xref: /linux/drivers/iio/adc/ad7380.c (revision c26f4fbd58375bd6ef74f95eb73d61762ad97c59)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Analog Devices AD738x Simultaneous Sampling SAR ADCs
4  *
5  * Copyright 2017 Analog Devices Inc.
6  * Copyright 2024 BayLibre, SAS
7  *
8  * Datasheets of supported parts:
9  * ad7380/1 : https://www.analog.com/media/en/technical-documentation/data-sheets/AD7380-7381.pdf
10  * ad7383/4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7383-7384.pdf
11  * ad7386/7/8 : https://www.analog.com/media/en/technical-documentation/data-sheets/AD7386-7387-7388.pdf
12  * ad7380-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7380-4.pdf
13  * ad7381-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7381-4.pdf
14  * ad7383/4-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7383-4-ad7384-4.pdf
15  * ad7386/7/8-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7386-4-7387-4-7388-4.pdf
16  * ad7389-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7389-4.pdf
17  * adaq4370-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/adaq4370-4.pdf
18  * adaq4380-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/adaq4380-4.pdf
19  * adaq4381-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/adaq4381-4.pdf
20  *
21  * HDL ad738x_fmc: https://analogdevicesinc.github.io/hdl/projects/ad738x_fmc/index.html
22  *
23  */
24 
25 #include <linux/align.h>
26 #include <linux/bitfield.h>
27 #include <linux/bitops.h>
28 #include <linux/cleanup.h>
29 #include <linux/device.h>
30 #include <linux/err.h>
31 #include <linux/kernel.h>
32 #include <linux/math.h>
33 #include <linux/module.h>
34 #include <linux/regmap.h>
35 #include <linux/regulator/consumer.h>
36 #include <linux/slab.h>
37 #include <linux/spi/offload/consumer.h>
38 #include <linux/spi/spi.h>
39 #include <linux/units.h>
40 #include <linux/util_macros.h>
41 
42 #include <linux/iio/buffer.h>
43 #include <linux/iio/buffer-dmaengine.h>
44 #include <linux/iio/events.h>
45 #include <linux/iio/iio.h>
46 #include <linux/iio/trigger_consumer.h>
47 #include <linux/iio/triggered_buffer.h>
48 
49 #define MAX_NUM_CHANNELS		8
50 /* 2.5V internal reference voltage */
51 #define AD7380_INTERNAL_REF_MV		2500
52 /* 3.3V internal reference voltage for ADAQ */
53 #define ADAQ4380_INTERNAL_REF_MV	3300
54 
55 /* reading and writing registers is more reliable at lower than max speed */
56 #define AD7380_REG_WR_SPEED_HZ		10000000
57 
58 #define AD7380_REG_WR			BIT(15)
59 #define AD7380_REG_REGADDR		GENMASK(14, 12)
60 #define AD7380_REG_DATA			GENMASK(11, 0)
61 
62 #define AD7380_REG_ADDR_NOP		0x0
63 #define AD7380_REG_ADDR_CONFIG1		0x1
64 #define AD7380_REG_ADDR_CONFIG2		0x2
65 #define AD7380_REG_ADDR_ALERT		0x3
66 #define AD7380_REG_ADDR_ALERT_LOW_TH	0x4
67 #define AD7380_REG_ADDR_ALERT_HIGH_TH	0x5
68 
69 #define AD7380_CONFIG1_CH		BIT(11)
70 #define AD7380_CONFIG1_SEQ		BIT(10)
71 #define AD7380_CONFIG1_OS_MODE		BIT(9)
72 #define AD7380_CONFIG1_OSR		GENMASK(8, 6)
73 #define AD7380_CONFIG1_CRC_W		BIT(5)
74 #define AD7380_CONFIG1_CRC_R		BIT(4)
75 #define AD7380_CONFIG1_ALERTEN		BIT(3)
76 #define AD7380_CONFIG1_RES		BIT(2)
77 #define AD7380_CONFIG1_REFSEL		BIT(1)
78 #define AD7380_CONFIG1_PMODE		BIT(0)
79 
80 #define AD7380_CONFIG2_SDO2		GENMASK(9, 8)
81 #define AD7380_CONFIG2_SDO		BIT(8)
82 #define AD7380_CONFIG2_RESET		GENMASK(7, 0)
83 
84 #define AD7380_CONFIG2_RESET_SOFT	0x3C
85 #define AD7380_CONFIG2_RESET_HARD	0xFF
86 
87 #define AD7380_ALERT_LOW_TH		GENMASK(11, 0)
88 #define AD7380_ALERT_HIGH_TH		GENMASK(11, 0)
89 
90 #define T_CONVERT_NS 190		/* conversion time */
91 #define T_CONVERT_0_NS 10		/* 1st conversion start time (oversampling) */
92 #define T_CONVERT_X_NS 500		/* xth conversion start time (oversampling) */
93 #define T_POWERUP_US 5000		/* Power up */
94 
95 /*
96  * AD738x support several SDO lines to increase throughput, but driver currently
97  * supports only 1 SDO line (standard SPI transaction)
98  */
99 #define AD7380_NUM_SDO_LINES		1
100 #define AD7380_DEFAULT_GAIN_MILLI	1000
101 
102 /*
103  * Using SPI offload, storagebits is always 32, so can't be used to compute struct
104  * spi_transfer.len. Using realbits instead.
105  */
106 #define AD7380_SPI_BYTES(scan_type)	((scan_type)->realbits > 16 ? 4 : 2)
107 
108 struct ad7380_timing_specs {
109 	const unsigned int t_csh_ns;	/* CS minimum high time */
110 };
111 
112 struct ad7380_chip_info {
113 	const char *name;
114 	const struct iio_chan_spec *channels;
115 	const struct iio_chan_spec *offload_channels;
116 	unsigned int num_channels;
117 	unsigned int num_simult_channels;
118 	bool has_hardware_gain;
119 	bool has_mux;
120 	const char * const *supplies;
121 	unsigned int num_supplies;
122 	bool external_ref_only;
123 	bool internal_ref_only;
124 	unsigned int internal_ref_mv;
125 	const char * const *vcm_supplies;
126 	unsigned int num_vcm_supplies;
127 	const unsigned long *available_scan_masks;
128 	const struct ad7380_timing_specs *timing_specs;
129 	u32 max_conversion_rate_hz;
130 };
131 
132 static const struct iio_event_spec ad7380_events[] = {
133 	{
134 		.type = IIO_EV_TYPE_THRESH,
135 		.dir = IIO_EV_DIR_RISING,
136 		.mask_shared_by_dir = BIT(IIO_EV_INFO_VALUE),
137 	},
138 	{
139 		.type = IIO_EV_TYPE_THRESH,
140 		.dir = IIO_EV_DIR_FALLING,
141 		.mask_shared_by_dir = BIT(IIO_EV_INFO_VALUE),
142 	},
143 	{
144 		.type = IIO_EV_TYPE_THRESH,
145 		.dir = IIO_EV_DIR_EITHER,
146 		.mask_shared_by_all = BIT(IIO_EV_INFO_ENABLE),
147 	},
148 };
149 
150 enum {
151 	AD7380_SCAN_TYPE_NORMAL,
152 	AD7380_SCAN_TYPE_RESOLUTION_BOOST,
153 };
154 
155 /* Extended scan types for 12-bit unsigned chips. */
156 static const struct iio_scan_type ad7380_scan_type_12_u[] = {
157 	[AD7380_SCAN_TYPE_NORMAL] = {
158 		.sign = 'u',
159 		.realbits = 12,
160 		.storagebits = 16,
161 		.endianness = IIO_CPU,
162 	},
163 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
164 		.sign = 'u',
165 		.realbits = 14,
166 		.storagebits = 16,
167 		.endianness = IIO_CPU,
168 	},
169 };
170 
171 /* Extended scan types for 14-bit signed chips. */
172 static const struct iio_scan_type ad7380_scan_type_14_s[] = {
173 	[AD7380_SCAN_TYPE_NORMAL] = {
174 		.sign = 's',
175 		.realbits = 14,
176 		.storagebits = 16,
177 		.endianness = IIO_CPU,
178 	},
179 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
180 		.sign = 's',
181 		.realbits = 16,
182 		.storagebits = 16,
183 		.endianness = IIO_CPU,
184 	},
185 };
186 
187 /* Extended scan types for 14-bit unsigned chips. */
188 static const struct iio_scan_type ad7380_scan_type_14_u[] = {
189 	[AD7380_SCAN_TYPE_NORMAL] = {
190 		.sign = 'u',
191 		.realbits = 14,
192 		.storagebits = 16,
193 		.endianness = IIO_CPU,
194 	},
195 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
196 		.sign = 'u',
197 		.realbits = 16,
198 		.storagebits = 16,
199 		.endianness = IIO_CPU,
200 	},
201 };
202 
203 /* Extended scan types for 16-bit signed_chips. */
204 static const struct iio_scan_type ad7380_scan_type_16_s[] = {
205 	[AD7380_SCAN_TYPE_NORMAL] = {
206 		.sign = 's',
207 		.realbits = 16,
208 		.storagebits = 16,
209 		.endianness = IIO_CPU,
210 	},
211 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
212 		.sign = 's',
213 		.realbits = 18,
214 		.storagebits = 32,
215 		.endianness = IIO_CPU,
216 	},
217 };
218 
219 /* Extended scan types for 16-bit unsigned chips. */
220 static const struct iio_scan_type ad7380_scan_type_16_u[] = {
221 	[AD7380_SCAN_TYPE_NORMAL] = {
222 		.sign = 'u',
223 		.realbits = 16,
224 		.storagebits = 16,
225 		.endianness = IIO_CPU,
226 	},
227 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
228 		.sign = 'u',
229 		.realbits = 18,
230 		.storagebits = 32,
231 		.endianness = IIO_CPU,
232 	},
233 };
234 
235 /*
236  * Defining here scan types for offload mode, since with current available HDL
237  * only a value of 32 for storagebits is supported.
238  */
239 
240 /* Extended scan types for 12-bit unsigned chips, offload support. */
241 static const struct iio_scan_type ad7380_scan_type_12_u_offload[] = {
242 	[AD7380_SCAN_TYPE_NORMAL] = {
243 		.sign = 'u',
244 		.realbits = 12,
245 		.storagebits = 32,
246 		.endianness = IIO_CPU,
247 	},
248 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
249 		.sign = 'u',
250 		.realbits = 14,
251 		.storagebits = 32,
252 		.endianness = IIO_CPU,
253 	},
254 };
255 
256 /* Extended scan types for 14-bit signed chips, offload support. */
257 static const struct iio_scan_type ad7380_scan_type_14_s_offload[] = {
258 	[AD7380_SCAN_TYPE_NORMAL] = {
259 		.sign = 's',
260 		.realbits = 14,
261 		.storagebits = 32,
262 		.endianness = IIO_CPU,
263 	},
264 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
265 		.sign = 's',
266 		.realbits = 16,
267 		.storagebits = 32,
268 		.endianness = IIO_CPU,
269 	},
270 };
271 
272 /* Extended scan types for 14-bit unsigned chips, offload support. */
273 static const struct iio_scan_type ad7380_scan_type_14_u_offload[] = {
274 	[AD7380_SCAN_TYPE_NORMAL] = {
275 		.sign = 'u',
276 		.realbits = 14,
277 		.storagebits = 32,
278 		.endianness = IIO_CPU,
279 	},
280 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
281 		.sign = 'u',
282 		.realbits = 16,
283 		.storagebits = 32,
284 		.endianness = IIO_CPU,
285 	},
286 };
287 
288 /* Extended scan types for 16-bit signed_chips, offload support. */
289 static const struct iio_scan_type ad7380_scan_type_16_s_offload[] = {
290 	[AD7380_SCAN_TYPE_NORMAL] = {
291 		.sign = 's',
292 		.realbits = 16,
293 		.storagebits = 32,
294 		.endianness = IIO_CPU,
295 	},
296 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
297 		.sign = 's',
298 		.realbits = 18,
299 		.storagebits = 32,
300 		.endianness = IIO_CPU,
301 	},
302 };
303 
304 /* Extended scan types for 16-bit unsigned chips, offload support. */
305 static const struct iio_scan_type ad7380_scan_type_16_u_offload[] = {
306 	[AD7380_SCAN_TYPE_NORMAL] = {
307 		.sign = 'u',
308 		.realbits = 16,
309 		.storagebits = 32,
310 		.endianness = IIO_CPU,
311 	},
312 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
313 		.sign = 'u',
314 		.realbits = 18,
315 		.storagebits = 32,
316 		.endianness = IIO_CPU,
317 	},
318 };
319 
320 #define _AD7380_CHANNEL(index, bits, diff, sign, gain) {			\
321 	.type = IIO_VOLTAGE,							\
322 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |				\
323 		((gain) ? BIT(IIO_CHAN_INFO_SCALE) : 0) |			\
324 		((diff) ? 0 : BIT(IIO_CHAN_INFO_OFFSET)),			\
325 	.info_mask_shared_by_type = ((gain) ? 0 : BIT(IIO_CHAN_INFO_SCALE)) |	\
326 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),				\
327 	.info_mask_shared_by_type_available =					\
328 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),				\
329 	.indexed = 1,								\
330 	.differential = (diff),							\
331 	.channel = (diff) ? (2 * (index)) : (index),				\
332 	.channel2 = (diff) ? (2 * (index) + 1) : 0,				\
333 	.scan_index = (index),							\
334 	.has_ext_scan_type = 1,							\
335 	.ext_scan_type = ad7380_scan_type_##bits##_##sign,			\
336 	.num_ext_scan_type = ARRAY_SIZE(ad7380_scan_type_##bits##_##sign),	\
337 	.event_spec = ad7380_events,						\
338 	.num_event_specs = ARRAY_SIZE(ad7380_events),				\
339 }
340 
341 #define _AD7380_OFFLOAD_CHANNEL(index, bits, diff, sign, gain) {		\
342 	.type = IIO_VOLTAGE,							\
343 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |                          \
344 		((gain) ? BIT(IIO_CHAN_INFO_SCALE) : 0) |			\
345 		((diff) ? 0 : BIT(IIO_CHAN_INFO_OFFSET)),			\
346 	.info_mask_shared_by_type = ((gain) ? 0 : BIT(IIO_CHAN_INFO_SCALE)) |   \
347 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |				\
348 		BIT(IIO_CHAN_INFO_SAMP_FREQ),					\
349 	.info_mask_shared_by_type_available =					\
350 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |				\
351 		BIT(IIO_CHAN_INFO_SAMP_FREQ),					\
352 	.indexed = 1,                                                           \
353 	.differential = (diff),                                                 \
354 	.channel = (diff) ? (2 * (index)) : (index),                            \
355 	.channel2 = (diff) ? (2 * (index) + 1) : 0,                             \
356 	.scan_index = (index),                                                  \
357 	.has_ext_scan_type = 1,                                                 \
358 	.ext_scan_type = ad7380_scan_type_##bits##_##sign##_offload,            \
359 	.num_ext_scan_type =                                                    \
360 		ARRAY_SIZE(ad7380_scan_type_##bits##_##sign##_offload),		\
361 	.event_spec = ad7380_events,                                            \
362 	.num_event_specs = ARRAY_SIZE(ad7380_events),                           \
363 }
364 
365 /*
366  * Notes on the offload channels:
367  * - There is no soft timestamp since everything is done in hardware.
368  * - There is a sampling frequency attribute added. This controls the SPI
369  *   offload trigger.
370  * - The storagebits value depends on the SPI offload provider. Currently there
371  *   is only one supported provider, namely the ADI PULSAR ADC HDL project,
372  *   which always uses 32-bit words for data values, even for <= 16-bit ADCs.
373  *   So the value is just hardcoded to 32 for now.
374  */
375 
376 #define AD7380_CHANNEL(index, bits, diff, sign)		\
377 	_AD7380_CHANNEL(index, bits, diff, sign, false)
378 
379 #define ADAQ4380_CHANNEL(index, bits, diff, sign)	\
380 	_AD7380_CHANNEL(index, bits, diff, sign, true)
381 
382 #define DEFINE_AD7380_2_CHANNEL(name, bits, diff, sign) \
383 static const struct iio_chan_spec name[] = {	\
384 	AD7380_CHANNEL(0, bits, diff, sign),	\
385 	AD7380_CHANNEL(1, bits, diff, sign),	\
386 	IIO_CHAN_SOFT_TIMESTAMP(2),		\
387 }
388 
389 #define DEFINE_AD7380_4_CHANNEL(name, bits, diff, sign) \
390 static const struct iio_chan_spec name[] = {	\
391 	 AD7380_CHANNEL(0, bits, diff, sign),	\
392 	 AD7380_CHANNEL(1, bits, diff, sign),	\
393 	 AD7380_CHANNEL(2, bits, diff, sign),	\
394 	 AD7380_CHANNEL(3, bits, diff, sign),	\
395 	 IIO_CHAN_SOFT_TIMESTAMP(4),		\
396 }
397 
398 #define DEFINE_ADAQ4380_4_CHANNEL(name, bits, diff, sign) \
399 static const struct iio_chan_spec name[] = {	\
400 	 ADAQ4380_CHANNEL(0, bits, diff, sign),	\
401 	 ADAQ4380_CHANNEL(1, bits, diff, sign),	\
402 	 ADAQ4380_CHANNEL(2, bits, diff, sign),	\
403 	 ADAQ4380_CHANNEL(3, bits, diff, sign),	\
404 	 IIO_CHAN_SOFT_TIMESTAMP(4),		\
405 }
406 
407 #define DEFINE_AD7380_8_CHANNEL(name, bits, diff, sign) \
408 static const struct iio_chan_spec name[] = {	\
409 	 AD7380_CHANNEL(0, bits, diff, sign),	\
410 	 AD7380_CHANNEL(1, bits, diff, sign),	\
411 	 AD7380_CHANNEL(2, bits, diff, sign),	\
412 	 AD7380_CHANNEL(3, bits, diff, sign),	\
413 	 AD7380_CHANNEL(4, bits, diff, sign),	\
414 	 AD7380_CHANNEL(5, bits, diff, sign),	\
415 	 AD7380_CHANNEL(6, bits, diff, sign),	\
416 	 AD7380_CHANNEL(7, bits, diff, sign),	\
417 	 IIO_CHAN_SOFT_TIMESTAMP(8),		\
418 }
419 
420 #define AD7380_OFFLOAD_CHANNEL(index, bits, diff, sign) \
421 _AD7380_OFFLOAD_CHANNEL(index, bits, diff, sign, false)
422 
423 #define ADAQ4380_OFFLOAD_CHANNEL(index, bits, diff, sign) \
424 _AD7380_OFFLOAD_CHANNEL(index, bits, diff, sign, true)
425 
426 #define DEFINE_AD7380_2_OFFLOAD_CHANNEL(name, bits, diff, sign) \
427 static const struct iio_chan_spec name[] = {		\
428 	AD7380_OFFLOAD_CHANNEL(0, bits, diff, sign),	\
429 	AD7380_OFFLOAD_CHANNEL(1, bits, diff, sign),	\
430 }
431 
432 #define DEFINE_AD7380_4_OFFLOAD_CHANNEL(name, bits, diff, sign) \
433 static const struct iio_chan_spec name[] = {		\
434 	AD7380_OFFLOAD_CHANNEL(0, bits, diff, sign),	\
435 	AD7380_OFFLOAD_CHANNEL(1, bits, diff, sign),	\
436 	AD7380_OFFLOAD_CHANNEL(2, bits, diff, sign),	\
437 	AD7380_OFFLOAD_CHANNEL(3, bits, diff, sign),	\
438 }
439 
440 #define DEFINE_ADAQ4380_4_OFFLOAD_CHANNEL(name, bits, diff, sign) \
441 static const struct iio_chan_spec name[] = {		\
442 	AD7380_OFFLOAD_CHANNEL(0, bits, diff, sign),	\
443 	AD7380_OFFLOAD_CHANNEL(1, bits, diff, sign),	\
444 	AD7380_OFFLOAD_CHANNEL(2, bits, diff, sign),	\
445 	AD7380_OFFLOAD_CHANNEL(3, bits, diff, sign),	\
446 }
447 
448 #define DEFINE_AD7380_8_OFFLOAD_CHANNEL(name, bits, diff, sign) \
449 static const struct iio_chan_spec name[] = {		\
450 	AD7380_OFFLOAD_CHANNEL(0, bits, diff, sign),	\
451 	AD7380_OFFLOAD_CHANNEL(1, bits, diff, sign),	\
452 	AD7380_OFFLOAD_CHANNEL(2, bits, diff, sign),	\
453 	AD7380_OFFLOAD_CHANNEL(3, bits, diff, sign),	\
454 	AD7380_OFFLOAD_CHANNEL(4, bits, diff, sign),	\
455 	AD7380_OFFLOAD_CHANNEL(5, bits, diff, sign),	\
456 	AD7380_OFFLOAD_CHANNEL(6, bits, diff, sign),	\
457 	AD7380_OFFLOAD_CHANNEL(7, bits, diff, sign),	\
458 }
459 
460 /* fully differential */
461 DEFINE_AD7380_2_CHANNEL(ad7380_channels, 16, 1, s);
462 DEFINE_AD7380_2_CHANNEL(ad7381_channels, 14, 1, s);
463 DEFINE_AD7380_4_CHANNEL(ad7380_4_channels, 16, 1, s);
464 DEFINE_AD7380_4_CHANNEL(ad7381_4_channels, 14, 1, s);
465 DEFINE_ADAQ4380_4_CHANNEL(adaq4380_4_channels, 16, 1, s);
466 DEFINE_ADAQ4380_4_CHANNEL(adaq4381_4_channels, 14, 1, s);
467 /* pseudo differential */
468 DEFINE_AD7380_2_CHANNEL(ad7383_channels, 16, 0, s);
469 DEFINE_AD7380_2_CHANNEL(ad7384_channels, 14, 0, s);
470 DEFINE_AD7380_4_CHANNEL(ad7383_4_channels, 16, 0, s);
471 DEFINE_AD7380_4_CHANNEL(ad7384_4_channels, 14, 0, s);
472 
473 /* Single ended */
474 DEFINE_AD7380_4_CHANNEL(ad7386_channels, 16, 0, u);
475 DEFINE_AD7380_4_CHANNEL(ad7387_channels, 14, 0, u);
476 DEFINE_AD7380_4_CHANNEL(ad7388_channels, 12, 0, u);
477 DEFINE_AD7380_8_CHANNEL(ad7386_4_channels, 16, 0, u);
478 DEFINE_AD7380_8_CHANNEL(ad7387_4_channels, 14, 0, u);
479 DEFINE_AD7380_8_CHANNEL(ad7388_4_channels, 12, 0, u);
480 
481 /* offload channels */
482 DEFINE_AD7380_2_OFFLOAD_CHANNEL(ad7380_offload_channels, 16, 1, s);
483 DEFINE_AD7380_2_OFFLOAD_CHANNEL(ad7381_offload_channels, 14, 1, s);
484 DEFINE_AD7380_4_OFFLOAD_CHANNEL(ad7380_4_offload_channels, 16, 1, s);
485 DEFINE_AD7380_4_OFFLOAD_CHANNEL(ad7381_4_offload_channels, 14, 1, s);
486 DEFINE_ADAQ4380_4_OFFLOAD_CHANNEL(adaq4380_4_offload_channels, 16, 1, s);
487 DEFINE_ADAQ4380_4_OFFLOAD_CHANNEL(adaq4381_4_offload_channels, 14, 1, s);
488 
489 /* pseudo differential */
490 DEFINE_AD7380_2_OFFLOAD_CHANNEL(ad7383_offload_channels, 16, 0, s);
491 DEFINE_AD7380_2_OFFLOAD_CHANNEL(ad7384_offload_channels, 14, 0, s);
492 DEFINE_AD7380_4_OFFLOAD_CHANNEL(ad7383_4_offload_channels, 16, 0, s);
493 DEFINE_AD7380_4_OFFLOAD_CHANNEL(ad7384_4_offload_channels, 14, 0, s);
494 
495 /* Single ended */
496 DEFINE_AD7380_4_OFFLOAD_CHANNEL(ad7386_offload_channels, 16, 0, u);
497 DEFINE_AD7380_4_OFFLOAD_CHANNEL(ad7387_offload_channels, 14, 0, u);
498 DEFINE_AD7380_4_OFFLOAD_CHANNEL(ad7388_offload_channels, 12, 0, u);
499 DEFINE_AD7380_8_OFFLOAD_CHANNEL(ad7386_4_offload_channels, 16, 0, u);
500 DEFINE_AD7380_8_OFFLOAD_CHANNEL(ad7387_4_offload_channels, 14, 0, u);
501 DEFINE_AD7380_8_OFFLOAD_CHANNEL(ad7388_4_offload_channels, 12, 0, u);
502 
503 static const char * const ad7380_supplies[] = {
504 	"vcc", "vlogic",
505 };
506 
507 static const char * const adaq4380_supplies[] = {
508 	"ldo", "vcc", "vlogic", "vs-p", "vs-n", "refin",
509 };
510 
511 static const char * const ad7380_2_channel_vcm_supplies[] = {
512 	"aina", "ainb",
513 };
514 
515 static const char * const ad7380_4_channel_vcm_supplies[] = {
516 	"aina", "ainb", "ainc", "aind",
517 };
518 
519 /* Since this is simultaneous sampling, we don't allow individual channels. */
520 static const unsigned long ad7380_2_channel_scan_masks[] = {
521 	GENMASK(1, 0),
522 	0
523 };
524 
525 static const unsigned long ad7380_4_channel_scan_masks[] = {
526 	GENMASK(3, 0),
527 	0
528 };
529 
530 /*
531  * Single ended parts have a 2:1 multiplexer in front of each ADC.
532  *
533  * From an IIO point of view, all inputs are exported, i.e ad7386/7/8
534  * export 4 channels and ad7386-4/7-4/8-4 export 8 channels.
535  *
536  * Inputs AinX0 of multiplexers correspond to the first half of IIO channels
537  * (i.e 0-1 or 0-3) and inputs AinX1 correspond to second half (i.e 2-3 or
538  * 4-7). Example for AD7386/7/8 (2 channels parts):
539  *
540  *           IIO   | AD7386/7/8
541  *                 |         +----------------------------
542  *                 |         |     _____        ______
543  *                 |         |    |     |      |      |
544  *        voltage0 | AinA0 --|--->|     |      |      |
545  *                 |         |    | mux |----->| ADCA |---
546  *        voltage2 | AinA1 --|--->|     |      |      |
547  *                 |         |    |_____|      |_____ |
548  *                 |         |     _____        ______
549  *                 |         |    |     |      |      |
550  *        voltage1 | AinB0 --|--->|     |      |      |
551  *                 |         |    | mux |----->| ADCB |---
552  *        voltage3 | AinB1 --|--->|     |      |      |
553  *                 |         |    |_____|      |______|
554  *                 |         |
555  *                 |         +----------------------------
556  *
557  * Since this is simultaneous sampling for AinX0 OR AinX1 we have two separate
558  * scan masks.
559  * When sequencer mode is enabled, chip automatically cycles through
560  * AinX0 and AinX1 channels. From an IIO point of view, we ca enable all
561  * channels, at the cost of an extra read, thus dividing the maximum rate by
562  * two.
563  */
564 enum {
565 	AD7380_SCAN_MASK_CH_0,
566 	AD7380_SCAN_MASK_CH_1,
567 	AD7380_SCAN_MASK_SEQ,
568 };
569 
570 static const unsigned long ad7380_2x2_channel_scan_masks[] = {
571 	[AD7380_SCAN_MASK_CH_0] = GENMASK(1, 0),
572 	[AD7380_SCAN_MASK_CH_1] = GENMASK(3, 2),
573 	[AD7380_SCAN_MASK_SEQ] = GENMASK(3, 0),
574 	0
575 };
576 
577 static const unsigned long ad7380_2x4_channel_scan_masks[] = {
578 	[AD7380_SCAN_MASK_CH_0] = GENMASK(3, 0),
579 	[AD7380_SCAN_MASK_CH_1] = GENMASK(7, 4),
580 	[AD7380_SCAN_MASK_SEQ] = GENMASK(7, 0),
581 	0
582 };
583 
584 static const struct ad7380_timing_specs ad7380_timing = {
585 	.t_csh_ns = 10,
586 };
587 
588 static const struct ad7380_timing_specs ad7380_4_timing = {
589 	.t_csh_ns = 20,
590 };
591 
592 /*
593  * Available oversampling ratios. The indices correspond with the bit value
594  * expected by the chip.  The available ratios depend on the averaging mode,
595  * only normal averaging is supported for now.
596  */
597 static const int ad7380_oversampling_ratios[] = {
598 	1, 2, 4, 8, 16, 32,
599 };
600 
601 /* Gains stored as fractions of 1000 so they can be expressed by integers. */
602 static const int ad7380_gains[] = {
603 	300, 600, 1000, 1600,
604 };
605 
606 static const struct ad7380_chip_info ad7380_chip_info = {
607 	.name = "ad7380",
608 	.channels = ad7380_channels,
609 	.offload_channels = ad7380_offload_channels,
610 	.num_channels = ARRAY_SIZE(ad7380_channels),
611 	.num_simult_channels = 2,
612 	.supplies = ad7380_supplies,
613 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
614 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
615 	.available_scan_masks = ad7380_2_channel_scan_masks,
616 	.timing_specs = &ad7380_timing,
617 	.max_conversion_rate_hz = 4 * MEGA,
618 };
619 
620 static const struct ad7380_chip_info ad7381_chip_info = {
621 	.name = "ad7381",
622 	.channels = ad7381_channels,
623 	.offload_channels = ad7381_offload_channels,
624 	.num_channels = ARRAY_SIZE(ad7381_channels),
625 	.num_simult_channels = 2,
626 	.supplies = ad7380_supplies,
627 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
628 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
629 	.available_scan_masks = ad7380_2_channel_scan_masks,
630 	.timing_specs = &ad7380_timing,
631 	.max_conversion_rate_hz = 4 * MEGA,
632 };
633 
634 static const struct ad7380_chip_info ad7383_chip_info = {
635 	.name = "ad7383",
636 	.channels = ad7383_channels,
637 	.offload_channels = ad7383_offload_channels,
638 	.num_channels = ARRAY_SIZE(ad7383_channels),
639 	.num_simult_channels = 2,
640 	.supplies = ad7380_supplies,
641 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
642 	.vcm_supplies = ad7380_2_channel_vcm_supplies,
643 	.num_vcm_supplies = ARRAY_SIZE(ad7380_2_channel_vcm_supplies),
644 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
645 	.available_scan_masks = ad7380_2_channel_scan_masks,
646 	.timing_specs = &ad7380_timing,
647 	.max_conversion_rate_hz = 4 * MEGA,
648 };
649 
650 static const struct ad7380_chip_info ad7384_chip_info = {
651 	.name = "ad7384",
652 	.channels = ad7384_channels,
653 	.offload_channels = ad7384_offload_channels,
654 	.num_channels = ARRAY_SIZE(ad7384_channels),
655 	.num_simult_channels = 2,
656 	.supplies = ad7380_supplies,
657 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
658 	.vcm_supplies = ad7380_2_channel_vcm_supplies,
659 	.num_vcm_supplies = ARRAY_SIZE(ad7380_2_channel_vcm_supplies),
660 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
661 	.available_scan_masks = ad7380_2_channel_scan_masks,
662 	.timing_specs = &ad7380_timing,
663 	.max_conversion_rate_hz = 4 * MEGA,
664 };
665 
666 static const struct ad7380_chip_info ad7386_chip_info = {
667 	.name = "ad7386",
668 	.channels = ad7386_channels,
669 	.offload_channels = ad7386_offload_channels,
670 	.num_channels = ARRAY_SIZE(ad7386_channels),
671 	.num_simult_channels = 2,
672 	.supplies = ad7380_supplies,
673 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
674 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
675 	.has_mux = true,
676 	.available_scan_masks = ad7380_2x2_channel_scan_masks,
677 	.timing_specs = &ad7380_timing,
678 	.max_conversion_rate_hz = 4 * MEGA,
679 };
680 
681 static const struct ad7380_chip_info ad7387_chip_info = {
682 	.name = "ad7387",
683 	.channels = ad7387_channels,
684 	.offload_channels = ad7387_offload_channels,
685 	.num_channels = ARRAY_SIZE(ad7387_channels),
686 	.num_simult_channels = 2,
687 	.supplies = ad7380_supplies,
688 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
689 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
690 	.has_mux = true,
691 	.available_scan_masks = ad7380_2x2_channel_scan_masks,
692 	.timing_specs = &ad7380_timing,
693 	.max_conversion_rate_hz = 4 * MEGA,
694 };
695 
696 static const struct ad7380_chip_info ad7388_chip_info = {
697 	.name = "ad7388",
698 	.channels = ad7388_channels,
699 	.offload_channels = ad7388_offload_channels,
700 	.num_channels = ARRAY_SIZE(ad7388_channels),
701 	.num_simult_channels = 2,
702 	.supplies = ad7380_supplies,
703 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
704 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
705 	.has_mux = true,
706 	.available_scan_masks = ad7380_2x2_channel_scan_masks,
707 	.timing_specs = &ad7380_timing,
708 	.max_conversion_rate_hz = 4 * MEGA,
709 };
710 
711 static const struct ad7380_chip_info ad7380_4_chip_info = {
712 	.name = "ad7380-4",
713 	.channels = ad7380_4_channels,
714 	.offload_channels = ad7380_4_offload_channels,
715 	.num_channels = ARRAY_SIZE(ad7380_4_channels),
716 	.num_simult_channels = 4,
717 	.supplies = ad7380_supplies,
718 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
719 	.external_ref_only = true,
720 	.available_scan_masks = ad7380_4_channel_scan_masks,
721 	.timing_specs = &ad7380_4_timing,
722 	.max_conversion_rate_hz = 4 * MEGA,
723 };
724 
725 static const struct ad7380_chip_info ad7381_4_chip_info = {
726 	.name = "ad7381-4",
727 	.channels = ad7381_4_channels,
728 	.offload_channels = ad7381_4_offload_channels,
729 	.num_channels = ARRAY_SIZE(ad7381_4_channels),
730 	.num_simult_channels = 4,
731 	.supplies = ad7380_supplies,
732 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
733 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
734 	.available_scan_masks = ad7380_4_channel_scan_masks,
735 	.timing_specs = &ad7380_4_timing,
736 	.max_conversion_rate_hz = 4 * MEGA,
737 };
738 
739 static const struct ad7380_chip_info ad7383_4_chip_info = {
740 	.name = "ad7383-4",
741 	.channels = ad7383_4_channels,
742 	.offload_channels = ad7383_4_offload_channels,
743 	.num_channels = ARRAY_SIZE(ad7383_4_channels),
744 	.num_simult_channels = 4,
745 	.supplies = ad7380_supplies,
746 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
747 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
748 	.vcm_supplies = ad7380_4_channel_vcm_supplies,
749 	.num_vcm_supplies = ARRAY_SIZE(ad7380_4_channel_vcm_supplies),
750 	.available_scan_masks = ad7380_4_channel_scan_masks,
751 	.timing_specs = &ad7380_4_timing,
752 	.max_conversion_rate_hz = 4 * MEGA,
753 };
754 
755 static const struct ad7380_chip_info ad7384_4_chip_info = {
756 	.name = "ad7384-4",
757 	.channels = ad7384_4_channels,
758 	.offload_channels = ad7384_4_offload_channels,
759 	.num_channels = ARRAY_SIZE(ad7384_4_channels),
760 	.num_simult_channels = 4,
761 	.supplies = ad7380_supplies,
762 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
763 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
764 	.vcm_supplies = ad7380_4_channel_vcm_supplies,
765 	.num_vcm_supplies = ARRAY_SIZE(ad7380_4_channel_vcm_supplies),
766 	.available_scan_masks = ad7380_4_channel_scan_masks,
767 	.timing_specs = &ad7380_4_timing,
768 	.max_conversion_rate_hz = 4 * MEGA,
769 };
770 
771 static const struct ad7380_chip_info ad7386_4_chip_info = {
772 	.name = "ad7386-4",
773 	.channels = ad7386_4_channels,
774 	.offload_channels = ad7386_4_offload_channels,
775 	.num_channels = ARRAY_SIZE(ad7386_4_channels),
776 	.num_simult_channels = 4,
777 	.supplies = ad7380_supplies,
778 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
779 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
780 	.has_mux = true,
781 	.available_scan_masks = ad7380_2x4_channel_scan_masks,
782 	.timing_specs = &ad7380_4_timing,
783 	.max_conversion_rate_hz = 4 * MEGA,
784 };
785 
786 static const struct ad7380_chip_info ad7387_4_chip_info = {
787 	.name = "ad7387-4",
788 	.channels = ad7387_4_channels,
789 	.offload_channels = ad7387_4_offload_channels,
790 	.num_channels = ARRAY_SIZE(ad7387_4_channels),
791 	.num_simult_channels = 4,
792 	.supplies = ad7380_supplies,
793 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
794 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
795 	.has_mux = true,
796 	.available_scan_masks = ad7380_2x4_channel_scan_masks,
797 	.timing_specs = &ad7380_4_timing,
798 	.max_conversion_rate_hz = 4 * MEGA,
799 };
800 
801 static const struct ad7380_chip_info ad7388_4_chip_info = {
802 	.name = "ad7388-4",
803 	.channels = ad7388_4_channels,
804 	.offload_channels = ad7388_4_offload_channels,
805 	.num_channels = ARRAY_SIZE(ad7388_4_channels),
806 	.num_simult_channels = 4,
807 	.supplies = ad7380_supplies,
808 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
809 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
810 	.has_mux = true,
811 	.available_scan_masks = ad7380_2x4_channel_scan_masks,
812 	.timing_specs = &ad7380_4_timing,
813 	.max_conversion_rate_hz = 4 * MEGA,
814 };
815 
816 static const struct ad7380_chip_info ad7389_4_chip_info = {
817 	.name = "ad7389-4",
818 	.channels = ad7380_4_channels,
819 	.offload_channels = ad7380_4_offload_channels,
820 	.num_channels = ARRAY_SIZE(ad7380_4_channels),
821 	.num_simult_channels = 4,
822 	.supplies = ad7380_supplies,
823 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
824 	.internal_ref_only = true,
825 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
826 	.available_scan_masks = ad7380_4_channel_scan_masks,
827 	.timing_specs = &ad7380_4_timing,
828 	.max_conversion_rate_hz = 4 * MEGA,
829 };
830 
831 static const struct ad7380_chip_info adaq4370_4_chip_info = {
832 	.name = "adaq4370-4",
833 	.channels = adaq4380_4_channels,
834 	.offload_channels = adaq4380_4_offload_channels,
835 	.num_channels = ARRAY_SIZE(adaq4380_4_channels),
836 	.num_simult_channels = 4,
837 	.supplies = adaq4380_supplies,
838 	.num_supplies = ARRAY_SIZE(adaq4380_supplies),
839 	.internal_ref_only = true,
840 	.internal_ref_mv = ADAQ4380_INTERNAL_REF_MV,
841 	.has_hardware_gain = true,
842 	.available_scan_masks = ad7380_4_channel_scan_masks,
843 	.timing_specs = &ad7380_4_timing,
844 	.max_conversion_rate_hz = 2 * MEGA,
845 };
846 
847 static const struct ad7380_chip_info adaq4380_4_chip_info = {
848 	.name = "adaq4380-4",
849 	.channels = adaq4380_4_channels,
850 	.offload_channels = adaq4380_4_offload_channels,
851 	.num_channels = ARRAY_SIZE(adaq4380_4_channels),
852 	.num_simult_channels = 4,
853 	.supplies = adaq4380_supplies,
854 	.num_supplies = ARRAY_SIZE(adaq4380_supplies),
855 	.internal_ref_only = true,
856 	.internal_ref_mv = ADAQ4380_INTERNAL_REF_MV,
857 	.has_hardware_gain = true,
858 	.available_scan_masks = ad7380_4_channel_scan_masks,
859 	.timing_specs = &ad7380_4_timing,
860 	.max_conversion_rate_hz = 4 * MEGA,
861 };
862 
863 static const struct ad7380_chip_info adaq4381_4_chip_info = {
864 	.name = "adaq4381-4",
865 	.channels = adaq4381_4_channels,
866 	.offload_channels = adaq4381_4_offload_channels,
867 	.num_channels = ARRAY_SIZE(adaq4381_4_channels),
868 	.num_simult_channels = 4,
869 	.supplies = adaq4380_supplies,
870 	.num_supplies = ARRAY_SIZE(adaq4380_supplies),
871 	.internal_ref_only = true,
872 	.internal_ref_mv = ADAQ4380_INTERNAL_REF_MV,
873 	.has_hardware_gain = true,
874 	.available_scan_masks = ad7380_4_channel_scan_masks,
875 	.timing_specs = &ad7380_4_timing,
876 };
877 
878 static const struct spi_offload_config ad7380_offload_config = {
879 	.capability_flags = SPI_OFFLOAD_CAP_TRIGGER |
880 			    SPI_OFFLOAD_CAP_RX_STREAM_DMA,
881 };
882 
883 struct ad7380_state {
884 	const struct ad7380_chip_info *chip_info;
885 	struct spi_device *spi;
886 	struct regmap *regmap;
887 	bool resolution_boost_enabled;
888 	unsigned int ch;
889 	bool seq;
890 	unsigned int vref_mv;
891 	unsigned int vcm_mv[MAX_NUM_CHANNELS];
892 	unsigned int gain_milli[MAX_NUM_CHANNELS];
893 	/* xfers, message an buffer for reading sample data */
894 	struct spi_transfer normal_xfer[2];
895 	struct spi_message normal_msg;
896 	struct spi_transfer seq_xfer[4];
897 	struct spi_message seq_msg;
898 	struct spi_transfer offload_xfer;
899 	struct spi_message offload_msg;
900 	struct spi_offload *offload;
901 	struct spi_offload_trigger *offload_trigger;
902 	unsigned long offload_trigger_hz;
903 
904 	int sample_freq_range[3];
905 	/*
906 	 * DMA (thus cache coherency maintenance) requires the transfer buffers
907 	 * to live in their own cache lines.
908 	 *
909 	 * Make the buffer large enough for MAX_NUM_CHANNELS 32-bit samples and
910 	 * one 64-bit aligned 64-bit timestamp.
911 	 */
912 	IIO_DECLARE_DMA_BUFFER_WITH_TS(u8, scan_data, MAX_NUM_CHANNELS * sizeof(u32));
913 	/* buffers for reading/writing registers */
914 	u16 tx;
915 	u16 rx;
916 };
917 
ad7380_regmap_reg_write(void * context,unsigned int reg,unsigned int val)918 static int ad7380_regmap_reg_write(void *context, unsigned int reg,
919 				   unsigned int val)
920 {
921 	struct ad7380_state *st = context;
922 	struct spi_transfer xfer = {
923 		.speed_hz = AD7380_REG_WR_SPEED_HZ,
924 		.bits_per_word = 16,
925 		.len = 2,
926 		.tx_buf = &st->tx,
927 	};
928 
929 	st->tx = FIELD_PREP(AD7380_REG_WR, 1) |
930 		 FIELD_PREP(AD7380_REG_REGADDR, reg) |
931 		 FIELD_PREP(AD7380_REG_DATA, val);
932 
933 	return spi_sync_transfer(st->spi, &xfer, 1);
934 }
935 
ad7380_regmap_reg_read(void * context,unsigned int reg,unsigned int * val)936 static int ad7380_regmap_reg_read(void *context, unsigned int reg,
937 				  unsigned int *val)
938 {
939 	struct ad7380_state *st = context;
940 	struct spi_transfer xfers[] = {
941 		{
942 			.speed_hz = AD7380_REG_WR_SPEED_HZ,
943 			.bits_per_word = 16,
944 			.len = 2,
945 			.tx_buf = &st->tx,
946 			.cs_change = 1,
947 			.cs_change_delay = {
948 				.value = st->chip_info->timing_specs->t_csh_ns,
949 				.unit = SPI_DELAY_UNIT_NSECS,
950 			},
951 		}, {
952 			.speed_hz = AD7380_REG_WR_SPEED_HZ,
953 			.bits_per_word = 16,
954 			.len = 2,
955 			.rx_buf = &st->rx,
956 		},
957 	};
958 	int ret;
959 
960 	st->tx = FIELD_PREP(AD7380_REG_WR, 0) |
961 		 FIELD_PREP(AD7380_REG_REGADDR, reg) |
962 		 FIELD_PREP(AD7380_REG_DATA, 0);
963 
964 	ret = spi_sync_transfer(st->spi, xfers, ARRAY_SIZE(xfers));
965 	if (ret < 0)
966 		return ret;
967 
968 	*val = FIELD_GET(AD7380_REG_DATA, st->rx);
969 
970 	return 0;
971 }
972 
973 static const struct reg_default ad7380_reg_defaults[] = {
974 	{ AD7380_REG_ADDR_ALERT_LOW_TH, 0x800 },
975 	{ AD7380_REG_ADDR_ALERT_HIGH_TH, 0x7FF },
976 };
977 
978 static const struct regmap_range ad7380_volatile_reg_ranges[] = {
979 	regmap_reg_range(AD7380_REG_ADDR_CONFIG2, AD7380_REG_ADDR_ALERT),
980 };
981 
982 static const struct regmap_access_table ad7380_volatile_regs = {
983 	.yes_ranges = ad7380_volatile_reg_ranges,
984 	.n_yes_ranges = ARRAY_SIZE(ad7380_volatile_reg_ranges),
985 };
986 
987 static const struct regmap_config ad7380_regmap_config = {
988 	.reg_bits = 3,
989 	.val_bits = 12,
990 	.reg_read = ad7380_regmap_reg_read,
991 	.reg_write = ad7380_regmap_reg_write,
992 	.max_register = AD7380_REG_ADDR_ALERT_HIGH_TH,
993 	.can_sleep = true,
994 	.reg_defaults = ad7380_reg_defaults,
995 	.num_reg_defaults = ARRAY_SIZE(ad7380_reg_defaults),
996 	.volatile_table = &ad7380_volatile_regs,
997 	.cache_type = REGCACHE_MAPLE,
998 };
999 
ad7380_debugfs_reg_access(struct iio_dev * indio_dev,u32 reg,u32 writeval,u32 * readval)1000 static int ad7380_debugfs_reg_access(struct iio_dev *indio_dev, u32 reg,
1001 				     u32 writeval, u32 *readval)
1002 {
1003 	struct ad7380_state *st = iio_priv(indio_dev);
1004 	int ret;
1005 
1006 	if (!iio_device_claim_direct(indio_dev))
1007 		return -EBUSY;
1008 
1009 	if (readval)
1010 		ret = regmap_read(st->regmap, reg, readval);
1011 	else
1012 		ret = regmap_write(st->regmap, reg, writeval);
1013 
1014 	iio_device_release_direct(indio_dev);
1015 
1016 	return ret;
1017 }
1018 
1019 /**
1020  * ad7380_regval_to_osr - convert OSR register value to ratio
1021  * @regval: register value to check
1022  *
1023  * Returns: the ratio corresponding to the OSR register. If regval is not in
1024  * bound, return 1 (oversampling disabled)
1025  *
1026  */
ad7380_regval_to_osr(unsigned int regval)1027 static int ad7380_regval_to_osr(unsigned int regval)
1028 {
1029 	if (regval >= ARRAY_SIZE(ad7380_oversampling_ratios))
1030 		return 1;
1031 
1032 	return ad7380_oversampling_ratios[regval];
1033 }
1034 
ad7380_get_osr(struct ad7380_state * st,int * val)1035 static int ad7380_get_osr(struct ad7380_state *st, int *val)
1036 {
1037 	u32 tmp;
1038 	int ret;
1039 
1040 	ret = regmap_read(st->regmap, AD7380_REG_ADDR_CONFIG1, &tmp);
1041 	if (ret)
1042 		return ret;
1043 
1044 	*val = ad7380_regval_to_osr(FIELD_GET(AD7380_CONFIG1_OSR, tmp));
1045 
1046 	return 0;
1047 }
1048 
1049 /*
1050  * When switching channel, the ADC require an additional settling time.
1051  * According to the datasheet, data is value on the third CS low. We already
1052  * have an extra toggle before each read (either direct reads or buffered reads)
1053  * to sample correct data, so we just add a single CS toggle at the end of the
1054  * register write.
1055  */
ad7380_set_ch(struct ad7380_state * st,unsigned int ch)1056 static int ad7380_set_ch(struct ad7380_state *st, unsigned int ch)
1057 {
1058 	struct spi_transfer xfer = {
1059 		.delay = {
1060 			.value = T_CONVERT_NS,
1061 			.unit = SPI_DELAY_UNIT_NSECS,
1062 		}
1063 	};
1064 	int oversampling_ratio, ret;
1065 
1066 	if (st->ch == ch)
1067 		return 0;
1068 
1069 	ret = ad7380_get_osr(st, &oversampling_ratio);
1070 	if (ret)
1071 		return ret;
1072 
1073 	ret = regmap_update_bits(st->regmap,
1074 				 AD7380_REG_ADDR_CONFIG1,
1075 				 AD7380_CONFIG1_CH,
1076 				 FIELD_PREP(AD7380_CONFIG1_CH, ch));
1077 
1078 	if (ret)
1079 		return ret;
1080 
1081 	st->ch = ch;
1082 
1083 	if (oversampling_ratio > 1)
1084 		xfer.delay.value = T_CONVERT_0_NS +
1085 			T_CONVERT_X_NS * (oversampling_ratio - 1) *
1086 			st->chip_info->num_simult_channels / AD7380_NUM_SDO_LINES;
1087 
1088 	return spi_sync_transfer(st->spi, &xfer, 1);
1089 }
1090 
1091 /**
1092  * ad7380_update_xfers - update the SPI transfers base on the current scan type
1093  * @st:		device instance specific state
1094  * @scan_type:	current scan type
1095  */
ad7380_update_xfers(struct ad7380_state * st,const struct iio_scan_type * scan_type)1096 static int ad7380_update_xfers(struct ad7380_state *st,
1097 				const struct iio_scan_type *scan_type)
1098 {
1099 	struct spi_transfer *xfer = st->seq ? st->seq_xfer : st->normal_xfer;
1100 	unsigned int t_convert = T_CONVERT_NS;
1101 	int oversampling_ratio, ret;
1102 
1103 	/*
1104 	 * In the case of oversampling, conversion time is higher than in normal
1105 	 * mode. Technically T_CONVERT_X_NS is lower for some chips, but we use
1106 	 * the maximum value for simplicity for now.
1107 	 */
1108 	ret = ad7380_get_osr(st, &oversampling_ratio);
1109 	if (ret)
1110 		return ret;
1111 
1112 	if (oversampling_ratio > 1)
1113 		t_convert = T_CONVERT_0_NS + T_CONVERT_X_NS *
1114 			(oversampling_ratio - 1) *
1115 			st->chip_info->num_simult_channels / AD7380_NUM_SDO_LINES;
1116 
1117 	if (st->seq) {
1118 		xfer[0].delay.value = xfer[1].delay.value = t_convert;
1119 		xfer[0].delay.unit = xfer[1].delay.unit = SPI_DELAY_UNIT_NSECS;
1120 		xfer[2].bits_per_word = xfer[3].bits_per_word =
1121 			scan_type->realbits;
1122 		xfer[2].len = xfer[3].len =
1123 			AD7380_SPI_BYTES(scan_type) *
1124 			st->chip_info->num_simult_channels;
1125 		xfer[3].rx_buf = xfer[2].rx_buf + xfer[2].len;
1126 		/* Additional delay required here when oversampling is enabled */
1127 		if (oversampling_ratio > 1)
1128 			xfer[2].delay.value = t_convert;
1129 		else
1130 			xfer[2].delay.value = 0;
1131 		xfer[2].delay.unit = SPI_DELAY_UNIT_NSECS;
1132 	} else {
1133 		xfer[0].delay.value = t_convert;
1134 		xfer[0].delay.unit = SPI_DELAY_UNIT_NSECS;
1135 		xfer[1].bits_per_word = scan_type->realbits;
1136 		xfer[1].len = AD7380_SPI_BYTES(scan_type) *
1137 			st->chip_info->num_simult_channels;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
ad7380_set_sample_freq(struct ad7380_state * st,int val)1143 static int ad7380_set_sample_freq(struct ad7380_state *st, int val)
1144 {
1145 	struct spi_offload_trigger_config config = {
1146 		.type = SPI_OFFLOAD_TRIGGER_PERIODIC,
1147 		.periodic = {
1148 			.frequency_hz = val,
1149 		},
1150 	};
1151 	int ret;
1152 
1153 	ret = spi_offload_trigger_validate(st->offload_trigger, &config);
1154 	if (ret)
1155 		return ret;
1156 
1157 	st->offload_trigger_hz = config.periodic.frequency_hz;
1158 
1159 	return 0;
1160 }
1161 
ad7380_init_offload_msg(struct ad7380_state * st,struct iio_dev * indio_dev)1162 static int ad7380_init_offload_msg(struct ad7380_state *st,
1163 				   struct iio_dev *indio_dev)
1164 {
1165 	struct spi_transfer *xfer = &st->offload_xfer;
1166 	struct device *dev = &st->spi->dev;
1167 	const struct iio_scan_type *scan_type;
1168 	int oversampling_ratio;
1169 	int ret;
1170 
1171 	scan_type = iio_get_current_scan_type(indio_dev,
1172 					      &indio_dev->channels[0]);
1173 	if (IS_ERR(scan_type))
1174 		return PTR_ERR(scan_type);
1175 
1176 	if (st->chip_info->has_mux) {
1177 		int index;
1178 
1179 		ret = iio_active_scan_mask_index(indio_dev);
1180 		if (ret < 0)
1181 			return ret;
1182 
1183 		index = ret;
1184 		if (index == AD7380_SCAN_MASK_SEQ) {
1185 			ret = regmap_set_bits(st->regmap, AD7380_REG_ADDR_CONFIG1,
1186 					      AD7380_CONFIG1_SEQ);
1187 			if (ret)
1188 				return ret;
1189 
1190 			st->seq = true;
1191 		} else {
1192 			ret = ad7380_set_ch(st, index);
1193 			if (ret)
1194 				return ret;
1195 		}
1196 	}
1197 
1198 	ret = ad7380_get_osr(st, &oversampling_ratio);
1199 	if (ret)
1200 		return ret;
1201 
1202 	xfer->bits_per_word = scan_type->realbits;
1203 	xfer->offload_flags = SPI_OFFLOAD_XFER_RX_STREAM;
1204 	xfer->len = AD7380_SPI_BYTES(scan_type) * st->chip_info->num_simult_channels;
1205 
1206 	spi_message_init_with_transfers(&st->offload_msg, xfer, 1);
1207 	st->offload_msg.offload = st->offload;
1208 
1209 	ret = spi_optimize_message(st->spi, &st->offload_msg);
1210 	if (ret) {
1211 		dev_err(dev, "failed to prepare offload msg, err: %d\n",
1212 			ret);
1213 		return ret;
1214 	}
1215 
1216 	return 0;
1217 }
1218 
ad7380_offload_buffer_postenable(struct iio_dev * indio_dev)1219 static int ad7380_offload_buffer_postenable(struct iio_dev *indio_dev)
1220 {
1221 	struct ad7380_state *st = iio_priv(indio_dev);
1222 	struct spi_offload_trigger_config config = {
1223 		.type = SPI_OFFLOAD_TRIGGER_PERIODIC,
1224 		.periodic = {
1225 			.frequency_hz = st->offload_trigger_hz,
1226 		},
1227 	};
1228 	int ret;
1229 
1230 	ret = ad7380_init_offload_msg(st, indio_dev);
1231 	if (ret)
1232 		return ret;
1233 
1234 	ret = spi_offload_trigger_enable(st->offload, st->offload_trigger, &config);
1235 	if (ret)
1236 		spi_unoptimize_message(&st->offload_msg);
1237 
1238 	return ret;
1239 }
1240 
ad7380_offload_buffer_predisable(struct iio_dev * indio_dev)1241 static int ad7380_offload_buffer_predisable(struct iio_dev *indio_dev)
1242 {
1243 	struct ad7380_state *st = iio_priv(indio_dev);
1244 	int ret;
1245 
1246 	spi_offload_trigger_disable(st->offload, st->offload_trigger);
1247 	spi_unoptimize_message(&st->offload_msg);
1248 
1249 	if (st->seq) {
1250 		ret = regmap_update_bits(st->regmap,
1251 					 AD7380_REG_ADDR_CONFIG1,
1252 					 AD7380_CONFIG1_SEQ,
1253 					 FIELD_PREP(AD7380_CONFIG1_SEQ, 0));
1254 		if (ret)
1255 			return ret;
1256 
1257 		st->seq = false;
1258 	}
1259 
1260 	return 0;
1261 }
1262 
1263 static const struct iio_buffer_setup_ops ad7380_offload_buffer_setup_ops = {
1264 	.postenable = ad7380_offload_buffer_postenable,
1265 	.predisable = ad7380_offload_buffer_predisable,
1266 };
1267 
ad7380_triggered_buffer_preenable(struct iio_dev * indio_dev)1268 static int ad7380_triggered_buffer_preenable(struct iio_dev *indio_dev)
1269 {
1270 	struct ad7380_state *st = iio_priv(indio_dev);
1271 	const struct iio_scan_type *scan_type;
1272 	struct spi_message *msg = &st->normal_msg;
1273 	int ret;
1274 
1275 	/*
1276 	 * Currently, we always read all channels at the same time. The scan_type
1277 	 * is the same for all channels, so we just pass the first channel.
1278 	 */
1279 	scan_type = iio_get_current_scan_type(indio_dev, &indio_dev->channels[0]);
1280 	if (IS_ERR(scan_type))
1281 		return PTR_ERR(scan_type);
1282 
1283 	if (st->chip_info->has_mux) {
1284 		unsigned int index;
1285 
1286 		/*
1287 		 * Depending on the requested scan_mask and current state,
1288 		 * we need to either change CH bit, or enable sequencer mode
1289 		 * to sample correct data.
1290 		 * Sequencer mode is enabled if active mask corresponds to all
1291 		 * IIO channels enabled. Otherwise, CH bit is set.
1292 		 */
1293 		ret = iio_active_scan_mask_index(indio_dev);
1294 		if (ret < 0)
1295 			return ret;
1296 
1297 		index = ret;
1298 		if (index == AD7380_SCAN_MASK_SEQ) {
1299 			ret = regmap_update_bits(st->regmap,
1300 						 AD7380_REG_ADDR_CONFIG1,
1301 						 AD7380_CONFIG1_SEQ,
1302 						 FIELD_PREP(AD7380_CONFIG1_SEQ, 1));
1303 			if (ret)
1304 				return ret;
1305 			msg = &st->seq_msg;
1306 			st->seq = true;
1307 		} else {
1308 			ret = ad7380_set_ch(st, index);
1309 			if (ret)
1310 				return ret;
1311 		}
1312 
1313 	}
1314 
1315 	ret = ad7380_update_xfers(st, scan_type);
1316 	if (ret)
1317 		return ret;
1318 
1319 	return spi_optimize_message(st->spi, msg);
1320 }
1321 
ad7380_triggered_buffer_postdisable(struct iio_dev * indio_dev)1322 static int ad7380_triggered_buffer_postdisable(struct iio_dev *indio_dev)
1323 {
1324 	struct ad7380_state *st = iio_priv(indio_dev);
1325 	struct spi_message *msg = &st->normal_msg;
1326 	int ret;
1327 
1328 	if (st->seq) {
1329 		ret = regmap_update_bits(st->regmap,
1330 					 AD7380_REG_ADDR_CONFIG1,
1331 					 AD7380_CONFIG1_SEQ,
1332 					 FIELD_PREP(AD7380_CONFIG1_SEQ, 0));
1333 		if (ret)
1334 			return ret;
1335 
1336 		msg = &st->seq_msg;
1337 		st->seq = false;
1338 	}
1339 
1340 	spi_unoptimize_message(msg);
1341 
1342 	return 0;
1343 }
1344 
1345 static const struct iio_buffer_setup_ops ad7380_buffer_setup_ops = {
1346 	.preenable = ad7380_triggered_buffer_preenable,
1347 	.postdisable = ad7380_triggered_buffer_postdisable,
1348 };
1349 
ad7380_trigger_handler(int irq,void * p)1350 static irqreturn_t ad7380_trigger_handler(int irq, void *p)
1351 {
1352 	struct iio_poll_func *pf = p;
1353 	struct iio_dev *indio_dev = pf->indio_dev;
1354 	struct ad7380_state *st = iio_priv(indio_dev);
1355 	struct spi_message *msg = st->seq ? &st->seq_msg : &st->normal_msg;
1356 	int ret;
1357 
1358 	ret = spi_sync(st->spi, msg);
1359 	if (ret)
1360 		goto out;
1361 
1362 	iio_push_to_buffers_with_ts(indio_dev, &st->scan_data, sizeof(st->scan_data),
1363 				    pf->timestamp);
1364 
1365 out:
1366 	iio_trigger_notify_done(indio_dev->trig);
1367 
1368 	return IRQ_HANDLED;
1369 }
1370 
ad7380_read_direct(struct ad7380_state * st,unsigned int scan_index,const struct iio_scan_type * scan_type,int * val)1371 static int ad7380_read_direct(struct ad7380_state *st, unsigned int scan_index,
1372 			      const struct iio_scan_type *scan_type, int *val)
1373 {
1374 	unsigned int index = scan_index;
1375 	int ret;
1376 
1377 	if (st->chip_info->has_mux) {
1378 		unsigned int ch = 0;
1379 
1380 		if (index >= st->chip_info->num_simult_channels) {
1381 			index -= st->chip_info->num_simult_channels;
1382 			ch = 1;
1383 		}
1384 
1385 		ret = ad7380_set_ch(st, ch);
1386 		if (ret)
1387 			return ret;
1388 	}
1389 
1390 	ret = ad7380_update_xfers(st, scan_type);
1391 	if (ret)
1392 		return ret;
1393 
1394 	ret = spi_sync(st->spi, &st->normal_msg);
1395 	if (ret < 0)
1396 		return ret;
1397 
1398 	if (scan_type->realbits > 16) {
1399 		if (scan_type->sign == 's')
1400 			*val = sign_extend32(*(u32 *)(st->scan_data + 4 * index),
1401 					     scan_type->realbits - 1);
1402 		else
1403 			*val = *(u32 *)(st->scan_data + 4 * index) &
1404 				GENMASK(scan_type->realbits - 1, 0);
1405 	} else {
1406 		if (scan_type->sign == 's')
1407 			*val = sign_extend32(*(u16 *)(st->scan_data + 2 * index),
1408 					     scan_type->realbits - 1);
1409 		else
1410 			*val = *(u16 *)(st->scan_data + 2 * index) &
1411 				GENMASK(scan_type->realbits - 1, 0);
1412 	}
1413 
1414 	return IIO_VAL_INT;
1415 }
1416 
ad7380_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)1417 static int ad7380_read_raw(struct iio_dev *indio_dev,
1418 			   struct iio_chan_spec const *chan,
1419 			   int *val, int *val2, long info)
1420 {
1421 	struct ad7380_state *st = iio_priv(indio_dev);
1422 	const struct iio_scan_type *scan_type;
1423 	int ret;
1424 
1425 	scan_type = iio_get_current_scan_type(indio_dev, chan);
1426 
1427 	if (IS_ERR(scan_type))
1428 		return PTR_ERR(scan_type);
1429 
1430 	switch (info) {
1431 	case IIO_CHAN_INFO_RAW:
1432 		if (!iio_device_claim_direct(indio_dev))
1433 			return -EBUSY;
1434 
1435 		ret = ad7380_read_direct(st, chan->scan_index,
1436 					 scan_type, val);
1437 
1438 		iio_device_release_direct(indio_dev);
1439 
1440 		return ret;
1441 	case IIO_CHAN_INFO_SCALE:
1442 		/*
1443 		 * According to the datasheet, the LSB size is:
1444 		 *    * (2 × VREF) / 2^N, for differential chips
1445 		 *    * VREF / 2^N, for pseudo-differential chips
1446 		 * where N is the ADC resolution (i.e realbits)
1447 		 *
1448 		 * The gain is stored as a fraction of 1000 and, as we need to
1449 		 * divide vref_mv by the gain, we invert the gain/1000 fraction.
1450 		 */
1451 		if (st->chip_info->has_hardware_gain)
1452 			*val = mult_frac(st->vref_mv, MILLI,
1453 					 st->gain_milli[chan->scan_index]);
1454 		else
1455 			*val = st->vref_mv;
1456 		*val2 = scan_type->realbits - chan->differential;
1457 
1458 		return IIO_VAL_FRACTIONAL_LOG2;
1459 	case IIO_CHAN_INFO_OFFSET:
1460 		/*
1461 		 * According to IIO ABI, offset is applied before scale,
1462 		 * so offset is: vcm_mv / scale
1463 		 */
1464 		*val = st->vcm_mv[chan->channel] * (1 << scan_type->realbits)
1465 			/ st->vref_mv;
1466 
1467 		return IIO_VAL_INT;
1468 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1469 		if (!iio_device_claim_direct(indio_dev))
1470 			return -EBUSY;
1471 
1472 		ret = ad7380_get_osr(st, val);
1473 
1474 		iio_device_release_direct(indio_dev);
1475 
1476 		if (ret)
1477 			return ret;
1478 
1479 		return IIO_VAL_INT;
1480 	case IIO_CHAN_INFO_SAMP_FREQ:
1481 		*val = st->offload_trigger_hz;
1482 		return IIO_VAL_INT;
1483 	default:
1484 		return -EINVAL;
1485 	}
1486 }
1487 
ad7380_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)1488 static int ad7380_read_avail(struct iio_dev *indio_dev,
1489 			     struct iio_chan_spec const *chan,
1490 			     const int **vals, int *type, int *length,
1491 			     long mask)
1492 {
1493 	struct ad7380_state *st = iio_priv(indio_dev);
1494 
1495 	switch (mask) {
1496 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1497 		*vals = ad7380_oversampling_ratios;
1498 		*length = ARRAY_SIZE(ad7380_oversampling_ratios);
1499 		*type = IIO_VAL_INT;
1500 
1501 		return IIO_AVAIL_LIST;
1502 	case IIO_CHAN_INFO_SAMP_FREQ:
1503 		*vals = st->sample_freq_range;
1504 		*type = IIO_VAL_INT;
1505 		return IIO_AVAIL_RANGE;
1506 	default:
1507 		return -EINVAL;
1508 	}
1509 }
1510 
1511 /**
1512  * ad7380_osr_to_regval - convert ratio to OSR register value
1513  * @ratio: ratio to check
1514  *
1515  * Check if ratio is present in the list of available ratios and return the
1516  * corresponding value that needs to be written to the register to select that
1517  * ratio.
1518  *
1519  * Returns: register value (0 to 7) or -EINVAL if there is not an exact match
1520  */
ad7380_osr_to_regval(int ratio)1521 static int ad7380_osr_to_regval(int ratio)
1522 {
1523 	int i;
1524 
1525 	for (i = 0; i < ARRAY_SIZE(ad7380_oversampling_ratios); i++) {
1526 		if (ratio == ad7380_oversampling_ratios[i])
1527 			return i;
1528 	}
1529 
1530 	return -EINVAL;
1531 }
1532 
ad7380_set_oversampling_ratio(struct ad7380_state * st,int val)1533 static int ad7380_set_oversampling_ratio(struct ad7380_state *st, int val)
1534 {
1535 	int ret, osr, boost;
1536 
1537 	osr = ad7380_osr_to_regval(val);
1538 	if (osr < 0)
1539 		return osr;
1540 
1541 	/* always enable resolution boost when oversampling is enabled */
1542 	boost = osr > 0 ? 1 : 0;
1543 
1544 	ret = regmap_update_bits(st->regmap,
1545 				 AD7380_REG_ADDR_CONFIG1,
1546 				 AD7380_CONFIG1_OSR | AD7380_CONFIG1_RES,
1547 				 FIELD_PREP(AD7380_CONFIG1_OSR, osr) |
1548 				 FIELD_PREP(AD7380_CONFIG1_RES, boost));
1549 
1550 	if (ret)
1551 		return ret;
1552 
1553 	st->resolution_boost_enabled = boost;
1554 
1555 	/*
1556 	 * Perform a soft reset. This will flush the oversampling
1557 	 * block and FIFO but will maintain the content of the
1558 	 * configurable registers.
1559 	 */
1560 	ret = regmap_update_bits(st->regmap,
1561 				 AD7380_REG_ADDR_CONFIG2,
1562 				 AD7380_CONFIG2_RESET,
1563 				 FIELD_PREP(AD7380_CONFIG2_RESET,
1564 					    AD7380_CONFIG2_RESET_SOFT));
1565 	return ret;
1566 }
ad7380_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1567 static int ad7380_write_raw(struct iio_dev *indio_dev,
1568 			    struct iio_chan_spec const *chan, int val,
1569 			    int val2, long mask)
1570 {
1571 	struct ad7380_state *st = iio_priv(indio_dev);
1572 	int ret;
1573 
1574 	switch (mask) {
1575 	case IIO_CHAN_INFO_SAMP_FREQ:
1576 		if (val < 1)
1577 			return -EINVAL;
1578 		return ad7380_set_sample_freq(st, val);
1579 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1580 		if (!iio_device_claim_direct(indio_dev))
1581 			return -EBUSY;
1582 
1583 		ret = ad7380_set_oversampling_ratio(st, val);
1584 
1585 		iio_device_release_direct(indio_dev);
1586 
1587 		return ret;
1588 	default:
1589 		return -EINVAL;
1590 	}
1591 }
1592 
ad7380_get_current_scan_type(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)1593 static int ad7380_get_current_scan_type(const struct iio_dev *indio_dev,
1594 					const struct iio_chan_spec *chan)
1595 {
1596 	struct ad7380_state *st = iio_priv(indio_dev);
1597 
1598 	return st->resolution_boost_enabled ? AD7380_SCAN_TYPE_RESOLUTION_BOOST
1599 					    : AD7380_SCAN_TYPE_NORMAL;
1600 }
1601 
ad7380_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)1602 static int ad7380_read_event_config(struct iio_dev *indio_dev,
1603 				    const struct iio_chan_spec *chan,
1604 				    enum iio_event_type type,
1605 				    enum iio_event_direction dir)
1606 {
1607 	struct ad7380_state *st = iio_priv(indio_dev);
1608 	int tmp, ret;
1609 
1610 	if (!iio_device_claim_direct(indio_dev))
1611 		return -EBUSY;
1612 
1613 	ret = regmap_read(st->regmap, AD7380_REG_ADDR_CONFIG1, &tmp);
1614 
1615 	iio_device_release_direct(indio_dev);
1616 
1617 	if (ret)
1618 		return ret;
1619 
1620 	return FIELD_GET(AD7380_CONFIG1_ALERTEN, tmp);
1621 }
1622 
ad7380_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,bool state)1623 static int ad7380_write_event_config(struct iio_dev *indio_dev,
1624 				     const struct iio_chan_spec *chan,
1625 				     enum iio_event_type type,
1626 				     enum iio_event_direction dir,
1627 				     bool state)
1628 {
1629 	struct ad7380_state *st = iio_priv(indio_dev);
1630 	int ret;
1631 
1632 	if (!iio_device_claim_direct(indio_dev))
1633 		return -EBUSY;
1634 
1635 	ret = regmap_update_bits(st->regmap,
1636 				 AD7380_REG_ADDR_CONFIG1,
1637 				 AD7380_CONFIG1_ALERTEN,
1638 				 FIELD_PREP(AD7380_CONFIG1_ALERTEN, state));
1639 
1640 	iio_device_release_direct(indio_dev);
1641 
1642 	return ret;
1643 }
1644 
ad7380_get_alert_th(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_direction dir,int * val)1645 static int ad7380_get_alert_th(struct iio_dev *indio_dev,
1646 			       const struct iio_chan_spec *chan,
1647 			       enum iio_event_direction dir,
1648 			       int *val)
1649 {
1650 	struct ad7380_state *st = iio_priv(indio_dev);
1651 	const struct iio_scan_type *scan_type;
1652 	int ret, tmp, shift;
1653 
1654 	scan_type = iio_get_current_scan_type(indio_dev, chan);
1655 	if (IS_ERR(scan_type))
1656 		return PTR_ERR(scan_type);
1657 
1658 	/*
1659 	 * The register value is 12-bits and is compared to the most significant
1660 	 * bits of raw value, therefore a shift is required to convert this to
1661 	 * the same scale as the raw value.
1662 	 */
1663 	shift = scan_type->realbits - 12;
1664 
1665 	switch (dir) {
1666 	case IIO_EV_DIR_RISING:
1667 		ret = regmap_read(st->regmap,
1668 				  AD7380_REG_ADDR_ALERT_HIGH_TH,
1669 				  &tmp);
1670 		if (ret)
1671 			return ret;
1672 
1673 		*val = FIELD_GET(AD7380_ALERT_HIGH_TH, tmp) << shift;
1674 		return IIO_VAL_INT;
1675 	case IIO_EV_DIR_FALLING:
1676 		ret = regmap_read(st->regmap,
1677 				  AD7380_REG_ADDR_ALERT_LOW_TH,
1678 				  &tmp);
1679 		if (ret)
1680 			return ret;
1681 
1682 		*val = FIELD_GET(AD7380_ALERT_LOW_TH, tmp) << shift;
1683 		return IIO_VAL_INT;
1684 	default:
1685 		return -EINVAL;
1686 	}
1687 }
1688 
ad7380_read_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)1689 static int ad7380_read_event_value(struct iio_dev *indio_dev,
1690 				   const struct iio_chan_spec *chan,
1691 				   enum iio_event_type type,
1692 				   enum iio_event_direction dir,
1693 				   enum iio_event_info info,
1694 				   int *val, int *val2)
1695 {
1696 	int ret;
1697 
1698 	switch (info) {
1699 	case IIO_EV_INFO_VALUE:
1700 		if (!iio_device_claim_direct(indio_dev))
1701 			return -EBUSY;
1702 
1703 		ret = ad7380_get_alert_th(indio_dev, chan, dir, val);
1704 
1705 		iio_device_release_direct(indio_dev);
1706 		return ret;
1707 	default:
1708 		return -EINVAL;
1709 	}
1710 }
1711 
ad7380_set_alert_th(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_direction dir,int val)1712 static int ad7380_set_alert_th(struct iio_dev *indio_dev,
1713 			       const struct iio_chan_spec *chan,
1714 			       enum iio_event_direction dir,
1715 			       int val)
1716 {
1717 	struct ad7380_state *st = iio_priv(indio_dev);
1718 	const struct iio_scan_type *scan_type;
1719 	u16 th;
1720 
1721 	/*
1722 	 * According to the datasheet,
1723 	 * AD7380_REG_ADDR_ALERT_HIGH_TH[11:0] are the 12 MSB of the
1724 	 * 16-bits internal alert high register. LSB are set to 0xf.
1725 	 * AD7380_REG_ADDR_ALERT_LOW_TH[11:0] are the 12 MSB of the
1726 	 * 16 bits internal alert low register. LSB are set to 0x0.
1727 	 *
1728 	 * When alert is enabled the conversion from the adc is compared
1729 	 * immediately to the alert high/low thresholds, before any
1730 	 * oversampling. This means that the thresholds are the same for
1731 	 * normal mode and oversampling mode.
1732 	 */
1733 
1734 	/* Extract the 12 MSB of val */
1735 	scan_type = iio_get_current_scan_type(indio_dev, chan);
1736 	if (IS_ERR(scan_type))
1737 		return PTR_ERR(scan_type);
1738 
1739 	th = val >> (scan_type->realbits - 12);
1740 
1741 	switch (dir) {
1742 	case IIO_EV_DIR_RISING:
1743 		return regmap_write(st->regmap,
1744 				    AD7380_REG_ADDR_ALERT_HIGH_TH,
1745 				    th);
1746 	case IIO_EV_DIR_FALLING:
1747 		return regmap_write(st->regmap,
1748 				    AD7380_REG_ADDR_ALERT_LOW_TH,
1749 				    th);
1750 	default:
1751 		return -EINVAL;
1752 	}
1753 }
1754 
ad7380_write_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)1755 static int ad7380_write_event_value(struct iio_dev *indio_dev,
1756 				    const struct iio_chan_spec *chan,
1757 				    enum iio_event_type type,
1758 				    enum iio_event_direction dir,
1759 				    enum iio_event_info info,
1760 				    int val, int val2)
1761 {
1762 	int ret;
1763 
1764 	switch (info) {
1765 	case IIO_EV_INFO_VALUE:
1766 		if (!iio_device_claim_direct(indio_dev))
1767 			return -EBUSY;
1768 
1769 		ret = ad7380_set_alert_th(indio_dev, chan, dir, val);
1770 
1771 		iio_device_release_direct(indio_dev);
1772 		return ret;
1773 	default:
1774 		return -EINVAL;
1775 	}
1776 }
1777 
1778 static const struct iio_info ad7380_info = {
1779 	.read_raw = &ad7380_read_raw,
1780 	.read_avail = &ad7380_read_avail,
1781 	.write_raw = &ad7380_write_raw,
1782 	.get_current_scan_type = &ad7380_get_current_scan_type,
1783 	.debugfs_reg_access = &ad7380_debugfs_reg_access,
1784 	.read_event_config = &ad7380_read_event_config,
1785 	.write_event_config = &ad7380_write_event_config,
1786 	.read_event_value = &ad7380_read_event_value,
1787 	.write_event_value = &ad7380_write_event_value,
1788 };
1789 
ad7380_init(struct ad7380_state * st,bool external_ref_en)1790 static int ad7380_init(struct ad7380_state *st, bool external_ref_en)
1791 {
1792 	int ret;
1793 
1794 	/* perform hard reset */
1795 	ret = regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG2,
1796 				 AD7380_CONFIG2_RESET,
1797 				 FIELD_PREP(AD7380_CONFIG2_RESET,
1798 					    AD7380_CONFIG2_RESET_HARD));
1799 	if (ret < 0)
1800 		return ret;
1801 
1802 	if (external_ref_en) {
1803 		/* select external reference voltage */
1804 		ret = regmap_set_bits(st->regmap, AD7380_REG_ADDR_CONFIG1,
1805 				      AD7380_CONFIG1_REFSEL);
1806 		if (ret < 0)
1807 			return ret;
1808 	}
1809 
1810 	/* This is the default value after reset. */
1811 	st->ch = 0;
1812 	st->seq = false;
1813 
1814 	/* SPI 1-wire mode */
1815 	return regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG2,
1816 				  AD7380_CONFIG2_SDO,
1817 				  FIELD_PREP(AD7380_CONFIG2_SDO,
1818 					     AD7380_NUM_SDO_LINES));
1819 }
1820 
ad7380_probe_spi_offload(struct iio_dev * indio_dev,struct ad7380_state * st)1821 static int ad7380_probe_spi_offload(struct iio_dev *indio_dev,
1822 				    struct ad7380_state *st)
1823 {
1824 	struct spi_device *spi = st->spi;
1825 	struct device *dev = &spi->dev;
1826 	struct dma_chan *rx_dma;
1827 	int sample_rate, ret;
1828 
1829 	indio_dev->setup_ops = &ad7380_offload_buffer_setup_ops;
1830 	indio_dev->channels = st->chip_info->offload_channels;
1831 	/* Just removing the timestamp channel. */
1832 	indio_dev->num_channels--;
1833 
1834 	st->offload_trigger = devm_spi_offload_trigger_get(dev, st->offload,
1835 		SPI_OFFLOAD_TRIGGER_PERIODIC);
1836 	if (IS_ERR(st->offload_trigger))
1837 		return dev_err_probe(dev, PTR_ERR(st->offload_trigger),
1838 				     "failed to get offload trigger\n");
1839 
1840 	sample_rate = st->chip_info->max_conversion_rate_hz *
1841 		      AD7380_NUM_SDO_LINES / st->chip_info->num_simult_channels;
1842 
1843 	st->sample_freq_range[0] = 1; /* min */
1844 	st->sample_freq_range[1] = 1; /* step */
1845 	st->sample_freq_range[2] = sample_rate; /* max */
1846 
1847 	/*
1848 	 * Starting with a quite low frequency, to allow oversampling x32,
1849 	 * user is then reponsible to adjust the frequency for the specific case.
1850 	 */
1851 	ret = ad7380_set_sample_freq(st, sample_rate / 32);
1852 	if (ret)
1853 		return ret;
1854 
1855 	rx_dma = devm_spi_offload_rx_stream_request_dma_chan(dev, st->offload);
1856 	if (IS_ERR(rx_dma))
1857 		return dev_err_probe(dev, PTR_ERR(rx_dma),
1858 				     "failed to get offload RX DMA\n");
1859 
1860 	ret = devm_iio_dmaengine_buffer_setup_with_handle(dev, indio_dev,
1861 		rx_dma, IIO_BUFFER_DIRECTION_IN);
1862 	if (ret)
1863 		return dev_err_probe(dev, ret, "cannot setup dma buffer\n");
1864 
1865 	return 0;
1866 }
1867 
ad7380_probe(struct spi_device * spi)1868 static int ad7380_probe(struct spi_device *spi)
1869 {
1870 	struct device *dev = &spi->dev;
1871 	struct iio_dev *indio_dev;
1872 	struct ad7380_state *st;
1873 	bool external_ref_en;
1874 	int ret, i;
1875 
1876 	indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
1877 	if (!indio_dev)
1878 		return -ENOMEM;
1879 
1880 	st = iio_priv(indio_dev);
1881 	st->spi = spi;
1882 	st->chip_info = spi_get_device_match_data(spi);
1883 	if (!st->chip_info)
1884 		return dev_err_probe(dev, -EINVAL, "missing match data\n");
1885 
1886 	ret = devm_regulator_bulk_get_enable(dev, st->chip_info->num_supplies,
1887 					     st->chip_info->supplies);
1888 
1889 	if (ret)
1890 		return dev_err_probe(dev, ret,
1891 				     "Failed to enable power supplies\n");
1892 	fsleep(T_POWERUP_US);
1893 
1894 	if (st->chip_info->internal_ref_only) {
1895 		/*
1896 		 * ADAQ chips use fixed internal reference but still
1897 		 * require a specific reference supply to power it.
1898 		 * "refin" is already enabled with other power supplies
1899 		 * in bulk_get_enable().
1900 		 */
1901 
1902 		st->vref_mv = st->chip_info->internal_ref_mv;
1903 
1904 		/* these chips don't have a register bit for this */
1905 		external_ref_en = false;
1906 	} else if (st->chip_info->external_ref_only) {
1907 		ret = devm_regulator_get_enable_read_voltage(dev, "refin");
1908 		if (ret < 0)
1909 			return dev_err_probe(dev, ret,
1910 					     "Failed to get refin regulator\n");
1911 
1912 		st->vref_mv = ret / 1000;
1913 
1914 		/* these chips don't have a register bit for this */
1915 		external_ref_en = false;
1916 	} else {
1917 		/*
1918 		 * If there is no REFIO supply, then it means that we are using
1919 		 * the internal reference, otherwise REFIO is reference voltage.
1920 		 */
1921 		ret = devm_regulator_get_enable_read_voltage(dev, "refio");
1922 		if (ret < 0 && ret != -ENODEV)
1923 			return dev_err_probe(dev, ret,
1924 					     "Failed to get refio regulator\n");
1925 
1926 		external_ref_en = ret != -ENODEV;
1927 		st->vref_mv = external_ref_en ? ret / 1000
1928 					      : st->chip_info->internal_ref_mv;
1929 	}
1930 
1931 	if (st->chip_info->num_vcm_supplies > ARRAY_SIZE(st->vcm_mv))
1932 		return dev_err_probe(dev, -EINVAL,
1933 				     "invalid number of VCM supplies\n");
1934 
1935 	/*
1936 	 * pseudo-differential chips have common mode supplies for the negative
1937 	 * input pin.
1938 	 */
1939 	for (i = 0; i < st->chip_info->num_vcm_supplies; i++) {
1940 		const char *vcm = st->chip_info->vcm_supplies[i];
1941 
1942 		ret = devm_regulator_get_enable_read_voltage(dev, vcm);
1943 		if (ret < 0)
1944 			return dev_err_probe(dev, ret,
1945 					     "Failed to get %s regulator\n",
1946 					     vcm);
1947 
1948 		st->vcm_mv[i] = ret / 1000;
1949 	}
1950 
1951 	for (i = 0; i < MAX_NUM_CHANNELS; i++)
1952 		st->gain_milli[i] = AD7380_DEFAULT_GAIN_MILLI;
1953 
1954 	if (st->chip_info->has_hardware_gain) {
1955 		device_for_each_child_node_scoped(dev, node) {
1956 			unsigned int channel, gain;
1957 			int gain_idx;
1958 
1959 			ret = fwnode_property_read_u32(node, "reg", &channel);
1960 			if (ret)
1961 				return dev_err_probe(dev, ret,
1962 						     "Failed to read reg property\n");
1963 
1964 			if (channel >= st->chip_info->num_channels - 1)
1965 				return dev_err_probe(dev, -EINVAL,
1966 						     "Invalid channel number %i\n",
1967 						     channel);
1968 
1969 			ret = fwnode_property_read_u32(node, "adi,gain-milli",
1970 						       &gain);
1971 			if (ret && ret != -EINVAL)
1972 				return dev_err_probe(dev, ret,
1973 						     "Failed to read gain for channel %i\n",
1974 						     channel);
1975 			if (ret != -EINVAL) {
1976 				/*
1977 				 * Match gain value from dt to one of supported
1978 				 * gains
1979 				 */
1980 				gain_idx = find_closest(gain, ad7380_gains,
1981 							ARRAY_SIZE(ad7380_gains));
1982 				st->gain_milli[channel] = ad7380_gains[gain_idx];
1983 			}
1984 		}
1985 	}
1986 
1987 	st->regmap = devm_regmap_init(dev, NULL, st, &ad7380_regmap_config);
1988 	if (IS_ERR(st->regmap))
1989 		return dev_err_probe(dev, PTR_ERR(st->regmap),
1990 				     "failed to allocate register map\n");
1991 
1992 	/*
1993 	 * Setting up xfer structures for both normal and sequence mode. These
1994 	 * struct are used for both direct read and triggered buffer. Additional
1995 	 * fields will be set up in ad7380_update_xfers() based on the current
1996 	 * state of the driver at the time of the read.
1997 	 */
1998 
1999 	/*
2000 	 * In normal mode a read is composed of two steps:
2001 	 *   - first, toggle CS (no data xfer) to trigger a conversion
2002 	 *   - then, read data
2003 	 */
2004 	st->normal_xfer[0].cs_change = 1;
2005 	st->normal_xfer[0].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
2006 	st->normal_xfer[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
2007 	st->normal_xfer[1].rx_buf = st->scan_data;
2008 
2009 	spi_message_init_with_transfers(&st->normal_msg, st->normal_xfer,
2010 					ARRAY_SIZE(st->normal_xfer));
2011 	/*
2012 	 * In sequencer mode a read is composed of four steps:
2013 	 *   - CS toggle (no data xfer) to get the right point in the sequence
2014 	 *   - CS toggle (no data xfer) to trigger a conversion of AinX0 and
2015 	 *   acquisition of AinX1
2016 	 *   - 2 data reads, to read AinX0 and AinX1
2017 	 */
2018 	st->seq_xfer[0].cs_change = 1;
2019 	st->seq_xfer[0].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
2020 	st->seq_xfer[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
2021 	st->seq_xfer[1].cs_change = 1;
2022 	st->seq_xfer[1].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
2023 	st->seq_xfer[1].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
2024 
2025 	st->seq_xfer[2].rx_buf = st->scan_data;
2026 	st->seq_xfer[2].cs_change = 1;
2027 	st->seq_xfer[2].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
2028 	st->seq_xfer[2].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
2029 
2030 	spi_message_init_with_transfers(&st->seq_msg, st->seq_xfer,
2031 					ARRAY_SIZE(st->seq_xfer));
2032 
2033 	indio_dev->channels = st->chip_info->channels;
2034 	indio_dev->num_channels = st->chip_info->num_channels;
2035 	indio_dev->name = st->chip_info->name;
2036 	indio_dev->info = &ad7380_info;
2037 	indio_dev->modes = INDIO_DIRECT_MODE;
2038 	indio_dev->available_scan_masks = st->chip_info->available_scan_masks;
2039 
2040 	st->offload = devm_spi_offload_get(dev, spi, &ad7380_offload_config);
2041 	ret = PTR_ERR_OR_ZERO(st->offload);
2042 	if (ret && ret != -ENODEV)
2043 		return dev_err_probe(dev, ret, "failed to get offload\n");
2044 
2045 	/* If no SPI offload, fall back to low speed usage. */
2046 	if (ret == -ENODEV) {
2047 		ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
2048 						      iio_pollfunc_store_time,
2049 						      ad7380_trigger_handler,
2050 						      &ad7380_buffer_setup_ops);
2051 		if (ret)
2052 			return ret;
2053 	} else {
2054 		ret = ad7380_probe_spi_offload(indio_dev, st);
2055 		if (ret)
2056 			return ret;
2057 	}
2058 
2059 	ret = ad7380_init(st, external_ref_en);
2060 	if (ret)
2061 		return ret;
2062 
2063 	return devm_iio_device_register(dev, indio_dev);
2064 }
2065 
2066 static const struct of_device_id ad7380_of_match_table[] = {
2067 	{ .compatible = "adi,ad7380", .data = &ad7380_chip_info },
2068 	{ .compatible = "adi,ad7381", .data = &ad7381_chip_info },
2069 	{ .compatible = "adi,ad7383", .data = &ad7383_chip_info },
2070 	{ .compatible = "adi,ad7384", .data = &ad7384_chip_info },
2071 	{ .compatible = "adi,ad7386", .data = &ad7386_chip_info },
2072 	{ .compatible = "adi,ad7387", .data = &ad7387_chip_info },
2073 	{ .compatible = "adi,ad7388", .data = &ad7388_chip_info },
2074 	{ .compatible = "adi,ad7380-4", .data = &ad7380_4_chip_info },
2075 	{ .compatible = "adi,ad7381-4", .data = &ad7381_4_chip_info },
2076 	{ .compatible = "adi,ad7383-4", .data = &ad7383_4_chip_info },
2077 	{ .compatible = "adi,ad7384-4", .data = &ad7384_4_chip_info },
2078 	{ .compatible = "adi,ad7386-4", .data = &ad7386_4_chip_info },
2079 	{ .compatible = "adi,ad7387-4", .data = &ad7387_4_chip_info },
2080 	{ .compatible = "adi,ad7388-4", .data = &ad7388_4_chip_info },
2081 	{ .compatible = "adi,ad7389-4", .data = &ad7389_4_chip_info },
2082 	{ .compatible = "adi,adaq4370-4", .data = &adaq4370_4_chip_info },
2083 	{ .compatible = "adi,adaq4380-4", .data = &adaq4380_4_chip_info },
2084 	{ .compatible = "adi,adaq4381-4", .data = &adaq4381_4_chip_info },
2085 	{ }
2086 };
2087 
2088 static const struct spi_device_id ad7380_id_table[] = {
2089 	{ "ad7380", (kernel_ulong_t)&ad7380_chip_info },
2090 	{ "ad7381", (kernel_ulong_t)&ad7381_chip_info },
2091 	{ "ad7383", (kernel_ulong_t)&ad7383_chip_info },
2092 	{ "ad7384", (kernel_ulong_t)&ad7384_chip_info },
2093 	{ "ad7386", (kernel_ulong_t)&ad7386_chip_info },
2094 	{ "ad7387", (kernel_ulong_t)&ad7387_chip_info },
2095 	{ "ad7388", (kernel_ulong_t)&ad7388_chip_info },
2096 	{ "ad7380-4", (kernel_ulong_t)&ad7380_4_chip_info },
2097 	{ "ad7381-4", (kernel_ulong_t)&ad7381_4_chip_info },
2098 	{ "ad7383-4", (kernel_ulong_t)&ad7383_4_chip_info },
2099 	{ "ad7384-4", (kernel_ulong_t)&ad7384_4_chip_info },
2100 	{ "ad7386-4", (kernel_ulong_t)&ad7386_4_chip_info },
2101 	{ "ad7387-4", (kernel_ulong_t)&ad7387_4_chip_info },
2102 	{ "ad7388-4", (kernel_ulong_t)&ad7388_4_chip_info },
2103 	{ "ad7389-4", (kernel_ulong_t)&ad7389_4_chip_info },
2104 	{ "adaq4370-4", (kernel_ulong_t)&adaq4370_4_chip_info },
2105 	{ "adaq4380-4", (kernel_ulong_t)&adaq4380_4_chip_info },
2106 	{ "adaq4381-4", (kernel_ulong_t)&adaq4381_4_chip_info },
2107 	{ }
2108 };
2109 MODULE_DEVICE_TABLE(spi, ad7380_id_table);
2110 
2111 static struct spi_driver ad7380_driver = {
2112 	.driver = {
2113 		.name = "ad7380",
2114 		.of_match_table = ad7380_of_match_table,
2115 	},
2116 	.probe = ad7380_probe,
2117 	.id_table = ad7380_id_table,
2118 };
2119 module_spi_driver(ad7380_driver);
2120 
2121 MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
2122 MODULE_DESCRIPTION("Analog Devices AD738x ADC driver");
2123 MODULE_LICENSE("GPL");
2124 MODULE_IMPORT_NS("IIO_DMAENGINE_BUFFER");
2125