xref: /linux/drivers/md/dm-mpath.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2003 Sistina Software Limited.
4  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/device-mapper.h>
10 
11 #include "dm-rq.h"
12 #include "dm-bio-record.h"
13 #include "dm-path-selector.h"
14 #include "dm-uevent.h"
15 
16 #include <linux/blkdev.h>
17 #include <linux/ctype.h>
18 #include <linux/init.h>
19 #include <linux/mempool.h>
20 #include <linux/module.h>
21 #include <linux/pagemap.h>
22 #include <linux/slab.h>
23 #include <linux/time.h>
24 #include <linux/timer.h>
25 #include <linux/workqueue.h>
26 #include <linux/delay.h>
27 #include <scsi/scsi_dh.h>
28 #include <linux/atomic.h>
29 #include <linux/blk-mq.h>
30 
31 static struct workqueue_struct *dm_mpath_wq;
32 
33 #define DM_MSG_PREFIX "multipath"
34 #define DM_PG_INIT_DELAY_MSECS 2000
35 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned int) -1)
36 #define QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT 0
37 
38 static unsigned long queue_if_no_path_timeout_secs = QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT;
39 
40 /* Path properties */
41 struct pgpath {
42 	struct list_head list;
43 
44 	struct priority_group *pg;	/* Owning PG */
45 	unsigned int fail_count;		/* Cumulative failure count */
46 
47 	struct dm_path path;
48 	struct delayed_work activate_path;
49 
50 	bool is_active:1;		/* Path status */
51 };
52 
53 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
54 
55 /*
56  * Paths are grouped into Priority Groups and numbered from 1 upwards.
57  * Each has a path selector which controls which path gets used.
58  */
59 struct priority_group {
60 	struct list_head list;
61 
62 	struct multipath *m;		/* Owning multipath instance */
63 	struct path_selector ps;
64 
65 	unsigned int pg_num;		/* Reference number */
66 	unsigned int nr_pgpaths;		/* Number of paths in PG */
67 	struct list_head pgpaths;
68 
69 	bool bypassed:1;		/* Temporarily bypass this PG? */
70 };
71 
72 /* Multipath context */
73 struct multipath {
74 	unsigned long flags;		/* Multipath state flags */
75 
76 	spinlock_t lock;
77 	enum dm_queue_mode queue_mode;
78 
79 	struct pgpath *current_pgpath;
80 	struct priority_group *current_pg;
81 	struct priority_group *next_pg;	/* Switch to this PG if set */
82 
83 	atomic_t nr_valid_paths;	/* Total number of usable paths */
84 	unsigned int nr_priority_groups;
85 	struct list_head priority_groups;
86 
87 	const char *hw_handler_name;
88 	char *hw_handler_params;
89 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
90 	unsigned int pg_init_retries;	/* Number of times to retry pg_init */
91 	unsigned int pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
92 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
93 	atomic_t pg_init_count;		/* Number of times pg_init called */
94 
95 	struct mutex work_mutex;
96 	struct work_struct trigger_event;
97 	struct dm_target *ti;
98 
99 	struct work_struct process_queued_bios;
100 	struct bio_list queued_bios;
101 
102 	struct timer_list nopath_timer;	/* Timeout for queue_if_no_path */
103 };
104 
105 /*
106  * Context information attached to each io we process.
107  */
108 struct dm_mpath_io {
109 	struct pgpath *pgpath;
110 	size_t nr_bytes;
111 	u64 start_time_ns;
112 };
113 
114 typedef int (*action_fn) (struct pgpath *pgpath);
115 
116 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
117 static void trigger_event(struct work_struct *work);
118 static void activate_or_offline_path(struct pgpath *pgpath);
119 static void activate_path_work(struct work_struct *work);
120 static void process_queued_bios(struct work_struct *work);
121 static void queue_if_no_path_timeout_work(struct timer_list *t);
122 
123 /*
124  *-----------------------------------------------
125  * Multipath state flags.
126  *-----------------------------------------------
127  */
128 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
129 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
130 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
131 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
132 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
133 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
134 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
135 
mpath_double_check_test_bit(int MPATHF_bit,struct multipath * m)136 static bool mpath_double_check_test_bit(int MPATHF_bit, struct multipath *m)
137 {
138 	bool r = test_bit(MPATHF_bit, &m->flags);
139 
140 	if (r) {
141 		unsigned long flags;
142 
143 		spin_lock_irqsave(&m->lock, flags);
144 		r = test_bit(MPATHF_bit, &m->flags);
145 		spin_unlock_irqrestore(&m->lock, flags);
146 	}
147 
148 	return r;
149 }
150 
151 /*
152  *-----------------------------------------------
153  * Allocation routines
154  *-----------------------------------------------
155  */
alloc_pgpath(void)156 static struct pgpath *alloc_pgpath(void)
157 {
158 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
159 
160 	if (!pgpath)
161 		return NULL;
162 
163 	pgpath->is_active = true;
164 
165 	return pgpath;
166 }
167 
free_pgpath(struct pgpath * pgpath)168 static void free_pgpath(struct pgpath *pgpath)
169 {
170 	kfree(pgpath);
171 }
172 
alloc_priority_group(void)173 static struct priority_group *alloc_priority_group(void)
174 {
175 	struct priority_group *pg;
176 
177 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
178 
179 	if (pg)
180 		INIT_LIST_HEAD(&pg->pgpaths);
181 
182 	return pg;
183 }
184 
free_pgpaths(struct list_head * pgpaths,struct dm_target * ti)185 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
186 {
187 	struct pgpath *pgpath, *tmp;
188 
189 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
190 		list_del(&pgpath->list);
191 		dm_put_device(ti, pgpath->path.dev);
192 		free_pgpath(pgpath);
193 	}
194 }
195 
free_priority_group(struct priority_group * pg,struct dm_target * ti)196 static void free_priority_group(struct priority_group *pg,
197 				struct dm_target *ti)
198 {
199 	struct path_selector *ps = &pg->ps;
200 
201 	if (ps->type) {
202 		ps->type->destroy(ps);
203 		dm_put_path_selector(ps->type);
204 	}
205 
206 	free_pgpaths(&pg->pgpaths, ti);
207 	kfree(pg);
208 }
209 
alloc_multipath(struct dm_target * ti)210 static struct multipath *alloc_multipath(struct dm_target *ti)
211 {
212 	struct multipath *m;
213 
214 	m = kzalloc(sizeof(*m), GFP_KERNEL);
215 	if (m) {
216 		INIT_LIST_HEAD(&m->priority_groups);
217 		spin_lock_init(&m->lock);
218 		atomic_set(&m->nr_valid_paths, 0);
219 		INIT_WORK(&m->trigger_event, trigger_event);
220 		mutex_init(&m->work_mutex);
221 
222 		m->queue_mode = DM_TYPE_NONE;
223 
224 		m->ti = ti;
225 		ti->private = m;
226 
227 		timer_setup(&m->nopath_timer, queue_if_no_path_timeout_work, 0);
228 	}
229 
230 	return m;
231 }
232 
alloc_multipath_stage2(struct dm_target * ti,struct multipath * m)233 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
234 {
235 	if (m->queue_mode == DM_TYPE_NONE) {
236 		m->queue_mode = DM_TYPE_REQUEST_BASED;
237 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
238 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
239 		/*
240 		 * bio-based doesn't support any direct scsi_dh management;
241 		 * it just discovers if a scsi_dh is attached.
242 		 */
243 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
244 	}
245 
246 	dm_table_set_type(ti->table, m->queue_mode);
247 
248 	/*
249 	 * Init fields that are only used when a scsi_dh is attached
250 	 * - must do this unconditionally (really doesn't hurt non-SCSI uses)
251 	 */
252 	set_bit(MPATHF_QUEUE_IO, &m->flags);
253 	atomic_set(&m->pg_init_in_progress, 0);
254 	atomic_set(&m->pg_init_count, 0);
255 	m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
256 	init_waitqueue_head(&m->pg_init_wait);
257 
258 	return 0;
259 }
260 
free_multipath(struct multipath * m)261 static void free_multipath(struct multipath *m)
262 {
263 	struct priority_group *pg, *tmp;
264 
265 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
266 		list_del(&pg->list);
267 		free_priority_group(pg, m->ti);
268 	}
269 
270 	kfree(m->hw_handler_name);
271 	kfree(m->hw_handler_params);
272 	mutex_destroy(&m->work_mutex);
273 	kfree(m);
274 }
275 
get_mpio(union map_info * info)276 static struct dm_mpath_io *get_mpio(union map_info *info)
277 {
278 	return info->ptr;
279 }
280 
multipath_per_bio_data_size(void)281 static size_t multipath_per_bio_data_size(void)
282 {
283 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
284 }
285 
get_mpio_from_bio(struct bio * bio)286 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
287 {
288 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
289 }
290 
get_bio_details_from_mpio(struct dm_mpath_io * mpio)291 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
292 {
293 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
294 	void *bio_details = mpio + 1;
295 	return bio_details;
296 }
297 
multipath_init_per_bio_data(struct bio * bio,struct dm_mpath_io ** mpio_p)298 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
299 {
300 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
301 	struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
302 
303 	mpio->nr_bytes = bio->bi_iter.bi_size;
304 	mpio->pgpath = NULL;
305 	mpio->start_time_ns = 0;
306 	*mpio_p = mpio;
307 
308 	dm_bio_record(bio_details, bio);
309 }
310 
311 /*
312  *-----------------------------------------------
313  * Path selection
314  *-----------------------------------------------
315  */
__pg_init_all_paths(struct multipath * m)316 static int __pg_init_all_paths(struct multipath *m)
317 {
318 	struct pgpath *pgpath;
319 	unsigned long pg_init_delay = 0;
320 
321 	lockdep_assert_held(&m->lock);
322 
323 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
324 		return 0;
325 
326 	atomic_inc(&m->pg_init_count);
327 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
328 
329 	/* Check here to reset pg_init_required */
330 	if (!m->current_pg)
331 		return 0;
332 
333 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
334 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
335 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
336 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
337 		/* Skip failed paths */
338 		if (!pgpath->is_active)
339 			continue;
340 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
341 				       pg_init_delay))
342 			atomic_inc(&m->pg_init_in_progress);
343 	}
344 	return atomic_read(&m->pg_init_in_progress);
345 }
346 
pg_init_all_paths(struct multipath * m)347 static int pg_init_all_paths(struct multipath *m)
348 {
349 	int ret;
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(&m->lock, flags);
353 	ret = __pg_init_all_paths(m);
354 	spin_unlock_irqrestore(&m->lock, flags);
355 
356 	return ret;
357 }
358 
__switch_pg(struct multipath * m,struct priority_group * pg)359 static void __switch_pg(struct multipath *m, struct priority_group *pg)
360 {
361 	lockdep_assert_held(&m->lock);
362 
363 	m->current_pg = pg;
364 
365 	/* Must we initialise the PG first, and queue I/O till it's ready? */
366 	if (m->hw_handler_name) {
367 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
368 		set_bit(MPATHF_QUEUE_IO, &m->flags);
369 	} else {
370 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
371 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
372 	}
373 
374 	atomic_set(&m->pg_init_count, 0);
375 }
376 
choose_path_in_pg(struct multipath * m,struct priority_group * pg,size_t nr_bytes)377 static struct pgpath *choose_path_in_pg(struct multipath *m,
378 					struct priority_group *pg,
379 					size_t nr_bytes)
380 {
381 	unsigned long flags;
382 	struct dm_path *path;
383 	struct pgpath *pgpath;
384 
385 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
386 	if (!path)
387 		return ERR_PTR(-ENXIO);
388 
389 	pgpath = path_to_pgpath(path);
390 
391 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
392 		/* Only update current_pgpath if pg changed */
393 		spin_lock_irqsave(&m->lock, flags);
394 		m->current_pgpath = pgpath;
395 		__switch_pg(m, pg);
396 		spin_unlock_irqrestore(&m->lock, flags);
397 	}
398 
399 	return pgpath;
400 }
401 
choose_pgpath(struct multipath * m,size_t nr_bytes)402 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
403 {
404 	unsigned long flags;
405 	struct priority_group *pg;
406 	struct pgpath *pgpath;
407 	unsigned int bypassed = 1;
408 
409 	if (!atomic_read(&m->nr_valid_paths)) {
410 		spin_lock_irqsave(&m->lock, flags);
411 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
412 		spin_unlock_irqrestore(&m->lock, flags);
413 		goto failed;
414 	}
415 
416 	/* Were we instructed to switch PG? */
417 	if (READ_ONCE(m->next_pg)) {
418 		spin_lock_irqsave(&m->lock, flags);
419 		pg = m->next_pg;
420 		if (!pg) {
421 			spin_unlock_irqrestore(&m->lock, flags);
422 			goto check_current_pg;
423 		}
424 		m->next_pg = NULL;
425 		spin_unlock_irqrestore(&m->lock, flags);
426 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
427 		if (!IS_ERR_OR_NULL(pgpath))
428 			return pgpath;
429 	}
430 
431 	/* Don't change PG until it has no remaining paths */
432 check_current_pg:
433 	pg = READ_ONCE(m->current_pg);
434 	if (pg) {
435 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
436 		if (!IS_ERR_OR_NULL(pgpath))
437 			return pgpath;
438 	}
439 
440 	/*
441 	 * Loop through priority groups until we find a valid path.
442 	 * First time we skip PGs marked 'bypassed'.
443 	 * Second time we only try the ones we skipped, but set
444 	 * pg_init_delay_retry so we do not hammer controllers.
445 	 */
446 	do {
447 		list_for_each_entry(pg, &m->priority_groups, list) {
448 			if (pg->bypassed == !!bypassed)
449 				continue;
450 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
451 			if (!IS_ERR_OR_NULL(pgpath)) {
452 				if (!bypassed) {
453 					spin_lock_irqsave(&m->lock, flags);
454 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
455 					spin_unlock_irqrestore(&m->lock, flags);
456 				}
457 				return pgpath;
458 			}
459 		}
460 	} while (bypassed--);
461 
462 failed:
463 	spin_lock_irqsave(&m->lock, flags);
464 	m->current_pgpath = NULL;
465 	m->current_pg = NULL;
466 	spin_unlock_irqrestore(&m->lock, flags);
467 
468 	return NULL;
469 }
470 
471 /*
472  * dm_report_EIO() is a macro instead of a function to make pr_debug_ratelimited()
473  * report the function name and line number of the function from which
474  * it has been invoked.
475  */
476 #define dm_report_EIO(m)						\
477 	DMDEBUG_LIMIT("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d", \
478 		      dm_table_device_name((m)->ti->table),		\
479 		      test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
480 		      test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \
481 		      dm_noflush_suspending((m)->ti))
482 
483 /*
484  * Check whether bios must be queued in the device-mapper core rather
485  * than here in the target.
486  */
__must_push_back(struct multipath * m)487 static bool __must_push_back(struct multipath *m)
488 {
489 	return dm_noflush_suspending(m->ti);
490 }
491 
must_push_back_rq(struct multipath * m)492 static bool must_push_back_rq(struct multipath *m)
493 {
494 	unsigned long flags;
495 	bool ret;
496 
497 	spin_lock_irqsave(&m->lock, flags);
498 	ret = (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) || __must_push_back(m));
499 	spin_unlock_irqrestore(&m->lock, flags);
500 
501 	return ret;
502 }
503 
504 /*
505  * Map cloned requests (request-based multipath)
506  */
multipath_clone_and_map(struct dm_target * ti,struct request * rq,union map_info * map_context,struct request ** __clone)507 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
508 				   union map_info *map_context,
509 				   struct request **__clone)
510 {
511 	struct multipath *m = ti->private;
512 	size_t nr_bytes = blk_rq_bytes(rq);
513 	struct pgpath *pgpath;
514 	struct block_device *bdev;
515 	struct dm_mpath_io *mpio = get_mpio(map_context);
516 	struct request_queue *q;
517 	struct request *clone;
518 
519 	/* Do we need to select a new pgpath? */
520 	pgpath = READ_ONCE(m->current_pgpath);
521 	if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
522 		pgpath = choose_pgpath(m, nr_bytes);
523 
524 	if (!pgpath) {
525 		if (must_push_back_rq(m))
526 			return DM_MAPIO_DELAY_REQUEUE;
527 		dm_report_EIO(m);	/* Failed */
528 		return DM_MAPIO_KILL;
529 	} else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) ||
530 		   mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) {
531 		pg_init_all_paths(m);
532 		return DM_MAPIO_DELAY_REQUEUE;
533 	}
534 
535 	mpio->pgpath = pgpath;
536 	mpio->nr_bytes = nr_bytes;
537 
538 	bdev = pgpath->path.dev->bdev;
539 	q = bdev_get_queue(bdev);
540 	clone = blk_mq_alloc_request(q, rq->cmd_flags | REQ_NOMERGE,
541 			BLK_MQ_REQ_NOWAIT);
542 	if (IS_ERR(clone)) {
543 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
544 		if (blk_queue_dying(q)) {
545 			atomic_inc(&m->pg_init_in_progress);
546 			activate_or_offline_path(pgpath);
547 			return DM_MAPIO_DELAY_REQUEUE;
548 		}
549 
550 		/*
551 		 * blk-mq's SCHED_RESTART can cover this requeue, so we
552 		 * needn't deal with it by DELAY_REQUEUE. More importantly,
553 		 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
554 		 * get the queue busy feedback (via BLK_STS_RESOURCE),
555 		 * otherwise I/O merging can suffer.
556 		 */
557 		return DM_MAPIO_REQUEUE;
558 	}
559 	clone->bio = clone->biotail = NULL;
560 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
561 	*__clone = clone;
562 
563 	if (pgpath->pg->ps.type->start_io)
564 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
565 					      &pgpath->path,
566 					      nr_bytes);
567 	return DM_MAPIO_REMAPPED;
568 }
569 
multipath_release_clone(struct request * clone,union map_info * map_context)570 static void multipath_release_clone(struct request *clone,
571 				    union map_info *map_context)
572 {
573 	if (unlikely(map_context)) {
574 		/*
575 		 * non-NULL map_context means caller is still map
576 		 * method; must undo multipath_clone_and_map()
577 		 */
578 		struct dm_mpath_io *mpio = get_mpio(map_context);
579 		struct pgpath *pgpath = mpio->pgpath;
580 
581 		if (pgpath && pgpath->pg->ps.type->end_io)
582 			pgpath->pg->ps.type->end_io(&pgpath->pg->ps,
583 						    &pgpath->path,
584 						    mpio->nr_bytes,
585 						    clone->io_start_time_ns);
586 	}
587 
588 	blk_mq_free_request(clone);
589 }
590 
591 /*
592  * Map cloned bios (bio-based multipath)
593  */
594 
__multipath_queue_bio(struct multipath * m,struct bio * bio)595 static void __multipath_queue_bio(struct multipath *m, struct bio *bio)
596 {
597 	/* Queue for the daemon to resubmit */
598 	bio_list_add(&m->queued_bios, bio);
599 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
600 		queue_work(kmultipathd, &m->process_queued_bios);
601 }
602 
multipath_queue_bio(struct multipath * m,struct bio * bio)603 static void multipath_queue_bio(struct multipath *m, struct bio *bio)
604 {
605 	unsigned long flags;
606 
607 	spin_lock_irqsave(&m->lock, flags);
608 	__multipath_queue_bio(m, bio);
609 	spin_unlock_irqrestore(&m->lock, flags);
610 }
611 
__map_bio(struct multipath * m,struct bio * bio)612 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
613 {
614 	struct pgpath *pgpath;
615 	unsigned long flags;
616 
617 	/* Do we need to select a new pgpath? */
618 	pgpath = READ_ONCE(m->current_pgpath);
619 	if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
620 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
621 
622 	if (!pgpath) {
623 		spin_lock_irqsave(&m->lock, flags);
624 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
625 			__multipath_queue_bio(m, bio);
626 			pgpath = ERR_PTR(-EAGAIN);
627 		}
628 		spin_unlock_irqrestore(&m->lock, flags);
629 
630 	} else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) ||
631 		   mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) {
632 		multipath_queue_bio(m, bio);
633 		pg_init_all_paths(m);
634 		return ERR_PTR(-EAGAIN);
635 	}
636 
637 	return pgpath;
638 }
639 
__multipath_map_bio(struct multipath * m,struct bio * bio,struct dm_mpath_io * mpio)640 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
641 			       struct dm_mpath_io *mpio)
642 {
643 	struct pgpath *pgpath = __map_bio(m, bio);
644 
645 	if (IS_ERR(pgpath))
646 		return DM_MAPIO_SUBMITTED;
647 
648 	if (!pgpath) {
649 		if (__must_push_back(m))
650 			return DM_MAPIO_REQUEUE;
651 		dm_report_EIO(m);
652 		return DM_MAPIO_KILL;
653 	}
654 
655 	mpio->pgpath = pgpath;
656 
657 	if (dm_ps_use_hr_timer(pgpath->pg->ps.type))
658 		mpio->start_time_ns = ktime_get_ns();
659 
660 	bio->bi_status = 0;
661 	bio_set_dev(bio, pgpath->path.dev->bdev);
662 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
663 
664 	if (pgpath->pg->ps.type->start_io)
665 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
666 					      &pgpath->path,
667 					      mpio->nr_bytes);
668 	return DM_MAPIO_REMAPPED;
669 }
670 
multipath_map_bio(struct dm_target * ti,struct bio * bio)671 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
672 {
673 	struct multipath *m = ti->private;
674 	struct dm_mpath_io *mpio = NULL;
675 
676 	multipath_init_per_bio_data(bio, &mpio);
677 	return __multipath_map_bio(m, bio, mpio);
678 }
679 
process_queued_io_list(struct multipath * m)680 static void process_queued_io_list(struct multipath *m)
681 {
682 	if (m->queue_mode == DM_TYPE_REQUEST_BASED)
683 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
684 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
685 		queue_work(kmultipathd, &m->process_queued_bios);
686 }
687 
process_queued_bios(struct work_struct * work)688 static void process_queued_bios(struct work_struct *work)
689 {
690 	int r;
691 	unsigned long flags;
692 	struct bio *bio;
693 	struct bio_list bios;
694 	struct blk_plug plug;
695 	struct multipath *m =
696 		container_of(work, struct multipath, process_queued_bios);
697 
698 	bio_list_init(&bios);
699 
700 	spin_lock_irqsave(&m->lock, flags);
701 
702 	if (bio_list_empty(&m->queued_bios)) {
703 		spin_unlock_irqrestore(&m->lock, flags);
704 		return;
705 	}
706 
707 	bio_list_merge_init(&bios, &m->queued_bios);
708 
709 	spin_unlock_irqrestore(&m->lock, flags);
710 
711 	blk_start_plug(&plug);
712 	while ((bio = bio_list_pop(&bios))) {
713 		struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
714 
715 		dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
716 		r = __multipath_map_bio(m, bio, mpio);
717 		switch (r) {
718 		case DM_MAPIO_KILL:
719 			bio->bi_status = BLK_STS_IOERR;
720 			bio_endio(bio);
721 			break;
722 		case DM_MAPIO_REQUEUE:
723 			bio->bi_status = BLK_STS_DM_REQUEUE;
724 			bio_endio(bio);
725 			break;
726 		case DM_MAPIO_REMAPPED:
727 			submit_bio_noacct(bio);
728 			break;
729 		case DM_MAPIO_SUBMITTED:
730 			break;
731 		default:
732 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
733 		}
734 	}
735 	blk_finish_plug(&plug);
736 }
737 
738 /*
739  * If we run out of usable paths, should we queue I/O or error it?
740  */
queue_if_no_path(struct multipath * m,bool f_queue_if_no_path,bool save_old_value,const char * caller)741 static int queue_if_no_path(struct multipath *m, bool f_queue_if_no_path,
742 			    bool save_old_value, const char *caller)
743 {
744 	unsigned long flags;
745 	bool queue_if_no_path_bit, saved_queue_if_no_path_bit;
746 	const char *dm_dev_name = dm_table_device_name(m->ti->table);
747 
748 	DMDEBUG("%s: %s caller=%s f_queue_if_no_path=%d save_old_value=%d",
749 		dm_dev_name, __func__, caller, f_queue_if_no_path, save_old_value);
750 
751 	spin_lock_irqsave(&m->lock, flags);
752 
753 	queue_if_no_path_bit = test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags);
754 	saved_queue_if_no_path_bit = test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
755 
756 	if (save_old_value) {
757 		if (unlikely(!queue_if_no_path_bit && saved_queue_if_no_path_bit)) {
758 			DMERR("%s: QIFNP disabled but saved as enabled, saving again loses state, not saving!",
759 			      dm_dev_name);
760 		} else
761 			assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path_bit);
762 	} else if (!f_queue_if_no_path && saved_queue_if_no_path_bit) {
763 		/* due to "fail_if_no_path" message, need to honor it. */
764 		clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
765 	}
766 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, f_queue_if_no_path);
767 
768 	DMDEBUG("%s: after %s changes; QIFNP = %d; SQIFNP = %d; DNFS = %d",
769 		dm_dev_name, __func__,
770 		test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags),
771 		test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags),
772 		dm_noflush_suspending(m->ti));
773 
774 	spin_unlock_irqrestore(&m->lock, flags);
775 
776 	if (!f_queue_if_no_path) {
777 		dm_table_run_md_queue_async(m->ti->table);
778 		process_queued_io_list(m);
779 	}
780 
781 	return 0;
782 }
783 
784 /*
785  * If the queue_if_no_path timeout fires, turn off queue_if_no_path and
786  * process any queued I/O.
787  */
queue_if_no_path_timeout_work(struct timer_list * t)788 static void queue_if_no_path_timeout_work(struct timer_list *t)
789 {
790 	struct multipath *m = from_timer(m, t, nopath_timer);
791 
792 	DMWARN("queue_if_no_path timeout on %s, failing queued IO",
793 	       dm_table_device_name(m->ti->table));
794 	queue_if_no_path(m, false, false, __func__);
795 }
796 
797 /*
798  * Enable the queue_if_no_path timeout if necessary.
799  * Called with m->lock held.
800  */
enable_nopath_timeout(struct multipath * m)801 static void enable_nopath_timeout(struct multipath *m)
802 {
803 	unsigned long queue_if_no_path_timeout =
804 		READ_ONCE(queue_if_no_path_timeout_secs) * HZ;
805 
806 	lockdep_assert_held(&m->lock);
807 
808 	if (queue_if_no_path_timeout > 0 &&
809 	    atomic_read(&m->nr_valid_paths) == 0 &&
810 	    test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
811 		mod_timer(&m->nopath_timer,
812 			  jiffies + queue_if_no_path_timeout);
813 	}
814 }
815 
disable_nopath_timeout(struct multipath * m)816 static void disable_nopath_timeout(struct multipath *m)
817 {
818 	del_timer_sync(&m->nopath_timer);
819 }
820 
821 /*
822  * An event is triggered whenever a path is taken out of use.
823  * Includes path failure and PG bypass.
824  */
trigger_event(struct work_struct * work)825 static void trigger_event(struct work_struct *work)
826 {
827 	struct multipath *m =
828 		container_of(work, struct multipath, trigger_event);
829 
830 	dm_table_event(m->ti->table);
831 }
832 
833 /*
834  *---------------------------------------------------------------
835  * Constructor/argument parsing:
836  * <#multipath feature args> [<arg>]*
837  * <#hw_handler args> [hw_handler [<arg>]*]
838  * <#priority groups>
839  * <initial priority group>
840  *     [<selector> <#selector args> [<arg>]*
841  *      <#paths> <#per-path selector args>
842  *         [<path> [<arg>]* ]+ ]+
843  *---------------------------------------------------------------
844  */
parse_path_selector(struct dm_arg_set * as,struct priority_group * pg,struct dm_target * ti)845 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
846 			       struct dm_target *ti)
847 {
848 	int r;
849 	struct path_selector_type *pst;
850 	unsigned int ps_argc;
851 
852 	static const struct dm_arg _args[] = {
853 		{0, 1024, "invalid number of path selector args"},
854 	};
855 
856 	pst = dm_get_path_selector(dm_shift_arg(as));
857 	if (!pst) {
858 		ti->error = "unknown path selector type";
859 		return -EINVAL;
860 	}
861 
862 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
863 	if (r) {
864 		dm_put_path_selector(pst);
865 		return -EINVAL;
866 	}
867 
868 	r = pst->create(&pg->ps, ps_argc, as->argv);
869 	if (r) {
870 		dm_put_path_selector(pst);
871 		ti->error = "path selector constructor failed";
872 		return r;
873 	}
874 
875 	pg->ps.type = pst;
876 	dm_consume_args(as, ps_argc);
877 
878 	return 0;
879 }
880 
setup_scsi_dh(struct block_device * bdev,struct multipath * m,const char ** attached_handler_name,char ** error)881 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
882 			 const char **attached_handler_name, char **error)
883 {
884 	struct request_queue *q = bdev_get_queue(bdev);
885 	int r;
886 
887 	if (mpath_double_check_test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, m)) {
888 retain:
889 		if (*attached_handler_name) {
890 			/*
891 			 * Clear any hw_handler_params associated with a
892 			 * handler that isn't already attached.
893 			 */
894 			if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) {
895 				kfree(m->hw_handler_params);
896 				m->hw_handler_params = NULL;
897 			}
898 
899 			/*
900 			 * Reset hw_handler_name to match the attached handler
901 			 *
902 			 * NB. This modifies the table line to show the actual
903 			 * handler instead of the original table passed in.
904 			 */
905 			kfree(m->hw_handler_name);
906 			m->hw_handler_name = *attached_handler_name;
907 			*attached_handler_name = NULL;
908 		}
909 	}
910 
911 	if (m->hw_handler_name) {
912 		r = scsi_dh_attach(q, m->hw_handler_name);
913 		if (r == -EBUSY) {
914 			DMINFO("retaining handler on device %pg", bdev);
915 			goto retain;
916 		}
917 		if (r < 0) {
918 			*error = "error attaching hardware handler";
919 			return r;
920 		}
921 
922 		if (m->hw_handler_params) {
923 			r = scsi_dh_set_params(q, m->hw_handler_params);
924 			if (r < 0) {
925 				*error = "unable to set hardware handler parameters";
926 				return r;
927 			}
928 		}
929 	}
930 
931 	return 0;
932 }
933 
parse_path(struct dm_arg_set * as,struct path_selector * ps,struct dm_target * ti)934 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
935 				 struct dm_target *ti)
936 {
937 	int r;
938 	struct pgpath *p;
939 	struct multipath *m = ti->private;
940 	struct request_queue *q;
941 	const char *attached_handler_name = NULL;
942 
943 	/* we need at least a path arg */
944 	if (as->argc < 1) {
945 		ti->error = "no device given";
946 		return ERR_PTR(-EINVAL);
947 	}
948 
949 	p = alloc_pgpath();
950 	if (!p)
951 		return ERR_PTR(-ENOMEM);
952 
953 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
954 			  &p->path.dev);
955 	if (r) {
956 		ti->error = "error getting device";
957 		goto bad;
958 	}
959 
960 	q = bdev_get_queue(p->path.dev->bdev);
961 	attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
962 	if (attached_handler_name || m->hw_handler_name) {
963 		INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
964 		r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error);
965 		kfree(attached_handler_name);
966 		if (r) {
967 			dm_put_device(ti, p->path.dev);
968 			goto bad;
969 		}
970 	}
971 
972 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
973 	if (r) {
974 		dm_put_device(ti, p->path.dev);
975 		goto bad;
976 	}
977 
978 	return p;
979  bad:
980 	free_pgpath(p);
981 	return ERR_PTR(r);
982 }
983 
parse_priority_group(struct dm_arg_set * as,struct multipath * m)984 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
985 						   struct multipath *m)
986 {
987 	static const struct dm_arg _args[] = {
988 		{1, 1024, "invalid number of paths"},
989 		{0, 1024, "invalid number of selector args"}
990 	};
991 
992 	int r;
993 	unsigned int i, nr_selector_args, nr_args;
994 	struct priority_group *pg;
995 	struct dm_target *ti = m->ti;
996 
997 	if (as->argc < 2) {
998 		as->argc = 0;
999 		ti->error = "not enough priority group arguments";
1000 		return ERR_PTR(-EINVAL);
1001 	}
1002 
1003 	pg = alloc_priority_group();
1004 	if (!pg) {
1005 		ti->error = "couldn't allocate priority group";
1006 		return ERR_PTR(-ENOMEM);
1007 	}
1008 	pg->m = m;
1009 
1010 	r = parse_path_selector(as, pg, ti);
1011 	if (r)
1012 		goto bad;
1013 
1014 	/*
1015 	 * read the paths
1016 	 */
1017 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
1018 	if (r)
1019 		goto bad;
1020 
1021 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
1022 	if (r)
1023 		goto bad;
1024 
1025 	nr_args = 1 + nr_selector_args;
1026 	for (i = 0; i < pg->nr_pgpaths; i++) {
1027 		struct pgpath *pgpath;
1028 		struct dm_arg_set path_args;
1029 
1030 		if (as->argc < nr_args) {
1031 			ti->error = "not enough path parameters";
1032 			r = -EINVAL;
1033 			goto bad;
1034 		}
1035 
1036 		path_args.argc = nr_args;
1037 		path_args.argv = as->argv;
1038 
1039 		pgpath = parse_path(&path_args, &pg->ps, ti);
1040 		if (IS_ERR(pgpath)) {
1041 			r = PTR_ERR(pgpath);
1042 			goto bad;
1043 		}
1044 
1045 		pgpath->pg = pg;
1046 		list_add_tail(&pgpath->list, &pg->pgpaths);
1047 		dm_consume_args(as, nr_args);
1048 	}
1049 
1050 	return pg;
1051 
1052  bad:
1053 	free_priority_group(pg, ti);
1054 	return ERR_PTR(r);
1055 }
1056 
parse_hw_handler(struct dm_arg_set * as,struct multipath * m)1057 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
1058 {
1059 	unsigned int hw_argc;
1060 	int ret;
1061 	struct dm_target *ti = m->ti;
1062 
1063 	static const struct dm_arg _args[] = {
1064 		{0, 1024, "invalid number of hardware handler args"},
1065 	};
1066 
1067 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
1068 		return -EINVAL;
1069 
1070 	if (!hw_argc)
1071 		return 0;
1072 
1073 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
1074 		dm_consume_args(as, hw_argc);
1075 		DMERR("bio-based multipath doesn't allow hardware handler args");
1076 		return 0;
1077 	}
1078 
1079 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
1080 	if (!m->hw_handler_name)
1081 		return -EINVAL;
1082 
1083 	if (hw_argc > 1) {
1084 		char *p;
1085 		int i, j, len = 4;
1086 
1087 		for (i = 0; i <= hw_argc - 2; i++)
1088 			len += strlen(as->argv[i]) + 1;
1089 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1090 		if (!p) {
1091 			ti->error = "memory allocation failed";
1092 			ret = -ENOMEM;
1093 			goto fail;
1094 		}
1095 		j = sprintf(p, "%d", hw_argc - 1);
1096 		for (i = 0, p += j + 1; i <= hw_argc - 2; i++, p += j + 1)
1097 			j = sprintf(p, "%s", as->argv[i]);
1098 	}
1099 	dm_consume_args(as, hw_argc - 1);
1100 
1101 	return 0;
1102 fail:
1103 	kfree(m->hw_handler_name);
1104 	m->hw_handler_name = NULL;
1105 	return ret;
1106 }
1107 
parse_features(struct dm_arg_set * as,struct multipath * m)1108 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1109 {
1110 	int r;
1111 	unsigned int argc;
1112 	struct dm_target *ti = m->ti;
1113 	const char *arg_name;
1114 
1115 	static const struct dm_arg _args[] = {
1116 		{0, 8, "invalid number of feature args"},
1117 		{1, 50, "pg_init_retries must be between 1 and 50"},
1118 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1119 	};
1120 
1121 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1122 	if (r)
1123 		return -EINVAL;
1124 
1125 	if (!argc)
1126 		return 0;
1127 
1128 	do {
1129 		arg_name = dm_shift_arg(as);
1130 		argc--;
1131 
1132 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1133 			r = queue_if_no_path(m, true, false, __func__);
1134 			continue;
1135 		}
1136 
1137 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1138 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1139 			continue;
1140 		}
1141 
1142 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1143 		    (argc >= 1)) {
1144 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1145 			argc--;
1146 			continue;
1147 		}
1148 
1149 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1150 		    (argc >= 1)) {
1151 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1152 			argc--;
1153 			continue;
1154 		}
1155 
1156 		if (!strcasecmp(arg_name, "queue_mode") &&
1157 		    (argc >= 1)) {
1158 			const char *queue_mode_name = dm_shift_arg(as);
1159 
1160 			if (!strcasecmp(queue_mode_name, "bio"))
1161 				m->queue_mode = DM_TYPE_BIO_BASED;
1162 			else if (!strcasecmp(queue_mode_name, "rq") ||
1163 				 !strcasecmp(queue_mode_name, "mq"))
1164 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1165 			else {
1166 				ti->error = "Unknown 'queue_mode' requested";
1167 				r = -EINVAL;
1168 			}
1169 			argc--;
1170 			continue;
1171 		}
1172 
1173 		ti->error = "Unrecognised multipath feature request";
1174 		r = -EINVAL;
1175 	} while (argc && !r);
1176 
1177 	return r;
1178 }
1179 
multipath_ctr(struct dm_target * ti,unsigned int argc,char ** argv)1180 static int multipath_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1181 {
1182 	/* target arguments */
1183 	static const struct dm_arg _args[] = {
1184 		{0, 1024, "invalid number of priority groups"},
1185 		{0, 1024, "invalid initial priority group number"},
1186 	};
1187 
1188 	int r;
1189 	struct multipath *m;
1190 	struct dm_arg_set as;
1191 	unsigned int pg_count = 0;
1192 	unsigned int next_pg_num;
1193 	unsigned long flags;
1194 
1195 	as.argc = argc;
1196 	as.argv = argv;
1197 
1198 	m = alloc_multipath(ti);
1199 	if (!m) {
1200 		ti->error = "can't allocate multipath";
1201 		return -EINVAL;
1202 	}
1203 
1204 	r = parse_features(&as, m);
1205 	if (r)
1206 		goto bad;
1207 
1208 	r = alloc_multipath_stage2(ti, m);
1209 	if (r)
1210 		goto bad;
1211 
1212 	r = parse_hw_handler(&as, m);
1213 	if (r)
1214 		goto bad;
1215 
1216 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1217 	if (r)
1218 		goto bad;
1219 
1220 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1221 	if (r)
1222 		goto bad;
1223 
1224 	if ((!m->nr_priority_groups && next_pg_num) ||
1225 	    (m->nr_priority_groups && !next_pg_num)) {
1226 		ti->error = "invalid initial priority group";
1227 		r = -EINVAL;
1228 		goto bad;
1229 	}
1230 
1231 	/* parse the priority groups */
1232 	while (as.argc) {
1233 		struct priority_group *pg;
1234 		unsigned int nr_valid_paths = atomic_read(&m->nr_valid_paths);
1235 
1236 		pg = parse_priority_group(&as, m);
1237 		if (IS_ERR(pg)) {
1238 			r = PTR_ERR(pg);
1239 			goto bad;
1240 		}
1241 
1242 		nr_valid_paths += pg->nr_pgpaths;
1243 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1244 
1245 		list_add_tail(&pg->list, &m->priority_groups);
1246 		pg_count++;
1247 		pg->pg_num = pg_count;
1248 		if (!--next_pg_num)
1249 			m->next_pg = pg;
1250 	}
1251 
1252 	if (pg_count != m->nr_priority_groups) {
1253 		ti->error = "priority group count mismatch";
1254 		r = -EINVAL;
1255 		goto bad;
1256 	}
1257 
1258 	spin_lock_irqsave(&m->lock, flags);
1259 	enable_nopath_timeout(m);
1260 	spin_unlock_irqrestore(&m->lock, flags);
1261 
1262 	ti->num_flush_bios = 1;
1263 	ti->num_discard_bios = 1;
1264 	ti->num_write_zeroes_bios = 1;
1265 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1266 		ti->per_io_data_size = multipath_per_bio_data_size();
1267 	else
1268 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1269 
1270 	return 0;
1271 
1272  bad:
1273 	free_multipath(m);
1274 	return r;
1275 }
1276 
multipath_wait_for_pg_init_completion(struct multipath * m)1277 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1278 {
1279 	DEFINE_WAIT(wait);
1280 
1281 	while (1) {
1282 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1283 
1284 		if (!atomic_read(&m->pg_init_in_progress))
1285 			break;
1286 
1287 		io_schedule();
1288 	}
1289 	finish_wait(&m->pg_init_wait, &wait);
1290 }
1291 
flush_multipath_work(struct multipath * m)1292 static void flush_multipath_work(struct multipath *m)
1293 {
1294 	if (m->hw_handler_name) {
1295 		unsigned long flags;
1296 
1297 		if (!atomic_read(&m->pg_init_in_progress))
1298 			goto skip;
1299 
1300 		spin_lock_irqsave(&m->lock, flags);
1301 		if (atomic_read(&m->pg_init_in_progress) &&
1302 		    !test_and_set_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) {
1303 			spin_unlock_irqrestore(&m->lock, flags);
1304 
1305 			flush_workqueue(kmpath_handlerd);
1306 			multipath_wait_for_pg_init_completion(m);
1307 
1308 			spin_lock_irqsave(&m->lock, flags);
1309 			clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1310 		}
1311 		spin_unlock_irqrestore(&m->lock, flags);
1312 	}
1313 skip:
1314 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1315 		flush_work(&m->process_queued_bios);
1316 	flush_work(&m->trigger_event);
1317 }
1318 
multipath_dtr(struct dm_target * ti)1319 static void multipath_dtr(struct dm_target *ti)
1320 {
1321 	struct multipath *m = ti->private;
1322 
1323 	disable_nopath_timeout(m);
1324 	flush_multipath_work(m);
1325 	free_multipath(m);
1326 }
1327 
1328 /*
1329  * Take a path out of use.
1330  */
fail_path(struct pgpath * pgpath)1331 static int fail_path(struct pgpath *pgpath)
1332 {
1333 	unsigned long flags;
1334 	struct multipath *m = pgpath->pg->m;
1335 
1336 	spin_lock_irqsave(&m->lock, flags);
1337 
1338 	if (!pgpath->is_active)
1339 		goto out;
1340 
1341 	DMWARN("%s: Failing path %s.",
1342 	       dm_table_device_name(m->ti->table),
1343 	       pgpath->path.dev->name);
1344 
1345 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1346 	pgpath->is_active = false;
1347 	pgpath->fail_count++;
1348 
1349 	atomic_dec(&m->nr_valid_paths);
1350 
1351 	if (pgpath == m->current_pgpath)
1352 		m->current_pgpath = NULL;
1353 
1354 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1355 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1356 
1357 	queue_work(dm_mpath_wq, &m->trigger_event);
1358 
1359 	enable_nopath_timeout(m);
1360 
1361 out:
1362 	spin_unlock_irqrestore(&m->lock, flags);
1363 
1364 	return 0;
1365 }
1366 
1367 /*
1368  * Reinstate a previously-failed path
1369  */
reinstate_path(struct pgpath * pgpath)1370 static int reinstate_path(struct pgpath *pgpath)
1371 {
1372 	int r = 0, run_queue = 0;
1373 	unsigned long flags;
1374 	struct multipath *m = pgpath->pg->m;
1375 	unsigned int nr_valid_paths;
1376 
1377 	spin_lock_irqsave(&m->lock, flags);
1378 
1379 	if (pgpath->is_active)
1380 		goto out;
1381 
1382 	DMWARN("%s: Reinstating path %s.",
1383 	       dm_table_device_name(m->ti->table),
1384 	       pgpath->path.dev->name);
1385 
1386 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1387 	if (r)
1388 		goto out;
1389 
1390 	pgpath->is_active = true;
1391 
1392 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1393 	if (nr_valid_paths == 1) {
1394 		m->current_pgpath = NULL;
1395 		run_queue = 1;
1396 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1397 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1398 			atomic_inc(&m->pg_init_in_progress);
1399 	}
1400 
1401 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1402 		       pgpath->path.dev->name, nr_valid_paths);
1403 
1404 	schedule_work(&m->trigger_event);
1405 
1406 out:
1407 	spin_unlock_irqrestore(&m->lock, flags);
1408 	if (run_queue) {
1409 		dm_table_run_md_queue_async(m->ti->table);
1410 		process_queued_io_list(m);
1411 	}
1412 
1413 	if (pgpath->is_active)
1414 		disable_nopath_timeout(m);
1415 
1416 	return r;
1417 }
1418 
1419 /*
1420  * Fail or reinstate all paths that match the provided struct dm_dev.
1421  */
action_dev(struct multipath * m,dev_t dev,action_fn action)1422 static int action_dev(struct multipath *m, dev_t dev, action_fn action)
1423 {
1424 	int r = -EINVAL;
1425 	struct pgpath *pgpath;
1426 	struct priority_group *pg;
1427 
1428 	list_for_each_entry(pg, &m->priority_groups, list) {
1429 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1430 			if (pgpath->path.dev->bdev->bd_dev == dev)
1431 				r = action(pgpath);
1432 		}
1433 	}
1434 
1435 	return r;
1436 }
1437 
1438 /*
1439  * Temporarily try to avoid having to use the specified PG
1440  */
bypass_pg(struct multipath * m,struct priority_group * pg,bool bypassed)1441 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1442 		      bool bypassed)
1443 {
1444 	unsigned long flags;
1445 
1446 	spin_lock_irqsave(&m->lock, flags);
1447 
1448 	pg->bypassed = bypassed;
1449 	m->current_pgpath = NULL;
1450 	m->current_pg = NULL;
1451 
1452 	spin_unlock_irqrestore(&m->lock, flags);
1453 
1454 	schedule_work(&m->trigger_event);
1455 }
1456 
1457 /*
1458  * Switch to using the specified PG from the next I/O that gets mapped
1459  */
switch_pg_num(struct multipath * m,const char * pgstr)1460 static int switch_pg_num(struct multipath *m, const char *pgstr)
1461 {
1462 	struct priority_group *pg;
1463 	unsigned int pgnum;
1464 	unsigned long flags;
1465 	char dummy;
1466 
1467 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1468 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1469 		DMWARN("invalid PG number supplied to %s", __func__);
1470 		return -EINVAL;
1471 	}
1472 
1473 	spin_lock_irqsave(&m->lock, flags);
1474 	list_for_each_entry(pg, &m->priority_groups, list) {
1475 		pg->bypassed = false;
1476 		if (--pgnum)
1477 			continue;
1478 
1479 		m->current_pgpath = NULL;
1480 		m->current_pg = NULL;
1481 		m->next_pg = pg;
1482 	}
1483 	spin_unlock_irqrestore(&m->lock, flags);
1484 
1485 	schedule_work(&m->trigger_event);
1486 	return 0;
1487 }
1488 
1489 /*
1490  * Set/clear bypassed status of a PG.
1491  * PGs are numbered upwards from 1 in the order they were declared.
1492  */
bypass_pg_num(struct multipath * m,const char * pgstr,bool bypassed)1493 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1494 {
1495 	struct priority_group *pg;
1496 	unsigned int pgnum;
1497 	char dummy;
1498 
1499 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1500 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1501 		DMWARN("invalid PG number supplied to bypass_pg");
1502 		return -EINVAL;
1503 	}
1504 
1505 	list_for_each_entry(pg, &m->priority_groups, list) {
1506 		if (!--pgnum)
1507 			break;
1508 	}
1509 
1510 	bypass_pg(m, pg, bypassed);
1511 	return 0;
1512 }
1513 
1514 /*
1515  * Should we retry pg_init immediately?
1516  */
pg_init_limit_reached(struct multipath * m,struct pgpath * pgpath)1517 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1518 {
1519 	unsigned long flags;
1520 	bool limit_reached = false;
1521 
1522 	spin_lock_irqsave(&m->lock, flags);
1523 
1524 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1525 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1526 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1527 	else
1528 		limit_reached = true;
1529 
1530 	spin_unlock_irqrestore(&m->lock, flags);
1531 
1532 	return limit_reached;
1533 }
1534 
pg_init_done(void * data,int errors)1535 static void pg_init_done(void *data, int errors)
1536 {
1537 	struct pgpath *pgpath = data;
1538 	struct priority_group *pg = pgpath->pg;
1539 	struct multipath *m = pg->m;
1540 	unsigned long flags;
1541 	bool delay_retry = false;
1542 
1543 	/* device or driver problems */
1544 	switch (errors) {
1545 	case SCSI_DH_OK:
1546 		break;
1547 	case SCSI_DH_NOSYS:
1548 		if (!m->hw_handler_name) {
1549 			errors = 0;
1550 			break;
1551 		}
1552 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1553 		      "Error %d.", m->hw_handler_name, errors);
1554 		/*
1555 		 * Fail path for now, so we do not ping pong
1556 		 */
1557 		fail_path(pgpath);
1558 		break;
1559 	case SCSI_DH_DEV_TEMP_BUSY:
1560 		/*
1561 		 * Probably doing something like FW upgrade on the
1562 		 * controller so try the other pg.
1563 		 */
1564 		bypass_pg(m, pg, true);
1565 		break;
1566 	case SCSI_DH_RETRY:
1567 		/* Wait before retrying. */
1568 		delay_retry = true;
1569 		fallthrough;
1570 	case SCSI_DH_IMM_RETRY:
1571 	case SCSI_DH_RES_TEMP_UNAVAIL:
1572 		if (pg_init_limit_reached(m, pgpath))
1573 			fail_path(pgpath);
1574 		errors = 0;
1575 		break;
1576 	case SCSI_DH_DEV_OFFLINED:
1577 	default:
1578 		/*
1579 		 * We probably do not want to fail the path for a device
1580 		 * error, but this is what the old dm did. In future
1581 		 * patches we can do more advanced handling.
1582 		 */
1583 		fail_path(pgpath);
1584 	}
1585 
1586 	spin_lock_irqsave(&m->lock, flags);
1587 	if (errors) {
1588 		if (pgpath == m->current_pgpath) {
1589 			DMERR("Could not failover device. Error %d.", errors);
1590 			m->current_pgpath = NULL;
1591 			m->current_pg = NULL;
1592 		}
1593 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1594 		pg->bypassed = false;
1595 
1596 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1597 		/* Activations of other paths are still on going */
1598 		goto out;
1599 
1600 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1601 		if (delay_retry)
1602 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1603 		else
1604 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1605 
1606 		if (__pg_init_all_paths(m))
1607 			goto out;
1608 	}
1609 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1610 
1611 	process_queued_io_list(m);
1612 
1613 	/*
1614 	 * Wake up any thread waiting to suspend.
1615 	 */
1616 	wake_up(&m->pg_init_wait);
1617 
1618 out:
1619 	spin_unlock_irqrestore(&m->lock, flags);
1620 }
1621 
activate_or_offline_path(struct pgpath * pgpath)1622 static void activate_or_offline_path(struct pgpath *pgpath)
1623 {
1624 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1625 
1626 	if (pgpath->is_active && !blk_queue_dying(q))
1627 		scsi_dh_activate(q, pg_init_done, pgpath);
1628 	else
1629 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1630 }
1631 
activate_path_work(struct work_struct * work)1632 static void activate_path_work(struct work_struct *work)
1633 {
1634 	struct pgpath *pgpath =
1635 		container_of(work, struct pgpath, activate_path.work);
1636 
1637 	activate_or_offline_path(pgpath);
1638 }
1639 
multipath_end_io(struct dm_target * ti,struct request * clone,blk_status_t error,union map_info * map_context)1640 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1641 			    blk_status_t error, union map_info *map_context)
1642 {
1643 	struct dm_mpath_io *mpio = get_mpio(map_context);
1644 	struct pgpath *pgpath = mpio->pgpath;
1645 	int r = DM_ENDIO_DONE;
1646 
1647 	/*
1648 	 * We don't queue any clone request inside the multipath target
1649 	 * during end I/O handling, since those clone requests don't have
1650 	 * bio clones.  If we queue them inside the multipath target,
1651 	 * we need to make bio clones, that requires memory allocation.
1652 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1653 	 *  don't have bio clones.)
1654 	 * Instead of queueing the clone request here, we queue the original
1655 	 * request into dm core, which will remake a clone request and
1656 	 * clone bios for it and resubmit it later.
1657 	 */
1658 	if (error && blk_path_error(error)) {
1659 		struct multipath *m = ti->private;
1660 
1661 		if (error == BLK_STS_RESOURCE)
1662 			r = DM_ENDIO_DELAY_REQUEUE;
1663 		else
1664 			r = DM_ENDIO_REQUEUE;
1665 
1666 		if (pgpath)
1667 			fail_path(pgpath);
1668 
1669 		if (!atomic_read(&m->nr_valid_paths) &&
1670 		    !must_push_back_rq(m)) {
1671 			if (error == BLK_STS_IOERR)
1672 				dm_report_EIO(m);
1673 			/* complete with the original error */
1674 			r = DM_ENDIO_DONE;
1675 		}
1676 	}
1677 
1678 	if (pgpath) {
1679 		struct path_selector *ps = &pgpath->pg->ps;
1680 
1681 		if (ps->type->end_io)
1682 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes,
1683 					 clone->io_start_time_ns);
1684 	}
1685 
1686 	return r;
1687 }
1688 
multipath_end_io_bio(struct dm_target * ti,struct bio * clone,blk_status_t * error)1689 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1690 				blk_status_t *error)
1691 {
1692 	struct multipath *m = ti->private;
1693 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1694 	struct pgpath *pgpath = mpio->pgpath;
1695 	unsigned long flags;
1696 	int r = DM_ENDIO_DONE;
1697 
1698 	if (!*error || !blk_path_error(*error))
1699 		goto done;
1700 
1701 	if (pgpath)
1702 		fail_path(pgpath);
1703 
1704 	if (!atomic_read(&m->nr_valid_paths)) {
1705 		spin_lock_irqsave(&m->lock, flags);
1706 		if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1707 			if (__must_push_back(m)) {
1708 				r = DM_ENDIO_REQUEUE;
1709 			} else {
1710 				dm_report_EIO(m);
1711 				*error = BLK_STS_IOERR;
1712 			}
1713 			spin_unlock_irqrestore(&m->lock, flags);
1714 			goto done;
1715 		}
1716 		spin_unlock_irqrestore(&m->lock, flags);
1717 	}
1718 
1719 	multipath_queue_bio(m, clone);
1720 	r = DM_ENDIO_INCOMPLETE;
1721 done:
1722 	if (pgpath) {
1723 		struct path_selector *ps = &pgpath->pg->ps;
1724 
1725 		if (ps->type->end_io)
1726 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes,
1727 					 (mpio->start_time_ns ?:
1728 					  dm_start_time_ns_from_clone(clone)));
1729 	}
1730 
1731 	return r;
1732 }
1733 
1734 /*
1735  * Suspend with flush can't complete until all the I/O is processed
1736  * so if the last path fails we must error any remaining I/O.
1737  * - Note that if the freeze_bdev fails while suspending, the
1738  *   queue_if_no_path state is lost - userspace should reset it.
1739  * Otherwise, during noflush suspend, queue_if_no_path will not change.
1740  */
multipath_presuspend(struct dm_target * ti)1741 static void multipath_presuspend(struct dm_target *ti)
1742 {
1743 	struct multipath *m = ti->private;
1744 
1745 	/* FIXME: bio-based shouldn't need to always disable queue_if_no_path */
1746 	if (m->queue_mode == DM_TYPE_BIO_BASED || !dm_noflush_suspending(m->ti))
1747 		queue_if_no_path(m, false, true, __func__);
1748 }
1749 
multipath_postsuspend(struct dm_target * ti)1750 static void multipath_postsuspend(struct dm_target *ti)
1751 {
1752 	struct multipath *m = ti->private;
1753 
1754 	mutex_lock(&m->work_mutex);
1755 	flush_multipath_work(m);
1756 	mutex_unlock(&m->work_mutex);
1757 }
1758 
1759 /*
1760  * Restore the queue_if_no_path setting.
1761  */
multipath_resume(struct dm_target * ti)1762 static void multipath_resume(struct dm_target *ti)
1763 {
1764 	struct multipath *m = ti->private;
1765 	unsigned long flags;
1766 
1767 	spin_lock_irqsave(&m->lock, flags);
1768 	if (test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) {
1769 		set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags);
1770 		clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
1771 	}
1772 
1773 	DMDEBUG("%s: %s finished; QIFNP = %d; SQIFNP = %d",
1774 		dm_table_device_name(m->ti->table), __func__,
1775 		test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags),
1776 		test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1777 
1778 	spin_unlock_irqrestore(&m->lock, flags);
1779 }
1780 
1781 /*
1782  * Info output has the following format:
1783  * num_multipath_feature_args [multipath_feature_args]*
1784  * num_handler_status_args [handler_status_args]*
1785  * num_groups init_group_number
1786  *            [A|D|E num_ps_status_args [ps_status_args]*
1787  *             num_paths num_selector_args
1788  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1789  *
1790  * Table output has the following format (identical to the constructor string):
1791  * num_feature_args [features_args]*
1792  * num_handler_args hw_handler [hw_handler_args]*
1793  * num_groups init_group_number
1794  *     [priority selector-name num_ps_args [ps_args]*
1795  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1796  */
multipath_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)1797 static void multipath_status(struct dm_target *ti, status_type_t type,
1798 			     unsigned int status_flags, char *result, unsigned int maxlen)
1799 {
1800 	int sz = 0, pg_counter, pgpath_counter;
1801 	unsigned long flags;
1802 	struct multipath *m = ti->private;
1803 	struct priority_group *pg;
1804 	struct pgpath *p;
1805 	unsigned int pg_num;
1806 	char state;
1807 
1808 	spin_lock_irqsave(&m->lock, flags);
1809 
1810 	/* Features */
1811 	if (type == STATUSTYPE_INFO)
1812 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1813 		       atomic_read(&m->pg_init_count));
1814 	else {
1815 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1816 			      (m->pg_init_retries > 0) * 2 +
1817 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1818 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1819 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1820 
1821 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1822 			DMEMIT("queue_if_no_path ");
1823 		if (m->pg_init_retries)
1824 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1825 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1826 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1827 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1828 			DMEMIT("retain_attached_hw_handler ");
1829 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1830 			switch (m->queue_mode) {
1831 			case DM_TYPE_BIO_BASED:
1832 				DMEMIT("queue_mode bio ");
1833 				break;
1834 			default:
1835 				WARN_ON_ONCE(true);
1836 				break;
1837 			}
1838 		}
1839 	}
1840 
1841 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1842 		DMEMIT("0 ");
1843 	else
1844 		DMEMIT("1 %s ", m->hw_handler_name);
1845 
1846 	DMEMIT("%u ", m->nr_priority_groups);
1847 
1848 	if (m->next_pg)
1849 		pg_num = m->next_pg->pg_num;
1850 	else if (m->current_pg)
1851 		pg_num = m->current_pg->pg_num;
1852 	else
1853 		pg_num = (m->nr_priority_groups ? 1 : 0);
1854 
1855 	DMEMIT("%u ", pg_num);
1856 
1857 	switch (type) {
1858 	case STATUSTYPE_INFO:
1859 		list_for_each_entry(pg, &m->priority_groups, list) {
1860 			if (pg->bypassed)
1861 				state = 'D';	/* Disabled */
1862 			else if (pg == m->current_pg)
1863 				state = 'A';	/* Currently Active */
1864 			else
1865 				state = 'E';	/* Enabled */
1866 
1867 			DMEMIT("%c ", state);
1868 
1869 			if (pg->ps.type->status)
1870 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1871 							  result + sz,
1872 							  maxlen - sz);
1873 			else
1874 				DMEMIT("0 ");
1875 
1876 			DMEMIT("%u %u ", pg->nr_pgpaths,
1877 			       pg->ps.type->info_args);
1878 
1879 			list_for_each_entry(p, &pg->pgpaths, list) {
1880 				DMEMIT("%s %s %u ", p->path.dev->name,
1881 				       p->is_active ? "A" : "F",
1882 				       p->fail_count);
1883 				if (pg->ps.type->status)
1884 					sz += pg->ps.type->status(&pg->ps,
1885 					      &p->path, type, result + sz,
1886 					      maxlen - sz);
1887 			}
1888 		}
1889 		break;
1890 
1891 	case STATUSTYPE_TABLE:
1892 		list_for_each_entry(pg, &m->priority_groups, list) {
1893 			DMEMIT("%s ", pg->ps.type->name);
1894 
1895 			if (pg->ps.type->status)
1896 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1897 							  result + sz,
1898 							  maxlen - sz);
1899 			else
1900 				DMEMIT("0 ");
1901 
1902 			DMEMIT("%u %u ", pg->nr_pgpaths,
1903 			       pg->ps.type->table_args);
1904 
1905 			list_for_each_entry(p, &pg->pgpaths, list) {
1906 				DMEMIT("%s ", p->path.dev->name);
1907 				if (pg->ps.type->status)
1908 					sz += pg->ps.type->status(&pg->ps,
1909 					      &p->path, type, result + sz,
1910 					      maxlen - sz);
1911 			}
1912 		}
1913 		break;
1914 
1915 	case STATUSTYPE_IMA:
1916 		sz = 0; /*reset the result pointer*/
1917 
1918 		DMEMIT_TARGET_NAME_VERSION(ti->type);
1919 		DMEMIT(",nr_priority_groups=%u", m->nr_priority_groups);
1920 
1921 		pg_counter = 0;
1922 		list_for_each_entry(pg, &m->priority_groups, list) {
1923 			if (pg->bypassed)
1924 				state = 'D';	/* Disabled */
1925 			else if (pg == m->current_pg)
1926 				state = 'A';	/* Currently Active */
1927 			else
1928 				state = 'E';	/* Enabled */
1929 			DMEMIT(",pg_state_%d=%c", pg_counter, state);
1930 			DMEMIT(",nr_pgpaths_%d=%u", pg_counter, pg->nr_pgpaths);
1931 			DMEMIT(",path_selector_name_%d=%s", pg_counter, pg->ps.type->name);
1932 
1933 			pgpath_counter = 0;
1934 			list_for_each_entry(p, &pg->pgpaths, list) {
1935 				DMEMIT(",path_name_%d_%d=%s,is_active_%d_%d=%c,fail_count_%d_%d=%u",
1936 				       pg_counter, pgpath_counter, p->path.dev->name,
1937 				       pg_counter, pgpath_counter, p->is_active ? 'A' : 'F',
1938 				       pg_counter, pgpath_counter, p->fail_count);
1939 				if (pg->ps.type->status) {
1940 					DMEMIT(",path_selector_status_%d_%d=",
1941 					       pg_counter, pgpath_counter);
1942 					sz += pg->ps.type->status(&pg->ps, &p->path,
1943 								  type, result + sz,
1944 								  maxlen - sz);
1945 				}
1946 				pgpath_counter++;
1947 			}
1948 			pg_counter++;
1949 		}
1950 		DMEMIT(";");
1951 		break;
1952 	}
1953 
1954 	spin_unlock_irqrestore(&m->lock, flags);
1955 }
1956 
multipath_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)1957 static int multipath_message(struct dm_target *ti, unsigned int argc, char **argv,
1958 			     char *result, unsigned int maxlen)
1959 {
1960 	int r = -EINVAL;
1961 	dev_t dev;
1962 	struct multipath *m = ti->private;
1963 	action_fn action;
1964 	unsigned long flags;
1965 
1966 	mutex_lock(&m->work_mutex);
1967 
1968 	if (dm_suspended(ti)) {
1969 		r = -EBUSY;
1970 		goto out;
1971 	}
1972 
1973 	if (argc == 1) {
1974 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1975 			r = queue_if_no_path(m, true, false, __func__);
1976 			spin_lock_irqsave(&m->lock, flags);
1977 			enable_nopath_timeout(m);
1978 			spin_unlock_irqrestore(&m->lock, flags);
1979 			goto out;
1980 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1981 			r = queue_if_no_path(m, false, false, __func__);
1982 			disable_nopath_timeout(m);
1983 			goto out;
1984 		}
1985 	}
1986 
1987 	if (argc != 2) {
1988 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1989 		goto out;
1990 	}
1991 
1992 	if (!strcasecmp(argv[0], "disable_group")) {
1993 		r = bypass_pg_num(m, argv[1], true);
1994 		goto out;
1995 	} else if (!strcasecmp(argv[0], "enable_group")) {
1996 		r = bypass_pg_num(m, argv[1], false);
1997 		goto out;
1998 	} else if (!strcasecmp(argv[0], "switch_group")) {
1999 		r = switch_pg_num(m, argv[1]);
2000 		goto out;
2001 	} else if (!strcasecmp(argv[0], "reinstate_path"))
2002 		action = reinstate_path;
2003 	else if (!strcasecmp(argv[0], "fail_path"))
2004 		action = fail_path;
2005 	else {
2006 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
2007 		goto out;
2008 	}
2009 
2010 	r = dm_devt_from_path(argv[1], &dev);
2011 	if (r) {
2012 		DMWARN("message: error getting device %s",
2013 		       argv[1]);
2014 		goto out;
2015 	}
2016 
2017 	r = action_dev(m, dev, action);
2018 
2019 out:
2020 	mutex_unlock(&m->work_mutex);
2021 	return r;
2022 }
2023 
multipath_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev)2024 static int multipath_prepare_ioctl(struct dm_target *ti,
2025 				   struct block_device **bdev)
2026 {
2027 	struct multipath *m = ti->private;
2028 	struct pgpath *pgpath;
2029 	unsigned long flags;
2030 	int r;
2031 
2032 	pgpath = READ_ONCE(m->current_pgpath);
2033 	if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
2034 		pgpath = choose_pgpath(m, 0);
2035 
2036 	if (pgpath) {
2037 		if (!mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) {
2038 			*bdev = pgpath->path.dev->bdev;
2039 			r = 0;
2040 		} else {
2041 			/* pg_init has not started or completed */
2042 			r = -ENOTCONN;
2043 		}
2044 	} else {
2045 		/* No path is available */
2046 		r = -EIO;
2047 		spin_lock_irqsave(&m->lock, flags);
2048 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
2049 			r = -ENOTCONN;
2050 		spin_unlock_irqrestore(&m->lock, flags);
2051 	}
2052 
2053 	if (r == -ENOTCONN) {
2054 		if (!READ_ONCE(m->current_pg)) {
2055 			/* Path status changed, redo selection */
2056 			(void) choose_pgpath(m, 0);
2057 		}
2058 		spin_lock_irqsave(&m->lock, flags);
2059 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
2060 			(void) __pg_init_all_paths(m);
2061 		spin_unlock_irqrestore(&m->lock, flags);
2062 		dm_table_run_md_queue_async(m->ti->table);
2063 		process_queued_io_list(m);
2064 	}
2065 
2066 	/*
2067 	 * Only pass ioctls through if the device sizes match exactly.
2068 	 */
2069 	if (!r && ti->len != bdev_nr_sectors((*bdev)))
2070 		return 1;
2071 	return r;
2072 }
2073 
multipath_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)2074 static int multipath_iterate_devices(struct dm_target *ti,
2075 				     iterate_devices_callout_fn fn, void *data)
2076 {
2077 	struct multipath *m = ti->private;
2078 	struct priority_group *pg;
2079 	struct pgpath *p;
2080 	int ret = 0;
2081 
2082 	list_for_each_entry(pg, &m->priority_groups, list) {
2083 		list_for_each_entry(p, &pg->pgpaths, list) {
2084 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
2085 			if (ret)
2086 				goto out;
2087 		}
2088 	}
2089 
2090 out:
2091 	return ret;
2092 }
2093 
pgpath_busy(struct pgpath * pgpath)2094 static int pgpath_busy(struct pgpath *pgpath)
2095 {
2096 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
2097 
2098 	return blk_lld_busy(q);
2099 }
2100 
2101 /*
2102  * We return "busy", only when we can map I/Os but underlying devices
2103  * are busy (so even if we map I/Os now, the I/Os will wait on
2104  * the underlying queue).
2105  * In other words, if we want to kill I/Os or queue them inside us
2106  * due to map unavailability, we don't return "busy".  Otherwise,
2107  * dm core won't give us the I/Os and we can't do what we want.
2108  */
multipath_busy(struct dm_target * ti)2109 static int multipath_busy(struct dm_target *ti)
2110 {
2111 	bool busy = false, has_active = false;
2112 	struct multipath *m = ti->private;
2113 	struct priority_group *pg, *next_pg;
2114 	struct pgpath *pgpath;
2115 
2116 	/* pg_init in progress */
2117 	if (atomic_read(&m->pg_init_in_progress))
2118 		return true;
2119 
2120 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
2121 	if (!atomic_read(&m->nr_valid_paths)) {
2122 		unsigned long flags;
2123 
2124 		spin_lock_irqsave(&m->lock, flags);
2125 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
2126 			spin_unlock_irqrestore(&m->lock, flags);
2127 			return (m->queue_mode != DM_TYPE_REQUEST_BASED);
2128 		}
2129 		spin_unlock_irqrestore(&m->lock, flags);
2130 	}
2131 
2132 	/* Guess which priority_group will be used at next mapping time */
2133 	pg = READ_ONCE(m->current_pg);
2134 	next_pg = READ_ONCE(m->next_pg);
2135 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
2136 		pg = next_pg;
2137 
2138 	if (!pg) {
2139 		/*
2140 		 * We don't know which pg will be used at next mapping time.
2141 		 * We don't call choose_pgpath() here to avoid to trigger
2142 		 * pg_init just by busy checking.
2143 		 * So we don't know whether underlying devices we will be using
2144 		 * at next mapping time are busy or not. Just try mapping.
2145 		 */
2146 		return busy;
2147 	}
2148 
2149 	/*
2150 	 * If there is one non-busy active path at least, the path selector
2151 	 * will be able to select it. So we consider such a pg as not busy.
2152 	 */
2153 	busy = true;
2154 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
2155 		if (pgpath->is_active) {
2156 			has_active = true;
2157 			if (!pgpath_busy(pgpath)) {
2158 				busy = false;
2159 				break;
2160 			}
2161 		}
2162 	}
2163 
2164 	if (!has_active) {
2165 		/*
2166 		 * No active path in this pg, so this pg won't be used and
2167 		 * the current_pg will be changed at next mapping time.
2168 		 * We need to try mapping to determine it.
2169 		 */
2170 		busy = false;
2171 	}
2172 
2173 	return busy;
2174 }
2175 
2176 /*
2177  *---------------------------------------------------------------
2178  * Module setup
2179  *---------------------------------------------------------------
2180  */
2181 static struct target_type multipath_target = {
2182 	.name = "multipath",
2183 	.version = {1, 14, 0},
2184 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
2185 		    DM_TARGET_PASSES_INTEGRITY,
2186 	.module = THIS_MODULE,
2187 	.ctr = multipath_ctr,
2188 	.dtr = multipath_dtr,
2189 	.clone_and_map_rq = multipath_clone_and_map,
2190 	.release_clone_rq = multipath_release_clone,
2191 	.rq_end_io = multipath_end_io,
2192 	.map = multipath_map_bio,
2193 	.end_io = multipath_end_io_bio,
2194 	.presuspend = multipath_presuspend,
2195 	.postsuspend = multipath_postsuspend,
2196 	.resume = multipath_resume,
2197 	.status = multipath_status,
2198 	.message = multipath_message,
2199 	.prepare_ioctl = multipath_prepare_ioctl,
2200 	.iterate_devices = multipath_iterate_devices,
2201 	.busy = multipath_busy,
2202 };
2203 
dm_multipath_init(void)2204 static int __init dm_multipath_init(void)
2205 {
2206 	int r = -ENOMEM;
2207 
2208 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2209 	if (!kmultipathd) {
2210 		DMERR("failed to create workqueue kmpathd");
2211 		goto bad_alloc_kmultipathd;
2212 	}
2213 
2214 	/*
2215 	 * A separate workqueue is used to handle the device handlers
2216 	 * to avoid overloading existing workqueue. Overloading the
2217 	 * old workqueue would also create a bottleneck in the
2218 	 * path of the storage hardware device activation.
2219 	 */
2220 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2221 						  WQ_MEM_RECLAIM);
2222 	if (!kmpath_handlerd) {
2223 		DMERR("failed to create workqueue kmpath_handlerd");
2224 		goto bad_alloc_kmpath_handlerd;
2225 	}
2226 
2227 	dm_mpath_wq = alloc_workqueue("dm_mpath_wq", 0, 0);
2228 	if (!dm_mpath_wq) {
2229 		DMERR("failed to create workqueue dm_mpath_wq");
2230 		goto bad_alloc_dm_mpath_wq;
2231 	}
2232 
2233 	r = dm_register_target(&multipath_target);
2234 	if (r < 0)
2235 		goto bad_register_target;
2236 
2237 	return 0;
2238 
2239 bad_register_target:
2240 	destroy_workqueue(dm_mpath_wq);
2241 bad_alloc_dm_mpath_wq:
2242 	destroy_workqueue(kmpath_handlerd);
2243 bad_alloc_kmpath_handlerd:
2244 	destroy_workqueue(kmultipathd);
2245 bad_alloc_kmultipathd:
2246 	return r;
2247 }
2248 
dm_multipath_exit(void)2249 static void __exit dm_multipath_exit(void)
2250 {
2251 	destroy_workqueue(dm_mpath_wq);
2252 	destroy_workqueue(kmpath_handlerd);
2253 	destroy_workqueue(kmultipathd);
2254 
2255 	dm_unregister_target(&multipath_target);
2256 }
2257 
2258 module_init(dm_multipath_init);
2259 module_exit(dm_multipath_exit);
2260 
2261 module_param_named(queue_if_no_path_timeout_secs, queue_if_no_path_timeout_secs, ulong, 0644);
2262 MODULE_PARM_DESC(queue_if_no_path_timeout_secs, "No available paths queue IO timeout in seconds");
2263 
2264 MODULE_DESCRIPTION(DM_NAME " multipath target");
2265 MODULE_AUTHOR("Sistina Software <dm-devel@lists.linux.dev>");
2266 MODULE_LICENSE("GPL");
2267