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2422 struct device_node *np)
2423 {
2424 u32 rgmii_tx_delay, rgmii_rx_delay;
2425
2426 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2427 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2428 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2429 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2430 return -EINVAL;
2431 } else if (rgmii_tx_delay == 2000) {
2432 fep->rgmii_txc_dly = true;
2433 }
2434 }
2435
2436 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2437 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2438 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2439 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2440 return -EINVAL;
2441 } else if (rgmii_rx_delay == 2000) {
2442 fep->rgmii_rxc_dly = true;
2443 }
2444 }
2445
2446 return 0;
2447 }
2448
fec_enet_mii_probe(struct net_device * ndev)2449 static int fec_enet_mii_probe(struct net_device *ndev)
2450 {
2451 struct fec_enet_private *fep = netdev_priv(ndev);
2452 struct phy_device *phy_dev = NULL;
2453 char mdio_bus_id[MII_BUS_ID_SIZE];
2454 char phy_name[MII_BUS_ID_SIZE + 3];
2455 int phy_id;
2456 int dev_id = fep->dev_id;
2457
2458 if (fep->phy_node) {
2459 phy_dev = of_phy_connect(ndev, fep->phy_node,
2460 &fec_enet_adjust_link, 0,
2461 fep->phy_interface);
2462 if (!phy_dev) {
2463 netdev_err(ndev, "Unable to connect to phy\n");
2464 return -ENODEV;
2465 }
2466 } else {
2467 /* check for attached phy */
2468 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2469 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2470 continue;
2471 if (dev_id--)
2472 continue;
2473 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2474 break;
2475 }
2476
2477 if (phy_id >= PHY_MAX_ADDR) {
2478 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2479 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2480 phy_id = 0;
2481 }
2482
2483 snprintf(phy_name, sizeof(phy_name),
2484 PHY_ID_FMT, mdio_bus_id, phy_id);
2485 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2486 fep->phy_interface);
2487 }
2488
2489 if (IS_ERR(phy_dev)) {
2490 netdev_err(ndev, "could not attach to PHY\n");
2491 return PTR_ERR(phy_dev);
2492 }
2493
2494 /* mask with MAC supported features */
2495 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2496 phy_set_max_speed(phy_dev, 1000);
2497 phy_remove_link_mode(phy_dev,
2498 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2499 #if !defined(CONFIG_M5272)
2500 phy_support_sym_pause(phy_dev);
2501 #endif
2502 }
2503 else
2504 phy_set_max_speed(phy_dev, 100);
2505
2506 if (fep->quirks & FEC_QUIRK_HAS_EEE)
2507 phy_support_eee(phy_dev);
2508
2509 fep->link = 0;
2510 fep->full_duplex = 0;
2511
2512 phy_attached_info(phy_dev);
2513
2514 return 0;
2515 }
2516
fec_enet_mii_init(struct platform_device * pdev)2517 static int fec_enet_mii_init(struct platform_device *pdev)
2518 {
2519 static struct mii_bus *fec0_mii_bus;
2520 struct net_device *ndev = platform_get_drvdata(pdev);
2521 struct fec_enet_private *fep = netdev_priv(ndev);
2522 bool suppress_preamble = false;
2523 struct phy_device *phydev;
2524 struct device_node *node;
2525 int err = -ENXIO;
2526 u32 mii_speed, holdtime;
2527 u32 bus_freq;
2528 int addr;
2529
2530 /*
2531 * The i.MX28 dual fec interfaces are not equal.
2532 * Here are the differences:
2533 *
2534 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2535 * - fec0 acts as the 1588 time master while fec1 is slave
2536 * - external phys can only be configured by fec0
2537 *
2538 * That is to say fec1 can not work independently. It only works
2539 * when fec0 is working. The reason behind this design is that the
2540 * second interface is added primarily for Switch mode.
2541 *
2542 * Because of the last point above, both phys are attached on fec0
2543 * mdio interface in board design, and need to be configured by
2544 * fec0 mii_bus.
2545 */
2546 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2547 /* fec1 uses fec0 mii_bus */
2548 if (mii_cnt && fec0_mii_bus) {
2549 fep->mii_bus = fec0_mii_bus;
2550 mii_cnt++;
2551 return 0;
2552 }
2553 return -ENOENT;
2554 }
2555
2556 bus_freq = 2500000; /* 2.5MHz by default */
2557 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2558 if (node) {
2559 of_property_read_u32(node, "clock-frequency", &bus_freq);
2560 suppress_preamble = of_property_read_bool(node,
2561 "suppress-preamble");
2562 }
2563
2564 /*
2565 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2566 *
2567 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2568 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2569 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2570 * document.
2571 */
2572 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2573 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2574 mii_speed--;
2575 if (mii_speed > 63) {
2576 dev_err(&pdev->dev,
2577 "fec clock (%lu) too fast to get right mii speed\n",
2578 clk_get_rate(fep->clk_ipg));
2579 err = -EINVAL;
2580 goto err_out;
2581 }
2582
2583 /*
2584 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2585 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2586 * versions are RAZ there, so just ignore the difference and write the
2587 * register always.
2588 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2589 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2590 * output.
2591 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2592 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2593 * holdtime cannot result in a value greater than 3.
2594 */
2595 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2596
2597 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2598
2599 if (suppress_preamble)
2600 fep->phy_speed |= BIT(7);
2601
2602 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2603 /* Clear MMFR to avoid to generate MII event by writing MSCR.
2604 * MII event generation condition:
2605 * - writing MSCR:
2606 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2607 * mscr_reg_data_in[7:0] != 0
2608 * - writing MMFR:
2609 * - mscr[7:0]_not_zero
2610 */
2611 writel(0, fep->hwp + FEC_MII_DATA);
2612 }
2613
2614 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2615
2616 /* Clear any pending transaction complete indication */
2617 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2618
2619 fep->mii_bus = mdiobus_alloc();
2620 if (fep->mii_bus == NULL) {
2621 err = -ENOMEM;
2622 goto err_out;
2623 }
2624
2625 fep->mii_bus->name = "fec_enet_mii_bus";
2626 fep->mii_bus->read = fec_enet_mdio_read_c22;
2627 fep->mii_bus->write = fec_enet_mdio_write_c22;
2628 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2629 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2630 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2631 }
2632 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2633 pdev->name, fep->dev_id + 1);
2634 fep->mii_bus->priv = fep;
2635 fep->mii_bus->parent = &pdev->dev;
2636
2637 err = of_mdiobus_register(fep->mii_bus, node);
2638 if (err)
2639 goto err_out_free_mdiobus;
2640 of_node_put(node);
2641
2642 /* find all the PHY devices on the bus and set mac_managed_pm to true */
2643 for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2644 phydev = mdiobus_get_phy(fep->mii_bus, addr);
2645 if (phydev)
2646 phydev->mac_managed_pm = true;
2647 }
2648
2649 mii_cnt++;
2650
2651 /* save fec0 mii_bus */
2652 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2653 fec0_mii_bus = fep->mii_bus;
2654
2655 return 0;
2656
2657 err_out_free_mdiobus:
2658 mdiobus_free(fep->mii_bus);
2659 err_out:
2660 of_node_put(node);
2661 return err;
2662 }
2663
fec_enet_mii_remove(struct fec_enet_private * fep)2664 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2665 {
2666 if (--mii_cnt == 0) {
2667 mdiobus_unregister(fep->mii_bus);
2668 mdiobus_free(fep->mii_bus);
2669 }
2670 }
2671
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2672 static void fec_enet_get_drvinfo(struct net_device *ndev,
2673 struct ethtool_drvinfo *info)
2674 {
2675 struct fec_enet_private *fep = netdev_priv(ndev);
2676
2677 strscpy(info->driver, fep->pdev->dev.driver->name,
2678 sizeof(info->driver));
2679 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2680 }
2681
fec_enet_get_regs_len(struct net_device * ndev)2682 static int fec_enet_get_regs_len(struct net_device *ndev)
2683 {
2684 struct fec_enet_private *fep = netdev_priv(ndev);
2685 struct resource *r;
2686 int s = 0;
2687
2688 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2689 if (r)
2690 s = resource_size(r);
2691
2692 return s;
2693 }
2694
2695 /* List of registers that can be safety be read to dump them with ethtool */
2696 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2697 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2698 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2699 static __u32 fec_enet_register_version = 2;
2700 static u32 fec_enet_register_offset[] = {
2701 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2702 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2703 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2704 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2705 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2706 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2707 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2708 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2709 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2710 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2711 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2712 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2713 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2714 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2715 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2716 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2717 RMON_T_P_GTE2048, RMON_T_OCTETS,
2718 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2719 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2720 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2721 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2722 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2723 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2724 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2725 RMON_R_P_GTE2048, RMON_R_OCTETS,
2726 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2727 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2728 };
2729 /* for i.MX6ul */
2730 static u32 fec_enet_register_offset_6ul[] = {
2731 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2732 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2733 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2734 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2735 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2736 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2737 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2738 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2739 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2740 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2741 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2742 RMON_T_P_GTE2048, RMON_T_OCTETS,
2743 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2744 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2745 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2746 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2747 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2748 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2749 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2750 RMON_R_P_GTE2048, RMON_R_OCTETS,
2751 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2752 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2753 };
2754 #else
2755 static __u32 fec_enet_register_version = 1;
2756 static u32 fec_enet_register_offset[] = {
2757 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2758 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2759 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2760 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2761 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2762 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2763 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2764 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2765 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2766 };
2767 #endif
2768
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2769 static void fec_enet_get_regs(struct net_device *ndev,
2770 struct ethtool_regs *regs, void *regbuf)
2771 {
2772 struct fec_enet_private *fep = netdev_priv(ndev);
2773 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2774 struct device *dev = &fep->pdev->dev;
2775 u32 *buf = (u32 *)regbuf;
2776 u32 i, off;
2777 int ret;
2778 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2779 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2780 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2781 u32 *reg_list;
2782 u32 reg_cnt;
2783
2784 if (!of_machine_is_compatible("fsl,imx6ul")) {
2785 reg_list = fec_enet_register_offset;
2786 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2787 } else {
2788 reg_list = fec_enet_register_offset_6ul;
2789 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2790 }
2791 #else
2792 /* coldfire */
2793 static u32 *reg_list = fec_enet_register_offset;
2794 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2795 #endif
2796 ret = pm_runtime_resume_and_get(dev);
2797 if (ret < 0)
2798 return;
2799
2800 regs->version = fec_enet_register_version;
2801
2802 memset(buf, 0, regs->len);
2803
2804 for (i = 0; i < reg_cnt; i++) {
2805 off = reg_list[i];
2806
2807 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2808 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2809 continue;
2810
2811 off >>= 2;
2812 buf[off] = readl(&theregs[off]);
2813 }
2814
2815 pm_runtime_mark_last_busy(dev);
2816 pm_runtime_put_autosuspend(dev);
2817 }
2818
fec_enet_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)2819 static int fec_enet_get_ts_info(struct net_device *ndev,
2820 struct kernel_ethtool_ts_info *info)
2821 {
2822 struct fec_enet_private *fep = netdev_priv(ndev);
2823
2824 if (fep->bufdesc_ex) {
2825
2826 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2827 SOF_TIMESTAMPING_TX_HARDWARE |
2828 SOF_TIMESTAMPING_RX_HARDWARE |
2829 SOF_TIMESTAMPING_RAW_HARDWARE;
2830 if (fep->ptp_clock)
2831 info->phc_index = ptp_clock_index(fep->ptp_clock);
2832
2833 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2834 (1 << HWTSTAMP_TX_ON);
2835
2836 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2837 (1 << HWTSTAMP_FILTER_ALL);
2838 return 0;
2839 } else {
2840 return ethtool_op_get_ts_info(ndev, info);
2841 }
2842 }
2843
2844 #if !defined(CONFIG_M5272)
2845
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2846 static void fec_enet_get_pauseparam(struct net_device *ndev,
2847 struct ethtool_pauseparam *pause)
2848 {
2849 struct fec_enet_private *fep = netdev_priv(ndev);
2850
2851 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2852 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2853 pause->rx_pause = pause->tx_pause;
2854 }
2855
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2856 static int fec_enet_set_pauseparam(struct net_device *ndev,
2857 struct ethtool_pauseparam *pause)
2858 {
2859 struct fec_enet_private *fep = netdev_priv(ndev);
2860
2861 if (!ndev->phydev)
2862 return -ENODEV;
2863
2864 if (pause->tx_pause != pause->rx_pause) {
2865 netdev_info(ndev,
2866 "hardware only support enable/disable both tx and rx");
2867 return -EINVAL;
2868 }
2869
2870 fep->pause_flag = 0;
2871
2872 /* tx pause must be same as rx pause */
2873 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2874 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2875
2876 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2877 pause->autoneg);
2878
2879 if (pause->autoneg) {
2880 if (netif_running(ndev))
2881 fec_stop(ndev);
2882 phy_start_aneg(ndev->phydev);
2883 }
2884 if (netif_running(ndev)) {
2885 napi_disable(&fep->napi);
2886 netif_tx_lock_bh(ndev);
2887 fec_restart(ndev);
2888 netif_tx_wake_all_queues(ndev);
2889 netif_tx_unlock_bh(ndev);
2890 napi_enable(&fep->napi);
2891 }
2892
2893 return 0;
2894 }
2895
2896 static const struct fec_stat {
2897 char name[ETH_GSTRING_LEN];
2898 u16 offset;
2899 } fec_stats[] = {
2900 /* RMON TX */
2901 { "tx_dropped", RMON_T_DROP },
2902 { "tx_packets", RMON_T_PACKETS },
2903 { "tx_broadcast", RMON_T_BC_PKT },
2904 { "tx_multicast", RMON_T_MC_PKT },
2905 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2906 { "tx_undersize", RMON_T_UNDERSIZE },
2907 { "tx_oversize", RMON_T_OVERSIZE },
2908 { "tx_fragment", RMON_T_FRAG },
2909 { "tx_jabber", RMON_T_JAB },
2910 { "tx_collision", RMON_T_COL },
2911 { "tx_64byte", RMON_T_P64 },
2912 { "tx_65to127byte", RMON_T_P65TO127 },
2913 { "tx_128to255byte", RMON_T_P128TO255 },
2914 { "tx_256to511byte", RMON_T_P256TO511 },
2915 { "tx_512to1023byte", RMON_T_P512TO1023 },
2916 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2917 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2918 { "tx_octets", RMON_T_OCTETS },
2919
2920 /* IEEE TX */
2921 { "IEEE_tx_drop", IEEE_T_DROP },
2922 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2923 { "IEEE_tx_1col", IEEE_T_1COL },
2924 { "IEEE_tx_mcol", IEEE_T_MCOL },
2925 { "IEEE_tx_def", IEEE_T_DEF },
2926 { "IEEE_tx_lcol", IEEE_T_LCOL },
2927 { "IEEE_tx_excol", IEEE_T_EXCOL },
2928 { "IEEE_tx_macerr", IEEE_T_MACERR },
2929 { "IEEE_tx_cserr", IEEE_T_CSERR },
2930 { "IEEE_tx_sqe", IEEE_T_SQE },
2931 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2932 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2933
2934 /* RMON RX */
2935 { "rx_packets", RMON_R_PACKETS },
2936 { "rx_broadcast", RMON_R_BC_PKT },
2937 { "rx_multicast", RMON_R_MC_PKT },
2938 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2939 { "rx_undersize", RMON_R_UNDERSIZE },
2940 { "rx_oversize", RMON_R_OVERSIZE },
2941 { "rx_fragment", RMON_R_FRAG },
2942 { "rx_jabber", RMON_R_JAB },
2943 { "rx_64byte", RMON_R_P64 },
2944 { "rx_65to127byte", RMON_R_P65TO127 },
2945 { "rx_128to255byte", RMON_R_P128TO255 },
2946 { "rx_256to511byte", RMON_R_P256TO511 },
2947 { "rx_512to1023byte", RMON_R_P512TO1023 },
2948 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2949 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2950 { "rx_octets", RMON_R_OCTETS },
2951
2952 /* IEEE RX */
2953 { "IEEE_rx_drop", IEEE_R_DROP },
2954 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2955 { "IEEE_rx_crc", IEEE_R_CRC },
2956 { "IEEE_rx_align", IEEE_R_ALIGN },
2957 { "IEEE_rx_macerr", IEEE_R_MACERR },
2958 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2959 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2960 };
2961
2962 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2963
2964 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2965 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */
2966 "rx_xdp_pass", /* RX_XDP_PASS, */
2967 "rx_xdp_drop", /* RX_XDP_DROP, */
2968 "rx_xdp_tx", /* RX_XDP_TX, */
2969 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */
2970 "tx_xdp_xmit", /* TX_XDP_XMIT, */
2971 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */
2972 };
2973
fec_enet_update_ethtool_stats(struct net_device * dev)2974 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2975 {
2976 struct fec_enet_private *fep = netdev_priv(dev);
2977 int i;
2978
2979 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2980 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2981 }
2982
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2983 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2984 {
2985 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2986 struct fec_enet_priv_rx_q *rxq;
2987 int i, j;
2988
2989 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2990 rxq = fep->rx_queue[i];
2991
2992 for (j = 0; j < XDP_STATS_TOTAL; j++)
2993 xdp_stats[j] += rxq->stats[j];
2994 }
2995
2996 memcpy(data, xdp_stats, sizeof(xdp_stats));
2997 }
2998
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)2999 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3000 {
3001 #ifdef CONFIG_PAGE_POOL_STATS
3002 struct page_pool_stats stats = {};
3003 struct fec_enet_priv_rx_q *rxq;
3004 int i;
3005
3006 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3007 rxq = fep->rx_queue[i];
3008
3009 if (!rxq->page_pool)
3010 continue;
3011
3012 page_pool_get_stats(rxq->page_pool, &stats);
3013 }
3014
3015 page_pool_ethtool_stats_get(data, &stats);
3016 #endif
3017 }
3018
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3019 static void fec_enet_get_ethtool_stats(struct net_device *dev,
3020 struct ethtool_stats *stats, u64 *data)
3021 {
3022 struct fec_enet_private *fep = netdev_priv(dev);
3023
3024 if (netif_running(dev))
3025 fec_enet_update_ethtool_stats(dev);
3026
3027 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3028 data += FEC_STATS_SIZE / sizeof(u64);
3029
3030 fec_enet_get_xdp_stats(fep, data);
3031 data += XDP_STATS_TOTAL;
3032
3033 fec_enet_page_pool_stats(fep, data);
3034 }
3035
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)3036 static void fec_enet_get_strings(struct net_device *netdev,
3037 u32 stringset, u8 *data)
3038 {
3039 int i;
3040 switch (stringset) {
3041 case ETH_SS_STATS:
3042 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3043 ethtool_puts(&data, fec_stats[i].name);
3044 }
3045 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3046 ethtool_puts(&data, fec_xdp_stat_strs[i]);
3047 }
3048 page_pool_ethtool_stats_get_strings(data);
3049
3050 break;
3051 case ETH_SS_TEST:
3052 net_selftest_get_strings(data);
3053 break;
3054 }
3055 }
3056
fec_enet_get_sset_count(struct net_device * dev,int sset)3057 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3058 {
3059 int count;
3060
3061 switch (sset) {
3062 case ETH_SS_STATS:
3063 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3064 count += page_pool_ethtool_stats_get_count();
3065 return count;
3066
3067 case ETH_SS_TEST:
3068 return net_selftest_get_count();
3069 default:
3070 return -EOPNOTSUPP;
3071 }
3072 }
3073
fec_enet_clear_ethtool_stats(struct net_device * dev)3074 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3075 {
3076 struct fec_enet_private *fep = netdev_priv(dev);
3077 struct fec_enet_priv_rx_q *rxq;
3078 int i, j;
3079
3080 /* Disable MIB statistics counters */
3081 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3082
3083 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3084 writel(0, fep->hwp + fec_stats[i].offset);
3085
3086 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3087 rxq = fep->rx_queue[i];
3088 for (j = 0; j < XDP_STATS_TOTAL; j++)
3089 rxq->stats[j] = 0;
3090 }
3091
3092 /* Don't disable MIB statistics counters */
3093 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3094 }
3095
3096 #else /* !defined(CONFIG_M5272) */
3097 #define FEC_STATS_SIZE 0
fec_enet_update_ethtool_stats(struct net_device * dev)3098 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3099 {
3100 }
3101
fec_enet_clear_ethtool_stats(struct net_device * dev)3102 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3103 {
3104 }
3105 #endif /* !defined(CONFIG_M5272) */
3106
3107 /* ITR clock source is enet system clock (clk_ahb).
3108 * TCTT unit is cycle_ns * 64 cycle
3109 * So, the ICTT value = X us / (cycle_ns * 64)
3110 */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3111 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3112 {
3113 struct fec_enet_private *fep = netdev_priv(ndev);
3114
3115 return us * (fep->itr_clk_rate / 64000) / 1000;
3116 }
3117
3118 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3119 static void fec_enet_itr_coal_set(struct net_device *ndev)
3120 {
3121 struct fec_enet_private *fep = netdev_priv(ndev);
3122 int rx_itr, tx_itr;
3123
3124 /* Must be greater than zero to avoid unpredictable behavior */
3125 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3126 !fep->tx_time_itr || !fep->tx_pkts_itr)
3127 return;
3128
3129 /* Select enet system clock as Interrupt Coalescing
3130 * timer Clock Source
3131 */
3132 rx_itr = FEC_ITR_CLK_SEL;
3133 tx_itr = FEC_ITR_CLK_SEL;
3134
3135 /* set ICFT and ICTT */
3136 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3137 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3138 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3139 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3140
3141 rx_itr |= FEC_ITR_EN;
3142 tx_itr |= FEC_ITR_EN;
3143
3144 writel(tx_itr, fep->hwp + FEC_TXIC0);
3145 writel(rx_itr, fep->hwp + FEC_RXIC0);
3146 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3147 writel(tx_itr, fep->hwp + FEC_TXIC1);
3148 writel(rx_itr, fep->hwp + FEC_RXIC1);
3149 writel(tx_itr, fep->hwp + FEC_TXIC2);
3150 writel(rx_itr, fep->hwp + FEC_RXIC2);
3151 }
3152 }
3153
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3154 static int fec_enet_get_coalesce(struct net_device *ndev,
3155 struct ethtool_coalesce *ec,
3156 struct kernel_ethtool_coalesce *kernel_coal,
3157 struct netlink_ext_ack *extack)
3158 {
3159 struct fec_enet_private *fep = netdev_priv(ndev);
3160
3161 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3162 return -EOPNOTSUPP;
3163
3164 ec->rx_coalesce_usecs = fep->rx_time_itr;
3165 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3166
3167 ec->tx_coalesce_usecs = fep->tx_time_itr;
3168 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3169
3170 return 0;
3171 }
3172
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3173 static int fec_enet_set_coalesce(struct net_device *ndev,
3174 struct ethtool_coalesce *ec,
3175 struct kernel_ethtool_coalesce *kernel_coal,
3176 struct netlink_ext_ack *extack)
3177 {
3178 struct fec_enet_private *fep = netdev_priv(ndev);
3179 struct device *dev = &fep->pdev->dev;
3180 unsigned int cycle;
3181
3182 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3183 return -EOPNOTSUPP;
3184
3185 if (ec->rx_max_coalesced_frames > 255) {
3186 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3187 return -EINVAL;
3188 }
3189
3190 if (ec->tx_max_coalesced_frames > 255) {
3191 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3192 return -EINVAL;
3193 }
3194
3195 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3196 if (cycle > 0xFFFF) {
3197 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3198 return -EINVAL;
3199 }
3200
3201 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3202 if (cycle > 0xFFFF) {
3203 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3204 return -EINVAL;
3205 }
3206
3207 fep->rx_time_itr = ec->rx_coalesce_usecs;
3208 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3209
3210 fep->tx_time_itr = ec->tx_coalesce_usecs;
3211 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3212
3213 fec_enet_itr_coal_set(ndev);
3214
3215 return 0;
3216 }
3217
3218 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_keee * edata)3219 fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3220 {
3221 struct fec_enet_private *fep = netdev_priv(ndev);
3222
3223 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3224 return -EOPNOTSUPP;
3225
3226 if (!netif_running(ndev))
3227 return -ENETDOWN;
3228
3229 return phy_ethtool_get_eee(ndev->phydev, edata);
3230 }
3231
3232 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_keee * edata)3233 fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3234 {
3235 struct fec_enet_private *fep = netdev_priv(ndev);
3236
3237 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3238 return -EOPNOTSUPP;
3239
3240 if (!netif_running(ndev))
3241 return -ENETDOWN;
3242
3243 return phy_ethtool_set_eee(ndev->phydev, edata);
3244 }
3245
3246 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3247 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3248 {
3249 struct fec_enet_private *fep = netdev_priv(ndev);
3250
3251 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3252 wol->supported = WAKE_MAGIC;
3253 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3254 } else {
3255 wol->supported = wol->wolopts = 0;
3256 }
3257 }
3258
3259 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3260 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3261 {
3262 struct fec_enet_private *fep = netdev_priv(ndev);
3263
3264 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3265 return -EINVAL;
3266
3267 if (wol->wolopts & ~WAKE_MAGIC)
3268 return -EINVAL;
3269
3270 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3271 if (device_may_wakeup(&ndev->dev))
3272 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3273 else
3274 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3275
3276 return 0;
3277 }
3278
3279 static const struct ethtool_ops fec_enet_ethtool_ops = {
3280 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3281 ETHTOOL_COALESCE_MAX_FRAMES,
3282 .get_drvinfo = fec_enet_get_drvinfo,
3283 .get_regs_len = fec_enet_get_regs_len,
3284 .get_regs = fec_enet_get_regs,
3285 .nway_reset = phy_ethtool_nway_reset,
3286 .get_link = ethtool_op_get_link,
3287 .get_coalesce = fec_enet_get_coalesce,
3288 .set_coalesce = fec_enet_set_coalesce,
3289 #ifndef CONFIG_M5272
3290 .get_pauseparam = fec_enet_get_pauseparam,
3291 .set_pauseparam = fec_enet_set_pauseparam,
3292 .get_strings = fec_enet_get_strings,
3293 .get_ethtool_stats = fec_enet_get_ethtool_stats,
3294 .get_sset_count = fec_enet_get_sset_count,
3295 #endif
3296 .get_ts_info = fec_enet_get_ts_info,
3297 .get_wol = fec_enet_get_wol,
3298 .set_wol = fec_enet_set_wol,
3299 .get_eee = fec_enet_get_eee,
3300 .set_eee = fec_enet_set_eee,
3301 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3302 .set_link_ksettings = phy_ethtool_set_link_ksettings,
3303 .self_test = net_selftest,
3304 };
3305
fec_enet_free_buffers(struct net_device * ndev)3306 static void fec_enet_free_buffers(struct net_device *ndev)
3307 {
3308 struct fec_enet_private *fep = netdev_priv(ndev);
3309 unsigned int i;
3310 struct fec_enet_priv_tx_q *txq;
3311 struct fec_enet_priv_rx_q *rxq;
3312 unsigned int q;
3313
3314 for (q = 0; q < fep->num_rx_queues; q++) {
3315 rxq = fep->rx_queue[q];
3316 for (i = 0; i < rxq->bd.ring_size; i++)
3317 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3318
3319 for (i = 0; i < XDP_STATS_TOTAL; i++)
3320 rxq->stats[i] = 0;
3321
3322 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3323 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3324 page_pool_destroy(rxq->page_pool);
3325 rxq->page_pool = NULL;
3326 }
3327
3328 for (q = 0; q < fep->num_tx_queues; q++) {
3329 txq = fep->tx_queue[q];
3330 for (i = 0; i < txq->bd.ring_size; i++) {
3331 kfree(txq->tx_bounce[i]);
3332 txq->tx_bounce[i] = NULL;
3333
3334 if (!txq->tx_buf[i].buf_p) {
3335 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3336 continue;
3337 }
3338
3339 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3340 dev_kfree_skb(txq->tx_buf[i].buf_p);
3341 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3342 xdp_return_frame(txq->tx_buf[i].buf_p);
3343 } else {
3344 struct page *page = txq->tx_buf[i].buf_p;
3345
3346 page_pool_put_page(page->pp, page, 0, false);
3347 }
3348
3349 txq->tx_buf[i].buf_p = NULL;
3350 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3351 }
3352 }
3353 }
3354
fec_enet_free_queue(struct net_device * ndev)3355 static void fec_enet_free_queue(struct net_device *ndev)
3356 {
3357 struct fec_enet_private *fep = netdev_priv(ndev);
3358 int i;
3359 struct fec_enet_priv_tx_q *txq;
3360
3361 for (i = 0; i < fep->num_tx_queues; i++)
3362 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3363 txq = fep->tx_queue[i];
3364 fec_dma_free(&fep->pdev->dev,
3365 txq->bd.ring_size * TSO_HEADER_SIZE,
3366 txq->tso_hdrs, txq->tso_hdrs_dma);
3367 }
3368
3369 for (i = 0; i < fep->num_rx_queues; i++)
3370 kfree(fep->rx_queue[i]);
3371 for (i = 0; i < fep->num_tx_queues; i++)
3372 kfree(fep->tx_queue[i]);
3373 }
3374
fec_enet_alloc_queue(struct net_device * ndev)3375 static int fec_enet_alloc_queue(struct net_device *ndev)
3376 {
3377 struct fec_enet_private *fep = netdev_priv(ndev);
3378 int i;
3379 int ret = 0;
3380 struct fec_enet_priv_tx_q *txq;
3381
3382 for (i = 0; i < fep->num_tx_queues; i++) {
3383 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3384 if (!txq) {
3385 ret = -ENOMEM;
3386 goto alloc_failed;
3387 }
3388
3389 fep->tx_queue[i] = txq;
3390 txq->bd.ring_size = TX_RING_SIZE;
3391 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3392
3393 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3394 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3395
3396 txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3397 txq->bd.ring_size * TSO_HEADER_SIZE,
3398 &txq->tso_hdrs_dma, GFP_KERNEL);
3399 if (!txq->tso_hdrs) {
3400 ret = -ENOMEM;
3401 goto alloc_failed;
3402 }
3403 }
3404
3405 for (i = 0; i < fep->num_rx_queues; i++) {
3406 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3407 GFP_KERNEL);
3408 if (!fep->rx_queue[i]) {
3409 ret = -ENOMEM;
3410 goto alloc_failed;
3411 }
3412
3413 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3414 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3415 }
3416 return ret;
3417
3418 alloc_failed:
3419 fec_enet_free_queue(ndev);
3420 return ret;
3421 }
3422
3423 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3424 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3425 {
3426 struct fec_enet_private *fep = netdev_priv(ndev);
3427 struct fec_enet_priv_rx_q *rxq;
3428 dma_addr_t phys_addr;
3429 struct bufdesc *bdp;
3430 struct page *page;
3431 int i, err;
3432
3433 rxq = fep->rx_queue[queue];
3434 bdp = rxq->bd.base;
3435
3436 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3437 if (err < 0) {
3438 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3439 return err;
3440 }
3441
3442 for (i = 0; i < rxq->bd.ring_size; i++) {
3443 page = page_pool_dev_alloc_pages(rxq->page_pool);
3444 if (!page)
3445 goto err_alloc;
3446
3447 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3448 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3449
3450 rxq->rx_skb_info[i].page = page;
3451 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3452 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3453
3454 if (fep->bufdesc_ex) {
3455 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3456 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3457 }
3458
3459 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3460 }
3461
3462 /* Set the last buffer to wrap. */
3463 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3464 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3465 return 0;
3466
3467 err_alloc:
3468 fec_enet_free_buffers(ndev);
3469 return -ENOMEM;
3470 }
3471
3472 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3473 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3474 {
3475 struct fec_enet_private *fep = netdev_priv(ndev);
3476 unsigned int i;
3477 struct bufdesc *bdp;
3478 struct fec_enet_priv_tx_q *txq;
3479
3480 txq = fep->tx_queue[queue];
3481 bdp = txq->bd.base;
3482 for (i = 0; i < txq->bd.ring_size; i++) {
3483 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3484 if (!txq->tx_bounce[i])
3485 goto err_alloc;
3486
3487 bdp->cbd_sc = cpu_to_fec16(0);
3488 bdp->cbd_bufaddr = cpu_to_fec32(0);
3489
3490 if (fep->bufdesc_ex) {
3491 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3492 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3493 }
3494
3495 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3496 }
3497
3498 /* Set the last buffer to wrap. */
3499 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3500 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3501
3502 return 0;
3503
3504 err_alloc:
3505 fec_enet_free_buffers(ndev);
3506 return -ENOMEM;
3507 }
3508
fec_enet_alloc_buffers(struct net_device * ndev)3509 static int fec_enet_alloc_buffers(struct net_device *ndev)
3510 {
3511 struct fec_enet_private *fep = netdev_priv(ndev);
3512 unsigned int i;
3513
3514 for (i = 0; i < fep->num_rx_queues; i++)
3515 if (fec_enet_alloc_rxq_buffers(ndev, i))
3516 return -ENOMEM;
3517
3518 for (i = 0; i < fep->num_tx_queues; i++)
3519 if (fec_enet_alloc_txq_buffers(ndev, i))
3520 return -ENOMEM;
3521 return 0;
3522 }
3523
3524 static int
fec_enet_open(struct net_device * ndev)3525 fec_enet_open(struct net_device *ndev)
3526 {
3527 struct fec_enet_private *fep = netdev_priv(ndev);
3528 int ret;
3529 bool reset_again;
3530
3531 ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3532 if (ret < 0)
3533 return ret;
3534
3535 pinctrl_pm_select_default_state(&fep->pdev->dev);
3536 ret = fec_enet_clk_enable(ndev, true);
3537 if (ret)
3538 goto clk_enable;
3539
3540 /* During the first fec_enet_open call the PHY isn't probed at this
3541 * point. Therefore the phy_reset_after_clk_enable() call within
3542 * fec_enet_clk_enable() fails. As we need this reset in order to be
3543 * sure the PHY is working correctly we check if we need to reset again
3544 * later when the PHY is probed
3545 */
3546 if (ndev->phydev && ndev->phydev->drv)
3547 reset_again = false;
3548 else
3549 reset_again = true;
3550
3551 /* I should reset the ring buffers here, but I don't yet know
3552 * a simple way to do that.
3553 */
3554
3555 ret = fec_enet_alloc_buffers(ndev);
3556 if (ret)
3557 goto err_enet_alloc;
3558
3559 /* Init MAC prior to mii bus probe */
3560 fec_restart(ndev);
3561
3562 /* Call phy_reset_after_clk_enable() again if it failed during
3563 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3564 */
3565 if (reset_again)
3566 fec_enet_phy_reset_after_clk_enable(ndev);
3567
3568 /* Probe and connect to PHY when open the interface */
3569 ret = fec_enet_mii_probe(ndev);
3570 if (ret)
3571 goto err_enet_mii_probe;
3572
3573 if (fep->quirks & FEC_QUIRK_ERR006687)
3574 imx6q_cpuidle_fec_irqs_used();
3575
3576 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3577 cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3578
3579 napi_enable(&fep->napi);
3580 phy_start(ndev->phydev);
3581 netif_tx_start_all_queues(ndev);
3582
3583 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3584 FEC_WOL_FLAG_ENABLE);
3585
3586 return 0;
3587
3588 err_enet_mii_probe:
3589 fec_enet_free_buffers(ndev);
3590 err_enet_alloc:
3591 fec_enet_clk_enable(ndev, false);
3592 clk_enable:
3593 pm_runtime_mark_last_busy(&fep->pdev->dev);
3594 pm_runtime_put_autosuspend(&fep->pdev->dev);
3595 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3596 return ret;
3597 }
3598
3599 static int
fec_enet_close(struct net_device * ndev)3600 fec_enet_close(struct net_device *ndev)
3601 {
3602 struct fec_enet_private *fep = netdev_priv(ndev);
3603
3604 phy_stop(ndev->phydev);
3605
3606 if (netif_device_present(ndev)) {
3607 napi_disable(&fep->napi);
3608 netif_tx_disable(ndev);
3609 fec_stop(ndev);
3610 }
3611
3612 phy_disconnect(ndev->phydev);
3613
3614 if (fep->quirks & FEC_QUIRK_ERR006687)
3615 imx6q_cpuidle_fec_irqs_unused();
3616
3617 fec_enet_update_ethtool_stats(ndev);
3618
3619 fec_enet_clk_enable(ndev, false);
3620 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3621 cpu_latency_qos_remove_request(&fep->pm_qos_req);
3622
3623 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3624 pm_runtime_mark_last_busy(&fep->pdev->dev);
3625 pm_runtime_put_autosuspend(&fep->pdev->dev);
3626
3627 fec_enet_free_buffers(ndev);
3628
3629 return 0;
3630 }
3631
3632 /* Set or clear the multicast filter for this adaptor.
3633 * Skeleton taken from sunlance driver.
3634 * The CPM Ethernet implementation allows Multicast as well as individual
3635 * MAC address filtering. Some of the drivers check to make sure it is
3636 * a group multicast address, and discard those that are not. I guess I
3637 * will do the same for now, but just remove the test if you want
3638 * individual filtering as well (do the upper net layers want or support
3639 * this kind of feature?).
3640 */
3641
3642 #define FEC_HASH_BITS 6 /* #bits in hash */
3643
set_multicast_list(struct net_device * ndev)3644 static void set_multicast_list(struct net_device *ndev)
3645 {
3646 struct fec_enet_private *fep = netdev_priv(ndev);
3647 struct netdev_hw_addr *ha;
3648 unsigned int crc, tmp;
3649 unsigned char hash;
3650 unsigned int hash_high = 0, hash_low = 0;
3651
3652 if (ndev->flags & IFF_PROMISC) {
3653 tmp = readl(fep->hwp + FEC_R_CNTRL);
3654 tmp |= 0x8;
3655 writel(tmp, fep->hwp + FEC_R_CNTRL);
3656 return;
3657 }
3658
3659 tmp = readl(fep->hwp + FEC_R_CNTRL);
3660 tmp &= ~0x8;
3661 writel(tmp, fep->hwp + FEC_R_CNTRL);
3662
3663 if (ndev->flags & IFF_ALLMULTI) {
3664 /* Catch all multicast addresses, so set the
3665 * filter to all 1's
3666 */
3667 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3668 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3669
3670 return;
3671 }
3672
3673 /* Add the addresses in hash register */
3674 netdev_for_each_mc_addr(ha, ndev) {
3675 /* calculate crc32 value of mac address */
3676 crc = ether_crc_le(ndev->addr_len, ha->addr);
3677
3678 /* only upper 6 bits (FEC_HASH_BITS) are used
3679 * which point to specific bit in the hash registers
3680 */
3681 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3682
3683 if (hash > 31)
3684 hash_high |= 1 << (hash - 32);
3685 else
3686 hash_low |= 1 << hash;
3687 }
3688
3689 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3690 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3691 }
3692
3693 /* Set a MAC change in hardware. */
3694 static int
fec_set_mac_address(struct net_device * ndev,void * p)3695 fec_set_mac_address(struct net_device *ndev, void *p)
3696 {
3697 struct fec_enet_private *fep = netdev_priv(ndev);
3698 struct sockaddr *addr = p;
3699
3700 if (addr) {
3701 if (!is_valid_ether_addr(addr->sa_data))
3702 return -EADDRNOTAVAIL;
3703 eth_hw_addr_set(ndev, addr->sa_data);
3704 }
3705
3706 /* Add netif status check here to avoid system hang in below case:
3707 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3708 * After ethx down, fec all clocks are gated off and then register
3709 * access causes system hang.
3710 */
3711 if (!netif_running(ndev))
3712 return 0;
3713
3714 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3715 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3716 fep->hwp + FEC_ADDR_LOW);
3717 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3718 fep->hwp + FEC_ADDR_HIGH);
3719 return 0;
3720 }
3721
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3722 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3723 netdev_features_t features)
3724 {
3725 struct fec_enet_private *fep = netdev_priv(netdev);
3726 netdev_features_t changed = features ^ netdev->features;
3727
3728 netdev->features = features;
3729
3730 /* Receive checksum has been changed */
3731 if (changed & NETIF_F_RXCSUM) {
3732 if (features & NETIF_F_RXCSUM)
3733 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3734 else
3735 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3736 }
3737 }
3738
fec_set_features(struct net_device * netdev,netdev_features_t features)3739 static int fec_set_features(struct net_device *netdev,
3740 netdev_features_t features)
3741 {
3742 struct fec_enet_private *fep = netdev_priv(netdev);
3743 netdev_features_t changed = features ^ netdev->features;
3744
3745 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3746 napi_disable(&fep->napi);
3747 netif_tx_lock_bh(netdev);
3748 fec_stop(netdev);
3749 fec_enet_set_netdev_features(netdev, features);
3750 fec_restart(netdev);
3751 netif_tx_wake_all_queues(netdev);
3752 netif_tx_unlock_bh(netdev);
3753 napi_enable(&fep->napi);
3754 } else {
3755 fec_enet_set_netdev_features(netdev, features);
3756 }
3757
3758 return 0;
3759 }
3760
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3761 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3762 struct net_device *sb_dev)
3763 {
3764 struct fec_enet_private *fep = netdev_priv(ndev);
3765 u16 vlan_tag = 0;
3766
3767 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3768 return netdev_pick_tx(ndev, skb, NULL);
3769
3770 /* VLAN is present in the payload.*/
3771 if (eth_type_vlan(skb->protocol)) {
3772 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3773
3774 vlan_tag = ntohs(vhdr->h_vlan_TCI);
3775 /* VLAN is present in the skb but not yet pushed in the payload.*/
3776 } else if (skb_vlan_tag_present(skb)) {
3777 vlan_tag = skb->vlan_tci;
3778 } else {
3779 return vlan_tag;
3780 }
3781
3782 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3783 }
3784
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3785 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3786 {
3787 struct fec_enet_private *fep = netdev_priv(dev);
3788 bool is_run = netif_running(dev);
3789 struct bpf_prog *old_prog;
3790
3791 switch (bpf->command) {
3792 case XDP_SETUP_PROG:
3793 /* No need to support the SoCs that require to
3794 * do the frame swap because the performance wouldn't be
3795 * better than the skb mode.
3796 */
3797 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3798 return -EOPNOTSUPP;
3799
3800 if (!bpf->prog)
3801 xdp_features_clear_redirect_target(dev);
3802
3803 if (is_run) {
3804 napi_disable(&fep->napi);
3805 netif_tx_disable(dev);
3806 }
3807
3808 old_prog = xchg(&fep->xdp_prog, bpf->prog);
3809 if (old_prog)
3810 bpf_prog_put(old_prog);
3811
3812 fec_restart(dev);
3813
3814 if (is_run) {
3815 napi_enable(&fep->napi);
3816 netif_tx_start_all_queues(dev);
3817 }
3818
3819 if (bpf->prog)
3820 xdp_features_set_redirect_target(dev, false);
3821
3822 return 0;
3823
3824 case XDP_SETUP_XSK_POOL:
3825 return -EOPNOTSUPP;
3826
3827 default:
3828 return -EOPNOTSUPP;
3829 }
3830 }
3831
3832 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3833 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3834 {
3835 if (unlikely(index < 0))
3836 return 0;
3837
3838 return (index % fep->num_tx_queues);
3839 }
3840
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3841 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3842 struct fec_enet_priv_tx_q *txq,
3843 void *frame, u32 dma_sync_len,
3844 bool ndo_xmit)
3845 {
3846 unsigned int index, status, estatus;
3847 struct bufdesc *bdp;
3848 dma_addr_t dma_addr;
3849 int entries_free;
3850 u16 frame_len;
3851
3852 entries_free = fec_enet_get_free_txdesc_num(txq);
3853 if (entries_free < MAX_SKB_FRAGS + 1) {
3854 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3855 return -EBUSY;
3856 }
3857
3858 /* Fill in a Tx ring entry */
3859 bdp = txq->bd.cur;
3860 status = fec16_to_cpu(bdp->cbd_sc);
3861 status &= ~BD_ENET_TX_STATS;
3862
3863 index = fec_enet_get_bd_index(bdp, &txq->bd);
3864
3865 if (ndo_xmit) {
3866 struct xdp_frame *xdpf = frame;
3867
3868 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3869 xdpf->len, DMA_TO_DEVICE);
3870 if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3871 return -ENOMEM;
3872
3873 frame_len = xdpf->len;
3874 txq->tx_buf[index].buf_p = xdpf;
3875 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3876 } else {
3877 struct xdp_buff *xdpb = frame;
3878 struct page *page;
3879
3880 page = virt_to_page(xdpb->data);
3881 dma_addr = page_pool_get_dma_addr(page) +
3882 (xdpb->data - xdpb->data_hard_start);
3883 dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3884 dma_sync_len, DMA_BIDIRECTIONAL);
3885 frame_len = xdpb->data_end - xdpb->data;
3886 txq->tx_buf[index].buf_p = page;
3887 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3888 }
3889
3890 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3891 if (fep->bufdesc_ex)
3892 estatus = BD_ENET_TX_INT;
3893
3894 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3895 bdp->cbd_datlen = cpu_to_fec16(frame_len);
3896
3897 if (fep->bufdesc_ex) {
3898 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3899
3900 if (fep->quirks & FEC_QUIRK_HAS_AVB)
3901 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3902
3903 ebdp->cbd_bdu = 0;
3904 ebdp->cbd_esc = cpu_to_fec32(estatus);
3905 }
3906
3907 /* Make sure the updates to rest of the descriptor are performed before
3908 * transferring ownership.
3909 */
3910 dma_wmb();
3911
3912 /* Send it on its way. Tell FEC it's ready, interrupt when done,
3913 * it's the last BD of the frame, and to put the CRC on the end.
3914 */
3915 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3916 bdp->cbd_sc = cpu_to_fec16(status);
3917
3918 /* If this was the last BD in the ring, start at the beginning again. */
3919 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3920
3921 /* Make sure the update to bdp are performed before txq->bd.cur. */
3922 dma_wmb();
3923
3924 txq->bd.cur = bdp;
3925
3926 /* Trigger transmission start */
3927 writel(0, txq->bd.reg_desc_active);
3928
3929 return 0;
3930 }
3931
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3932 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3933 int cpu, struct xdp_buff *xdp,
3934 u32 dma_sync_len)
3935 {
3936 struct fec_enet_priv_tx_q *txq;
3937 struct netdev_queue *nq;
3938 int queue, ret;
3939
3940 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3941 txq = fep->tx_queue[queue];
3942 nq = netdev_get_tx_queue(fep->netdev, queue);
3943
3944 __netif_tx_lock(nq, cpu);
3945
3946 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3947 txq_trans_cond_update(nq);
3948 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3949
3950 __netif_tx_unlock(nq);
3951
3952 return ret;
3953 }
3954
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3955 static int fec_enet_xdp_xmit(struct net_device *dev,
3956 int num_frames,
3957 struct xdp_frame **frames,
3958 u32 flags)
3959 {
3960 struct fec_enet_private *fep = netdev_priv(dev);
3961 struct fec_enet_priv_tx_q *txq;
3962 int cpu = smp_processor_id();
3963 unsigned int sent_frames = 0;
3964 struct netdev_queue *nq;
3965 unsigned int queue;
3966 int i;
3967
3968 queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3969 txq = fep->tx_queue[queue];
3970 nq = netdev_get_tx_queue(fep->netdev, queue);
3971
3972 __netif_tx_lock(nq, cpu);
3973
3974 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3975 txq_trans_cond_update(nq);
3976 for (i = 0; i < num_frames; i++) {
3977 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3978 break;
3979 sent_frames++;
3980 }
3981
3982 __netif_tx_unlock(nq);
3983
3984 return sent_frames;
3985 }
3986
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3987 static int fec_hwtstamp_get(struct net_device *ndev,
3988 struct kernel_hwtstamp_config *config)
3989 {
3990 struct fec_enet_private *fep = netdev_priv(ndev);
3991
3992 if (!netif_running(ndev))
3993 return -EINVAL;
3994
3995 if (!fep->bufdesc_ex)
3996 return -EOPNOTSUPP;
3997
3998 fec_ptp_get(ndev, config);
3999
4000 return 0;
4001 }
4002
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4003 static int fec_hwtstamp_set(struct net_device *ndev,
4004 struct kernel_hwtstamp_config *config,
4005 struct netlink_ext_ack *extack)
4006 {
4007 struct fec_enet_private *fep = netdev_priv(ndev);
4008
4009 if (!netif_running(ndev))
4010 return -EINVAL;
4011
4012 if (!fep->bufdesc_ex)
4013 return -EOPNOTSUPP;
4014
4015 return fec_ptp_set(ndev, config, extack);
4016 }
4017
4018 static const struct net_device_ops fec_netdev_ops = {
4019 .ndo_open = fec_enet_open,
4020 .ndo_stop = fec_enet_close,
4021 .ndo_start_xmit = fec_enet_start_xmit,
4022 .ndo_select_queue = fec_enet_select_queue,
4023 .ndo_set_rx_mode = set_multicast_list,
4024 .ndo_validate_addr = eth_validate_addr,
4025 .ndo_tx_timeout = fec_timeout,
4026 .ndo_set_mac_address = fec_set_mac_address,
4027 .ndo_eth_ioctl = phy_do_ioctl_running,
4028 .ndo_set_features = fec_set_features,
4029 .ndo_bpf = fec_enet_bpf,
4030 .ndo_xdp_xmit = fec_enet_xdp_xmit,
4031 .ndo_hwtstamp_get = fec_hwtstamp_get,
4032 .ndo_hwtstamp_set = fec_hwtstamp_set,
4033 };
4034
4035 static const unsigned short offset_des_active_rxq[] = {
4036 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4037 };
4038
4039 static const unsigned short offset_des_active_txq[] = {
4040 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4041 };
4042
4043 /*
4044 * XXX: We need to clean up on failure exits here.
4045 *
4046 */
fec_enet_init(struct net_device * ndev)4047 static int fec_enet_init(struct net_device *ndev)
4048 {
4049 struct fec_enet_private *fep = netdev_priv(ndev);
4050 struct bufdesc *cbd_base;
4051 dma_addr_t bd_dma;
4052 int bd_size;
4053 unsigned int i;
4054 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4055 sizeof(struct bufdesc);
4056 unsigned dsize_log2 = __fls(dsize);
4057 int ret;
4058
4059 WARN_ON(dsize != (1 << dsize_log2));
4060 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4061 fep->rx_align = 0xf;
4062 fep->tx_align = 0xf;
4063 #else
4064 fep->rx_align = 0x3;
4065 fep->tx_align = 0x3;
4066 #endif
4067 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4068 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4069 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4070 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4071
4072 /* Check mask of the streaming and coherent API */
4073 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4074 if (ret < 0) {
4075 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4076 return ret;
4077 }
4078
4079 ret = fec_enet_alloc_queue(ndev);
4080 if (ret)
4081 return ret;
4082
4083 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4084
4085 /* Allocate memory for buffer descriptors. */
4086 cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4087 GFP_KERNEL);
4088 if (!cbd_base) {
4089 ret = -ENOMEM;
4090 goto free_queue_mem;
4091 }
4092
4093 /* Get the Ethernet address */
4094 ret = fec_get_mac(ndev);
4095 if (ret)
4096 goto free_queue_mem;
4097
4098 /* Set receive and transmit descriptor base. */
4099 for (i = 0; i < fep->num_rx_queues; i++) {
4100 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4101 unsigned size = dsize * rxq->bd.ring_size;
4102
4103 rxq->bd.qid = i;
4104 rxq->bd.base = cbd_base;
4105 rxq->bd.cur = cbd_base;
4106 rxq->bd.dma = bd_dma;
4107 rxq->bd.dsize = dsize;
4108 rxq->bd.dsize_log2 = dsize_log2;
4109 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4110 bd_dma += size;
4111 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4112 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4113 }
4114
4115 for (i = 0; i < fep->num_tx_queues; i++) {
4116 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4117 unsigned size = dsize * txq->bd.ring_size;
4118
4119 txq->bd.qid = i;
4120 txq->bd.base = cbd_base;
4121 txq->bd.cur = cbd_base;
4122 txq->bd.dma = bd_dma;
4123 txq->bd.dsize = dsize;
4124 txq->bd.dsize_log2 = dsize_log2;
4125 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4126 bd_dma += size;
4127 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4128 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4129 }
4130
4131
4132 /* The FEC Ethernet specific entries in the device structure */
4133 ndev->watchdog_timeo = TX_TIMEOUT;
4134 ndev->netdev_ops = &fec_netdev_ops;
4135 ndev->ethtool_ops = &fec_enet_ethtool_ops;
4136
4137 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4138 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4139
4140 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4141 /* enable hw VLAN support */
4142 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4143
4144 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4145 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4146
4147 /* enable hw accelerator */
4148 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4149 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4150 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4151 }
4152
4153 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4154 fep->tx_align = 0;
4155 fep->rx_align = 0x3f;
4156 }
4157
4158 ndev->hw_features = ndev->features;
4159
4160 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4161 ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4162 NETDEV_XDP_ACT_REDIRECT;
4163
4164 fec_restart(ndev);
4165
4166 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4167 fec_enet_clear_ethtool_stats(ndev);
4168 else
4169 fec_enet_update_ethtool_stats(ndev);
4170
4171 return 0;
4172
4173 free_queue_mem:
4174 fec_enet_free_queue(ndev);
4175 return ret;
4176 }
4177
fec_enet_deinit(struct net_device * ndev)4178 static void fec_enet_deinit(struct net_device *ndev)
4179 {
4180 struct fec_enet_private *fep = netdev_priv(ndev);
4181
4182 netif_napi_del(&fep->napi);
4183 fec_enet_free_queue(ndev);
4184 }
4185
4186 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4187 static int fec_reset_phy(struct platform_device *pdev)
4188 {
4189 struct gpio_desc *phy_reset;
4190 int msec = 1, phy_post_delay = 0;
4191 struct device_node *np = pdev->dev.of_node;
4192 int err;
4193
4194 if (!np)
4195 return 0;
4196
4197 err = of_property_read_u32(np, "phy-reset-duration", &msec);
4198 /* A sane reset duration should not be longer than 1s */
4199 if (!err && msec > 1000)
4200 msec = 1;
4201
4202 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4203 /* valid reset duration should be less than 1s */
4204 if (!err && phy_post_delay > 1000)
4205 return -EINVAL;
4206
4207 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4208 GPIOD_OUT_HIGH);
4209 if (IS_ERR(phy_reset))
4210 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4211 "failed to get phy-reset-gpios\n");
4212
4213 if (!phy_reset)
4214 return 0;
4215
4216 if (msec > 20)
4217 msleep(msec);
4218 else
4219 usleep_range(msec * 1000, msec * 1000 + 1000);
4220
4221 gpiod_set_value_cansleep(phy_reset, 0);
4222
4223 if (!phy_post_delay)
4224 return 0;
4225
4226 if (phy_post_delay > 20)
4227 msleep(phy_post_delay);
4228 else
4229 usleep_range(phy_post_delay * 1000,
4230 phy_post_delay * 1000 + 1000);
4231
4232 return 0;
4233 }
4234 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4235 static int fec_reset_phy(struct platform_device *pdev)
4236 {
4237 /*
4238 * In case of platform probe, the reset has been done
4239 * by machine code.
4240 */
4241 return 0;
4242 }
4243 #endif /* CONFIG_OF */
4244
4245 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4246 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4247 {
4248 struct device_node *np = pdev->dev.of_node;
4249
4250 *num_tx = *num_rx = 1;
4251
4252 if (!np || !of_device_is_available(np))
4253 return;
4254
4255 /* parse the num of tx and rx queues */
4256 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4257
4258 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4259
4260 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4261 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4262 *num_tx);
4263 *num_tx = 1;
4264 return;
4265 }
4266
4267 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4268 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4269 *num_rx);
4270 *num_rx = 1;
4271 return;
4272 }
4273
4274 }
4275
fec_enet_get_irq_cnt(struct platform_device * pdev)4276 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4277 {
4278 int irq_cnt = platform_irq_count(pdev);
4279
4280 if (irq_cnt > FEC_IRQ_NUM)
4281 irq_cnt = FEC_IRQ_NUM; /* last for pps */
4282 else if (irq_cnt == 2)
4283 irq_cnt = 1; /* last for pps */
4284 else if (irq_cnt <= 0)
4285 irq_cnt = 1; /* At least 1 irq is needed */
4286 return irq_cnt;
4287 }
4288
fec_enet_get_wakeup_irq(struct platform_device * pdev)4289 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4290 {
4291 struct net_device *ndev = platform_get_drvdata(pdev);
4292 struct fec_enet_private *fep = netdev_priv(ndev);
4293
4294 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4295 fep->wake_irq = fep->irq[2];
4296 else
4297 fep->wake_irq = fep->irq[0];
4298 }
4299
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4300 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4301 struct device_node *np)
4302 {
4303 struct device_node *gpr_np;
4304 u32 out_val[3];
4305 int ret = 0;
4306
4307 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4308 if (!gpr_np)
4309 return 0;
4310
4311 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4312 ARRAY_SIZE(out_val));
4313 if (ret) {
4314 dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4315 goto out;
4316 }
4317
4318 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4319 if (IS_ERR(fep->stop_gpr.gpr)) {
4320 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4321 ret = PTR_ERR(fep->stop_gpr.gpr);
4322 fep->stop_gpr.gpr = NULL;
4323 goto out;
4324 }
4325
4326 fep->stop_gpr.reg = out_val[1];
4327 fep->stop_gpr.bit = out_val[2];
4328
4329 out:
4330 of_node_put(gpr_np);
4331
4332 return ret;
4333 }
4334
4335 static int
fec_probe(struct platform_device * pdev)4336 fec_probe(struct platform_device *pdev)
4337 {
4338 struct fec_enet_private *fep;
4339 struct fec_platform_data *pdata;
4340 phy_interface_t interface;
4341 struct net_device *ndev;
4342 int i, irq, ret = 0;
4343 static int dev_id;
4344 struct device_node *np = pdev->dev.of_node, *phy_node;
4345 int num_tx_qs;
4346 int num_rx_qs;
4347 char irq_name[8];
4348 int irq_cnt;
4349 const struct fec_devinfo *dev_info;
4350
4351 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4352
4353 /* Init network device */
4354 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4355 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4356 if (!ndev)
4357 return -ENOMEM;
4358
4359 SET_NETDEV_DEV(ndev, &pdev->dev);
4360
4361 /* setup board info structure */
4362 fep = netdev_priv(ndev);
4363
4364 dev_info = device_get_match_data(&pdev->dev);
4365 if (!dev_info)
4366 dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4367 if (dev_info)
4368 fep->quirks = dev_info->quirks;
4369
4370 fep->netdev = ndev;
4371 fep->num_rx_queues = num_rx_qs;
4372 fep->num_tx_queues = num_tx_qs;
4373
4374 #if !defined(CONFIG_M5272)
4375 /* default enable pause frame auto negotiation */
4376 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4377 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4378 #endif
4379
4380 /* Select default pin state */
4381 pinctrl_pm_select_default_state(&pdev->dev);
4382
4383 fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4384 if (IS_ERR(fep->hwp)) {
4385 ret = PTR_ERR(fep->hwp);
4386 goto failed_ioremap;
4387 }
4388
4389 fep->pdev = pdev;
4390 fep->dev_id = dev_id++;
4391
4392 platform_set_drvdata(pdev, ndev);
4393
4394 if ((of_machine_is_compatible("fsl,imx6q") ||
4395 of_machine_is_compatible("fsl,imx6dl")) &&
4396 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4397 fep->quirks |= FEC_QUIRK_ERR006687;
4398
4399 ret = fec_enet_ipc_handle_init(fep);
4400 if (ret)
4401 goto failed_ipc_init;
4402
4403 if (of_property_read_bool(np, "fsl,magic-packet"))
4404 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4405
4406 ret = fec_enet_init_stop_mode(fep, np);
4407 if (ret)
4408 goto failed_stop_mode;
4409
4410 phy_node = of_parse_phandle(np, "phy-handle", 0);
4411 if (!phy_node && of_phy_is_fixed_link(np)) {
4412 ret = of_phy_register_fixed_link(np);
4413 if (ret < 0) {
4414 dev_err(&pdev->dev,
4415 "broken fixed-link specification\n");
4416 goto failed_phy;
4417 }
4418 phy_node = of_node_get(np);
4419 }
4420 fep->phy_node = phy_node;
4421
4422 ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4423 if (ret) {
4424 pdata = dev_get_platdata(&pdev->dev);
4425 if (pdata)
4426 fep->phy_interface = pdata->phy;
4427 else
4428 fep->phy_interface = PHY_INTERFACE_MODE_MII;
4429 } else {
4430 fep->phy_interface = interface;
4431 }
4432
4433 ret = fec_enet_parse_rgmii_delay(fep, np);
4434 if (ret)
4435 goto failed_rgmii_delay;
4436
4437 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4438 if (IS_ERR(fep->clk_ipg)) {
4439 ret = PTR_ERR(fep->clk_ipg);
4440 goto failed_clk;
4441 }
4442
4443 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4444 if (IS_ERR(fep->clk_ahb)) {
4445 ret = PTR_ERR(fep->clk_ahb);
4446 goto failed_clk;
4447 }
4448
4449 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4450
4451 /* enet_out is optional, depends on board */
4452 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4453 if (IS_ERR(fep->clk_enet_out)) {
4454 ret = PTR_ERR(fep->clk_enet_out);
4455 goto failed_clk;
4456 }
4457
4458 fep->ptp_clk_on = false;
4459 mutex_init(&fep->ptp_clk_mutex);
4460
4461 /* clk_ref is optional, depends on board */
4462 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4463 if (IS_ERR(fep->clk_ref)) {
4464 ret = PTR_ERR(fep->clk_ref);
4465 goto failed_clk;
4466 }
4467 fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4468
4469 /* clk_2x_txclk is optional, depends on board */
4470 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4471 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4472 if (IS_ERR(fep->clk_2x_txclk))
4473 fep->clk_2x_txclk = NULL;
4474 }
4475
4476 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4477 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4478 if (IS_ERR(fep->clk_ptp)) {
4479 fep->clk_ptp = NULL;
4480 fep->bufdesc_ex = false;
4481 }
4482
4483 ret = fec_enet_clk_enable(ndev, true);
4484 if (ret)
4485 goto failed_clk;
4486
4487 ret = clk_prepare_enable(fep->clk_ipg);
4488 if (ret)
4489 goto failed_clk_ipg;
4490 ret = clk_prepare_enable(fep->clk_ahb);
4491 if (ret)
4492 goto failed_clk_ahb;
4493
4494 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4495 if (!IS_ERR(fep->reg_phy)) {
4496 ret = regulator_enable(fep->reg_phy);
4497 if (ret) {
4498 dev_err(&pdev->dev,
4499 "Failed to enable phy regulator: %d\n", ret);
4500 goto failed_regulator;
4501 }
4502 } else {
4503 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4504 ret = -EPROBE_DEFER;
4505 goto failed_regulator;
4506 }
4507 fep->reg_phy = NULL;
4508 }
4509
4510 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4511 pm_runtime_use_autosuspend(&pdev->dev);
4512 pm_runtime_get_noresume(&pdev->dev);
4513 pm_runtime_set_active(&pdev->dev);
4514 pm_runtime_enable(&pdev->dev);
4515
4516 ret = fec_reset_phy(pdev);
4517 if (ret)
4518 goto failed_reset;
4519
4520 irq_cnt = fec_enet_get_irq_cnt(pdev);
4521 if (fep->bufdesc_ex)
4522 fec_ptp_init(pdev, irq_cnt);
4523
4524 ret = fec_enet_init(ndev);
4525 if (ret)
4526 goto failed_init;
4527
4528 for (i = 0; i < irq_cnt; i++) {
4529 snprintf(irq_name, sizeof(irq_name), "int%d", i);
4530 irq = platform_get_irq_byname_optional(pdev, irq_name);
4531 if (irq < 0)
4532 irq = platform_get_irq(pdev, i);
4533 if (irq < 0) {
4534 ret = irq;
4535 goto failed_irq;
4536 }
4537 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4538 0, pdev->name, ndev);
4539 if (ret)
4540 goto failed_irq;
4541
4542 fep->irq[i] = irq;
4543 }
4544
4545 /* Decide which interrupt line is wakeup capable */
4546 fec_enet_get_wakeup_irq(pdev);
4547
4548 ret = fec_enet_mii_init(pdev);
4549 if (ret)
4550 goto failed_mii_init;
4551
4552 /* Carrier starts down, phylib will bring it up */
4553 netif_carrier_off(ndev);
4554 fec_enet_clk_enable(ndev, false);
4555 pinctrl_pm_select_sleep_state(&pdev->dev);
4556
4557 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4558
4559 ret = register_netdev(ndev);
4560 if (ret)
4561 goto failed_register;
4562
4563 device_init_wakeup(&ndev->dev, fep->wol_flag &
4564 FEC_WOL_HAS_MAGIC_PACKET);
4565
4566 if (fep->bufdesc_ex && fep->ptp_clock)
4567 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4568
4569 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4570
4571 pm_runtime_mark_last_busy(&pdev->dev);
4572 pm_runtime_put_autosuspend(&pdev->dev);
4573
4574 return 0;
4575
4576 failed_register:
4577 fec_enet_mii_remove(fep);
4578 failed_mii_init:
4579 failed_irq:
4580 fec_enet_deinit(ndev);
4581 failed_init:
4582 fec_ptp_stop(pdev);
4583 failed_reset:
4584 pm_runtime_put_noidle(&pdev->dev);
4585 pm_runtime_disable(&pdev->dev);
4586 if (fep->reg_phy)
4587 regulator_disable(fep->reg_phy);
4588 failed_regulator:
4589 clk_disable_unprepare(fep->clk_ahb);
4590 failed_clk_ahb:
4591 clk_disable_unprepare(fep->clk_ipg);
4592 failed_clk_ipg:
4593 fec_enet_clk_enable(ndev, false);
4594 failed_clk:
4595 failed_rgmii_delay:
4596 if (of_phy_is_fixed_link(np))
4597 of_phy_deregister_fixed_link(np);
4598 of_node_put(phy_node);
4599 failed_stop_mode:
4600 failed_ipc_init:
4601 failed_phy:
4602 dev_id--;
4603 failed_ioremap:
4604 free_netdev(ndev);
4605
4606 return ret;
4607 }
4608
4609 static void
fec_drv_remove(struct platform_device * pdev)4610 fec_drv_remove(struct platform_device *pdev)
4611 {
4612 struct net_device *ndev = platform_get_drvdata(pdev);
4613 struct fec_enet_private *fep = netdev_priv(ndev);
4614 struct device_node *np = pdev->dev.of_node;
4615 int ret;
4616
4617 ret = pm_runtime_get_sync(&pdev->dev);
4618 if (ret < 0)
4619 dev_err(&pdev->dev,
4620 "Failed to resume device in remove callback (%pe)\n",
4621 ERR_PTR(ret));
4622
4623 cancel_work_sync(&fep->tx_timeout_work);
4624 fec_ptp_stop(pdev);
4625 unregister_netdev(ndev);
4626 fec_enet_mii_remove(fep);
4627 if (fep->reg_phy)
4628 regulator_disable(fep->reg_phy);
4629
4630 if (of_phy_is_fixed_link(np))
4631 of_phy_deregister_fixed_link(np);
4632 of_node_put(fep->phy_node);
4633
4634 /* After pm_runtime_get_sync() failed, the clks are still off, so skip
4635 * disabling them again.
4636 */
4637 if (ret >= 0) {
4638 clk_disable_unprepare(fep->clk_ahb);
4639 clk_disable_unprepare(fep->clk_ipg);
4640 }
4641 pm_runtime_put_noidle(&pdev->dev);
4642 pm_runtime_disable(&pdev->dev);
4643
4644 fec_enet_deinit(ndev);
4645 free_netdev(ndev);
4646 }
4647
fec_suspend(struct device * dev)4648 static int fec_suspend(struct device *dev)
4649 {
4650 struct net_device *ndev = dev_get_drvdata(dev);
4651 struct fec_enet_private *fep = netdev_priv(ndev);
4652 int ret;
4653
4654 rtnl_lock();
4655 if (netif_running(ndev)) {
4656 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4657 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4658 phy_stop(ndev->phydev);
4659 napi_disable(&fep->napi);
4660 netif_tx_lock_bh(ndev);
4661 netif_device_detach(ndev);
4662 netif_tx_unlock_bh(ndev);
4663 fec_stop(ndev);
4664 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4665 fec_irqs_disable(ndev);
4666 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4667 } else {
4668 fec_irqs_disable_except_wakeup(ndev);
4669 if (fep->wake_irq > 0) {
4670 disable_irq(fep->wake_irq);
4671 enable_irq_wake(fep->wake_irq);
4672 }
4673 fec_enet_stop_mode(fep, true);
4674 }
4675 /* It's safe to disable clocks since interrupts are masked */
4676 fec_enet_clk_enable(ndev, false);
4677
4678 fep->rpm_active = !pm_runtime_status_suspended(dev);
4679 if (fep->rpm_active) {
4680 ret = pm_runtime_force_suspend(dev);
4681 if (ret < 0) {
4682 rtnl_unlock();
4683 return ret;
4684 }
4685 }
4686 }
4687 rtnl_unlock();
4688
4689 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4690 regulator_disable(fep->reg_phy);
4691
4692 /* SOC supply clock to phy, when clock is disabled, phy link down
4693 * SOC control phy regulator, when regulator is disabled, phy link down
4694 */
4695 if (fep->clk_enet_out || fep->reg_phy)
4696 fep->link = 0;
4697
4698 return 0;
4699 }
4700
fec_resume(struct device * dev)4701 static int fec_resume(struct device *dev)
4702 {
4703 struct net_device *ndev = dev_get_drvdata(dev);
4704 struct fec_enet_private *fep = netdev_priv(ndev);
4705 int ret;
4706 int val;
4707
4708 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4709 ret = regulator_enable(fep->reg_phy);
4710 if (ret)
4711 return ret;
4712 }
4713
4714 rtnl_lock();
4715 if (netif_running(ndev)) {
4716 if (fep->rpm_active)
4717 pm_runtime_force_resume(dev);
4718
4719 ret = fec_enet_clk_enable(ndev, true);
4720 if (ret) {
4721 rtnl_unlock();
4722 goto failed_clk;
4723 }
4724 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4725 fec_enet_stop_mode(fep, false);
4726 if (fep->wake_irq) {
4727 disable_irq_wake(fep->wake_irq);
4728 enable_irq(fep->wake_irq);
4729 }
4730
4731 val = readl(fep->hwp + FEC_ECNTRL);
4732 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4733 writel(val, fep->hwp + FEC_ECNTRL);
4734 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4735 } else {
4736 pinctrl_pm_select_default_state(&fep->pdev->dev);
4737 }
4738 fec_restart(ndev);
4739 netif_tx_lock_bh(ndev);
4740 netif_device_attach(ndev);
4741 netif_tx_unlock_bh(ndev);
4742 napi_enable(&fep->napi);
4743 phy_init_hw(ndev->phydev);
4744 phy_start(ndev->phydev);
4745 }
4746 rtnl_unlock();
4747
4748 return 0;
4749
4750 failed_clk:
4751 if (fep->reg_phy)
4752 regulator_disable(fep->reg_phy);
4753 return ret;
4754 }
4755
fec_runtime_suspend(struct device * dev)4756 static int fec_runtime_suspend(struct device *dev)
4757 {
4758 struct net_device *ndev = dev_get_drvdata(dev);
4759 struct fec_enet_private *fep = netdev_priv(ndev);
4760
4761 clk_disable_unprepare(fep->clk_ahb);
4762 clk_disable_unprepare(fep->clk_ipg);
4763
4764 return 0;
4765 }
4766
fec_runtime_resume(struct device * dev)4767 static int fec_runtime_resume(struct device *dev)
4768 {
4769 struct net_device *ndev = dev_get_drvdata(dev);
4770 struct fec_enet_private *fep = netdev_priv(ndev);
4771 int ret;
4772
4773 ret = clk_prepare_enable(fep->clk_ahb);
4774 if (ret)
4775 return ret;
4776 ret = clk_prepare_enable(fep->clk_ipg);
4777 if (ret)
4778 goto failed_clk_ipg;
4779
4780 return 0;
4781
4782 failed_clk_ipg:
4783 clk_disable_unprepare(fep->clk_ahb);
4784 return ret;
4785 }
4786
4787 static const struct dev_pm_ops fec_pm_ops = {
4788 SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4789 RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4790 };
4791
4792 static struct platform_driver fec_driver = {
4793 .driver = {
4794 .name = DRIVER_NAME,
4795 .pm = pm_ptr(&fec_pm_ops),
4796 .of_match_table = fec_dt_ids,
4797 .suppress_bind_attrs = true,
4798 },
4799 .id_table = fec_devtype,
4800 .probe = fec_probe,
4801 .remove = fec_drv_remove,
4802 };
4803
4804 module_platform_driver(fec_driver);
4805
4806 MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4807 MODULE_LICENSE("GPL");
4808