1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Analog Devices AD4851 DAS driver
4 *
5 * Copyright 2024 Analog Devices Inc.
6 */
7
8 #include <linux/array_size.h>
9 #include <linux/bitfield.h>
10 #include <linux/bits.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/err.h>
14 #include <linux/minmax.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/pwm.h>
19 #include <linux/regmap.h>
20 #include <linux/regulator/consumer.h>
21 #include <linux/spi/spi.h>
22 #include <linux/types.h>
23 #include <linux/unaligned.h>
24 #include <linux/units.h>
25
26 #include <linux/iio/backend.h>
27 #include <linux/iio/iio.h>
28
29 #define AD4851_REG_INTERFACE_CONFIG_A 0x00
30 #define AD4851_REG_INTERFACE_CONFIG_B 0x01
31 #define AD4851_REG_PRODUCT_ID_L 0x04
32 #define AD4851_REG_PRODUCT_ID_H 0x05
33 #define AD4851_REG_DEVICE_CTRL 0x25
34 #define AD4851_REG_PACKET 0x26
35 #define AD4851_REG_OVERSAMPLE 0x27
36
37 #define AD4851_REG_CH_CONFIG_BASE 0x2A
38 #define AD4851_REG_CHX_SOFTSPAN(ch) ((0x12 * (ch)) + AD4851_REG_CH_CONFIG_BASE)
39 #define AD4851_REG_CHX_OFFSET(ch) (AD4851_REG_CHX_SOFTSPAN(ch) + 0x01)
40 #define AD4851_REG_CHX_OFFSET_LSB(ch) AD4851_REG_CHX_OFFSET(ch)
41 #define AD4851_REG_CHX_OFFSET_MID(ch) (AD4851_REG_CHX_OFFSET_LSB(ch) + 0x01)
42 #define AD4851_REG_CHX_OFFSET_MSB(ch) (AD4851_REG_CHX_OFFSET_MID(ch) + 0x01)
43 #define AD4851_REG_CHX_GAIN(ch) (AD4851_REG_CHX_OFFSET(ch) + 0x03)
44 #define AD4851_REG_CHX_GAIN_LSB(ch) AD4851_REG_CHX_GAIN(ch)
45 #define AD4851_REG_CHX_GAIN_MSB(ch) (AD4851_REG_CHX_GAIN(ch) + 0x01)
46 #define AD4851_REG_CHX_PHASE(ch) (AD4851_REG_CHX_GAIN(ch) + 0x02)
47 #define AD4851_REG_CHX_PHASE_LSB(ch) AD4851_REG_CHX_PHASE(ch)
48 #define AD4851_REG_CHX_PHASE_MSB(ch) (AD4851_REG_CHX_PHASE_LSB(ch) + 0x01)
49
50 #define AD4851_REG_TESTPAT_0(c) (0x38 + (c) * 0x12)
51 #define AD4851_REG_TESTPAT_1(c) (0x39 + (c) * 0x12)
52 #define AD4851_REG_TESTPAT_2(c) (0x3A + (c) * 0x12)
53 #define AD4851_REG_TESTPAT_3(c) (0x3B + (c) * 0x12)
54
55 #define AD4851_SW_RESET (BIT(7) | BIT(0))
56 #define AD4851_SDO_ENABLE BIT(4)
57 #define AD4851_SINGLE_INSTRUCTION BIT(7)
58 #define AD4851_REFBUF BIT(2)
59 #define AD4851_REFSEL BIT(1)
60 #define AD4851_ECHO_CLOCK_MODE BIT(0)
61
62 #define AD4851_PACKET_FORMAT_0 0
63 #define AD4851_PACKET_FORMAT_1 1
64 #define AD4851_PACKET_FORMAT_MASK GENMASK(1, 0)
65
66 #define AD4851_OS_EN_MSK BIT(7)
67 #define AD4851_OS_RATIO_MSK GENMASK(3, 0)
68
69 #define AD4851_TEST_PAT BIT(2)
70
71 #define AD4858_PACKET_SIZE_20 0
72 #define AD4858_PACKET_SIZE_24 1
73 #define AD4858_PACKET_SIZE_32 2
74
75 #define AD4857_PACKET_SIZE_16 0
76 #define AD4857_PACKET_SIZE_24 1
77
78 #define AD4851_TESTPAT_0_DEFAULT 0x2A
79 #define AD4851_TESTPAT_1_DEFAULT 0x3C
80 #define AD4851_TESTPAT_2_DEFAULT 0xCE
81 #define AD4851_TESTPAT_3_DEFAULT(c) (0x0A + (0x10 * (c)))
82
83 #define AD4851_SOFTSPAN_0V_2V5 0
84 #define AD4851_SOFTSPAN_N2V5_2V5 1
85 #define AD4851_SOFTSPAN_0V_5V 2
86 #define AD4851_SOFTSPAN_N5V_5V 3
87 #define AD4851_SOFTSPAN_0V_6V25 4
88 #define AD4851_SOFTSPAN_N6V25_6V25 5
89 #define AD4851_SOFTSPAN_0V_10V 6
90 #define AD4851_SOFTSPAN_N10V_10V 7
91 #define AD4851_SOFTSPAN_0V_12V5 8
92 #define AD4851_SOFTSPAN_N12V5_12V5 9
93 #define AD4851_SOFTSPAN_0V_20V 10
94 #define AD4851_SOFTSPAN_N20V_20V 11
95 #define AD4851_SOFTSPAN_0V_25V 12
96 #define AD4851_SOFTSPAN_N25V_25V 13
97 #define AD4851_SOFTSPAN_0V_40V 14
98 #define AD4851_SOFTSPAN_N40V_40V 15
99
100 #define AD4851_MAX_LANES 8
101 #define AD4851_MAX_IODELAY 32
102
103 #define AD4851_T_CNVH_NS 40
104 #define AD4851_T_CNVH_NS_MARGIN 10
105
106 #define AD4841_MAX_SCALE_AVAIL 8
107
108 #define AD4851_MAX_CH_NR 8
109 #define AD4851_CH_START 0
110
111 struct ad4851_scale {
112 unsigned int scale_val;
113 u8 reg_val;
114 };
115
116 static const struct ad4851_scale ad4851_scale_table_unipolar[] = {
117 { 2500, 0x0 },
118 { 5000, 0x2 },
119 { 6250, 0x4 },
120 { 10000, 0x6 },
121 { 12500, 0x8 },
122 { 20000, 0xA },
123 { 25000, 0xC },
124 { 40000, 0xE },
125 };
126
127 static const struct ad4851_scale ad4851_scale_table_bipolar[] = {
128 { 5000, 0x1 },
129 { 10000, 0x3 },
130 { 12500, 0x5 },
131 { 20000, 0x7 },
132 { 25000, 0x9 },
133 { 40000, 0xB },
134 { 50000, 0xD },
135 { 80000, 0xF },
136 };
137
138 static const unsigned int ad4851_scale_avail_unipolar[] = {
139 2500,
140 5000,
141 6250,
142 10000,
143 12500,
144 20000,
145 25000,
146 40000,
147 };
148
149 static const unsigned int ad4851_scale_avail_bipolar[] = {
150 5000,
151 10000,
152 12500,
153 20000,
154 25000,
155 40000,
156 50000,
157 80000,
158 };
159
160 struct ad4851_chip_info {
161 const char *name;
162 unsigned int product_id;
163 int num_scales;
164 unsigned long max_sample_rate_hz;
165 unsigned int resolution;
166 unsigned int max_channels;
167 int (*parse_channels)(struct iio_dev *indio_dev);
168 };
169
170 enum {
171 AD4851_SCAN_TYPE_NORMAL,
172 AD4851_SCAN_TYPE_RESOLUTION_BOOST,
173 };
174
175 struct ad4851_state {
176 struct spi_device *spi;
177 struct pwm_device *cnv;
178 struct iio_backend *back;
179 /*
180 * Synchronize access to members the of driver state, and ensure
181 * atomicity of consecutive regmap operations.
182 */
183 struct mutex lock;
184 struct regmap *regmap;
185 const struct ad4851_chip_info *info;
186 struct gpio_desc *pd_gpio;
187 bool resolution_boost_enabled;
188 unsigned long cnv_trigger_rate_hz;
189 unsigned int osr;
190 bool vrefbuf_en;
191 bool vrefio_en;
192 bool bipolar_ch[AD4851_MAX_CH_NR];
193 unsigned int scales_unipolar[AD4841_MAX_SCALE_AVAIL][2];
194 unsigned int scales_bipolar[AD4841_MAX_SCALE_AVAIL][2];
195 };
196
ad4851_reg_access(struct iio_dev * indio_dev,unsigned int reg,unsigned int writeval,unsigned int * readval)197 static int ad4851_reg_access(struct iio_dev *indio_dev,
198 unsigned int reg,
199 unsigned int writeval,
200 unsigned int *readval)
201 {
202 struct ad4851_state *st = iio_priv(indio_dev);
203
204 if (readval)
205 return regmap_read(st->regmap, reg, readval);
206
207 return regmap_write(st->regmap, reg, writeval);
208 }
209
ad4851_set_sampling_freq(struct ad4851_state * st,unsigned int freq)210 static int ad4851_set_sampling_freq(struct ad4851_state *st, unsigned int freq)
211 {
212 struct pwm_state cnv_state = {
213 .duty_cycle = AD4851_T_CNVH_NS + AD4851_T_CNVH_NS_MARGIN,
214 .enabled = true,
215 };
216 int ret;
217
218 freq = clamp(freq, 1, st->info->max_sample_rate_hz);
219
220 cnv_state.period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, freq);
221
222 ret = pwm_apply_might_sleep(st->cnv, &cnv_state);
223 if (ret)
224 return ret;
225
226 st->cnv_trigger_rate_hz = freq;
227
228 return 0;
229 }
230
231 static const int ad4851_oversampling_ratios[] = {
232 1, 2, 4, 8, 16, 32, 64, 128,
233 256, 512, 1024, 2048, 4096, 8192, 16384, 32768,
234 65536,
235 };
236
ad4851_osr_to_regval(unsigned int ratio)237 static int ad4851_osr_to_regval(unsigned int ratio)
238 {
239 int i;
240
241 for (i = 1; i < ARRAY_SIZE(ad4851_oversampling_ratios); i++)
242 if (ratio == ad4851_oversampling_ratios[i])
243 return i - 1;
244
245 return -EINVAL;
246 }
247
__ad4851_get_scale(struct iio_dev * indio_dev,int scale_tbl,unsigned int * val,unsigned int * val2)248 static int __ad4851_get_scale(struct iio_dev *indio_dev, int scale_tbl,
249 unsigned int *val, unsigned int *val2)
250 {
251 const struct iio_scan_type *scan_type;
252 unsigned int tmp;
253
254 scan_type = iio_get_current_scan_type(indio_dev, &indio_dev->channels[0]);
255 if (IS_ERR(scan_type))
256 return PTR_ERR(scan_type);
257
258 tmp = ((u64)scale_tbl * MICRO) >> scan_type->realbits;
259 *val = tmp / MICRO;
260 *val2 = tmp % MICRO;
261
262 return 0;
263 }
264
ad4851_scale_fill(struct iio_dev * indio_dev)265 static int ad4851_scale_fill(struct iio_dev *indio_dev)
266 {
267 struct ad4851_state *st = iio_priv(indio_dev);
268 unsigned int i, val1, val2;
269 int ret;
270
271 for (i = 0; i < ARRAY_SIZE(ad4851_scale_avail_unipolar); i++) {
272 ret = __ad4851_get_scale(indio_dev,
273 ad4851_scale_avail_unipolar[i],
274 &val1, &val2);
275 if (ret)
276 return ret;
277
278 st->scales_unipolar[i][0] = val1;
279 st->scales_unipolar[i][1] = val2;
280 }
281
282 for (i = 0; i < ARRAY_SIZE(ad4851_scale_avail_bipolar); i++) {
283 ret = __ad4851_get_scale(indio_dev,
284 ad4851_scale_avail_bipolar[i],
285 &val1, &val2);
286 if (ret)
287 return ret;
288
289 st->scales_bipolar[i][0] = val1;
290 st->scales_bipolar[i][1] = val2;
291 }
292
293 return 0;
294 }
295
ad4851_set_oversampling_ratio(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,unsigned int osr)296 static int ad4851_set_oversampling_ratio(struct iio_dev *indio_dev,
297 const struct iio_chan_spec *chan,
298 unsigned int osr)
299 {
300 struct ad4851_state *st = iio_priv(indio_dev);
301 int val, ret;
302
303 guard(mutex)(&st->lock);
304
305 if (osr == 1) {
306 ret = regmap_clear_bits(st->regmap, AD4851_REG_OVERSAMPLE,
307 AD4851_OS_EN_MSK);
308 if (ret)
309 return ret;
310 } else {
311 val = ad4851_osr_to_regval(osr);
312 if (val < 0)
313 return -EINVAL;
314
315 ret = regmap_update_bits(st->regmap, AD4851_REG_OVERSAMPLE,
316 AD4851_OS_EN_MSK |
317 AD4851_OS_RATIO_MSK,
318 FIELD_PREP(AD4851_OS_EN_MSK, 1) |
319 FIELD_PREP(AD4851_OS_RATIO_MSK, val));
320 if (ret)
321 return ret;
322 }
323
324 ret = iio_backend_oversampling_ratio_set(st->back, osr);
325 if (ret)
326 return ret;
327
328 switch (st->info->resolution) {
329 case 20:
330 switch (osr) {
331 case 0:
332 return -EINVAL;
333 case 1:
334 val = 20;
335 break;
336 default:
337 val = 24;
338 break;
339 }
340 break;
341 case 16:
342 val = 16;
343 break;
344 default:
345 return -EINVAL;
346 }
347
348 ret = iio_backend_data_size_set(st->back, val);
349 if (ret)
350 return ret;
351
352 if (osr == 1 || st->info->resolution == 16) {
353 ret = regmap_clear_bits(st->regmap, AD4851_REG_PACKET,
354 AD4851_PACKET_FORMAT_MASK);
355 if (ret)
356 return ret;
357
358 st->resolution_boost_enabled = false;
359 } else {
360 ret = regmap_update_bits(st->regmap, AD4851_REG_PACKET,
361 AD4851_PACKET_FORMAT_MASK,
362 FIELD_PREP(AD4851_PACKET_FORMAT_MASK, 1));
363 if (ret)
364 return ret;
365
366 st->resolution_boost_enabled = true;
367 }
368
369 if (st->osr != osr) {
370 ret = ad4851_scale_fill(indio_dev);
371 if (ret)
372 return ret;
373
374 st->osr = osr;
375 }
376
377 return 0;
378 }
379
ad4851_get_oversampling_ratio(struct ad4851_state * st,unsigned int * val)380 static int ad4851_get_oversampling_ratio(struct ad4851_state *st, unsigned int *val)
381 {
382 unsigned int osr;
383 int ret;
384
385 guard(mutex)(&st->lock);
386
387 ret = regmap_read(st->regmap, AD4851_REG_OVERSAMPLE, &osr);
388 if (ret)
389 return ret;
390
391 if (!FIELD_GET(AD4851_OS_EN_MSK, osr))
392 *val = 1;
393 else
394 *val = ad4851_oversampling_ratios[FIELD_GET(AD4851_OS_RATIO_MSK, osr) + 1];
395
396 st->osr = *val;
397
398 return IIO_VAL_INT;
399 }
400
ad4851_pwm_disable(void * data)401 static void ad4851_pwm_disable(void *data)
402 {
403 pwm_disable(data);
404 }
405
ad4851_setup(struct ad4851_state * st)406 static int ad4851_setup(struct ad4851_state *st)
407 {
408 unsigned int product_id;
409 int ret;
410
411 if (st->pd_gpio) {
412 /* To initiate a global reset, bring the PD pin high twice */
413 gpiod_set_value(st->pd_gpio, 1);
414 fsleep(1);
415 gpiod_set_value(st->pd_gpio, 0);
416 fsleep(1);
417 gpiod_set_value(st->pd_gpio, 1);
418 fsleep(1);
419 gpiod_set_value(st->pd_gpio, 0);
420 fsleep(1000);
421 } else {
422 ret = regmap_set_bits(st->regmap, AD4851_REG_INTERFACE_CONFIG_A,
423 AD4851_SW_RESET);
424 if (ret)
425 return ret;
426 }
427
428 if (st->vrefbuf_en) {
429 ret = regmap_set_bits(st->regmap, AD4851_REG_DEVICE_CTRL,
430 AD4851_REFBUF);
431 if (ret)
432 return ret;
433 }
434
435 if (st->vrefio_en) {
436 ret = regmap_set_bits(st->regmap, AD4851_REG_DEVICE_CTRL,
437 AD4851_REFSEL);
438 if (ret)
439 return ret;
440 }
441
442 ret = regmap_write(st->regmap, AD4851_REG_INTERFACE_CONFIG_B,
443 AD4851_SINGLE_INSTRUCTION);
444 if (ret)
445 return ret;
446
447 ret = regmap_write(st->regmap, AD4851_REG_INTERFACE_CONFIG_A,
448 AD4851_SDO_ENABLE);
449 if (ret)
450 return ret;
451
452 ret = regmap_read(st->regmap, AD4851_REG_PRODUCT_ID_L, &product_id);
453 if (ret)
454 return ret;
455
456 if (product_id != st->info->product_id)
457 dev_info(&st->spi->dev, "Unknown product ID: 0x%02X\n",
458 product_id);
459
460 ret = regmap_set_bits(st->regmap, AD4851_REG_DEVICE_CTRL,
461 AD4851_ECHO_CLOCK_MODE);
462 if (ret)
463 return ret;
464
465 return regmap_write(st->regmap, AD4851_REG_PACKET, 0);
466 }
467
468 /*
469 * Find the longest consecutive sequence of false values from field
470 * and return starting index.
471 */
ad4851_find_opt(const unsigned long * field,unsigned int start,unsigned int nbits,unsigned int * val)472 static int ad4851_find_opt(const unsigned long *field, unsigned int start,
473 unsigned int nbits, unsigned int *val)
474 {
475 unsigned int bit = start, end, start_cnt, cnt = 0;
476
477 for_each_clear_bitrange_from(bit, end, field, start + nbits) {
478 if (end - bit > cnt) {
479 cnt = end - bit;
480 start_cnt = bit - start;
481 }
482 }
483
484 if (!cnt)
485 return -ENOENT;
486
487 *val = start_cnt;
488
489 return cnt;
490 }
491
ad4851_calibrate(struct iio_dev * indio_dev)492 static int ad4851_calibrate(struct iio_dev *indio_dev)
493 {
494 struct ad4851_state *st = iio_priv(indio_dev);
495 unsigned int opt_delay, num_lanes, delay, i, s;
496 enum iio_backend_interface_type interface_type;
497 DECLARE_BITMAP(pn_status, AD4851_MAX_LANES * AD4851_MAX_IODELAY);
498 bool status;
499 int c, ret;
500
501 ret = iio_backend_interface_type_get(st->back, &interface_type);
502 if (ret)
503 return ret;
504
505 switch (interface_type) {
506 case IIO_BACKEND_INTERFACE_SERIAL_CMOS:
507 num_lanes = indio_dev->num_channels;
508 break;
509 case IIO_BACKEND_INTERFACE_SERIAL_LVDS:
510 num_lanes = 1;
511 break;
512 default:
513 return -EINVAL;
514 }
515
516 if (st->info->resolution == 16) {
517 ret = iio_backend_data_size_set(st->back, 24);
518 if (ret)
519 return ret;
520
521 ret = regmap_write(st->regmap, AD4851_REG_PACKET,
522 AD4851_TEST_PAT | AD4857_PACKET_SIZE_24);
523 if (ret)
524 return ret;
525 } else {
526 ret = iio_backend_data_size_set(st->back, 32);
527 if (ret)
528 return ret;
529
530 ret = regmap_write(st->regmap, AD4851_REG_PACKET,
531 AD4851_TEST_PAT | AD4858_PACKET_SIZE_32);
532 if (ret)
533 return ret;
534 }
535
536 for (i = 0; i < indio_dev->num_channels; i++) {
537 ret = regmap_write(st->regmap, AD4851_REG_TESTPAT_0(i),
538 AD4851_TESTPAT_0_DEFAULT);
539 if (ret)
540 return ret;
541
542 ret = regmap_write(st->regmap, AD4851_REG_TESTPAT_1(i),
543 AD4851_TESTPAT_1_DEFAULT);
544 if (ret)
545 return ret;
546
547 ret = regmap_write(st->regmap, AD4851_REG_TESTPAT_2(i),
548 AD4851_TESTPAT_2_DEFAULT);
549 if (ret)
550 return ret;
551
552 ret = regmap_write(st->regmap, AD4851_REG_TESTPAT_3(i),
553 AD4851_TESTPAT_3_DEFAULT(i));
554 if (ret)
555 return ret;
556
557 ret = iio_backend_chan_enable(st->back,
558 indio_dev->channels[i].channel);
559 if (ret)
560 return ret;
561 }
562
563 for (i = 0; i < num_lanes; i++) {
564 for (delay = 0; delay < AD4851_MAX_IODELAY; delay++) {
565 ret = iio_backend_iodelay_set(st->back, i, delay);
566 if (ret)
567 return ret;
568
569 ret = iio_backend_chan_status(st->back, i, &status);
570 if (ret)
571 return ret;
572
573 __assign_bit(i * AD4851_MAX_IODELAY + delay, pn_status,
574 status);
575 }
576 }
577
578 for (i = 0; i < num_lanes; i++) {
579 c = ad4851_find_opt(pn_status, i * AD4851_MAX_IODELAY,
580 AD4851_MAX_IODELAY, &s);
581 if (c < 0)
582 return c;
583
584 opt_delay = s + c / 2;
585 ret = iio_backend_iodelay_set(st->back, i, opt_delay);
586 if (ret)
587 return ret;
588 }
589
590 for (i = 0; i < indio_dev->num_channels; i++) {
591 ret = iio_backend_chan_disable(st->back, i);
592 if (ret)
593 return ret;
594 }
595
596 ret = iio_backend_data_size_set(st->back, 20);
597 if (ret)
598 return ret;
599
600 return regmap_write(st->regmap, AD4851_REG_PACKET, 0);
601 }
602
ad4851_get_calibscale(struct ad4851_state * st,int ch,int * val,int * val2)603 static int ad4851_get_calibscale(struct ad4851_state *st, int ch, int *val, int *val2)
604 {
605 unsigned int reg_val;
606 int gain;
607 int ret;
608
609 guard(mutex)(&st->lock);
610
611 ret = regmap_read(st->regmap, AD4851_REG_CHX_GAIN_MSB(ch), ®_val);
612 if (ret)
613 return ret;
614
615 gain = reg_val << 8;
616
617 ret = regmap_read(st->regmap, AD4851_REG_CHX_GAIN_LSB(ch), ®_val);
618 if (ret)
619 return ret;
620
621 gain |= reg_val;
622
623 *val = gain;
624 *val2 = 15;
625
626 return IIO_VAL_FRACTIONAL_LOG2;
627 }
628
ad4851_set_calibscale(struct ad4851_state * st,int ch,int val,int val2)629 static int ad4851_set_calibscale(struct ad4851_state *st, int ch, int val,
630 int val2)
631 {
632 u64 gain;
633 u8 buf[2];
634 int ret;
635
636 if (val < 0 || val2 < 0)
637 return -EINVAL;
638
639 gain = val * MICRO + val2;
640 gain = DIV_U64_ROUND_CLOSEST(gain * 32768, MICRO);
641
642 put_unaligned_be16(gain, buf);
643
644 guard(mutex)(&st->lock);
645
646 ret = regmap_write(st->regmap, AD4851_REG_CHX_GAIN_MSB(ch), buf[0]);
647 if (ret)
648 return ret;
649
650 return regmap_write(st->regmap, AD4851_REG_CHX_GAIN_LSB(ch), buf[1]);
651 }
652
ad4851_get_calibbias(struct ad4851_state * st,int ch,int * val)653 static int ad4851_get_calibbias(struct ad4851_state *st, int ch, int *val)
654 {
655 unsigned int lsb, mid, msb;
656 int ret;
657
658 guard(mutex)(&st->lock);
659 /*
660 * After testing, the bulk_write operations doesn't work as expected
661 * here since the cs needs to be raised after each byte transaction.
662 */
663 ret = regmap_read(st->regmap, AD4851_REG_CHX_OFFSET_MSB(ch), &msb);
664 if (ret)
665 return ret;
666
667 ret = regmap_read(st->regmap, AD4851_REG_CHX_OFFSET_MID(ch), &mid);
668 if (ret)
669 return ret;
670
671 ret = regmap_read(st->regmap, AD4851_REG_CHX_OFFSET_LSB(ch), &lsb);
672 if (ret)
673 return ret;
674
675 if (st->info->resolution == 16) {
676 *val = msb << 8;
677 *val |= mid;
678 *val = sign_extend32(*val, 15);
679 } else {
680 *val = msb << 12;
681 *val |= mid << 4;
682 *val |= lsb >> 4;
683 *val = sign_extend32(*val, 19);
684 }
685
686 return IIO_VAL_INT;
687 }
688
ad4851_set_calibbias(struct ad4851_state * st,int ch,int val)689 static int ad4851_set_calibbias(struct ad4851_state *st, int ch, int val)
690 {
691 u8 buf[3];
692 int ret;
693
694 if (val < 0)
695 return -EINVAL;
696
697 if (st->info->resolution == 16)
698 put_unaligned_be16(val, buf);
699 else
700 put_unaligned_be24(val << 4, buf);
701
702 guard(mutex)(&st->lock);
703 /*
704 * After testing, the bulk_write operations doesn't work as expected
705 * here since the cs needs to be raised after each byte transaction.
706 */
707 ret = regmap_write(st->regmap, AD4851_REG_CHX_OFFSET_LSB(ch), buf[2]);
708 if (ret)
709 return ret;
710
711 ret = regmap_write(st->regmap, AD4851_REG_CHX_OFFSET_MID(ch), buf[1]);
712 if (ret)
713 return ret;
714
715 return regmap_write(st->regmap, AD4851_REG_CHX_OFFSET_MSB(ch), buf[0]);
716 }
717
ad4851_set_scale(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int val,int val2)718 static int ad4851_set_scale(struct iio_dev *indio_dev,
719 const struct iio_chan_spec *chan, int val, int val2)
720 {
721 struct ad4851_state *st = iio_priv(indio_dev);
722 unsigned int scale_val[2];
723 unsigned int i;
724 const struct ad4851_scale *scale_table;
725 size_t table_size;
726 int ret;
727
728 if (st->bipolar_ch[chan->channel]) {
729 scale_table = ad4851_scale_table_bipolar;
730 table_size = ARRAY_SIZE(ad4851_scale_table_bipolar);
731 } else {
732 scale_table = ad4851_scale_table_unipolar;
733 table_size = ARRAY_SIZE(ad4851_scale_table_unipolar);
734 }
735
736 for (i = 0; i < table_size; i++) {
737 ret = __ad4851_get_scale(indio_dev, scale_table[i].scale_val,
738 &scale_val[0], &scale_val[1]);
739 if (ret)
740 return ret;
741
742 if (scale_val[0] != val || scale_val[1] != val2)
743 continue;
744
745 return regmap_write(st->regmap,
746 AD4851_REG_CHX_SOFTSPAN(chan->channel),
747 scale_table[i].reg_val);
748 }
749
750 return -EINVAL;
751 }
752
ad4851_get_scale(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * val,int * val2)753 static int ad4851_get_scale(struct iio_dev *indio_dev,
754 const struct iio_chan_spec *chan, int *val,
755 int *val2)
756 {
757 struct ad4851_state *st = iio_priv(indio_dev);
758 const struct ad4851_scale *scale_table;
759 size_t table_size;
760 u32 softspan_val;
761 int i, ret;
762
763 if (st->bipolar_ch[chan->channel]) {
764 scale_table = ad4851_scale_table_bipolar;
765 table_size = ARRAY_SIZE(ad4851_scale_table_bipolar);
766 } else {
767 scale_table = ad4851_scale_table_unipolar;
768 table_size = ARRAY_SIZE(ad4851_scale_table_unipolar);
769 }
770
771 ret = regmap_read(st->regmap, AD4851_REG_CHX_SOFTSPAN(chan->channel),
772 &softspan_val);
773 if (ret)
774 return ret;
775
776 for (i = 0; i < table_size; i++) {
777 if (softspan_val == scale_table[i].reg_val)
778 break;
779 }
780
781 if (i == table_size)
782 return -EIO;
783
784 ret = __ad4851_get_scale(indio_dev, scale_table[i].scale_val, val,
785 val2);
786 if (ret)
787 return ret;
788
789 return IIO_VAL_INT_PLUS_MICRO;
790 }
791
ad4851_read_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * val,int * val2,long info)792 static int ad4851_read_raw(struct iio_dev *indio_dev,
793 const struct iio_chan_spec *chan,
794 int *val, int *val2, long info)
795 {
796 struct ad4851_state *st = iio_priv(indio_dev);
797
798 switch (info) {
799 case IIO_CHAN_INFO_SAMP_FREQ:
800 *val = st->cnv_trigger_rate_hz;
801 *val2 = st->osr;
802 return IIO_VAL_FRACTIONAL;
803 case IIO_CHAN_INFO_CALIBSCALE:
804 return ad4851_get_calibscale(st, chan->channel, val, val2);
805 case IIO_CHAN_INFO_SCALE:
806 return ad4851_get_scale(indio_dev, chan, val, val2);
807 case IIO_CHAN_INFO_CALIBBIAS:
808 return ad4851_get_calibbias(st, chan->channel, val);
809 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
810 return ad4851_get_oversampling_ratio(st, val);
811 default:
812 return -EINVAL;
813 }
814 }
815
ad4851_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)816 static int ad4851_write_raw(struct iio_dev *indio_dev,
817 struct iio_chan_spec const *chan,
818 int val, int val2, long info)
819 {
820 struct ad4851_state *st = iio_priv(indio_dev);
821
822 switch (info) {
823 case IIO_CHAN_INFO_SAMP_FREQ:
824 if (val < 0 || val2 < 0)
825 return -EINVAL;
826 return ad4851_set_sampling_freq(st, val * st->osr + val2 * st->osr / MICRO);
827 case IIO_CHAN_INFO_SCALE:
828 return ad4851_set_scale(indio_dev, chan, val, val2);
829 case IIO_CHAN_INFO_CALIBSCALE:
830 return ad4851_set_calibscale(st, chan->channel, val, val2);
831 case IIO_CHAN_INFO_CALIBBIAS:
832 return ad4851_set_calibbias(st, chan->channel, val);
833 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
834 return ad4851_set_oversampling_ratio(indio_dev, chan, val);
835 default:
836 return -EINVAL;
837 }
838 }
839
ad4851_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)840 static int ad4851_update_scan_mode(struct iio_dev *indio_dev,
841 const unsigned long *scan_mask)
842 {
843 struct ad4851_state *st = iio_priv(indio_dev);
844 unsigned int c;
845 int ret;
846
847 for (c = 0; c < indio_dev->num_channels; c++) {
848 if (test_bit(c, scan_mask))
849 ret = iio_backend_chan_enable(st->back, c);
850 else
851 ret = iio_backend_chan_disable(st->back, c);
852 if (ret)
853 return ret;
854 }
855
856 return 0;
857 }
858
ad4851_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)859 static int ad4851_read_avail(struct iio_dev *indio_dev,
860 struct iio_chan_spec const *chan,
861 const int **vals, int *type, int *length,
862 long mask)
863 {
864 struct ad4851_state *st = iio_priv(indio_dev);
865
866 switch (mask) {
867 case IIO_CHAN_INFO_SCALE:
868 if (st->bipolar_ch[chan->channel]) {
869 *vals = (const int *)st->scales_bipolar;
870 *type = IIO_VAL_INT_PLUS_MICRO;
871 /* Values are stored in a 2D matrix */
872 *length = ARRAY_SIZE(ad4851_scale_avail_bipolar) * 2;
873 } else {
874 *vals = (const int *)st->scales_unipolar;
875 *type = IIO_VAL_INT_PLUS_MICRO;
876 /* Values are stored in a 2D matrix */
877 *length = ARRAY_SIZE(ad4851_scale_avail_unipolar) * 2;
878 }
879 return IIO_AVAIL_LIST;
880 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
881 *vals = ad4851_oversampling_ratios;
882 *length = ARRAY_SIZE(ad4851_oversampling_ratios);
883 *type = IIO_VAL_INT;
884 return IIO_AVAIL_LIST;
885 default:
886 return -EINVAL;
887 }
888 }
889
890 static const struct iio_scan_type ad4851_scan_type_20_u[] = {
891 [AD4851_SCAN_TYPE_NORMAL] = {
892 .sign = 'u',
893 .realbits = 20,
894 .storagebits = 32,
895 },
896 [AD4851_SCAN_TYPE_RESOLUTION_BOOST] = {
897 .sign = 'u',
898 .realbits = 24,
899 .storagebits = 32,
900 },
901 };
902
903 static const struct iio_scan_type ad4851_scan_type_20_b[] = {
904 [AD4851_SCAN_TYPE_NORMAL] = {
905 .sign = 's',
906 .realbits = 20,
907 .storagebits = 32,
908 },
909 [AD4851_SCAN_TYPE_RESOLUTION_BOOST] = {
910 .sign = 's',
911 .realbits = 24,
912 .storagebits = 32,
913 },
914 };
915
ad4851_get_current_scan_type(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)916 static int ad4851_get_current_scan_type(const struct iio_dev *indio_dev,
917 const struct iio_chan_spec *chan)
918 {
919 struct ad4851_state *st = iio_priv(indio_dev);
920
921 return st->resolution_boost_enabled ? AD4851_SCAN_TYPE_RESOLUTION_BOOST
922 : AD4851_SCAN_TYPE_NORMAL;
923 }
924
925 #define AD4851_IIO_CHANNEL \
926 .type = IIO_VOLTAGE, \
927 .info_mask_separate = BIT(IIO_CHAN_INFO_CALIBSCALE) | \
928 BIT(IIO_CHAN_INFO_CALIBBIAS) | \
929 BIT(IIO_CHAN_INFO_SCALE), \
930 .info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE), \
931 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
932 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
933 .info_mask_shared_by_all_available = \
934 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
935 .indexed = 1
936
937 /*
938 * In case of AD4858_IIO_CHANNEL the scan_type is handled dynamically during the
939 * parse_channels function.
940 */
941 #define AD4858_IIO_CHANNEL \
942 { \
943 AD4851_IIO_CHANNEL \
944 }
945
946 #define AD4857_IIO_CHANNEL \
947 { \
948 AD4851_IIO_CHANNEL, \
949 .scan_type = { \
950 .sign = 'u', \
951 .realbits = 16, \
952 .storagebits = 16, \
953 }, \
954 }
955
ad4851_parse_channels_common(struct iio_dev * indio_dev,struct iio_chan_spec ** chans,const struct iio_chan_spec ad4851_chan)956 static int ad4851_parse_channels_common(struct iio_dev *indio_dev,
957 struct iio_chan_spec **chans,
958 const struct iio_chan_spec ad4851_chan)
959 {
960 struct ad4851_state *st = iio_priv(indio_dev);
961 struct device *dev = &st->spi->dev;
962 struct iio_chan_spec *channels, *chan_start;
963 unsigned int num_channels, reg;
964 unsigned int index = 0;
965 int ret;
966
967 num_channels = device_get_child_node_count(dev);
968 if (num_channels > AD4851_MAX_CH_NR)
969 return dev_err_probe(dev, -EINVAL, "Too many channels: %u\n",
970 num_channels);
971
972 channels = devm_kcalloc(dev, num_channels, sizeof(*channels), GFP_KERNEL);
973 if (!channels)
974 return -ENOMEM;
975
976 chan_start = channels;
977
978 device_for_each_child_node_scoped(dev, child) {
979 ret = fwnode_property_read_u32(child, "reg", ®);
980 if (ret)
981 return dev_err_probe(dev, ret,
982 "Missing channel number\n");
983 if (reg >= AD4851_MAX_CH_NR)
984 return dev_err_probe(dev, -EINVAL,
985 "Invalid channel number\n");
986 *channels = ad4851_chan;
987 channels->scan_index = index++;
988 channels->channel = reg;
989
990 if (fwnode_property_present(child, "diff-channels")) {
991 channels->channel2 = reg + st->info->max_channels;
992 channels->differential = 1;
993 }
994
995 st->bipolar_ch[reg] = fwnode_property_read_bool(child, "bipolar");
996
997 if (st->bipolar_ch[reg]) {
998 channels->scan_type.sign = 's';
999 } else {
1000 ret = regmap_write(st->regmap, AD4851_REG_CHX_SOFTSPAN(reg),
1001 AD4851_SOFTSPAN_0V_40V);
1002 if (ret)
1003 return ret;
1004 }
1005
1006 channels++;
1007 }
1008
1009 *chans = chan_start;
1010
1011 return num_channels;
1012 }
1013
ad4857_parse_channels(struct iio_dev * indio_dev)1014 static int ad4857_parse_channels(struct iio_dev *indio_dev)
1015 {
1016 struct iio_chan_spec *ad4851_channels;
1017 const struct iio_chan_spec ad4851_chan = AD4857_IIO_CHANNEL;
1018 int ret;
1019
1020 ret = ad4851_parse_channels_common(indio_dev, &ad4851_channels,
1021 ad4851_chan);
1022 if (ret < 0)
1023 return ret;
1024
1025 indio_dev->channels = ad4851_channels;
1026 indio_dev->num_channels = ret;
1027
1028 return 0;
1029 }
1030
ad4858_parse_channels(struct iio_dev * indio_dev)1031 static int ad4858_parse_channels(struct iio_dev *indio_dev)
1032 {
1033 struct ad4851_state *st = iio_priv(indio_dev);
1034 struct device *dev = &st->spi->dev;
1035 struct iio_chan_spec *ad4851_channels;
1036 const struct iio_chan_spec ad4851_chan = AD4858_IIO_CHANNEL;
1037 int ret, i = 0;
1038
1039 ret = ad4851_parse_channels_common(indio_dev, &ad4851_channels,
1040 ad4851_chan);
1041 if (ret < 0)
1042 return ret;
1043
1044 device_for_each_child_node_scoped(dev, child) {
1045 ad4851_channels[i].has_ext_scan_type = 1;
1046 if (fwnode_property_read_bool(child, "bipolar")) {
1047 ad4851_channels[i].ext_scan_type = ad4851_scan_type_20_b;
1048 ad4851_channels[i].num_ext_scan_type = ARRAY_SIZE(ad4851_scan_type_20_b);
1049 } else {
1050 ad4851_channels[i].ext_scan_type = ad4851_scan_type_20_u;
1051 ad4851_channels[i].num_ext_scan_type = ARRAY_SIZE(ad4851_scan_type_20_u);
1052 }
1053 i++;
1054 }
1055
1056 indio_dev->channels = ad4851_channels;
1057 indio_dev->num_channels = ret;
1058
1059 return 0;
1060 }
1061
1062 /*
1063 * parse_channels() function handles the rest of the channel related attributes
1064 * that are usually are stored in the chip info structure.
1065 */
1066 static const struct ad4851_chip_info ad4851_info = {
1067 .name = "ad4851",
1068 .product_id = 0x67,
1069 .max_sample_rate_hz = 250 * KILO,
1070 .resolution = 16,
1071 .max_channels = AD4851_MAX_CH_NR,
1072 .parse_channels = ad4857_parse_channels,
1073 };
1074
1075 static const struct ad4851_chip_info ad4852_info = {
1076 .name = "ad4852",
1077 .product_id = 0x66,
1078 .max_sample_rate_hz = 250 * KILO,
1079 .resolution = 20,
1080 .max_channels = AD4851_MAX_CH_NR,
1081 .parse_channels = ad4858_parse_channels,
1082 };
1083
1084 static const struct ad4851_chip_info ad4853_info = {
1085 .name = "ad4853",
1086 .product_id = 0x65,
1087 .max_sample_rate_hz = 1 * MEGA,
1088 .resolution = 16,
1089 .max_channels = AD4851_MAX_CH_NR,
1090 .parse_channels = ad4857_parse_channels,
1091 };
1092
1093 static const struct ad4851_chip_info ad4854_info = {
1094 .name = "ad4854",
1095 .product_id = 0x64,
1096 .max_sample_rate_hz = 1 * MEGA,
1097 .resolution = 20,
1098 .max_channels = AD4851_MAX_CH_NR,
1099 .parse_channels = ad4858_parse_channels,
1100 };
1101
1102 static const struct ad4851_chip_info ad4855_info = {
1103 .name = "ad4855",
1104 .product_id = 0x63,
1105 .max_sample_rate_hz = 250 * KILO,
1106 .resolution = 16,
1107 .max_channels = AD4851_MAX_CH_NR,
1108 .parse_channels = ad4857_parse_channels,
1109 };
1110
1111 static const struct ad4851_chip_info ad4856_info = {
1112 .name = "ad4856",
1113 .product_id = 0x62,
1114 .max_sample_rate_hz = 250 * KILO,
1115 .resolution = 20,
1116 .max_channels = AD4851_MAX_CH_NR,
1117 .parse_channels = ad4858_parse_channels,
1118 };
1119
1120 static const struct ad4851_chip_info ad4857_info = {
1121 .name = "ad4857",
1122 .product_id = 0x61,
1123 .max_sample_rate_hz = 1 * MEGA,
1124 .resolution = 16,
1125 .max_channels = AD4851_MAX_CH_NR,
1126 .parse_channels = ad4857_parse_channels,
1127 };
1128
1129 static const struct ad4851_chip_info ad4858_info = {
1130 .name = "ad4858",
1131 .product_id = 0x60,
1132 .max_sample_rate_hz = 1 * MEGA,
1133 .resolution = 20,
1134 .max_channels = AD4851_MAX_CH_NR,
1135 .parse_channels = ad4858_parse_channels,
1136 };
1137
1138 static const struct ad4851_chip_info ad4858i_info = {
1139 .name = "ad4858i",
1140 .product_id = 0x6F,
1141 .max_sample_rate_hz = 1 * MEGA,
1142 .resolution = 20,
1143 .max_channels = AD4851_MAX_CH_NR,
1144 .parse_channels = ad4858_parse_channels,
1145 };
1146
1147 static const struct iio_info ad4851_iio_info = {
1148 .debugfs_reg_access = ad4851_reg_access,
1149 .read_raw = ad4851_read_raw,
1150 .write_raw = ad4851_write_raw,
1151 .update_scan_mode = ad4851_update_scan_mode,
1152 .get_current_scan_type = ad4851_get_current_scan_type,
1153 .read_avail = ad4851_read_avail,
1154 };
1155
1156 static const struct regmap_config regmap_config = {
1157 .reg_bits = 16,
1158 .val_bits = 8,
1159 .read_flag_mask = BIT(7),
1160 };
1161
1162 static const char * const ad4851_power_supplies[] = {
1163 "vcc", "vdd", "vee", "vio",
1164 };
1165
ad4851_probe(struct spi_device * spi)1166 static int ad4851_probe(struct spi_device *spi)
1167 {
1168 struct iio_dev *indio_dev;
1169 struct device *dev = &spi->dev;
1170 struct ad4851_state *st;
1171 int ret;
1172
1173 indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
1174 if (!indio_dev)
1175 return -ENOMEM;
1176
1177 st = iio_priv(indio_dev);
1178 st->spi = spi;
1179
1180 ret = devm_mutex_init(dev, &st->lock);
1181 if (ret)
1182 return ret;
1183
1184 ret = devm_regulator_bulk_get_enable(dev,
1185 ARRAY_SIZE(ad4851_power_supplies),
1186 ad4851_power_supplies);
1187 if (ret)
1188 return dev_err_probe(dev, ret,
1189 "failed to get and enable supplies\n");
1190
1191 ret = devm_regulator_get_enable_optional(dev, "vddh");
1192 if (ret < 0 && ret != -ENODEV)
1193 return dev_err_probe(dev, ret, "failed to enable vddh voltage\n");
1194
1195 ret = devm_regulator_get_enable_optional(dev, "vddl");
1196 if (ret < 0 && ret != -ENODEV)
1197 return dev_err_probe(dev, ret, "failed to enable vddl voltage\n");
1198
1199 ret = devm_regulator_get_enable_optional(dev, "vrefbuf");
1200 if (ret < 0 && ret != -ENODEV)
1201 return dev_err_probe(dev, ret, "failed to enable vrefbuf voltage\n");
1202
1203 st->vrefbuf_en = ret != -ENODEV;
1204
1205 ret = devm_regulator_get_enable_optional(dev, "vrefio");
1206 if (ret < 0 && ret != -ENODEV)
1207 return dev_err_probe(dev, ret, "failed to enable vrefio voltage\n");
1208
1209 st->vrefio_en = ret != -ENODEV;
1210
1211 st->pd_gpio = devm_gpiod_get_optional(dev, "pd", GPIOD_OUT_LOW);
1212 if (IS_ERR(st->pd_gpio))
1213 return dev_err_probe(dev, PTR_ERR(st->pd_gpio),
1214 "Error on requesting pd GPIO\n");
1215
1216 st->cnv = devm_pwm_get(dev, NULL);
1217 if (IS_ERR(st->cnv))
1218 return dev_err_probe(dev, PTR_ERR(st->cnv),
1219 "Error on requesting pwm\n");
1220
1221 st->info = spi_get_device_match_data(spi);
1222 if (!st->info)
1223 return -ENODEV;
1224
1225 st->regmap = devm_regmap_init_spi(spi, ®map_config);
1226 if (IS_ERR(st->regmap))
1227 return PTR_ERR(st->regmap);
1228
1229 ret = ad4851_set_sampling_freq(st, HZ_PER_MHZ);
1230 if (ret)
1231 return ret;
1232
1233 ret = devm_add_action_or_reset(&st->spi->dev, ad4851_pwm_disable,
1234 st->cnv);
1235 if (ret)
1236 return ret;
1237
1238 ret = ad4851_setup(st);
1239 if (ret)
1240 return ret;
1241
1242 indio_dev->name = st->info->name;
1243 indio_dev->info = &ad4851_iio_info;
1244 indio_dev->modes = INDIO_DIRECT_MODE;
1245
1246 ret = st->info->parse_channels(indio_dev);
1247 if (ret)
1248 return ret;
1249
1250 ret = ad4851_scale_fill(indio_dev);
1251 if (ret)
1252 return ret;
1253
1254 st->back = devm_iio_backend_get(dev, NULL);
1255 if (IS_ERR(st->back))
1256 return PTR_ERR(st->back);
1257
1258 ret = devm_iio_backend_request_buffer(dev, st->back, indio_dev);
1259 if (ret)
1260 return ret;
1261
1262 ret = devm_iio_backend_enable(dev, st->back);
1263 if (ret)
1264 return ret;
1265
1266 ret = ad4851_calibrate(indio_dev);
1267 if (ret)
1268 return ret;
1269
1270 return devm_iio_device_register(dev, indio_dev);
1271 }
1272
1273 static const struct of_device_id ad4851_of_match[] = {
1274 { .compatible = "adi,ad4851", .data = &ad4851_info, },
1275 { .compatible = "adi,ad4852", .data = &ad4852_info, },
1276 { .compatible = "adi,ad4853", .data = &ad4853_info, },
1277 { .compatible = "adi,ad4854", .data = &ad4854_info, },
1278 { .compatible = "adi,ad4855", .data = &ad4855_info, },
1279 { .compatible = "adi,ad4856", .data = &ad4856_info, },
1280 { .compatible = "adi,ad4857", .data = &ad4857_info, },
1281 { .compatible = "adi,ad4858", .data = &ad4858_info, },
1282 { .compatible = "adi,ad4858i", .data = &ad4858i_info, },
1283 { }
1284 };
1285
1286 static const struct spi_device_id ad4851_spi_id[] = {
1287 { "ad4851", (kernel_ulong_t)&ad4851_info },
1288 { "ad4852", (kernel_ulong_t)&ad4852_info },
1289 { "ad4853", (kernel_ulong_t)&ad4853_info },
1290 { "ad4854", (kernel_ulong_t)&ad4854_info },
1291 { "ad4855", (kernel_ulong_t)&ad4855_info },
1292 { "ad4856", (kernel_ulong_t)&ad4856_info },
1293 { "ad4857", (kernel_ulong_t)&ad4857_info },
1294 { "ad4858", (kernel_ulong_t)&ad4858_info },
1295 { "ad4858i", (kernel_ulong_t)&ad4858i_info },
1296 { }
1297 };
1298 MODULE_DEVICE_TABLE(spi, ad4851_spi_id);
1299
1300 static struct spi_driver ad4851_driver = {
1301 .probe = ad4851_probe,
1302 .driver = {
1303 .name = "ad4851",
1304 .of_match_table = ad4851_of_match,
1305 },
1306 .id_table = ad4851_spi_id,
1307 };
1308 module_spi_driver(ad4851_driver);
1309
1310 MODULE_AUTHOR("Sergiu Cuciurean <sergiu.cuciurean@analog.com>");
1311 MODULE_AUTHOR("Dragos Bogdan <dragos.bogdan@analog.com>");
1312 MODULE_AUTHOR("Antoniu Miclaus <antoniu.miclaus@analog.com>");
1313 MODULE_DESCRIPTION("Analog Devices AD4851 DAS driver");
1314 MODULE_LICENSE("GPL");
1315 MODULE_IMPORT_NS("IIO_BACKEND");
1316