xref: /linux/drivers/iio/adc/ad4030.c (revision c26f4fbd58375bd6ef74f95eb73d61762ad97c59)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Analog Devices AD4030 and AD4630 ADC family driver.
4  *
5  * Copyright 2024 Analog Devices, Inc.
6  * Copyright 2024 BayLibre, SAS
7  *
8  * based on code from:
9  *	Analog Devices, Inc.
10  *	  Sergiu Cuciurean <sergiu.cuciurean@analog.com>
11  *	  Nuno Sa <nuno.sa@analog.com>
12  *	  Marcelo Schmitt <marcelo.schmitt@analog.com>
13  *	  Liviu Adace <liviu.adace@analog.com>
14  */
15 
16 #include <linux/bitfield.h>
17 #include <linux/clk.h>
18 #include <linux/iio/iio.h>
19 #include <linux/iio/trigger_consumer.h>
20 #include <linux/iio/triggered_buffer.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/spi/spi.h>
24 #include <linux/unaligned.h>
25 #include <linux/units.h>
26 
27 #define AD4030_REG_INTERFACE_CONFIG_A			0x00
28 #define     AD4030_REG_INTERFACE_CONFIG_A_SW_RESET	(BIT(0) | BIT(7))
29 #define AD4030_REG_INTERFACE_CONFIG_B			0x01
30 #define AD4030_REG_DEVICE_CONFIG			0x02
31 #define AD4030_REG_CHIP_TYPE				0x03
32 #define AD4030_REG_PRODUCT_ID_L				0x04
33 #define AD4030_REG_PRODUCT_ID_H				0x05
34 #define AD4030_REG_CHIP_GRADE				0x06
35 #define     AD4030_REG_CHIP_GRADE_AD4030_24_GRADE	0x10
36 #define     AD4030_REG_CHIP_GRADE_AD4630_16_GRADE	0x03
37 #define     AD4030_REG_CHIP_GRADE_AD4630_24_GRADE	0x00
38 #define     AD4030_REG_CHIP_GRADE_AD4632_16_GRADE	0x05
39 #define     AD4030_REG_CHIP_GRADE_AD4632_24_GRADE	0x02
40 #define     AD4030_REG_CHIP_GRADE_MASK_CHIP_GRADE	GENMASK(7, 3)
41 #define AD4030_REG_SCRATCH_PAD			0x0A
42 #define AD4030_REG_SPI_REVISION			0x0B
43 #define AD4030_REG_VENDOR_L			0x0C
44 #define AD4030_REG_VENDOR_H			0x0D
45 #define AD4030_REG_STREAM_MODE			0x0E
46 #define AD4030_REG_INTERFACE_CONFIG_C		0x10
47 #define AD4030_REG_INTERFACE_STATUS_A		0x11
48 #define AD4030_REG_EXIT_CFG_MODE		0x14
49 #define     AD4030_REG_EXIT_CFG_MODE_EXIT_MSK	BIT(0)
50 #define AD4030_REG_AVG				0x15
51 #define     AD4030_REG_AVG_MASK_AVG_SYNC	BIT(7)
52 #define     AD4030_REG_AVG_MASK_AVG_VAL		GENMASK(4, 0)
53 #define AD4030_REG_OFFSET_X0_0			0x16
54 #define AD4030_REG_OFFSET_X0_1			0x17
55 #define AD4030_REG_OFFSET_X0_2			0x18
56 #define AD4030_REG_OFFSET_X1_0			0x19
57 #define AD4030_REG_OFFSET_X1_1			0x1A
58 #define AD4030_REG_OFFSET_X1_2			0x1B
59 #define     AD4030_REG_OFFSET_BYTES_NB		3
60 #define     AD4030_REG_OFFSET_CHAN(ch)		\
61 	(AD4030_REG_OFFSET_X0_2 + (AD4030_REG_OFFSET_BYTES_NB * (ch)))
62 #define AD4030_REG_GAIN_X0_LSB			0x1C
63 #define AD4030_REG_GAIN_X0_MSB			0x1D
64 #define AD4030_REG_GAIN_X1_LSB			0x1E
65 #define AD4030_REG_GAIN_X1_MSB			0x1F
66 #define     AD4030_REG_GAIN_MAX_GAIN		1999970
67 #define     AD4030_REG_GAIN_BYTES_NB		2
68 #define     AD4030_REG_GAIN_CHAN(ch)		\
69 	(AD4030_REG_GAIN_X0_MSB + (AD4030_REG_GAIN_BYTES_NB * (ch)))
70 #define AD4030_REG_MODES			0x20
71 #define     AD4030_REG_MODES_MASK_OUT_DATA_MODE	GENMASK(2, 0)
72 #define     AD4030_REG_MODES_MASK_LANE_MODE	GENMASK(7, 6)
73 #define AD4030_REG_OSCILATOR			0x21
74 #define AD4030_REG_IO				0x22
75 #define     AD4030_REG_IO_MASK_IO2X		BIT(1)
76 #define AD4030_REG_PAT0				0x23
77 #define AD4030_REG_PAT1				0x24
78 #define AD4030_REG_PAT2				0x25
79 #define AD4030_REG_PAT3				0x26
80 #define AD4030_REG_DIG_DIAG			0x34
81 #define AD4030_REG_DIG_ERR			0x35
82 
83 /* Sequence starting with "1 0 1" to enable reg access */
84 #define AD4030_REG_ACCESS			0xA0
85 
86 #define AD4030_MAX_IIO_SAMPLE_SIZE_BUFFERED	BITS_TO_BYTES(64)
87 #define AD4030_MAX_HARDWARE_CHANNEL_NB		2
88 #define AD4030_MAX_IIO_CHANNEL_NB		5
89 #define AD4030_SINGLE_COMMON_BYTE_CHANNELS_MASK	0b10
90 #define AD4030_DUAL_COMMON_BYTE_CHANNELS_MASK	0b1100
91 #define AD4030_GAIN_MIDLE_POINT			0x8000
92 /*
93  * This accounts for 1 sample per channel plus one s64 for the timestamp,
94  * aligned on a s64 boundary
95  */
96 #define AD4030_MAXIMUM_RX_BUFFER_SIZE			\
97 	(ALIGN(AD4030_MAX_IIO_SAMPLE_SIZE_BUFFERED *	\
98 	      AD4030_MAX_HARDWARE_CHANNEL_NB,		\
99 	      sizeof(s64)) + sizeof(s64))
100 
101 #define AD4030_VREF_MIN_UV		(4096 * MILLI)
102 #define AD4030_VREF_MAX_UV		(5000 * MILLI)
103 #define AD4030_VIO_THRESHOLD_UV		(1400 * MILLI)
104 #define AD4030_SPI_MAX_XFER_LEN		8
105 #define AD4030_SPI_MAX_REG_XFER_SPEED	(80 * MEGA)
106 #define AD4030_TCNVH_NS			10
107 #define AD4030_TCNVL_NS			20
108 #define AD4030_TCYC_NS			500
109 #define AD4030_TCYC_ADJUSTED_NS		(AD4030_TCYC_NS - AD4030_TCNVL_NS)
110 #define AD4030_TRESET_PW_NS		50
111 #define AD4632_TCYC_NS			2000
112 #define AD4632_TCYC_ADJUSTED_NS		(AD4632_TCYC_NS - AD4030_TCNVL_NS)
113 #define AD4030_TRESET_COM_DELAY_MS	750
114 
115 enum ad4030_out_mode {
116 	AD4030_OUT_DATA_MD_DIFF,
117 	AD4030_OUT_DATA_MD_16_DIFF_8_COM,
118 	AD4030_OUT_DATA_MD_24_DIFF_8_COM,
119 	AD4030_OUT_DATA_MD_30_AVERAGED_DIFF,
120 	AD4030_OUT_DATA_MD_32_PATTERN,
121 };
122 
123 enum {
124 	AD4030_LANE_MD_1_PER_CH,
125 	AD4030_LANE_MD_2_PER_CH,
126 	AD4030_LANE_MD_4_PER_CH,
127 	AD4030_LANE_MD_INTERLEAVED,
128 };
129 
130 enum {
131 	AD4030_SCAN_TYPE_NORMAL,
132 	AD4030_SCAN_TYPE_AVG,
133 };
134 
135 struct ad4030_chip_info {
136 	const char *name;
137 	const unsigned long *available_masks;
138 	const struct iio_chan_spec channels[AD4030_MAX_IIO_CHANNEL_NB];
139 	u8 grade;
140 	u8 precision_bits;
141 	/* Number of hardware channels */
142 	int num_voltage_inputs;
143 	unsigned int tcyc_ns;
144 };
145 
146 struct ad4030_state {
147 	struct spi_device *spi;
148 	struct regmap *regmap;
149 	const struct ad4030_chip_info *chip;
150 	struct gpio_desc *cnv_gpio;
151 	int vref_uv;
152 	int vio_uv;
153 	int offset_avail[3];
154 	unsigned int avg_log2;
155 	enum ad4030_out_mode mode;
156 
157 	/*
158 	 * DMA (thus cache coherency maintenance) requires the transfer buffers
159 	 * to live in their own cache lines.
160 	 */
161 	u8 tx_data[AD4030_SPI_MAX_XFER_LEN] __aligned(IIO_DMA_MINALIGN);
162 	union {
163 		u8 raw[AD4030_MAXIMUM_RX_BUFFER_SIZE];
164 		struct {
165 			s32 diff;
166 			u8 common;
167 		} single;
168 		struct {
169 			s32 diff[2];
170 			u8 common[2];
171 		} dual;
172 	} rx_data;
173 };
174 
175 /*
176  * For a chip with 2 hardware channel this will be used to create 2 common-mode
177  * channels:
178  * - voltage4
179  * - voltage5
180  * As the common-mode channels are after the differential ones, we compute the
181  * channel number like this:
182  * - _idx is the scan_index (the order in the output buffer)
183  * - _ch is the hardware channel number this common-mode channel is related
184  * - _idx - _ch gives us the number of channel in the chip
185  * - _idx - _ch * 2 is the starting number of the common-mode channels, since
186  *   for each differential channel there is a common-mode channel
187  * - _idx - _ch * 2 + _ch gives the channel number for this specific common-mode
188  *   channel
189  */
190 #define AD4030_CHAN_CMO(_idx, _ch)  {					\
191 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
192 		BIT(IIO_CHAN_INFO_SCALE),				\
193 	.type = IIO_VOLTAGE,						\
194 	.indexed = 1,							\
195 	.address = (_ch),						\
196 	.channel = ((_idx) - (_ch)) * 2 + (_ch),			\
197 	.scan_index = (_idx),						\
198 	.scan_type = {							\
199 		.sign = 'u',						\
200 		.storagebits = 8,					\
201 		.realbits = 8,						\
202 		.endianness = IIO_BE,					\
203 	},								\
204 }
205 
206 /*
207  * For a chip with 2 hardware channel this will be used to create 2 differential
208  * channels:
209  * - voltage0-voltage1
210  * - voltage2-voltage3
211  */
212 #define AD4030_CHAN_DIFF(_idx, _scan_type) {				\
213 	.info_mask_shared_by_all =					\
214 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),			\
215 	.info_mask_shared_by_all_available =				\
216 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),			\
217 	.info_mask_separate = BIT(IIO_CHAN_INFO_SCALE) |		\
218 		BIT(IIO_CHAN_INFO_CALIBSCALE) |				\
219 		BIT(IIO_CHAN_INFO_CALIBBIAS) |				\
220 		BIT(IIO_CHAN_INFO_RAW),					\
221 	.info_mask_separate_available = BIT(IIO_CHAN_INFO_CALIBBIAS) |	\
222 		BIT(IIO_CHAN_INFO_CALIBSCALE),				\
223 	.type = IIO_VOLTAGE,						\
224 	.indexed = 1,							\
225 	.address = (_idx),						\
226 	.channel = (_idx) * 2,						\
227 	.channel2 = (_idx) * 2 + 1,					\
228 	.scan_index = (_idx),						\
229 	.differential = true,						\
230 	.has_ext_scan_type = 1,						\
231 	.ext_scan_type = _scan_type,					\
232 	.num_ext_scan_type = ARRAY_SIZE(_scan_type),			\
233 }
234 
235 static const int ad4030_average_modes[] = {
236 	1, 2, 4, 8, 16, 32, 64, 128,
237 	256, 512, 1024, 2048, 4096, 8192, 16384, 32768,
238 	65536,
239 };
240 
ad4030_enter_config_mode(struct ad4030_state * st)241 static int ad4030_enter_config_mode(struct ad4030_state *st)
242 {
243 	st->tx_data[0] = AD4030_REG_ACCESS;
244 
245 	struct spi_transfer xfer = {
246 		.tx_buf = st->tx_data,
247 		.len = 1,
248 		.speed_hz = AD4030_SPI_MAX_REG_XFER_SPEED,
249 	};
250 
251 	return spi_sync_transfer(st->spi, &xfer, 1);
252 }
253 
ad4030_exit_config_mode(struct ad4030_state * st)254 static int ad4030_exit_config_mode(struct ad4030_state *st)
255 {
256 	st->tx_data[0] = 0;
257 	st->tx_data[1] = AD4030_REG_EXIT_CFG_MODE;
258 	st->tx_data[2] = AD4030_REG_EXIT_CFG_MODE_EXIT_MSK;
259 
260 	struct spi_transfer xfer = {
261 		.tx_buf = st->tx_data,
262 		.len = 3,
263 		.speed_hz = AD4030_SPI_MAX_REG_XFER_SPEED,
264 	};
265 
266 	return spi_sync_transfer(st->spi, &xfer, 1);
267 }
268 
ad4030_spi_read(void * context,const void * reg,size_t reg_size,void * val,size_t val_size)269 static int ad4030_spi_read(void *context, const void *reg, size_t reg_size,
270 			   void *val, size_t val_size)
271 {
272 	int ret;
273 	struct ad4030_state *st = context;
274 	struct spi_transfer xfer = {
275 		.tx_buf = st->tx_data,
276 		.rx_buf = st->rx_data.raw,
277 		.len = reg_size + val_size,
278 		.speed_hz = AD4030_SPI_MAX_REG_XFER_SPEED,
279 	};
280 
281 	if (xfer.len > sizeof(st->tx_data) ||
282 	    xfer.len > sizeof(st->rx_data.raw))
283 		return  -EINVAL;
284 
285 	ret = ad4030_enter_config_mode(st);
286 	if (ret)
287 		return ret;
288 
289 	memset(st->tx_data, 0, sizeof(st->tx_data));
290 	memcpy(st->tx_data, reg, reg_size);
291 
292 	ret = spi_sync_transfer(st->spi, &xfer, 1);
293 	if (ret)
294 		return ret;
295 
296 	memcpy(val, &st->rx_data.raw[reg_size], val_size);
297 
298 	return ad4030_exit_config_mode(st);
299 }
300 
ad4030_spi_write(void * context,const void * data,size_t count)301 static int ad4030_spi_write(void *context, const void *data, size_t count)
302 {
303 	int ret;
304 	struct ad4030_state *st = context;
305 	bool is_reset = count >= 3 &&
306 			((u8 *)data)[0] == 0 &&
307 			((u8 *)data)[1] == 0 &&
308 			((u8 *)data)[2] == 0x81;
309 	struct spi_transfer xfer = {
310 		.tx_buf = st->tx_data,
311 		.len = count,
312 		.speed_hz = AD4030_SPI_MAX_REG_XFER_SPEED,
313 	};
314 
315 	if (count > sizeof(st->tx_data))
316 		return  -EINVAL;
317 
318 	ret = ad4030_enter_config_mode(st);
319 	if (ret)
320 		return ret;
321 
322 	memcpy(st->tx_data, data, count);
323 
324 	ret = spi_sync_transfer(st->spi, &xfer, 1);
325 	if (ret)
326 		return ret;
327 
328 	/*
329 	 * From datasheet: "After a [...] reset, no SPI commands or conversions
330 	 * can be started for 750us"
331 	 *  After a reset we are in conversion mode, no need to exit config mode
332 	 */
333 	if (is_reset) {
334 		fsleep(750);
335 		return 0;
336 	}
337 
338 	return ad4030_exit_config_mode(st);
339 }
340 
341 static const struct regmap_bus ad4030_regmap_bus = {
342 	.read = ad4030_spi_read,
343 	.write = ad4030_spi_write,
344 	.reg_format_endian_default = REGMAP_ENDIAN_BIG,
345 };
346 
347 static const struct regmap_range ad4030_regmap_rd_range[] = {
348 	regmap_reg_range(AD4030_REG_INTERFACE_CONFIG_A, AD4030_REG_CHIP_GRADE),
349 	regmap_reg_range(AD4030_REG_SCRATCH_PAD, AD4030_REG_STREAM_MODE),
350 	regmap_reg_range(AD4030_REG_INTERFACE_CONFIG_C,
351 			 AD4030_REG_INTERFACE_STATUS_A),
352 	regmap_reg_range(AD4030_REG_EXIT_CFG_MODE, AD4030_REG_PAT3),
353 	regmap_reg_range(AD4030_REG_DIG_DIAG, AD4030_REG_DIG_ERR),
354 };
355 
356 static const struct regmap_range ad4030_regmap_wr_range[] = {
357 	regmap_reg_range(AD4030_REG_CHIP_TYPE, AD4030_REG_CHIP_GRADE),
358 	regmap_reg_range(AD4030_REG_SPI_REVISION, AD4030_REG_VENDOR_H),
359 };
360 
361 static const struct regmap_access_table ad4030_regmap_rd_table = {
362 	.yes_ranges = ad4030_regmap_rd_range,
363 	.n_yes_ranges = ARRAY_SIZE(ad4030_regmap_rd_range),
364 };
365 
366 static const struct regmap_access_table ad4030_regmap_wr_table = {
367 	.no_ranges = ad4030_regmap_wr_range,
368 	.n_no_ranges = ARRAY_SIZE(ad4030_regmap_wr_range),
369 };
370 
371 static const struct regmap_config ad4030_regmap_config = {
372 	.reg_bits = 16,
373 	.val_bits = 8,
374 	.read_flag_mask = 0x80,
375 	.rd_table = &ad4030_regmap_rd_table,
376 	.wr_table = &ad4030_regmap_wr_table,
377 	.max_register = AD4030_REG_DIG_ERR,
378 };
379 
ad4030_get_chan_scale(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2)380 static int ad4030_get_chan_scale(struct iio_dev *indio_dev,
381 				 struct iio_chan_spec const *chan,
382 				 int *val,
383 				 int *val2)
384 {
385 	struct ad4030_state *st = iio_priv(indio_dev);
386 	const struct iio_scan_type *scan_type;
387 
388 	scan_type = iio_get_current_scan_type(indio_dev, st->chip->channels);
389 	if (IS_ERR(scan_type))
390 		return PTR_ERR(scan_type);
391 
392 	if (chan->differential)
393 		*val = (st->vref_uv * 2) / MILLI;
394 	else
395 		*val = st->vref_uv / MILLI;
396 
397 	*val2 = scan_type->realbits;
398 
399 	return IIO_VAL_FRACTIONAL_LOG2;
400 }
401 
ad4030_get_chan_calibscale(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2)402 static int ad4030_get_chan_calibscale(struct iio_dev *indio_dev,
403 				      struct iio_chan_spec const *chan,
404 				      int *val,
405 				      int *val2)
406 {
407 	struct ad4030_state *st = iio_priv(indio_dev);
408 	u16 gain;
409 	int ret;
410 
411 	ret = regmap_bulk_read(st->regmap, AD4030_REG_GAIN_CHAN(chan->address),
412 			       st->rx_data.raw, AD4030_REG_GAIN_BYTES_NB);
413 	if (ret)
414 		return ret;
415 
416 	gain = get_unaligned_be16(st->rx_data.raw);
417 
418 	/* From datasheet: multiplied output = input × gain word/0x8000 */
419 	*val = gain / AD4030_GAIN_MIDLE_POINT;
420 	*val2 = mul_u64_u32_div(gain % AD4030_GAIN_MIDLE_POINT, NANO,
421 				AD4030_GAIN_MIDLE_POINT);
422 
423 	return IIO_VAL_INT_PLUS_NANO;
424 }
425 
426 /* Returns the offset where 1 LSB = (VREF/2^precision_bits - 1)/gain */
ad4030_get_chan_calibbias(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)427 static int ad4030_get_chan_calibbias(struct iio_dev *indio_dev,
428 				     struct iio_chan_spec const *chan,
429 				     int *val)
430 {
431 	struct ad4030_state *st = iio_priv(indio_dev);
432 	int ret;
433 
434 	ret = regmap_bulk_read(st->regmap,
435 			       AD4030_REG_OFFSET_CHAN(chan->address),
436 			       st->rx_data.raw, AD4030_REG_OFFSET_BYTES_NB);
437 	if (ret)
438 		return ret;
439 
440 	switch (st->chip->precision_bits) {
441 	case 16:
442 		*val = sign_extend32(get_unaligned_be16(st->rx_data.raw), 15);
443 		return IIO_VAL_INT;
444 
445 	case 24:
446 		*val = sign_extend32(get_unaligned_be24(st->rx_data.raw), 23);
447 		return IIO_VAL_INT;
448 
449 	default:
450 		return -EINVAL;
451 	}
452 }
453 
ad4030_set_chan_calibscale(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int gain_int,int gain_frac)454 static int ad4030_set_chan_calibscale(struct iio_dev *indio_dev,
455 				      struct iio_chan_spec const *chan,
456 				      int gain_int,
457 				      int gain_frac)
458 {
459 	struct ad4030_state *st = iio_priv(indio_dev);
460 	u64 gain;
461 
462 	if (gain_int < 0 || gain_frac < 0)
463 		return -EINVAL;
464 
465 	gain = mul_u32_u32(gain_int, MICRO) + gain_frac;
466 
467 	if (gain > AD4030_REG_GAIN_MAX_GAIN)
468 		return -EINVAL;
469 
470 	put_unaligned_be16(DIV_ROUND_CLOSEST_ULL(gain * AD4030_GAIN_MIDLE_POINT,
471 						 MICRO),
472 			   st->tx_data);
473 
474 	return regmap_bulk_write(st->regmap,
475 				 AD4030_REG_GAIN_CHAN(chan->address),
476 				 st->tx_data, AD4030_REG_GAIN_BYTES_NB);
477 }
478 
ad4030_set_chan_calibbias(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int offset)479 static int ad4030_set_chan_calibbias(struct iio_dev *indio_dev,
480 				     struct iio_chan_spec const *chan,
481 				     int offset)
482 {
483 	struct ad4030_state *st = iio_priv(indio_dev);
484 
485 	if (offset < st->offset_avail[0] || offset > st->offset_avail[2])
486 		return -EINVAL;
487 
488 	st->tx_data[2] = 0;
489 
490 	switch (st->chip->precision_bits) {
491 	case 16:
492 		put_unaligned_be16(offset, st->tx_data);
493 		break;
494 
495 	case 24:
496 		put_unaligned_be24(offset, st->tx_data);
497 		break;
498 
499 	default:
500 		return -EINVAL;
501 	}
502 
503 	return regmap_bulk_write(st->regmap,
504 				 AD4030_REG_OFFSET_CHAN(chan->address),
505 				 st->tx_data, AD4030_REG_OFFSET_BYTES_NB);
506 }
507 
ad4030_set_avg_frame_len(struct iio_dev * dev,int avg_val)508 static int ad4030_set_avg_frame_len(struct iio_dev *dev, int avg_val)
509 {
510 	struct ad4030_state *st = iio_priv(dev);
511 	unsigned int avg_log2 = ilog2(avg_val);
512 	unsigned int last_avg_idx = ARRAY_SIZE(ad4030_average_modes) - 1;
513 	int ret;
514 
515 	if (avg_val < 0 || avg_val > ad4030_average_modes[last_avg_idx])
516 		return -EINVAL;
517 
518 	ret = regmap_write(st->regmap, AD4030_REG_AVG,
519 			   AD4030_REG_AVG_MASK_AVG_SYNC |
520 			   FIELD_PREP(AD4030_REG_AVG_MASK_AVG_VAL, avg_log2));
521 	if (ret)
522 		return ret;
523 
524 	st->avg_log2 = avg_log2;
525 
526 	return 0;
527 }
528 
ad4030_is_common_byte_asked(struct ad4030_state * st,unsigned int mask)529 static bool ad4030_is_common_byte_asked(struct ad4030_state *st,
530 					unsigned int mask)
531 {
532 	return mask & (st->chip->num_voltage_inputs == 1 ?
533 		AD4030_SINGLE_COMMON_BYTE_CHANNELS_MASK :
534 		AD4030_DUAL_COMMON_BYTE_CHANNELS_MASK);
535 }
536 
ad4030_set_mode(struct iio_dev * indio_dev,unsigned long mask)537 static int ad4030_set_mode(struct iio_dev *indio_dev, unsigned long mask)
538 {
539 	struct ad4030_state *st = iio_priv(indio_dev);
540 
541 	if (st->avg_log2 > 0) {
542 		st->mode = AD4030_OUT_DATA_MD_30_AVERAGED_DIFF;
543 	} else if (ad4030_is_common_byte_asked(st, mask)) {
544 		switch (st->chip->precision_bits) {
545 		case 16:
546 			st->mode = AD4030_OUT_DATA_MD_16_DIFF_8_COM;
547 			break;
548 
549 		case 24:
550 			st->mode = AD4030_OUT_DATA_MD_24_DIFF_8_COM;
551 			break;
552 
553 		default:
554 			return -EINVAL;
555 		}
556 	} else {
557 		st->mode = AD4030_OUT_DATA_MD_DIFF;
558 	}
559 
560 	return regmap_update_bits(st->regmap, AD4030_REG_MODES,
561 				  AD4030_REG_MODES_MASK_OUT_DATA_MODE,
562 				  st->mode);
563 }
564 
565 /*
566  * Descramble 2 32bits numbers out of a 64bits. The bits are interleaved:
567  * 1 bit for first number, 1 bit for the second, and so on...
568  */
ad4030_extract_interleaved(u8 * src,u32 * ch0,u32 * ch1)569 static void ad4030_extract_interleaved(u8 *src, u32 *ch0, u32 *ch1)
570 {
571 	u8 h0, h1, l0, l1;
572 	u32 out0, out1;
573 	u8 *out0_raw = (u8 *)&out0;
574 	u8 *out1_raw = (u8 *)&out1;
575 
576 	for (int i = 0; i < 4; i++) {
577 		h0 = src[i * 2];
578 		l1 = src[i * 2 + 1];
579 		h1 = h0 << 1;
580 		l0 = l1 >> 1;
581 
582 		h0 &= 0xAA;
583 		l0 &= 0x55;
584 		h1 &= 0xAA;
585 		l1 &= 0x55;
586 
587 		h0 = (h0 | h0 << 001) & 0xCC;
588 		h1 = (h1 | h1 << 001) & 0xCC;
589 		l0 = (l0 | l0 >> 001) & 0x33;
590 		l1 = (l1 | l1 >> 001) & 0x33;
591 		h0 = (h0 | h0 << 002) & 0xF0;
592 		h1 = (h1 | h1 << 002) & 0xF0;
593 		l0 = (l0 | l0 >> 002) & 0x0F;
594 		l1 = (l1 | l1 >> 002) & 0x0F;
595 
596 		out0_raw[i] = h0 | l0;
597 		out1_raw[i] = h1 | l1;
598 	}
599 
600 	*ch0 = out0;
601 	*ch1 = out1;
602 }
603 
ad4030_conversion(struct iio_dev * indio_dev)604 static int ad4030_conversion(struct iio_dev *indio_dev)
605 {
606 	struct ad4030_state *st = iio_priv(indio_dev);
607 	const struct iio_scan_type *scan_type;
608 	unsigned char diff_realbytes, diff_storagebytes;
609 	unsigned int bytes_to_read;
610 	unsigned long cnv_nb = BIT(st->avg_log2);
611 	unsigned int i;
612 	int ret;
613 
614 	scan_type = iio_get_current_scan_type(indio_dev, st->chip->channels);
615 	if (IS_ERR(scan_type))
616 		return PTR_ERR(scan_type);
617 
618 	diff_realbytes = BITS_TO_BYTES(scan_type->realbits);
619 	diff_storagebytes = BITS_TO_BYTES(scan_type->storagebits);
620 
621 	/* Number of bytes for one differential channel */
622 	bytes_to_read = diff_realbytes;
623 	/* Add one byte if we are using a differential + common byte mode */
624 	bytes_to_read += (st->mode == AD4030_OUT_DATA_MD_24_DIFF_8_COM ||
625 			st->mode == AD4030_OUT_DATA_MD_16_DIFF_8_COM) ? 1 : 0;
626 	/* Mulitiply by the number of hardware channels */
627 	bytes_to_read *= st->chip->num_voltage_inputs;
628 
629 	for (i = 0; i < cnv_nb; i++) {
630 		gpiod_set_value_cansleep(st->cnv_gpio, 1);
631 		ndelay(AD4030_TCNVH_NS);
632 		gpiod_set_value_cansleep(st->cnv_gpio, 0);
633 		ndelay(st->chip->tcyc_ns);
634 	}
635 
636 	ret = spi_read(st->spi, st->rx_data.raw, bytes_to_read);
637 	if (ret)
638 		return ret;
639 
640 	if (st->chip->num_voltage_inputs == 2)
641 		ad4030_extract_interleaved(st->rx_data.raw,
642 					   &st->rx_data.dual.diff[0],
643 					   &st->rx_data.dual.diff[1]);
644 
645 	/*
646 	 * If no common mode voltage channel is enabled, we can use the raw
647 	 * data as is. Otherwise, we need to rearrange the data a bit to match
648 	 * the natural alignment of the IIO buffer.
649 	 */
650 
651 	if (st->mode != AD4030_OUT_DATA_MD_16_DIFF_8_COM &&
652 	    st->mode != AD4030_OUT_DATA_MD_24_DIFF_8_COM)
653 		return 0;
654 
655 	if (st->chip->num_voltage_inputs == 1) {
656 		st->rx_data.single.common = st->rx_data.raw[diff_realbytes];
657 		return 0;
658 	}
659 
660 	for (i = 0; i < st->chip->num_voltage_inputs; i++)
661 		st->rx_data.dual.common[i] =
662 			st->rx_data.raw[diff_storagebytes * i + diff_realbytes];
663 
664 	return 0;
665 }
666 
ad4030_single_conversion(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * val)667 static int ad4030_single_conversion(struct iio_dev *indio_dev,
668 				    const struct iio_chan_spec *chan, int *val)
669 {
670 	struct ad4030_state *st = iio_priv(indio_dev);
671 	int ret;
672 
673 	ret = ad4030_set_mode(indio_dev, BIT(chan->scan_index));
674 	if (ret)
675 		return ret;
676 
677 	ret = ad4030_conversion(indio_dev);
678 	if (ret)
679 		return ret;
680 
681 	if (chan->differential)
682 		if (st->chip->num_voltage_inputs == 1)
683 			*val = st->rx_data.single.diff;
684 		else
685 			*val = st->rx_data.dual.diff[chan->address];
686 	else
687 		if (st->chip->num_voltage_inputs == 1)
688 			*val = st->rx_data.single.common;
689 		else
690 			*val = st->rx_data.dual.common[chan->address];
691 
692 	return IIO_VAL_INT;
693 }
694 
ad4030_trigger_handler(int irq,void * p)695 static irqreturn_t ad4030_trigger_handler(int irq, void *p)
696 {
697 	struct iio_poll_func *pf = p;
698 	struct iio_dev *indio_dev = pf->indio_dev;
699 	struct ad4030_state *st = iio_priv(indio_dev);
700 	int ret;
701 
702 	ret = ad4030_conversion(indio_dev);
703 	if (ret)
704 		goto out;
705 
706 	iio_push_to_buffers_with_ts(indio_dev, &st->rx_data, sizeof(st->rx_data),
707 				    pf->timestamp);
708 
709 out:
710 	iio_trigger_notify_done(indio_dev->trig);
711 
712 	return IRQ_HANDLED;
713 }
714 
715 static const int ad4030_gain_avail[3][2] = {
716 	{ 0, 0 },
717 	{ 0, 30518 },
718 	{ 1, 999969482 },
719 };
720 
ad4030_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * channel,const int ** vals,int * type,int * length,long mask)721 static int ad4030_read_avail(struct iio_dev *indio_dev,
722 			     struct iio_chan_spec const *channel,
723 			     const int **vals, int *type,
724 			     int *length, long mask)
725 {
726 	struct ad4030_state *st = iio_priv(indio_dev);
727 
728 	switch (mask) {
729 	case IIO_CHAN_INFO_CALIBBIAS:
730 		*vals = st->offset_avail;
731 		*type = IIO_VAL_INT;
732 		return IIO_AVAIL_RANGE;
733 
734 	case IIO_CHAN_INFO_CALIBSCALE:
735 		*vals = (void *)ad4030_gain_avail;
736 		*type = IIO_VAL_INT_PLUS_NANO;
737 		return IIO_AVAIL_RANGE;
738 
739 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
740 		*vals = ad4030_average_modes;
741 		*type = IIO_VAL_INT;
742 		*length = ARRAY_SIZE(ad4030_average_modes);
743 		return IIO_AVAIL_LIST;
744 
745 	default:
746 		return -EINVAL;
747 	}
748 }
749 
ad4030_read_raw_dispatch(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)750 static int ad4030_read_raw_dispatch(struct iio_dev *indio_dev,
751 				    struct iio_chan_spec const *chan, int *val,
752 				    int *val2, long info)
753 {
754 	struct ad4030_state *st = iio_priv(indio_dev);
755 
756 	switch (info) {
757 	case IIO_CHAN_INFO_RAW:
758 		return ad4030_single_conversion(indio_dev, chan, val);
759 
760 	case IIO_CHAN_INFO_CALIBSCALE:
761 		return ad4030_get_chan_calibscale(indio_dev, chan, val, val2);
762 
763 	case IIO_CHAN_INFO_CALIBBIAS:
764 		return ad4030_get_chan_calibbias(indio_dev, chan, val);
765 
766 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
767 		*val = BIT(st->avg_log2);
768 		return IIO_VAL_INT;
769 
770 	default:
771 		return -EINVAL;
772 	}
773 }
774 
ad4030_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)775 static int ad4030_read_raw(struct iio_dev *indio_dev,
776 			   struct iio_chan_spec const *chan, int *val,
777 			   int *val2, long info)
778 {
779 	int ret;
780 
781 	if (info == IIO_CHAN_INFO_SCALE)
782 		return ad4030_get_chan_scale(indio_dev, chan, val, val2);
783 
784 	if (!iio_device_claim_direct(indio_dev))
785 		return -EBUSY;
786 
787 	ret = ad4030_read_raw_dispatch(indio_dev, chan, val, val2, info);
788 
789 	iio_device_release_direct(indio_dev);
790 
791 	return ret;
792 }
793 
ad4030_write_raw_dispatch(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)794 static int ad4030_write_raw_dispatch(struct iio_dev *indio_dev,
795 				     struct iio_chan_spec const *chan, int val,
796 				     int val2, long info)
797 {
798 	switch (info) {
799 	case IIO_CHAN_INFO_CALIBSCALE:
800 		return ad4030_set_chan_calibscale(indio_dev, chan, val, val2);
801 
802 	case IIO_CHAN_INFO_CALIBBIAS:
803 		if (val2 != 0)
804 			return -EINVAL;
805 		return ad4030_set_chan_calibbias(indio_dev, chan, val);
806 
807 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
808 		return ad4030_set_avg_frame_len(indio_dev, val);
809 
810 	default:
811 		return -EINVAL;
812 	}
813 }
814 
ad4030_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)815 static int ad4030_write_raw(struct iio_dev *indio_dev,
816 			    struct iio_chan_spec const *chan, int val,
817 			    int val2, long info)
818 {
819 	int ret;
820 
821 	if (!iio_device_claim_direct(indio_dev))
822 		return -EBUSY;
823 
824 	ret = ad4030_write_raw_dispatch(indio_dev, chan, val, val2, info);
825 
826 	iio_device_release_direct(indio_dev);
827 
828 	return ret;
829 }
830 
ad4030_reg_access(struct iio_dev * indio_dev,unsigned int reg,unsigned int writeval,unsigned int * readval)831 static int ad4030_reg_access(struct iio_dev *indio_dev, unsigned int reg,
832 			     unsigned int writeval, unsigned int *readval)
833 {
834 	const struct ad4030_state *st = iio_priv(indio_dev);
835 	int ret;
836 
837 	if (!iio_device_claim_direct(indio_dev))
838 		return -EBUSY;
839 
840 	if (readval)
841 		ret = regmap_read(st->regmap, reg, readval);
842 	else
843 		ret = regmap_write(st->regmap, reg, writeval);
844 
845 	iio_device_release_direct(indio_dev);
846 
847 	return ret;
848 }
849 
ad4030_read_label(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,char * label)850 static int ad4030_read_label(struct iio_dev *indio_dev,
851 			     struct iio_chan_spec const *chan,
852 			     char *label)
853 {
854 	if (chan->differential)
855 		return sprintf(label, "differential%lu\n", chan->address);
856 	return sprintf(label, "common-mode%lu\n", chan->address);
857 }
858 
ad4030_get_current_scan_type(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)859 static int ad4030_get_current_scan_type(const struct iio_dev *indio_dev,
860 					const struct iio_chan_spec *chan)
861 {
862 	struct ad4030_state *st = iio_priv(indio_dev);
863 
864 	return st->avg_log2 ? AD4030_SCAN_TYPE_AVG : AD4030_SCAN_TYPE_NORMAL;
865 }
866 
ad4030_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)867 static int ad4030_update_scan_mode(struct iio_dev *indio_dev,
868 				   const unsigned long *scan_mask)
869 {
870 	return ad4030_set_mode(indio_dev, *scan_mask);
871 }
872 
873 static const struct iio_info ad4030_iio_info = {
874 	.read_avail = ad4030_read_avail,
875 	.read_raw = ad4030_read_raw,
876 	.write_raw = ad4030_write_raw,
877 	.debugfs_reg_access = ad4030_reg_access,
878 	.read_label = ad4030_read_label,
879 	.get_current_scan_type = ad4030_get_current_scan_type,
880 	.update_scan_mode  = ad4030_update_scan_mode,
881 };
882 
ad4030_validate_scan_mask(struct iio_dev * indio_dev,const unsigned long * scan_mask)883 static bool ad4030_validate_scan_mask(struct iio_dev *indio_dev,
884 				      const unsigned long *scan_mask)
885 {
886 	struct ad4030_state *st = iio_priv(indio_dev);
887 
888 	/* Asking for both common channels and averaging */
889 	if (st->avg_log2 && ad4030_is_common_byte_asked(st, *scan_mask))
890 		return false;
891 
892 	return true;
893 }
894 
895 static const struct iio_buffer_setup_ops ad4030_buffer_setup_ops = {
896 	.validate_scan_mask = ad4030_validate_scan_mask,
897 };
898 
ad4030_regulators_get(struct ad4030_state * st)899 static int ad4030_regulators_get(struct ad4030_state *st)
900 {
901 	struct device *dev = &st->spi->dev;
902 	static const char * const ids[] = { "vdd-5v", "vdd-1v8" };
903 	int ret;
904 
905 	ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(ids), ids);
906 	if (ret)
907 		return dev_err_probe(dev, ret, "Failed to enable regulators\n");
908 
909 	st->vio_uv = devm_regulator_get_enable_read_voltage(dev, "vio");
910 	if (st->vio_uv < 0)
911 		return dev_err_probe(dev, st->vio_uv,
912 				     "Failed to enable and read vio voltage\n");
913 
914 	st->vref_uv = devm_regulator_get_enable_read_voltage(dev, "ref");
915 	if (st->vref_uv < 0) {
916 		if (st->vref_uv != -ENODEV)
917 			return dev_err_probe(dev, st->vref_uv,
918 					     "Failed to read ref voltage\n");
919 
920 		/* if not using optional REF, the REFIN must be used */
921 		st->vref_uv = devm_regulator_get_enable_read_voltage(dev,
922 								     "refin");
923 		if (st->vref_uv < 0)
924 			return dev_err_probe(dev, st->vref_uv,
925 					     "Failed to read refin voltage\n");
926 	}
927 
928 	return 0;
929 }
930 
ad4030_reset(struct ad4030_state * st)931 static int ad4030_reset(struct ad4030_state *st)
932 {
933 	struct device *dev = &st->spi->dev;
934 	struct gpio_desc *reset;
935 
936 	reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
937 	if (IS_ERR(reset))
938 		return dev_err_probe(dev, PTR_ERR(reset),
939 				     "Failed to get reset GPIO\n");
940 
941 	if (reset) {
942 		ndelay(50);
943 		gpiod_set_value_cansleep(reset, 0);
944 		return 0;
945 	}
946 
947 	return regmap_write(st->regmap, AD4030_REG_INTERFACE_CONFIG_A,
948 			   AD4030_REG_INTERFACE_CONFIG_A_SW_RESET);
949 }
950 
ad4030_detect_chip_info(const struct ad4030_state * st)951 static int ad4030_detect_chip_info(const struct ad4030_state *st)
952 {
953 	unsigned int grade;
954 	int ret;
955 
956 	ret = regmap_read(st->regmap, AD4030_REG_CHIP_GRADE, &grade);
957 	if (ret)
958 		return ret;
959 
960 	grade = FIELD_GET(AD4030_REG_CHIP_GRADE_MASK_CHIP_GRADE, grade);
961 	if (grade != st->chip->grade)
962 		dev_warn(&st->spi->dev, "Unknown grade(0x%x) for %s\n", grade,
963 			 st->chip->name);
964 
965 	return 0;
966 }
967 
ad4030_config(struct ad4030_state * st)968 static int ad4030_config(struct ad4030_state *st)
969 {
970 	int ret;
971 	u8 reg_modes;
972 
973 	st->offset_avail[0] = (int)BIT(st->chip->precision_bits - 1) * -1;
974 	st->offset_avail[1] = 1;
975 	st->offset_avail[2] = BIT(st->chip->precision_bits - 1) - 1;
976 
977 	if (st->chip->num_voltage_inputs > 1)
978 		reg_modes = FIELD_PREP(AD4030_REG_MODES_MASK_LANE_MODE,
979 				       AD4030_LANE_MD_INTERLEAVED);
980 	else
981 		reg_modes = FIELD_PREP(AD4030_REG_MODES_MASK_LANE_MODE,
982 				       AD4030_LANE_MD_1_PER_CH);
983 
984 	ret = regmap_write(st->regmap, AD4030_REG_MODES, reg_modes);
985 	if (ret)
986 		return ret;
987 
988 	if (st->vio_uv < AD4030_VIO_THRESHOLD_UV)
989 		return regmap_write(st->regmap, AD4030_REG_IO,
990 				    AD4030_REG_IO_MASK_IO2X);
991 
992 	return 0;
993 }
994 
ad4030_probe(struct spi_device * spi)995 static int ad4030_probe(struct spi_device *spi)
996 {
997 	struct device *dev = &spi->dev;
998 	struct iio_dev *indio_dev;
999 	struct ad4030_state *st;
1000 	int ret;
1001 
1002 	indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
1003 	if (!indio_dev)
1004 		return -ENOMEM;
1005 
1006 	st = iio_priv(indio_dev);
1007 	st->spi = spi;
1008 
1009 	st->regmap = devm_regmap_init(dev, &ad4030_regmap_bus, st,
1010 				      &ad4030_regmap_config);
1011 	if (IS_ERR(st->regmap))
1012 		return dev_err_probe(dev, PTR_ERR(st->regmap),
1013 				     "Failed to initialize regmap\n");
1014 
1015 	st->chip = spi_get_device_match_data(spi);
1016 	if (!st->chip)
1017 		return -EINVAL;
1018 
1019 	ret = ad4030_regulators_get(st);
1020 	if (ret)
1021 		return ret;
1022 
1023 	/*
1024 	 * From datasheet: "Perform a reset no sooner than 3ms after the power
1025 	 * supplies are valid and stable"
1026 	 */
1027 	fsleep(3000);
1028 
1029 	ret = ad4030_reset(st);
1030 	if (ret)
1031 		return ret;
1032 
1033 	ret = ad4030_detect_chip_info(st);
1034 	if (ret)
1035 		return ret;
1036 
1037 	ret = ad4030_config(st);
1038 	if (ret)
1039 		return ret;
1040 
1041 	st->cnv_gpio = devm_gpiod_get(dev, "cnv", GPIOD_OUT_LOW);
1042 	if (IS_ERR(st->cnv_gpio))
1043 		return dev_err_probe(dev, PTR_ERR(st->cnv_gpio),
1044 				     "Failed to get cnv gpio\n");
1045 
1046 	/*
1047 	 * One hardware channel is split in two software channels when using
1048 	 * common byte mode. Add one more channel for the timestamp.
1049 	 */
1050 	indio_dev->num_channels = 2 * st->chip->num_voltage_inputs + 1;
1051 	indio_dev->name = st->chip->name;
1052 	indio_dev->modes = INDIO_DIRECT_MODE;
1053 	indio_dev->info = &ad4030_iio_info;
1054 	indio_dev->channels = st->chip->channels;
1055 	indio_dev->available_scan_masks = st->chip->available_masks;
1056 
1057 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
1058 					      iio_pollfunc_store_time,
1059 					      ad4030_trigger_handler,
1060 					      &ad4030_buffer_setup_ops);
1061 	if (ret)
1062 		return dev_err_probe(dev, ret,
1063 				     "Failed to setup triggered buffer\n");
1064 
1065 	return devm_iio_device_register(dev, indio_dev);
1066 }
1067 
1068 static const unsigned long ad4030_channel_masks[] = {
1069 	/* Differential only */
1070 	BIT(0),
1071 	/* Differential and common-mode voltage */
1072 	GENMASK(1, 0),
1073 	0,
1074 };
1075 
1076 static const unsigned long ad4630_channel_masks[] = {
1077 	/* Differential only */
1078 	BIT(1) | BIT(0),
1079 	/* Differential with common byte */
1080 	GENMASK(3, 0),
1081 	0,
1082 };
1083 
1084 static const struct iio_scan_type ad4030_24_scan_types[] = {
1085 	[AD4030_SCAN_TYPE_NORMAL] = {
1086 		.sign = 's',
1087 		.storagebits = 32,
1088 		.realbits = 24,
1089 		.shift = 8,
1090 		.endianness = IIO_BE,
1091 	},
1092 	[AD4030_SCAN_TYPE_AVG] = {
1093 		.sign = 's',
1094 		.storagebits = 32,
1095 		.realbits = 30,
1096 		.shift = 2,
1097 		.endianness = IIO_BE,
1098 	},
1099 };
1100 
1101 static const struct iio_scan_type ad4030_16_scan_types[] = {
1102 	[AD4030_SCAN_TYPE_NORMAL] = {
1103 		.sign = 's',
1104 		.storagebits = 32,
1105 		.realbits = 16,
1106 		.shift = 16,
1107 		.endianness = IIO_BE,
1108 	},
1109 	[AD4030_SCAN_TYPE_AVG] = {
1110 		.sign = 's',
1111 		.storagebits = 32,
1112 		.realbits = 30,
1113 		.shift = 2,
1114 		.endianness = IIO_BE,
1115 	}
1116 };
1117 
1118 static const struct ad4030_chip_info ad4030_24_chip_info = {
1119 	.name = "ad4030-24",
1120 	.available_masks = ad4030_channel_masks,
1121 	.channels = {
1122 		AD4030_CHAN_DIFF(0, ad4030_24_scan_types),
1123 		AD4030_CHAN_CMO(1, 0),
1124 		IIO_CHAN_SOFT_TIMESTAMP(2),
1125 	},
1126 	.grade = AD4030_REG_CHIP_GRADE_AD4030_24_GRADE,
1127 	.precision_bits = 24,
1128 	.num_voltage_inputs = 1,
1129 	.tcyc_ns = AD4030_TCYC_ADJUSTED_NS,
1130 };
1131 
1132 static const struct ad4030_chip_info ad4630_16_chip_info = {
1133 	.name = "ad4630-16",
1134 	.available_masks = ad4630_channel_masks,
1135 	.channels = {
1136 		AD4030_CHAN_DIFF(0, ad4030_16_scan_types),
1137 		AD4030_CHAN_DIFF(1, ad4030_16_scan_types),
1138 		AD4030_CHAN_CMO(2, 0),
1139 		AD4030_CHAN_CMO(3, 1),
1140 		IIO_CHAN_SOFT_TIMESTAMP(4),
1141 	},
1142 	.grade = AD4030_REG_CHIP_GRADE_AD4630_16_GRADE,
1143 	.precision_bits = 16,
1144 	.num_voltage_inputs = 2,
1145 	.tcyc_ns = AD4030_TCYC_ADJUSTED_NS,
1146 };
1147 
1148 static const struct ad4030_chip_info ad4630_24_chip_info = {
1149 	.name = "ad4630-24",
1150 	.available_masks = ad4630_channel_masks,
1151 	.channels = {
1152 		AD4030_CHAN_DIFF(0, ad4030_24_scan_types),
1153 		AD4030_CHAN_DIFF(1, ad4030_24_scan_types),
1154 		AD4030_CHAN_CMO(2, 0),
1155 		AD4030_CHAN_CMO(3, 1),
1156 		IIO_CHAN_SOFT_TIMESTAMP(4),
1157 	},
1158 	.grade = AD4030_REG_CHIP_GRADE_AD4630_24_GRADE,
1159 	.precision_bits = 24,
1160 	.num_voltage_inputs = 2,
1161 	.tcyc_ns = AD4030_TCYC_ADJUSTED_NS,
1162 };
1163 
1164 static const struct ad4030_chip_info ad4632_16_chip_info = {
1165 	.name = "ad4632-16",
1166 	.available_masks = ad4630_channel_masks,
1167 	.channels = {
1168 		AD4030_CHAN_DIFF(0, ad4030_16_scan_types),
1169 		AD4030_CHAN_DIFF(1, ad4030_16_scan_types),
1170 		AD4030_CHAN_CMO(2, 0),
1171 		AD4030_CHAN_CMO(3, 1),
1172 		IIO_CHAN_SOFT_TIMESTAMP(4),
1173 	},
1174 	.grade = AD4030_REG_CHIP_GRADE_AD4632_16_GRADE,
1175 	.precision_bits = 16,
1176 	.num_voltage_inputs = 2,
1177 	.tcyc_ns = AD4632_TCYC_ADJUSTED_NS,
1178 };
1179 
1180 static const struct ad4030_chip_info ad4632_24_chip_info = {
1181 	.name = "ad4632-24",
1182 	.available_masks = ad4630_channel_masks,
1183 	.channels = {
1184 		AD4030_CHAN_DIFF(0, ad4030_24_scan_types),
1185 		AD4030_CHAN_DIFF(1, ad4030_24_scan_types),
1186 		AD4030_CHAN_CMO(2, 0),
1187 		AD4030_CHAN_CMO(3, 1),
1188 		IIO_CHAN_SOFT_TIMESTAMP(4),
1189 	},
1190 	.grade = AD4030_REG_CHIP_GRADE_AD4632_24_GRADE,
1191 	.precision_bits = 24,
1192 	.num_voltage_inputs = 2,
1193 	.tcyc_ns = AD4632_TCYC_ADJUSTED_NS,
1194 };
1195 
1196 static const struct spi_device_id ad4030_id_table[] = {
1197 	{ "ad4030-24", (kernel_ulong_t)&ad4030_24_chip_info },
1198 	{ "ad4630-16", (kernel_ulong_t)&ad4630_16_chip_info },
1199 	{ "ad4630-24", (kernel_ulong_t)&ad4630_24_chip_info },
1200 	{ "ad4632-16", (kernel_ulong_t)&ad4632_16_chip_info },
1201 	{ "ad4632-24", (kernel_ulong_t)&ad4632_24_chip_info },
1202 	{ }
1203 };
1204 MODULE_DEVICE_TABLE(spi, ad4030_id_table);
1205 
1206 static const struct of_device_id ad4030_of_match[] = {
1207 	{ .compatible = "adi,ad4030-24", .data = &ad4030_24_chip_info },
1208 	{ .compatible = "adi,ad4630-16", .data = &ad4630_16_chip_info },
1209 	{ .compatible = "adi,ad4630-24", .data = &ad4630_24_chip_info },
1210 	{ .compatible = "adi,ad4632-16", .data = &ad4632_16_chip_info },
1211 	{ .compatible = "adi,ad4632-24", .data = &ad4632_24_chip_info },
1212 	{ }
1213 };
1214 MODULE_DEVICE_TABLE(of, ad4030_of_match);
1215 
1216 static struct spi_driver ad4030_driver = {
1217 	.driver = {
1218 		.name = "ad4030",
1219 		.of_match_table = ad4030_of_match,
1220 	},
1221 	.probe = ad4030_probe,
1222 	.id_table = ad4030_id_table,
1223 };
1224 module_spi_driver(ad4030_driver);
1225 
1226 MODULE_AUTHOR("Esteban Blanc <eblanc@baylibre.com>");
1227 MODULE_DESCRIPTION("Analog Devices AD4630 ADC family driver");
1228 MODULE_LICENSE("GPL");
1229