xref: /linux/drivers/media/i2c/vd56g3.c (revision 518b21ba139cefa2ee7f9fcf516fdc6743e8db68)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * A V4L2 driver for ST VD56G3 (Mono) and VD66GY (RGB) global shutter cameras.
4  * Copyright (C) 2024, STMicroelectronics SA
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/gpio/consumer.h>
10 #include <linux/i2c.h>
11 #include <linux/iopoll.h>
12 #include <linux/module.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/regmap.h>
15 #include <linux/regulator/consumer.h>
16 #include <linux/unaligned.h>
17 #include <linux/units.h>
18 
19 #include <media/mipi-csi2.h>
20 #include <media/v4l2-async.h>
21 #include <media/v4l2-cci.h>
22 #include <media/v4l2-ctrls.h>
23 #include <media/v4l2-device.h>
24 #include <media/v4l2-fwnode.h>
25 #include <media/v4l2-subdev.h>
26 
27 /* Register Map */
28 #define VD56G3_REG_MODEL_ID				CCI_REG16_LE(0x0000)
29 #define VD56G3_MODEL_ID					0x5603
30 #define VD56G3_REG_REVISION				CCI_REG16_LE(0x0002)
31 #define VD56G3_REVISION_CUT3				0x31
32 #define VD56G3_REG_OPTICAL_REVISION			CCI_REG8(0x001a)
33 #define VD56G3_OPTICAL_REVISION_MONO			0
34 #define VD56G3_OPTICAL_REVISION_BAYER			1
35 #define VD56G3_REG_SYSTEM_FSM				CCI_REG8(0x0028)
36 #define VD56G3_SYSTEM_FSM_READY_TO_BOOT			0x01
37 #define VD56G3_SYSTEM_FSM_SW_STBY			0x02
38 #define VD56G3_SYSTEM_FSM_STREAMING			0x03
39 #define VD56G3_REG_APPLIED_COARSE_EXPOSURE		CCI_REG16_LE(0x0064)
40 #define VD56G3_REG_APPLIED_ANALOG_GAIN			CCI_REG8(0x0068)
41 #define VD56G3_REG_APPLIED_DIGITAL_GAIN			CCI_REG16_LE(0x006a)
42 #define VD56G3_REG_BOOT					CCI_REG8(0x0200)
43 #define VD56G3_CMD_ACK					0
44 #define VD56G3_CMD_BOOT					1
45 #define VD56G3_REG_STBY					CCI_REG8(0x0201)
46 #define VD56G3_CMD_START_STREAM				1
47 #define VD56G3_REG_STREAMING				CCI_REG8(0x0202)
48 #define VD56G3_CMD_STOP_STREAM				1
49 #define VD56G3_REG_EXT_CLOCK				CCI_REG32_LE(0x0220)
50 #define VD56G3_REG_CLK_PLL_PREDIV			CCI_REG8(0x0224)
51 #define VD56G3_REG_CLK_SYS_PLL_MULT			CCI_REG8(0x0226)
52 #define VD56G3_REG_ORIENTATION				CCI_REG8(0x0302)
53 #define VD56G3_REG_FORMAT_CTRL				CCI_REG8(0x030a)
54 #define VD56G3_REG_OIF_CTRL				CCI_REG16_LE(0x030c)
55 #define VD56G3_REG_OIF_IMG_CTRL				CCI_REG8(0x030f)
56 #define VD56G3_REG_OIF_CSI_BITRATE			CCI_REG16_LE(0x0312)
57 #define VD56G3_REG_DUSTER_CTRL				CCI_REG8(0x0318)
58 #define VD56G3_DUSTER_DISABLE				0
59 #define VD56G3_DUSTER_ENABLE_DEF_MODULES		0x13
60 #define VD56G3_REG_ISL_ENABLE				CCI_REG8(0x0333)
61 #define VD56G3_REG_DARKCAL_CTRL				CCI_REG8(0x0340)
62 #define VD56G3_DARKCAL_ENABLE				1
63 #define VD56G3_DARKCAL_DISABLE_DARKAVG			2
64 #define VD56G3_REG_PATGEN_CTRL				CCI_REG16_LE(0x0400)
65 #define VD56G3_PATGEN_ENABLE				1
66 #define VD56G3_PATGEN_TYPE_SHIFT			4
67 #define VD56G3_REG_AE_COLDSTART_COARSE_EXPOSURE		CCI_REG16_LE(0x042a)
68 #define VD56G3_REG_AE_COLDSTART_ANALOG_GAIN		CCI_REG8(0x042c)
69 #define VD56G3_REG_AE_COLDSTART_DIGITAL_GAIN		CCI_REG16_LE(0x042e)
70 #define VD56G3_REG_AE_ROI_START_H			CCI_REG16_LE(0x0432)
71 #define VD56G3_REG_AE_ROI_START_V			CCI_REG16_LE(0x0434)
72 #define VD56G3_REG_AE_ROI_END_H				CCI_REG16_LE(0x0436)
73 #define VD56G3_REG_AE_ROI_END_V				CCI_REG16_LE(0x0438)
74 #define VD56G3_REG_AE_COMPENSATION			CCI_REG16_LE(0x043a)
75 #define VD56G3_REG_EXP_MODE				CCI_REG8(0x044c)
76 #define VD56G3_EXP_MODE_AUTO				0
77 #define VD56G3_EXP_MODE_FREEZE				1
78 #define VD56G3_EXP_MODE_MANUAL				2
79 #define VD56G3_REG_MANUAL_ANALOG_GAIN			CCI_REG8(0x044d)
80 #define VD56G3_REG_MANUAL_COARSE_EXPOSURE		CCI_REG16_LE(0x044e)
81 #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH0		CCI_REG16_LE(0x0450)
82 #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH1		CCI_REG16_LE(0x0452)
83 #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH2		CCI_REG16_LE(0x0454)
84 #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH3		CCI_REG16_LE(0x0456)
85 #define VD56G3_REG_FRAME_LENGTH				CCI_REG16_LE(0x0458)
86 #define VD56G3_REG_Y_START				CCI_REG16_LE(0x045a)
87 #define VD56G3_REG_Y_END				CCI_REG16_LE(0x045c)
88 #define VD56G3_REG_OUT_ROI_X_START			CCI_REG16_LE(0x045e)
89 #define VD56G3_REG_OUT_ROI_X_END			CCI_REG16_LE(0x0460)
90 #define VD56G3_REG_OUT_ROI_Y_START			CCI_REG16_LE(0x0462)
91 #define VD56G3_REG_OUT_ROI_Y_END			CCI_REG16_LE(0x0464)
92 #define VD56G3_REG_GPIO_0_CTRL				CCI_REG8(0x0467)
93 #define VD56G3_GPIOX_GPIO_IN				0x01
94 #define VD56G3_GPIOX_STROBE_MODE			0x02
95 #define VD56G3_REG_READOUT_CTRL				CCI_REG8(0x047e)
96 #define READOUT_NORMAL					0x00
97 #define READOUT_DIGITAL_BINNING_X2			0x01
98 
99 /* The VD56G3 is a portrait image sensor with native resolution of 1124x1364. */
100 #define VD56G3_NATIVE_WIDTH				1124
101 #define VD56G3_NATIVE_HEIGHT				1364
102 #define VD56G3_DEFAULT_MODE				0
103 
104 /* PLL settings */
105 #define VD56G3_TARGET_PLL				804000000UL
106 #define VD56G3_VT_CLOCK_DIV				5
107 
108 /* External clock must be in [6Mhz-27Mhz] */
109 #define VD56G3_XCLK_FREQ_MIN				 (6 * HZ_PER_MHZ)
110 #define VD56G3_XCLK_FREQ_MAX				 (27 * HZ_PER_MHZ)
111 
112 /* Line length and Frame length (settings are for standard 10bits ADC mode) */
113 #define VD56G3_LINE_LENGTH_MIN				1236
114 #define VD56G3_VBLANK_MIN				110
115 #define VD56G3_FRAME_LENGTH_DEF_60FPS			2168
116 #define VD56G3_FRAME_LENGTH_MAX				0xffff
117 
118 /* Exposure settings */
119 #define VD56G3_EXPOSURE_MARGIN				75
120 #define VD56G3_EXPOSURE_MIN				5
121 #define VD56G3_EXPOSURE_DEFAULT				1420
122 
123 /* Output Interface settings */
124 #define VD56G3_MAX_CSI_DATA_LANES			2
125 #define VD56G3_LINK_FREQ_DEF_1LANE			750000000UL
126 #define VD56G3_LINK_FREQ_DEF_2LANES			402000000UL
127 
128 /* GPIOs */
129 #define VD56G3_NB_GPIOS					8
130 
131 /* regulator supplies */
132 static const char *const vd56g3_supply_names[] = {
133 	"vcore",
134 	"vddio",
135 	"vana",
136 };
137 
138 /* -----------------------------------------------------------------------------
139  * Models (VD56G3: Mono, VD66GY: Bayer RGB), Modes and formats
140  */
141 
142 enum vd56g3_models {
143 	VD56G3_MODEL_VD56G3,
144 	VD56G3_MODEL_VD66GY,
145 };
146 
147 struct vd56g3_mode {
148 	u32 width;
149 	u32 height;
150 };
151 
152 static const struct vd56g3_mode vd56g3_supported_modes[] = {
153 	{
154 		.width = VD56G3_NATIVE_WIDTH,
155 		.height = VD56G3_NATIVE_HEIGHT,
156 	},
157 	{
158 		.width = 1120,
159 		.height = 1360,
160 	},
161 	{
162 		.width = 1024,
163 		.height = 1280,
164 	},
165 	{
166 		.width = 1024,
167 		.height = 768,
168 	},
169 	{
170 		.width = 768,
171 		.height = 1024,
172 	},
173 	{
174 		.width = 720,
175 		.height = 1280,
176 	},
177 	{
178 		.width = 640,
179 		.height = 480,
180 	},
181 	{
182 		.width = 480,
183 		.height = 640,
184 	},
185 	{
186 		.width = 320,
187 		.height = 240,
188 	},
189 };
190 
191 /*
192  * Sensor support 8bits and 10bits output in both variants
193  *  - Monochrome
194  *  - RGB (with all H/V flip variations)
195  */
196 static const unsigned int vd56g3_mbus_codes[2][5] = {
197 	{
198 		MEDIA_BUS_FMT_Y8_1X8,
199 		MEDIA_BUS_FMT_SGRBG8_1X8,
200 		MEDIA_BUS_FMT_SRGGB8_1X8,
201 		MEDIA_BUS_FMT_SBGGR8_1X8,
202 		MEDIA_BUS_FMT_SGBRG8_1X8,
203 	},
204 	{
205 		MEDIA_BUS_FMT_Y10_1X10,
206 		MEDIA_BUS_FMT_SGRBG10_1X10,
207 		MEDIA_BUS_FMT_SRGGB10_1X10,
208 		MEDIA_BUS_FMT_SBGGR10_1X10,
209 		MEDIA_BUS_FMT_SGBRG10_1X10,
210 	},
211 };
212 
213 struct vd56g3 {
214 	struct device *dev;
215 	struct v4l2_subdev sd;
216 	struct media_pad pad;
217 	struct regulator_bulk_data supplies[ARRAY_SIZE(vd56g3_supply_names)];
218 	struct gpio_desc *reset_gpio;
219 	struct clk *xclk;
220 	struct regmap *regmap;
221 	u32 xclk_freq;
222 	u32 pll_prediv;
223 	u32 pll_mult;
224 	u32 pixel_clock;
225 	u16 oif_ctrl;
226 	u8 nb_of_lane;
227 	u32 gpios[VD56G3_NB_GPIOS];
228 	unsigned long ext_leds_mask;
229 	bool is_mono;
230 	struct v4l2_ctrl_handler ctrl_handler;
231 	struct v4l2_ctrl *hblank_ctrl;
232 	struct v4l2_ctrl *vblank_ctrl;
233 	struct {
234 		struct v4l2_ctrl *hflip_ctrl;
235 		struct v4l2_ctrl *vflip_ctrl;
236 	};
237 	struct v4l2_ctrl *patgen_ctrl;
238 	struct {
239 		struct v4l2_ctrl *ae_ctrl;
240 		struct v4l2_ctrl *expo_ctrl;
241 		struct v4l2_ctrl *again_ctrl;
242 		struct v4l2_ctrl *dgain_ctrl;
243 	};
244 	struct v4l2_ctrl *ae_lock_ctrl;
245 	struct v4l2_ctrl *ae_bias_ctrl;
246 	struct v4l2_ctrl *led_ctrl;
247 };
248 
to_vd56g3(struct v4l2_subdev * sd)249 static inline struct vd56g3 *to_vd56g3(struct v4l2_subdev *sd)
250 {
251 	return container_of_const(sd, struct vd56g3, sd);
252 }
253 
ctrl_to_vd56g3(struct v4l2_ctrl * ctrl)254 static inline struct vd56g3 *ctrl_to_vd56g3(struct v4l2_ctrl *ctrl)
255 {
256 	return container_of_const(ctrl->handler, struct vd56g3, ctrl_handler);
257 }
258 
259 /* -----------------------------------------------------------------------------
260  * Additional i2c register helpers
261  */
262 
vd56g3_poll_reg(struct vd56g3 * sensor,u32 reg,u8 poll_val,int * err)263 static int vd56g3_poll_reg(struct vd56g3 *sensor, u32 reg, u8 poll_val,
264 			   int *err)
265 {
266 	unsigned int val = 0;
267 	int ret;
268 
269 	if (err && *err)
270 		return *err;
271 
272 	/*
273 	 * Timeout must be higher than longuest frame duration. With current
274 	 * blanking constraints, frame duration can take up to 504ms.
275 	 */
276 	ret = regmap_read_poll_timeout(sensor->regmap, CCI_REG_ADDR(reg), val,
277 				       (val == poll_val), 2000,
278 				       600 * USEC_PER_MSEC);
279 
280 	if (ret && err)
281 		*err = ret;
282 
283 	return ret;
284 }
285 
vd56g3_wait_state(struct vd56g3 * sensor,int state,int * err)286 static int vd56g3_wait_state(struct vd56g3 *sensor, int state, int *err)
287 {
288 	return vd56g3_poll_reg(sensor, VD56G3_REG_SYSTEM_FSM, state, err);
289 }
290 
291 /* -----------------------------------------------------------------------------
292  * Controls: definitions, helpers and handlers
293  */
294 
295 static const char *const vd56g3_tp_menu[] = { "Disabled",
296 					      "Solid Color",
297 					      "Vertical Color Bars",
298 					      "Horizontal Gray Scale",
299 					      "Vertical Gray Scale",
300 					      "Diagonal Gray Scale",
301 					      "Pseudo Random" };
302 
303 static const s64 vd56g3_ev_bias_qmenu[] = { -4000, -3500, -3000, -2500, -2000,
304 					    -1500, -1000, -500,	 0,	500,
305 					    1000,  1500,  2000,	 2500,	3000,
306 					    3500,  4000 };
307 
308 static const s64 vd56g3_link_freq_1lane[] = { VD56G3_LINK_FREQ_DEF_1LANE };
309 
310 static const s64 vd56g3_link_freq_2lanes[] = { VD56G3_LINK_FREQ_DEF_2LANES };
311 
vd56g3_get_bpp(__u32 code)312 static u8 vd56g3_get_bpp(__u32 code)
313 {
314 	switch (code) {
315 	case MEDIA_BUS_FMT_Y8_1X8:
316 	case MEDIA_BUS_FMT_SGRBG8_1X8:
317 	case MEDIA_BUS_FMT_SRGGB8_1X8:
318 	case MEDIA_BUS_FMT_SBGGR8_1X8:
319 	case MEDIA_BUS_FMT_SGBRG8_1X8:
320 	default:
321 		return 8;
322 	case MEDIA_BUS_FMT_Y10_1X10:
323 	case MEDIA_BUS_FMT_SGRBG10_1X10:
324 	case MEDIA_BUS_FMT_SRGGB10_1X10:
325 	case MEDIA_BUS_FMT_SBGGR10_1X10:
326 	case MEDIA_BUS_FMT_SGBRG10_1X10:
327 		return 10;
328 	}
329 }
330 
vd56g3_get_datatype(__u32 code)331 static u8 vd56g3_get_datatype(__u32 code)
332 {
333 	switch (code) {
334 	case MEDIA_BUS_FMT_Y8_1X8:
335 	case MEDIA_BUS_FMT_SGRBG8_1X8:
336 	case MEDIA_BUS_FMT_SRGGB8_1X8:
337 	case MEDIA_BUS_FMT_SBGGR8_1X8:
338 	case MEDIA_BUS_FMT_SGBRG8_1X8:
339 	default:
340 		return MIPI_CSI2_DT_RAW8;
341 	case MEDIA_BUS_FMT_Y10_1X10:
342 	case MEDIA_BUS_FMT_SGRBG10_1X10:
343 	case MEDIA_BUS_FMT_SRGGB10_1X10:
344 	case MEDIA_BUS_FMT_SBGGR10_1X10:
345 	case MEDIA_BUS_FMT_SGBRG10_1X10:
346 		return MIPI_CSI2_DT_RAW10;
347 	}
348 }
349 
vd56g3_read_expo_cluster(struct vd56g3 * sensor,bool force_cur_val)350 static int vd56g3_read_expo_cluster(struct vd56g3 *sensor, bool force_cur_val)
351 {
352 	u64 exposure;
353 	u64 again;
354 	u64 dgain;
355 	int ret = 0;
356 
357 	/*
358 	 * When 'force_cur_val' is enabled, save the ctrl value in 'cur.val'
359 	 * instead of the normal 'val', this is used during poweroff to cache
360 	 * volatile ctrls and enable coldstart.
361 	 */
362 	cci_read(sensor->regmap, VD56G3_REG_APPLIED_COARSE_EXPOSURE, &exposure,
363 		 &ret);
364 	cci_read(sensor->regmap, VD56G3_REG_APPLIED_ANALOG_GAIN, &again, &ret);
365 	cci_read(sensor->regmap, VD56G3_REG_APPLIED_DIGITAL_GAIN, &dgain, &ret);
366 	if (ret)
367 		return ret;
368 
369 	if (force_cur_val) {
370 		sensor->expo_ctrl->cur.val = exposure;
371 		sensor->again_ctrl->cur.val = again;
372 		sensor->dgain_ctrl->cur.val = dgain;
373 	} else {
374 		sensor->expo_ctrl->val = exposure;
375 		sensor->again_ctrl->val = again;
376 		sensor->dgain_ctrl->val = dgain;
377 	}
378 
379 	return ret;
380 }
381 
vd56g3_update_patgen(struct vd56g3 * sensor,u32 patgen_index)382 static int vd56g3_update_patgen(struct vd56g3 *sensor, u32 patgen_index)
383 {
384 	u32 pattern = patgen_index <= 2 ? patgen_index : patgen_index + 13;
385 	u16 patgen = pattern << VD56G3_PATGEN_TYPE_SHIFT;
386 	u8 duster = VD56G3_DUSTER_ENABLE_DEF_MODULES;
387 	u8 darkcal = VD56G3_DARKCAL_ENABLE;
388 	int ret = 0;
389 
390 	if (patgen_index) {
391 		patgen |= VD56G3_PATGEN_ENABLE;
392 		duster = VD56G3_DUSTER_DISABLE;
393 		darkcal = VD56G3_DARKCAL_DISABLE_DARKAVG;
394 	}
395 
396 	cci_write(sensor->regmap, VD56G3_REG_DUSTER_CTRL, duster, &ret);
397 	cci_write(sensor->regmap, VD56G3_REG_DARKCAL_CTRL, darkcal, &ret);
398 	cci_write(sensor->regmap, VD56G3_REG_PATGEN_CTRL, patgen, &ret);
399 
400 	return ret;
401 }
402 
vd56g3_update_expo_cluster(struct vd56g3 * sensor,bool is_auto)403 static int vd56g3_update_expo_cluster(struct vd56g3 *sensor, bool is_auto)
404 {
405 	u8 expo_state = is_auto ? VD56G3_EXP_MODE_AUTO : VD56G3_EXP_MODE_MANUAL;
406 	int ret = 0;
407 
408 	if (sensor->ae_ctrl->is_new)
409 		cci_write(sensor->regmap, VD56G3_REG_EXP_MODE, expo_state,
410 			  &ret);
411 
412 	/* In Auto expo, set coldstart parameters */
413 	if (is_auto && sensor->ae_ctrl->is_new) {
414 		cci_write(sensor->regmap,
415 			  VD56G3_REG_AE_COLDSTART_COARSE_EXPOSURE,
416 			  sensor->expo_ctrl->val, &ret);
417 		cci_write(sensor->regmap, VD56G3_REG_AE_COLDSTART_ANALOG_GAIN,
418 			  sensor->again_ctrl->val, &ret);
419 		cci_write(sensor->regmap, VD56G3_REG_AE_COLDSTART_DIGITAL_GAIN,
420 			  sensor->dgain_ctrl->val, &ret);
421 	}
422 
423 	/* In Manual expo, set exposure, analog and digital gains */
424 	if (!is_auto && sensor->expo_ctrl->is_new)
425 		cci_write(sensor->regmap, VD56G3_REG_MANUAL_COARSE_EXPOSURE,
426 			  sensor->expo_ctrl->val, &ret);
427 
428 	if (!is_auto && sensor->again_ctrl->is_new)
429 		cci_write(sensor->regmap, VD56G3_REG_MANUAL_ANALOG_GAIN,
430 			  sensor->again_ctrl->val, &ret);
431 
432 	if (!is_auto && sensor->dgain_ctrl->is_new) {
433 		cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH0,
434 			  sensor->dgain_ctrl->val, &ret);
435 		cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH1,
436 			  sensor->dgain_ctrl->val, &ret);
437 		cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH2,
438 			  sensor->dgain_ctrl->val, &ret);
439 		cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH3,
440 			  sensor->dgain_ctrl->val, &ret);
441 	}
442 
443 	return ret;
444 }
445 
vd56g3_lock_exposure(struct vd56g3 * sensor,u32 lock_val)446 static int vd56g3_lock_exposure(struct vd56g3 *sensor, u32 lock_val)
447 {
448 	bool ae_lock = lock_val & V4L2_LOCK_EXPOSURE;
449 	u8 expo_state = ae_lock ? VD56G3_EXP_MODE_FREEZE : VD56G3_EXP_MODE_AUTO;
450 
451 	if (sensor->ae_ctrl->val == V4L2_EXPOSURE_AUTO)
452 		return cci_write(sensor->regmap, VD56G3_REG_EXP_MODE,
453 				 expo_state, NULL);
454 
455 	return 0;
456 }
457 
vd56g3_write_gpiox(struct vd56g3 * sensor,unsigned long gpio_mask)458 static int vd56g3_write_gpiox(struct vd56g3 *sensor, unsigned long gpio_mask)
459 {
460 	unsigned long io;
461 	u32 gpio_val;
462 	int ret = 0;
463 
464 	for_each_set_bit(io, &gpio_mask, VD56G3_NB_GPIOS) {
465 		gpio_val = sensor->gpios[io];
466 
467 		if (gpio_val == VD56G3_GPIOX_STROBE_MODE &&
468 		    sensor->led_ctrl->val == V4L2_FLASH_LED_MODE_NONE)
469 			gpio_val = VD56G3_GPIOX_GPIO_IN;
470 
471 		cci_write(sensor->regmap, VD56G3_REG_GPIO_0_CTRL + io, gpio_val,
472 			  &ret);
473 	}
474 
475 	return ret;
476 }
477 
vd56g3_g_volatile_ctrl(struct v4l2_ctrl * ctrl)478 static int vd56g3_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
479 {
480 	struct vd56g3 *sensor = ctrl_to_vd56g3(ctrl);
481 	int ret = 0;
482 
483 	/* Interact with HW only when it is powered ON */
484 	if (!pm_runtime_get_if_in_use(sensor->dev))
485 		return 0;
486 
487 	switch (ctrl->id) {
488 	case V4L2_CID_EXPOSURE_AUTO:
489 		ret = vd56g3_read_expo_cluster(sensor, false);
490 		break;
491 	default:
492 		ret = -EINVAL;
493 		break;
494 	}
495 
496 	pm_runtime_put_autosuspend(sensor->dev);
497 
498 	return ret;
499 }
500 
vd56g3_s_ctrl(struct v4l2_ctrl * ctrl)501 static int vd56g3_s_ctrl(struct v4l2_ctrl *ctrl)
502 {
503 	struct vd56g3 *sensor = ctrl_to_vd56g3(ctrl);
504 	struct v4l2_subdev_state *state;
505 	const struct v4l2_rect *crop;
506 	unsigned int frame_length = 0;
507 	unsigned int expo_max;
508 	unsigned int ae_compensation;
509 	bool is_auto = false;
510 	int ret = 0;
511 
512 	state = v4l2_subdev_get_locked_active_state(&sensor->sd);
513 	crop = v4l2_subdev_state_get_crop(state, 0);
514 
515 	if (ctrl->flags & V4L2_CTRL_FLAG_READ_ONLY)
516 		return 0;
517 
518 	/* Update controls state, range, etc. whatever the state of the HW */
519 	switch (ctrl->id) {
520 	case V4L2_CID_VBLANK:
521 		frame_length = crop->height + ctrl->val;
522 		expo_max = frame_length - VD56G3_EXPOSURE_MARGIN;
523 		ret = __v4l2_ctrl_modify_range(sensor->expo_ctrl,
524 					       VD56G3_EXPOSURE_MIN, expo_max, 1,
525 					       min(VD56G3_EXPOSURE_DEFAULT,
526 						   expo_max));
527 		break;
528 	case V4L2_CID_EXPOSURE_AUTO:
529 		is_auto = (ctrl->val == V4L2_EXPOSURE_AUTO);
530 		__v4l2_ctrl_grab(sensor->ae_lock_ctrl, !is_auto);
531 		__v4l2_ctrl_grab(sensor->ae_bias_ctrl, !is_auto);
532 		break;
533 	default:
534 		break;
535 	}
536 
537 	if (ret)
538 		return ret;
539 
540 	/* Interact with HW only when it is powered ON */
541 	if (!pm_runtime_get_if_in_use(sensor->dev))
542 		return 0;
543 
544 	switch (ctrl->id) {
545 	case V4L2_CID_HFLIP:
546 		ret = cci_write(sensor->regmap, VD56G3_REG_ORIENTATION,
547 				sensor->hflip_ctrl->val |
548 					(sensor->vflip_ctrl->val << 1),
549 				NULL);
550 		break;
551 	case V4L2_CID_TEST_PATTERN:
552 		ret = vd56g3_update_patgen(sensor, ctrl->val);
553 		break;
554 	case V4L2_CID_EXPOSURE_AUTO:
555 		ret = vd56g3_update_expo_cluster(sensor, is_auto);
556 		break;
557 	case V4L2_CID_3A_LOCK:
558 		ret = vd56g3_lock_exposure(sensor, ctrl->val);
559 		break;
560 	case V4L2_CID_AUTO_EXPOSURE_BIAS:
561 		ae_compensation =
562 			DIV_ROUND_CLOSEST((int)vd56g3_ev_bias_qmenu[ctrl->val] *
563 					  256, 1000);
564 		ret = cci_write(sensor->regmap, VD56G3_REG_AE_COMPENSATION,
565 				ae_compensation, NULL);
566 		break;
567 	case V4L2_CID_VBLANK:
568 		ret = cci_write(sensor->regmap, VD56G3_REG_FRAME_LENGTH,
569 				frame_length, NULL);
570 		break;
571 	case V4L2_CID_FLASH_LED_MODE:
572 		ret = vd56g3_write_gpiox(sensor, sensor->ext_leds_mask);
573 		break;
574 	default:
575 		ret = -EINVAL;
576 		break;
577 	}
578 
579 	pm_runtime_put_autosuspend(sensor->dev);
580 
581 	return ret;
582 }
583 
584 static const struct v4l2_ctrl_ops vd56g3_ctrl_ops = {
585 	.g_volatile_ctrl = vd56g3_g_volatile_ctrl,
586 	.s_ctrl = vd56g3_s_ctrl,
587 };
588 
vd56g3_update_controls(struct vd56g3 * sensor)589 static int vd56g3_update_controls(struct vd56g3 *sensor)
590 {
591 	struct v4l2_subdev_state *state;
592 	const struct v4l2_rect *crop;
593 	unsigned int hblank;
594 	unsigned int vblank_min, vblank, vblank_max;
595 	unsigned int frame_length;
596 	unsigned int expo_max;
597 	int ret;
598 
599 	state = v4l2_subdev_get_locked_active_state(&sensor->sd);
600 	crop = v4l2_subdev_state_get_crop(state, 0);
601 	hblank = VD56G3_LINE_LENGTH_MIN - crop->width;
602 	vblank_min = VD56G3_VBLANK_MIN;
603 	vblank = VD56G3_FRAME_LENGTH_DEF_60FPS - crop->height;
604 	vblank_max = VD56G3_FRAME_LENGTH_MAX - crop->height;
605 	frame_length = crop->height + vblank;
606 	expo_max = frame_length - VD56G3_EXPOSURE_MARGIN;
607 
608 	/* Update blanking and exposure (ranges + values) */
609 	ret = __v4l2_ctrl_modify_range(sensor->hblank_ctrl, hblank, hblank, 1,
610 				       hblank);
611 	if (ret)
612 		return ret;
613 
614 	ret = __v4l2_ctrl_modify_range(sensor->vblank_ctrl, vblank_min,
615 				       vblank_max, 1, vblank);
616 	if (ret)
617 		return ret;
618 
619 	ret = __v4l2_ctrl_s_ctrl(sensor->vblank_ctrl, vblank);
620 	if (ret)
621 		return ret;
622 
623 	ret = __v4l2_ctrl_modify_range(sensor->expo_ctrl, VD56G3_EXPOSURE_MIN,
624 				       expo_max, 1, VD56G3_EXPOSURE_DEFAULT);
625 	if (ret)
626 		return ret;
627 
628 	return __v4l2_ctrl_s_ctrl(sensor->expo_ctrl, VD56G3_EXPOSURE_DEFAULT);
629 }
630 
vd56g3_init_controls(struct vd56g3 * sensor)631 static int vd56g3_init_controls(struct vd56g3 *sensor)
632 {
633 	const struct v4l2_ctrl_ops *ops = &vd56g3_ctrl_ops;
634 	struct v4l2_ctrl_handler *hdl = &sensor->ctrl_handler;
635 	struct v4l2_fwnode_device_properties fwnode_props;
636 	struct v4l2_ctrl *ctrl;
637 	int ret;
638 
639 	v4l2_ctrl_handler_init(hdl, 25);
640 
641 	/* Horizontal & vertical flips modify bayer code on RGB variant */
642 	sensor->hflip_ctrl =
643 		v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0);
644 	if (sensor->hflip_ctrl)
645 		sensor->hflip_ctrl->flags |= V4L2_CTRL_FLAG_MODIFY_LAYOUT;
646 
647 	sensor->vflip_ctrl =
648 		v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0);
649 	if (sensor->vflip_ctrl)
650 		sensor->vflip_ctrl->flags |= V4L2_CTRL_FLAG_MODIFY_LAYOUT;
651 
652 	sensor->patgen_ctrl =
653 		v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
654 					     ARRAY_SIZE(vd56g3_tp_menu) - 1, 0,
655 					     0, vd56g3_tp_menu);
656 
657 	ctrl = v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_LINK_FREQ,
658 				      ARRAY_SIZE(vd56g3_link_freq_1lane) - 1, 0,
659 				      (sensor->nb_of_lane == 2) ?
660 					      vd56g3_link_freq_2lanes :
661 					      vd56g3_link_freq_1lane);
662 	if (ctrl)
663 		ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
664 
665 	ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE,
666 				 sensor->pixel_clock, sensor->pixel_clock, 1,
667 				 sensor->pixel_clock);
668 	if (ctrl)
669 		ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
670 
671 	sensor->ae_ctrl = v4l2_ctrl_new_std_menu(hdl, ops,
672 						 V4L2_CID_EXPOSURE_AUTO,
673 						 V4L2_EXPOSURE_MANUAL, 0,
674 						 V4L2_EXPOSURE_AUTO);
675 
676 	sensor->ae_lock_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_3A_LOCK, 0,
677 						 GENMASK(2, 0), 0, 0);
678 
679 	sensor->ae_bias_ctrl =
680 		v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_AUTO_EXPOSURE_BIAS,
681 				       ARRAY_SIZE(vd56g3_ev_bias_qmenu) - 1,
682 				       ARRAY_SIZE(vd56g3_ev_bias_qmenu) / 2,
683 				       vd56g3_ev_bias_qmenu);
684 
685 	/*
686 	 * Analog gain [1, 8] is computed with the following logic :
687 	 * 32/(32 - again_reg), with again_reg in the range [0:28]
688 	 * Digital gain [1.00, 8.00] is coded as a Fixed Point 5.8
689 	 */
690 	sensor->again_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_ANALOGUE_GAIN,
691 					       0, 28, 1, 0);
692 	sensor->dgain_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_DIGITAL_GAIN,
693 					       0x100, 0x800, 1, 0x100);
694 
695 	/*
696 	 * Set the exposure, horizontal and vertical blanking ctrls
697 	 * to hardcoded values, they will be updated in vd56g3_update_controls.
698 	 * Exposure being in an auto-cluster, set a significant value here.
699 	 */
700 	sensor->expo_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
701 					      VD56G3_EXPOSURE_DEFAULT,
702 					      VD56G3_EXPOSURE_DEFAULT, 1,
703 					      VD56G3_EXPOSURE_DEFAULT);
704 	sensor->hblank_ctrl =
705 		v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HBLANK, 1, 1, 1, 1);
706 	if (sensor->hblank_ctrl)
707 		sensor->hblank_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
708 	sensor->vblank_ctrl =
709 		v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VBLANK, 1, 1, 1, 1);
710 
711 	/* Additional control based on device tree properties */
712 	if (sensor->ext_leds_mask)
713 		sensor->led_ctrl =
714 			v4l2_ctrl_new_std_menu(hdl, ops,
715 					       V4L2_CID_FLASH_LED_MODE,
716 					       V4L2_FLASH_LED_MODE_FLASH, 0,
717 					       V4L2_FLASH_LED_MODE_NONE);
718 
719 	if (hdl->error) {
720 		ret = hdl->error;
721 		goto free_ctrls;
722 	}
723 
724 	v4l2_ctrl_cluster(2, &sensor->hflip_ctrl);
725 	v4l2_ctrl_auto_cluster(4, &sensor->ae_ctrl, V4L2_EXPOSURE_MANUAL, true);
726 
727 	/* Optional controls coming from fwnode (e.g. rotation, orientation). */
728 	ret = v4l2_fwnode_device_parse(sensor->dev, &fwnode_props);
729 	if (ret)
730 		goto free_ctrls;
731 
732 	ret = v4l2_ctrl_new_fwnode_properties(hdl, ops, &fwnode_props);
733 	if (ret)
734 		goto free_ctrls;
735 
736 	sensor->sd.ctrl_handler = hdl;
737 
738 	return 0;
739 
740 free_ctrls:
741 	v4l2_ctrl_handler_free(hdl);
742 
743 	return ret;
744 }
745 
746 /* -----------------------------------------------------------------------------
747  * Pad ops
748  */
749 
750 /* Media bus code is dependent of :
751  *      - 8bits or 10bits output
752  *      - variant : Mono or RGB
753  *      - H/V flips parameters in case of RGB
754  */
vd56g3_get_mbus_code(struct vd56g3 * sensor,u32 code)755 static u32 vd56g3_get_mbus_code(struct vd56g3 *sensor, u32 code)
756 {
757 	unsigned int i_bpp;
758 	unsigned int j;
759 
760 	for (i_bpp = 0; i_bpp < ARRAY_SIZE(vd56g3_mbus_codes); i_bpp++) {
761 		for (j = 0; j < ARRAY_SIZE(vd56g3_mbus_codes[i_bpp]); j++) {
762 			if (vd56g3_mbus_codes[i_bpp][j] == code)
763 				goto endloops;
764 		}
765 	}
766 
767 endloops:
768 	if (i_bpp >= ARRAY_SIZE(vd56g3_mbus_codes))
769 		i_bpp = 0;
770 
771 	if (sensor->is_mono)
772 		j = 0;
773 	else
774 		j = 1 + (sensor->hflip_ctrl->val ? 1 : 0) +
775 		    (sensor->vflip_ctrl->val ? 2 : 0);
776 
777 	return vd56g3_mbus_codes[i_bpp][j];
778 }
779 
vd56g3_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_mbus_code_enum * code)780 static int vd56g3_enum_mbus_code(struct v4l2_subdev *sd,
781 				 struct v4l2_subdev_state *sd_state,
782 				 struct v4l2_subdev_mbus_code_enum *code)
783 {
784 	struct vd56g3 *sensor = to_vd56g3(sd);
785 
786 	if (code->index >= ARRAY_SIZE(vd56g3_mbus_codes))
787 		return -EINVAL;
788 
789 	code->code =
790 		vd56g3_get_mbus_code(sensor, vd56g3_mbus_codes[code->index][0]);
791 
792 	return 0;
793 }
794 
vd56g3_enum_frame_size(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_frame_size_enum * fse)795 static int vd56g3_enum_frame_size(struct v4l2_subdev *sd,
796 				  struct v4l2_subdev_state *sd_state,
797 				  struct v4l2_subdev_frame_size_enum *fse)
798 {
799 	if (fse->index >= ARRAY_SIZE(vd56g3_supported_modes))
800 		return -EINVAL;
801 
802 	fse->min_width = vd56g3_supported_modes[fse->index].width;
803 	fse->max_width = fse->min_width;
804 	fse->min_height = vd56g3_supported_modes[fse->index].height;
805 	fse->max_height = fse->min_height;
806 
807 	return 0;
808 }
809 
vd56g3_update_img_pad_format(struct vd56g3 * sensor,const struct vd56g3_mode * mode,u32 mbus_code,struct v4l2_mbus_framefmt * mbus_fmt)810 static void vd56g3_update_img_pad_format(struct vd56g3 *sensor,
811 					 const struct vd56g3_mode *mode,
812 					 u32 mbus_code,
813 					 struct v4l2_mbus_framefmt *mbus_fmt)
814 {
815 	mbus_fmt->width = mode->width;
816 	mbus_fmt->height = mode->height;
817 	mbus_fmt->code = vd56g3_get_mbus_code(sensor, mbus_code);
818 	mbus_fmt->colorspace = V4L2_COLORSPACE_RAW;
819 	mbus_fmt->field = V4L2_FIELD_NONE;
820 	mbus_fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
821 	mbus_fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
822 	mbus_fmt->xfer_func = V4L2_XFER_FUNC_NONE;
823 }
824 
vd56g3_set_pad_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * sd_fmt)825 static int vd56g3_set_pad_fmt(struct v4l2_subdev *sd,
826 			      struct v4l2_subdev_state *sd_state,
827 			      struct v4l2_subdev_format *sd_fmt)
828 {
829 	struct vd56g3 *sensor = to_vd56g3(sd);
830 	const struct vd56g3_mode *new_mode;
831 	struct v4l2_rect pad_crop;
832 	unsigned int binning;
833 
834 	new_mode = v4l2_find_nearest_size(vd56g3_supported_modes,
835 					  ARRAY_SIZE(vd56g3_supported_modes),
836 					  width, height, sd_fmt->format.width,
837 					  sd_fmt->format.height);
838 
839 	vd56g3_update_img_pad_format(sensor, new_mode, sd_fmt->format.code,
840 				     &sd_fmt->format);
841 	*v4l2_subdev_state_get_format(sd_state, sd_fmt->pad) = sd_fmt->format;
842 
843 	/* Compute and update crop rectangle (maximized via binning) */
844 	binning = min(VD56G3_NATIVE_WIDTH / sd_fmt->format.width,
845 		      VD56G3_NATIVE_HEIGHT / sd_fmt->format.height);
846 	binning = min(binning, 2U);
847 	pad_crop.width = sd_fmt->format.width * binning;
848 	pad_crop.height = sd_fmt->format.height * binning;
849 	pad_crop.left = (VD56G3_NATIVE_WIDTH - pad_crop.width) / 2;
850 	pad_crop.top = (VD56G3_NATIVE_HEIGHT - pad_crop.height) / 2;
851 	*v4l2_subdev_state_get_crop(sd_state, sd_fmt->pad) = pad_crop;
852 
853 	/* Update controls in case of active state */
854 	if (sd_fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
855 		return vd56g3_update_controls(sensor);
856 
857 	return 0;
858 }
859 
vd56g3_get_selection(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)860 static int vd56g3_get_selection(struct v4l2_subdev *sd,
861 				struct v4l2_subdev_state *sd_state,
862 				struct v4l2_subdev_selection *sel)
863 {
864 	switch (sel->target) {
865 	case V4L2_SEL_TGT_CROP:
866 		sel->r = *v4l2_subdev_state_get_crop(sd_state, 0);
867 		break;
868 	case V4L2_SEL_TGT_NATIVE_SIZE:
869 	case V4L2_SEL_TGT_CROP_DEFAULT:
870 	case V4L2_SEL_TGT_CROP_BOUNDS:
871 		sel->r.top = 0;
872 		sel->r.left = 0;
873 		sel->r.width = VD56G3_NATIVE_WIDTH;
874 		sel->r.height = VD56G3_NATIVE_HEIGHT;
875 		break;
876 	default:
877 		return -EINVAL;
878 	}
879 
880 	return 0;
881 }
882 
vd56g3_get_frame_desc(struct v4l2_subdev * sd,unsigned int pad,struct v4l2_mbus_frame_desc * fd)883 static int vd56g3_get_frame_desc(struct v4l2_subdev *sd, unsigned int pad,
884 				 struct v4l2_mbus_frame_desc *fd)
885 {
886 	struct v4l2_subdev_state *state;
887 	const struct v4l2_mbus_framefmt *format;
888 
889 	state = v4l2_subdev_lock_and_get_active_state(sd);
890 	format = v4l2_subdev_state_get_format(state, pad);
891 	v4l2_subdev_unlock_state(state);
892 
893 	fd->type = V4L2_MBUS_FRAME_DESC_TYPE_CSI2;
894 	fd->num_entries = 1;
895 	fd->entry[0].pixelcode = format->code;
896 	fd->entry[0].stream = 0;
897 	fd->entry[0].bus.csi2.vc = 0;
898 	fd->entry[0].bus.csi2.dt = vd56g3_get_datatype(format->code);
899 
900 	return 0;
901 }
902 
vd56g3_enable_streams(struct v4l2_subdev * sd,struct v4l2_subdev_state * state,u32 pad,u64 streams_mask)903 static int vd56g3_enable_streams(struct v4l2_subdev *sd,
904 				 struct v4l2_subdev_state *state, u32 pad,
905 				 u64 streams_mask)
906 {
907 	struct vd56g3 *sensor = to_vd56g3(sd);
908 	const struct v4l2_mbus_framefmt *format =
909 		v4l2_subdev_state_get_format(state, 0);
910 	const struct v4l2_rect *crop = v4l2_subdev_state_get_crop(state, 0);
911 	unsigned int csi_mbps = ((sensor->nb_of_lane == 2) ?
912 					 VD56G3_LINK_FREQ_DEF_2LANES :
913 					 VD56G3_LINK_FREQ_DEF_1LANE) *
914 				2 / MEGA;
915 	unsigned int binning;
916 	int ret;
917 
918 	ret = pm_runtime_resume_and_get(sensor->dev);
919 	if (ret < 0)
920 		return ret;
921 
922 	/* configure clocks */
923 	cci_write(sensor->regmap, VD56G3_REG_EXT_CLOCK, sensor->xclk_freq,
924 		  &ret);
925 	cci_write(sensor->regmap, VD56G3_REG_CLK_PLL_PREDIV, sensor->pll_prediv,
926 		  &ret);
927 	cci_write(sensor->regmap, VD56G3_REG_CLK_SYS_PLL_MULT, sensor->pll_mult,
928 		  &ret);
929 
930 	/* configure output */
931 	cci_write(sensor->regmap, VD56G3_REG_FORMAT_CTRL,
932 		  vd56g3_get_bpp(format->code), &ret);
933 	cci_write(sensor->regmap, VD56G3_REG_OIF_CTRL, sensor->oif_ctrl, &ret);
934 	cci_write(sensor->regmap, VD56G3_REG_OIF_CSI_BITRATE, csi_mbps, &ret);
935 	cci_write(sensor->regmap, VD56G3_REG_OIF_IMG_CTRL,
936 		  vd56g3_get_datatype(format->code), &ret);
937 	cci_write(sensor->regmap, VD56G3_REG_ISL_ENABLE, 0, &ret);
938 
939 	/* configure binning mode */
940 	switch (crop->width / format->width) {
941 	case 1:
942 	default:
943 		binning = READOUT_NORMAL;
944 		break;
945 	case 2:
946 		binning = READOUT_DIGITAL_BINNING_X2;
947 		break;
948 	}
949 	cci_write(sensor->regmap, VD56G3_REG_READOUT_CTRL, binning, &ret);
950 
951 	/* configure ROIs */
952 	cci_write(sensor->regmap, VD56G3_REG_Y_START, crop->top, &ret);
953 	cci_write(sensor->regmap, VD56G3_REG_Y_END,
954 		  crop->top + crop->height - 1, &ret);
955 	cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_X_START, crop->left, &ret);
956 	cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_X_END,
957 		  crop->left + crop->width - 1, &ret);
958 	cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_Y_START, 0, &ret);
959 	cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_Y_END, crop->height - 1,
960 		  &ret);
961 	cci_write(sensor->regmap, VD56G3_REG_AE_ROI_START_H, crop->left, &ret);
962 	cci_write(sensor->regmap, VD56G3_REG_AE_ROI_END_H,
963 		  crop->left + crop->width - 1, &ret);
964 	cci_write(sensor->regmap, VD56G3_REG_AE_ROI_START_V, 0, &ret);
965 	cci_write(sensor->regmap, VD56G3_REG_AE_ROI_END_V, crop->height - 1,
966 		  &ret);
967 	if (ret)
968 		goto rpm_put;
969 
970 	/* Setup default GPIO values; could be overridden by V4L2 ctrl setup */
971 	ret = vd56g3_write_gpiox(sensor, GENMASK(VD56G3_NB_GPIOS - 1, 0));
972 	if (ret)
973 		goto rpm_put;
974 
975 	/* Apply settings from V4L2 ctrls */
976 	ret = __v4l2_ctrl_handler_setup(&sensor->ctrl_handler);
977 	if (ret)
978 		goto rpm_put;
979 
980 	/* start streaming */
981 	cci_write(sensor->regmap, VD56G3_REG_STBY, VD56G3_CMD_START_STREAM,
982 		  &ret);
983 	vd56g3_poll_reg(sensor, VD56G3_REG_STBY, VD56G3_CMD_ACK, &ret);
984 	vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_STREAMING, &ret);
985 	if (ret)
986 		goto rpm_put;
987 
988 	/* some controls are locked during streaming */
989 	__v4l2_ctrl_grab(sensor->hflip_ctrl, true);
990 	__v4l2_ctrl_grab(sensor->vflip_ctrl, true);
991 	__v4l2_ctrl_grab(sensor->patgen_ctrl, true);
992 
993 	return ret;
994 
995 rpm_put:
996 	dev_err(sensor->dev, "Failed to start streaming\n");
997 	pm_runtime_put_sync(sensor->dev);
998 
999 	return ret;
1000 }
1001 
vd56g3_disable_streams(struct v4l2_subdev * sd,struct v4l2_subdev_state * state,u32 pad,u64 streams_mask)1002 static int vd56g3_disable_streams(struct v4l2_subdev *sd,
1003 				  struct v4l2_subdev_state *state, u32 pad,
1004 				  u64 streams_mask)
1005 {
1006 	struct vd56g3 *sensor = to_vd56g3(sd);
1007 	int ret;
1008 
1009 	/* Retrieve Expo cluster to enable coldstart of AE */
1010 	ret = vd56g3_read_expo_cluster(sensor, true);
1011 
1012 	cci_write(sensor->regmap, VD56G3_REG_STREAMING, VD56G3_CMD_STOP_STREAM,
1013 		  &ret);
1014 	vd56g3_poll_reg(sensor, VD56G3_REG_STREAMING, VD56G3_CMD_ACK, &ret);
1015 	vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_SW_STBY, &ret);
1016 
1017 	/* locked controls must be unlocked */
1018 	__v4l2_ctrl_grab(sensor->hflip_ctrl, false);
1019 	__v4l2_ctrl_grab(sensor->vflip_ctrl, false);
1020 	__v4l2_ctrl_grab(sensor->patgen_ctrl, false);
1021 
1022 	pm_runtime_put_autosuspend(sensor->dev);
1023 
1024 	return ret;
1025 }
1026 
vd56g3_init_state(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state)1027 static int vd56g3_init_state(struct v4l2_subdev *sd,
1028 			     struct v4l2_subdev_state *sd_state)
1029 {
1030 	unsigned int def_mode = VD56G3_DEFAULT_MODE;
1031 	struct v4l2_subdev_format fmt = {
1032 		.which = V4L2_SUBDEV_FORMAT_TRY,
1033 		.pad = 0,
1034 		.format = {
1035 			.code = vd56g3_mbus_codes[0][0],
1036 			.width = vd56g3_supported_modes[def_mode].width,
1037 			.height = vd56g3_supported_modes[def_mode].height,
1038 		},
1039 	};
1040 
1041 	return vd56g3_set_pad_fmt(sd, sd_state, &fmt);
1042 }
1043 
1044 static const struct v4l2_subdev_video_ops vd56g3_video_ops = {
1045 	.s_stream = v4l2_subdev_s_stream_helper,
1046 };
1047 
1048 static const struct v4l2_subdev_pad_ops vd56g3_pad_ops = {
1049 	.enum_mbus_code = vd56g3_enum_mbus_code,
1050 	.enum_frame_size = vd56g3_enum_frame_size,
1051 	.get_fmt = v4l2_subdev_get_fmt,
1052 	.set_fmt = vd56g3_set_pad_fmt,
1053 	.get_selection = vd56g3_get_selection,
1054 	.get_frame_desc = vd56g3_get_frame_desc,
1055 	.enable_streams = vd56g3_enable_streams,
1056 	.disable_streams = vd56g3_disable_streams,
1057 };
1058 
1059 static const struct v4l2_subdev_ops vd56g3_subdev_ops = {
1060 	.video = &vd56g3_video_ops,
1061 	.pad = &vd56g3_pad_ops,
1062 };
1063 
1064 static const struct media_entity_operations vd56g3_subdev_entity_ops = {
1065 	.link_validate = v4l2_subdev_link_validate,
1066 };
1067 
1068 static const struct v4l2_subdev_internal_ops vd56g3_internal_ops = {
1069 	.init_state = vd56g3_init_state,
1070 };
1071 
1072 /* -----------------------------------------------------------------------------
1073  * Power management
1074  */
1075 
vd56g3_power_on(struct device * dev)1076 static int vd56g3_power_on(struct device *dev)
1077 {
1078 	struct v4l2_subdev *sd = dev_get_drvdata(dev);
1079 	struct vd56g3 *sensor = to_vd56g3(sd);
1080 	int ret;
1081 
1082 	/* power on */
1083 	ret = regulator_bulk_enable(ARRAY_SIZE(sensor->supplies),
1084 				    sensor->supplies);
1085 	if (ret) {
1086 		dev_err(dev, "Failed to enable regulators: %d\n", ret);
1087 		return ret;
1088 	}
1089 
1090 	ret = clk_prepare_enable(sensor->xclk);
1091 	if (ret) {
1092 		dev_err(dev, "Failed to enable clock: %d\n", ret);
1093 		goto disable_reg;
1094 	}
1095 
1096 	gpiod_set_value_cansleep(sensor->reset_gpio, 0);
1097 	usleep_range(3500, 4000);
1098 	ret = vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_READY_TO_BOOT, NULL);
1099 	if (ret) {
1100 		dev_err(dev, "Sensor reset failed: %d\n", ret);
1101 		goto disable_clock;
1102 	}
1103 
1104 	/* boot sensor */
1105 	cci_write(sensor->regmap, VD56G3_REG_BOOT, VD56G3_CMD_BOOT, &ret);
1106 	vd56g3_poll_reg(sensor, VD56G3_REG_BOOT, VD56G3_CMD_ACK, &ret);
1107 	vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_SW_STBY, &ret);
1108 	if (ret) {
1109 		dev_err(dev, "Sensor boot failed: %d\n", ret);
1110 		goto disable_clock;
1111 	}
1112 
1113 	return 0;
1114 
1115 disable_clock:
1116 	gpiod_set_value_cansleep(sensor->reset_gpio, 1);
1117 	clk_disable_unprepare(sensor->xclk);
1118 disable_reg:
1119 	regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies);
1120 
1121 	return ret;
1122 }
1123 
vd56g3_power_off(struct device * dev)1124 static int vd56g3_power_off(struct device *dev)
1125 {
1126 	struct v4l2_subdev *sd = dev_get_drvdata(dev);
1127 	struct vd56g3 *sensor = to_vd56g3(sd);
1128 
1129 	gpiod_set_value_cansleep(sensor->reset_gpio, 1);
1130 	clk_disable_unprepare(sensor->xclk);
1131 	regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies);
1132 
1133 	return 0;
1134 }
1135 
1136 static const struct dev_pm_ops vd56g3_pm_ops = {
1137 	SET_RUNTIME_PM_OPS(vd56g3_power_off, vd56g3_power_on, NULL)
1138 };
1139 
1140 /* -----------------------------------------------------------------------------
1141  * Probe and initialization
1142  */
1143 
vd56g3_check_csi_conf(struct vd56g3 * sensor,struct fwnode_handle * endpoint)1144 static int vd56g3_check_csi_conf(struct vd56g3 *sensor,
1145 				 struct fwnode_handle *endpoint)
1146 {
1147 	struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_CSI2_DPHY };
1148 	u32 phy_data_lanes[VD56G3_MAX_CSI_DATA_LANES] = { ~0, ~0 };
1149 	u8 n_lanes;
1150 	u64 frequency;
1151 	int p, l;
1152 	int ret = 0;
1153 
1154 	ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &ep);
1155 	if (ret)
1156 		return -EINVAL;
1157 
1158 	/* Check lanes number */
1159 	n_lanes = ep.bus.mipi_csi2.num_data_lanes;
1160 	if (n_lanes != 1 && n_lanes != 2) {
1161 		dev_err(sensor->dev, "Invalid data lane number: %d\n", n_lanes);
1162 		ret = -EINVAL;
1163 		goto done;
1164 	}
1165 	sensor->nb_of_lane = n_lanes;
1166 
1167 	/* Clock lane must be first */
1168 	if (ep.bus.mipi_csi2.clock_lane != 0) {
1169 		dev_err(sensor->dev, "Clock lane must be mapped to lane 0\n");
1170 		ret = -EINVAL;
1171 		goto done;
1172 	}
1173 
1174 	/*
1175 	 * Prepare Output Interface conf based on lane settings
1176 	 * logical to physical lane conversion (+ pad remaining slots)
1177 	 */
1178 	for (l = 0; l < n_lanes; l++)
1179 		phy_data_lanes[ep.bus.mipi_csi2.data_lanes[l] - 1] = l;
1180 	for (p = 0; p < VD56G3_MAX_CSI_DATA_LANES; p++) {
1181 		if (phy_data_lanes[p] != ~0)
1182 			continue;
1183 		phy_data_lanes[p] = l;
1184 		l++;
1185 	}
1186 	sensor->oif_ctrl = n_lanes |
1187 			   (ep.bus.mipi_csi2.lane_polarities[0] << 3) |
1188 			   ((phy_data_lanes[0]) << 4) |
1189 			   (ep.bus.mipi_csi2.lane_polarities[1] << 6) |
1190 			   ((phy_data_lanes[1]) << 7) |
1191 			   (ep.bus.mipi_csi2.lane_polarities[2] << 9);
1192 
1193 	/* Check link frequency */
1194 	if (!ep.nr_of_link_frequencies) {
1195 		dev_err(sensor->dev, "link-frequency not found in DT\n");
1196 		ret = -EINVAL;
1197 		goto done;
1198 	}
1199 	frequency = (n_lanes == 2) ? VD56G3_LINK_FREQ_DEF_2LANES :
1200 				     VD56G3_LINK_FREQ_DEF_1LANE;
1201 	if (ep.nr_of_link_frequencies != 1 ||
1202 	    ep.link_frequencies[0] != frequency) {
1203 		dev_err(sensor->dev, "Link frequency not supported: %lld\n",
1204 			ep.link_frequencies[0]);
1205 		ret = -EINVAL;
1206 		goto done;
1207 	}
1208 
1209 done:
1210 	v4l2_fwnode_endpoint_free(&ep);
1211 
1212 	return ret;
1213 }
1214 
vd56g3_parse_dt_gpios_array(struct vd56g3 * sensor,char * prop_name,u32 * array,unsigned int * nb)1215 static int vd56g3_parse_dt_gpios_array(struct vd56g3 *sensor, char *prop_name,
1216 				       u32 *array, unsigned int *nb)
1217 {
1218 	struct device *dev = sensor->dev;
1219 	unsigned int i;
1220 	int ret;
1221 
1222 	if (!device_property_present(dev, prop_name)) {
1223 		*nb = 0;
1224 		return 0;
1225 	}
1226 
1227 	ret = device_property_count_u32(dev, prop_name);
1228 	if (ret < 0) {
1229 		dev_err(dev, "Failed to read %s count\n", prop_name);
1230 		return ret;
1231 	}
1232 
1233 	*nb = ret;
1234 	ret = device_property_read_u32_array(dev, prop_name, array, *nb);
1235 	if (ret) {
1236 		dev_err(dev, "Failed to read %s prop\n", prop_name);
1237 		return ret;
1238 	}
1239 
1240 	for (i = 0; i < *nb; i++) {
1241 		if (array[i] >= VD56G3_NB_GPIOS) {
1242 			dev_err(dev, "Invalid GPIO: %d\n", array[i]);
1243 			return -EINVAL;
1244 		}
1245 	}
1246 
1247 	return 0;
1248 }
1249 
vd56g3_parse_dt_gpios(struct vd56g3 * sensor)1250 static int vd56g3_parse_dt_gpios(struct vd56g3 *sensor)
1251 {
1252 	u32 led_gpios[VD56G3_NB_GPIOS];
1253 	unsigned int nb_gpios_leds;
1254 	unsigned int i;
1255 	int ret;
1256 
1257 	/* Initialize GPIOs to default */
1258 	for (i = 0; i < VD56G3_NB_GPIOS; i++)
1259 		sensor->gpios[i] = VD56G3_GPIOX_GPIO_IN;
1260 	sensor->ext_leds_mask = 0;
1261 
1262 	/* Take into account optional 'st,leds' output for GPIOs */
1263 	ret = vd56g3_parse_dt_gpios_array(sensor, "st,leds", led_gpios,
1264 					  &nb_gpios_leds);
1265 	if (ret)
1266 		return ret;
1267 	for (i = 0; i < nb_gpios_leds; i++) {
1268 		sensor->gpios[led_gpios[i]] = VD56G3_GPIOX_STROBE_MODE;
1269 		set_bit(led_gpios[i], &sensor->ext_leds_mask);
1270 	}
1271 
1272 	return 0;
1273 }
1274 
vd56g3_parse_dt(struct vd56g3 * sensor)1275 static int vd56g3_parse_dt(struct vd56g3 *sensor)
1276 {
1277 	struct fwnode_handle *endpoint;
1278 	int ret;
1279 
1280 	endpoint = fwnode_graph_get_endpoint_by_id(dev_fwnode(sensor->dev), 0,
1281 						   0, 0);
1282 	if (!endpoint) {
1283 		dev_err(sensor->dev, "Endpoint node not found\n");
1284 		return -EINVAL;
1285 	}
1286 
1287 	ret = vd56g3_check_csi_conf(sensor, endpoint);
1288 	fwnode_handle_put(endpoint);
1289 	if (ret)
1290 		return ret;
1291 
1292 	return vd56g3_parse_dt_gpios(sensor);
1293 }
1294 
vd56g3_get_regulators(struct vd56g3 * sensor)1295 static int vd56g3_get_regulators(struct vd56g3 *sensor)
1296 {
1297 	unsigned int i;
1298 
1299 	for (i = 0; i < ARRAY_SIZE(sensor->supplies); i++)
1300 		sensor->supplies[i].supply = vd56g3_supply_names[i];
1301 
1302 	return devm_regulator_bulk_get(sensor->dev,
1303 				       ARRAY_SIZE(sensor->supplies),
1304 				       sensor->supplies);
1305 }
1306 
vd56g3_prepare_clock_tree(struct vd56g3 * sensor)1307 static int vd56g3_prepare_clock_tree(struct vd56g3 *sensor)
1308 {
1309 	const unsigned int predivs[] = { 1, 2, 4 };
1310 	u32 pll_out;
1311 	int i;
1312 
1313 	/* External clock must be in [6Mhz-27Mhz] */
1314 	if (sensor->xclk_freq < VD56G3_XCLK_FREQ_MIN ||
1315 	    sensor->xclk_freq > VD56G3_XCLK_FREQ_MAX) {
1316 		dev_err(sensor->dev,
1317 			"Only 6Mhz-27Mhz clock range supported. Provided %lu MHz\n",
1318 			sensor->xclk_freq / HZ_PER_MHZ);
1319 		return -EINVAL;
1320 	}
1321 
1322 	/* PLL input should be in [6Mhz-12Mhz[ */
1323 	for (i = 0; i < ARRAY_SIZE(predivs); i++) {
1324 		sensor->pll_prediv = predivs[i];
1325 		if (sensor->xclk_freq / sensor->pll_prediv < 12 * HZ_PER_MHZ)
1326 			break;
1327 	}
1328 
1329 	/* PLL output clock must be as close as possible to 804Mhz */
1330 	sensor->pll_mult = (VD56G3_TARGET_PLL * sensor->pll_prediv +
1331 			    sensor->xclk_freq / 2) /
1332 			   sensor->xclk_freq;
1333 	pll_out = sensor->xclk_freq * sensor->pll_mult / sensor->pll_prediv;
1334 
1335 	/* Target Pixel Clock for standard 10bit ADC mode : 160.8Mhz */
1336 	sensor->pixel_clock = pll_out / VD56G3_VT_CLOCK_DIV;
1337 
1338 	return 0;
1339 }
1340 
vd56g3_detect(struct vd56g3 * sensor)1341 static int vd56g3_detect(struct vd56g3 *sensor)
1342 {
1343 	struct device *dev = sensor->dev;
1344 	unsigned int model;
1345 	u64 model_id;
1346 	u64 device_revision;
1347 	u64 optical_revision;
1348 	int ret = 0;
1349 
1350 	model = (uintptr_t)device_get_match_data(dev);
1351 
1352 	ret = cci_read(sensor->regmap, VD56G3_REG_MODEL_ID, &model_id, NULL);
1353 	if (ret)
1354 		return ret;
1355 
1356 	if (model_id != VD56G3_MODEL_ID) {
1357 		dev_err(dev, "Unsupported sensor id: %x\n", (u16)model_id);
1358 		return -ENODEV;
1359 	}
1360 
1361 	ret = cci_read(sensor->regmap, VD56G3_REG_REVISION, &device_revision,
1362 		       NULL);
1363 	if (ret)
1364 		return ret;
1365 
1366 	if ((device_revision >> 8) != VD56G3_REVISION_CUT3) {
1367 		dev_err(dev, "Unsupported version: %x\n", (u16)device_revision);
1368 		return -ENODEV;
1369 	}
1370 
1371 	ret = cci_read(sensor->regmap, VD56G3_REG_OPTICAL_REVISION,
1372 		       &optical_revision, NULL);
1373 	if (ret)
1374 		return ret;
1375 
1376 	sensor->is_mono =
1377 		((optical_revision & 1) == VD56G3_OPTICAL_REVISION_MONO);
1378 	if ((sensor->is_mono && model == VD56G3_MODEL_VD66GY) ||
1379 	    (!sensor->is_mono && model == VD56G3_MODEL_VD56G3)) {
1380 		dev_err(dev, "Found %s sensor, while %s model is defined in DT\n",
1381 			(sensor->is_mono) ? "Mono" : "Bayer",
1382 			(model == VD56G3_MODEL_VD56G3) ? "vd56g3" : "vd66gy");
1383 		return -ENODEV;
1384 	}
1385 
1386 	return 0;
1387 }
1388 
vd56g3_subdev_init(struct vd56g3 * sensor)1389 static int vd56g3_subdev_init(struct vd56g3 *sensor)
1390 {
1391 	struct v4l2_subdev_state *state;
1392 	int ret;
1393 
1394 	/* Init remaining sub device ops */
1395 	sensor->sd.internal_ops = &vd56g3_internal_ops;
1396 	sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1397 	sensor->sd.entity.ops = &vd56g3_subdev_entity_ops;
1398 
1399 	/* Init source pad */
1400 	sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
1401 	sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1402 	ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
1403 	if (ret) {
1404 		dev_err(sensor->dev, "Failed to init media entity: %d\n", ret);
1405 		return ret;
1406 	}
1407 
1408 	/* Init controls */
1409 	ret = vd56g3_init_controls(sensor);
1410 	if (ret) {
1411 		dev_err(sensor->dev, "Controls initialization failed: %d\n",
1412 			ret);
1413 		goto err_media;
1414 	}
1415 
1416 	/* Init vd56g3 struct : default resolution + raw8 */
1417 	sensor->sd.state_lock = sensor->ctrl_handler.lock;
1418 	ret = v4l2_subdev_init_finalize(&sensor->sd);
1419 	if (ret) {
1420 		dev_err(sensor->dev, "Subdev init failed: %d\n", ret);
1421 		goto err_ctrls;
1422 	}
1423 
1424 	/* Update controls according to the resolution set */
1425 	state = v4l2_subdev_lock_and_get_active_state(&sensor->sd);
1426 	ret = vd56g3_update_controls(sensor);
1427 	v4l2_subdev_unlock_state(state);
1428 	if (ret) {
1429 		dev_err(sensor->dev, "Controls update failed: %d\n", ret);
1430 		goto err_ctrls;
1431 	}
1432 
1433 	return 0;
1434 
1435 err_ctrls:
1436 	v4l2_ctrl_handler_free(sensor->sd.ctrl_handler);
1437 
1438 err_media:
1439 	media_entity_cleanup(&sensor->sd.entity);
1440 
1441 	return ret;
1442 }
1443 
vd56g3_subdev_cleanup(struct vd56g3 * sensor)1444 static void vd56g3_subdev_cleanup(struct vd56g3 *sensor)
1445 {
1446 	v4l2_async_unregister_subdev(&sensor->sd);
1447 	v4l2_subdev_cleanup(&sensor->sd);
1448 	media_entity_cleanup(&sensor->sd.entity);
1449 	v4l2_ctrl_handler_free(sensor->sd.ctrl_handler);
1450 }
1451 
vd56g3_probe(struct i2c_client * client)1452 static int vd56g3_probe(struct i2c_client *client)
1453 {
1454 	struct device *dev = &client->dev;
1455 	struct vd56g3 *sensor;
1456 	int ret;
1457 
1458 	sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
1459 	if (!sensor)
1460 		return -ENOMEM;
1461 
1462 	v4l2_i2c_subdev_init(&sensor->sd, client, &vd56g3_subdev_ops);
1463 	sensor->dev = dev;
1464 
1465 	ret = vd56g3_parse_dt(sensor);
1466 	if (ret)
1467 		return dev_err_probe(dev, ret, "Failed to parse Device Tree\n");
1468 
1469 	/* Get (and check) resources : power regs, ext clock, reset gpio */
1470 	ret = vd56g3_get_regulators(sensor);
1471 	if (ret)
1472 		return dev_err_probe(dev, ret, "Failed to get regulators\n");
1473 
1474 	sensor->xclk = devm_clk_get(dev, NULL);
1475 	if (IS_ERR(sensor->xclk))
1476 		return dev_err_probe(dev, PTR_ERR(sensor->xclk),
1477 				     "Failed to get xclk\n");
1478 	sensor->xclk_freq = clk_get_rate(sensor->xclk);
1479 	ret = vd56g3_prepare_clock_tree(sensor);
1480 	if (ret)
1481 		return ret;
1482 
1483 	sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset",
1484 						     GPIOD_OUT_HIGH);
1485 	if (IS_ERR(sensor->reset_gpio))
1486 		return dev_err_probe(dev, PTR_ERR(sensor->reset_gpio),
1487 				     "Failed to get reset gpio\n");
1488 
1489 	sensor->regmap = devm_cci_regmap_init_i2c(client, 16);
1490 	if (IS_ERR(sensor->regmap))
1491 		return dev_err_probe(dev, PTR_ERR(sensor->regmap),
1492 				     "Failed to init regmap\n");
1493 
1494 	/* Power ON */
1495 	ret = vd56g3_power_on(dev);
1496 	if (ret)
1497 		return dev_err_probe(dev, ret, "Sensor power on failed\n");
1498 
1499 	/* Enable PM runtime with autosuspend (sensor being ON, set active) */
1500 	pm_runtime_set_active(dev);
1501 	pm_runtime_get_noresume(dev);
1502 	pm_runtime_enable(dev);
1503 	pm_runtime_set_autosuspend_delay(dev, 1000);
1504 	pm_runtime_use_autosuspend(dev);
1505 
1506 	/* Check HW model/version */
1507 	ret = vd56g3_detect(sensor);
1508 	if (ret) {
1509 		dev_err(dev, "Sensor detect failed: %d\n", ret);
1510 		goto err_power_off;
1511 	}
1512 
1513 	/* Initialize & register subdev (v4l2_i2c subdev already initialized) */
1514 	ret = vd56g3_subdev_init(sensor);
1515 	if (ret) {
1516 		dev_err(dev, "V4l2 init failed: %d\n", ret);
1517 		goto err_power_off;
1518 	}
1519 
1520 	ret = v4l2_async_register_subdev(&sensor->sd);
1521 	if (ret) {
1522 		dev_err(dev, "Async subdev register failed: %d\n", ret);
1523 		goto err_subdev;
1524 	}
1525 
1526 	/* Sensor could now be powered off (after the autosuspend delay) */
1527 	pm_runtime_put_autosuspend(dev);
1528 
1529 	dev_dbg(dev, "Successfully probe %s sensor\n",
1530 		(sensor->is_mono) ? "vd56g3" : "vd66gy");
1531 
1532 	return 0;
1533 
1534 err_subdev:
1535 	vd56g3_subdev_cleanup(sensor);
1536 err_power_off:
1537 	pm_runtime_disable(dev);
1538 	pm_runtime_put_noidle(dev);
1539 	pm_runtime_dont_use_autosuspend(dev);
1540 	vd56g3_power_off(dev);
1541 
1542 	return ret;
1543 }
1544 
vd56g3_remove(struct i2c_client * client)1545 static void vd56g3_remove(struct i2c_client *client)
1546 {
1547 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1548 	struct vd56g3 *sensor = to_vd56g3(sd);
1549 
1550 	vd56g3_subdev_cleanup(sensor);
1551 
1552 	pm_runtime_disable(sensor->dev);
1553 	if (!pm_runtime_status_suspended(sensor->dev))
1554 		vd56g3_power_off(sensor->dev);
1555 	pm_runtime_set_suspended(sensor->dev);
1556 	pm_runtime_dont_use_autosuspend(sensor->dev);
1557 }
1558 
1559 static const struct of_device_id vd56g3_dt_ids[] = {
1560 	{ .compatible = "st,vd56g3", .data = (void *)VD56G3_MODEL_VD56G3 },
1561 	{ .compatible = "st,vd66gy", .data = (void *)VD56G3_MODEL_VD66GY },
1562 	{ /* sentinel */ }
1563 };
1564 MODULE_DEVICE_TABLE(of, vd56g3_dt_ids);
1565 
1566 static struct i2c_driver vd56g3_i2c_driver = {
1567 	.driver = {
1568 		.name  = "vd56g3",
1569 		.of_match_table = vd56g3_dt_ids,
1570 		.pm = &vd56g3_pm_ops,
1571 	},
1572 	.probe = vd56g3_probe,
1573 	.remove = vd56g3_remove,
1574 };
1575 
1576 module_i2c_driver(vd56g3_i2c_driver);
1577 
1578 MODULE_AUTHOR("Benjamin Mugnier <benjamin.mugnier@foss.st.com>");
1579 MODULE_AUTHOR("Mickael Guene <mickael.guene@st.com>");
1580 MODULE_AUTHOR("Sylvain Petinot <sylvain.petinot@foss.st.com>");
1581 MODULE_DESCRIPTION("ST VD56G3 sensor driver");
1582 MODULE_LICENSE("GPL");
1583