xref: /linux/drivers/gpu/drm/bridge/tda998x_drv.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Texas Instruments
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #include <linux/component.h>
8 #include <linux/gpio/consumer.h>
9 #include <linux/hdmi.h>
10 #include <linux/i2c.h>
11 #include <linux/module.h>
12 #include <linux/platform_data/tda9950.h>
13 #include <linux/irq.h>
14 #include <sound/asoundef.h>
15 #include <sound/hdmi-codec.h>
16 
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_bridge.h>
19 #include <drm/drm_edid.h>
20 #include <drm/drm_of.h>
21 #include <drm/drm_print.h>
22 #include <drm/drm_probe_helper.h>
23 #include <drm/drm_simple_kms_helper.h>
24 
25 #include <media/cec-notifier.h>
26 
27 #include <dt-bindings/display/tda998x.h>
28 
29 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
30 
31 enum {
32 	AUDIO_ROUTE_I2S,
33 	AUDIO_ROUTE_SPDIF,
34 	AUDIO_ROUTE_NUM
35 };
36 
37 struct tda998x_audio_route {
38 	u8 ena_aclk;
39 	u8 mux_ap;
40 	u8 aip_clksel;
41 };
42 
43 struct tda998x_audio_settings {
44 	const struct tda998x_audio_route *route;
45 	struct hdmi_audio_infoframe cea;
46 	unsigned int sample_rate;
47 	u8 status[5];
48 	u8 ena_ap;
49 	u8 i2s_format;
50 	u8 cts_n;
51 };
52 
53 struct tda998x_priv {
54 	struct i2c_client *cec;
55 	struct i2c_client *hdmi;
56 	struct mutex mutex;
57 	u16 rev;
58 	u8 cec_addr;
59 	u8 current_page;
60 	bool is_on;
61 	bool supports_infoframes;
62 	bool sink_has_audio;
63 	enum hdmi_quantization_range rgb_quant_range;
64 	u8 vip_cntrl_0;
65 	u8 vip_cntrl_1;
66 	u8 vip_cntrl_2;
67 	unsigned long tmds_clock;
68 	struct tda998x_audio_settings audio;
69 
70 	struct platform_device *audio_pdev;
71 	struct mutex audio_mutex;
72 
73 	struct mutex edid_mutex;
74 	wait_queue_head_t wq_edid;
75 	volatile int wq_edid_wait;
76 
77 	struct work_struct detect_work;
78 	struct timer_list edid_delay_timer;
79 	wait_queue_head_t edid_delay_waitq;
80 	bool edid_delay_active;
81 
82 	struct drm_encoder encoder;
83 	struct drm_bridge bridge;
84 	struct drm_connector connector;
85 
86 	u8 audio_port_enable[AUDIO_ROUTE_NUM];
87 	struct tda9950_glue cec_glue;
88 	struct gpio_desc *calib;
89 	struct cec_notifier *cec_notify;
90 };
91 
92 #define conn_to_tda998x_priv(x) \
93 	container_of(x, struct tda998x_priv, connector)
94 #define enc_to_tda998x_priv(x) \
95 	container_of(x, struct tda998x_priv, encoder)
96 #define bridge_to_tda998x_priv(x) \
97 	container_of(x, struct tda998x_priv, bridge)
98 
99 /* The TDA9988 series of devices use a paged register scheme.. to simplify
100  * things we encode the page # in upper bits of the register #.  To read/
101  * write a given register, we need to make sure CURPAGE register is set
102  * appropriately.  Which implies reads/writes are not atomic.  Fun!
103  */
104 
105 #define REG(page, addr) (((page) << 8) | (addr))
106 #define REG2ADDR(reg)   ((reg) & 0xff)
107 #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
108 
109 #define REG_CURPAGE               0xff                /* write */
110 
111 
112 /* Page 00h: General Control */
113 #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
114 #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
115 # define MAIN_CNTRL0_SR           (1 << 0)
116 # define MAIN_CNTRL0_DECS         (1 << 1)
117 # define MAIN_CNTRL0_DEHS         (1 << 2)
118 # define MAIN_CNTRL0_CECS         (1 << 3)
119 # define MAIN_CNTRL0_CEHS         (1 << 4)
120 # define MAIN_CNTRL0_SCALER       (1 << 7)
121 #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
122 #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
123 # define SOFTRESET_AUDIO          (1 << 0)
124 # define SOFTRESET_I2C_MASTER     (1 << 1)
125 #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
126 #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
127 #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
128 # define I2C_MASTER_DIS_MM        (1 << 0)
129 # define I2C_MASTER_DIS_FILT      (1 << 1)
130 # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
131 #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
132 # define FEAT_POWERDOWN_PREFILT   BIT(0)
133 # define FEAT_POWERDOWN_CSC       BIT(1)
134 # define FEAT_POWERDOWN_SPDIF     (1 << 3)
135 #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
136 #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
137 #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
138 # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
139 #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
140 #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
141 #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
142 #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
143 #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
144 #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
145 # define VIP_CNTRL_0_MIRR_A       (1 << 7)
146 # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
147 # define VIP_CNTRL_0_MIRR_B       (1 << 3)
148 # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
149 #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
150 # define VIP_CNTRL_1_MIRR_C       (1 << 7)
151 # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
152 # define VIP_CNTRL_1_MIRR_D       (1 << 3)
153 # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
154 #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
155 # define VIP_CNTRL_2_MIRR_E       (1 << 7)
156 # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
157 # define VIP_CNTRL_2_MIRR_F       (1 << 3)
158 # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
159 #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
160 # define VIP_CNTRL_3_X_TGL        (1 << 0)
161 # define VIP_CNTRL_3_H_TGL        (1 << 1)
162 # define VIP_CNTRL_3_V_TGL        (1 << 2)
163 # define VIP_CNTRL_3_EMB          (1 << 3)
164 # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
165 # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
166 # define VIP_CNTRL_3_DE_INT       (1 << 6)
167 # define VIP_CNTRL_3_EDGE         (1 << 7)
168 #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
169 # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
170 # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
171 # define VIP_CNTRL_4_CCIR656      (1 << 4)
172 # define VIP_CNTRL_4_656_ALT      (1 << 5)
173 # define VIP_CNTRL_4_TST_656      (1 << 6)
174 # define VIP_CNTRL_4_TST_PAT      (1 << 7)
175 #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
176 # define VIP_CNTRL_5_CKCASE       (1 << 0)
177 # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
178 #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
179 # define MUX_AP_SELECT_I2S	  0x64
180 # define MUX_AP_SELECT_SPDIF	  0x40
181 #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
182 #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
183 # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
184 # define MAT_CONTRL_MAT_BP        (1 << 2)
185 #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
186 #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
187 #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
188 #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
189 #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
190 #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
191 #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
192 #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
193 #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
194 #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
195 #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
196 #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
197 #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
198 #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
199 #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
200 #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
201 #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
202 #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
203 #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
204 #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
205 #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
206 #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
207 #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
208 #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
209 #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
210 #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
211 #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
212 #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
213 #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
214 #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
215 #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
216 #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
217 #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
218 #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
219 #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
220 #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
221 #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
222 #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
223 #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
224 #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
225 #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
226 #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
227 # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
228 # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
229 # define TBG_CNTRL_0_DE_EXT       (1 << 2)
230 # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
231 # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
232 # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
233 # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
234 #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
235 # define TBG_CNTRL_1_H_TGL        (1 << 0)
236 # define TBG_CNTRL_1_V_TGL        (1 << 1)
237 # define TBG_CNTRL_1_TGL_EN       (1 << 2)
238 # define TBG_CNTRL_1_X_EXT        (1 << 3)
239 # define TBG_CNTRL_1_H_EXT        (1 << 4)
240 # define TBG_CNTRL_1_V_EXT        (1 << 5)
241 # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
242 #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
243 #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
244 # define HVF_CNTRL_0_SM           (1 << 7)
245 # define HVF_CNTRL_0_RWB          (1 << 6)
246 # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
247 # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
248 #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
249 # define HVF_CNTRL_1_FOR          (1 << 0)
250 # define HVF_CNTRL_1_YUVBLK       (1 << 1)
251 # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
252 # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
253 # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
254 #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
255 # define RPT_CNTRL_REPEAT(x)      ((x) & 15)
256 #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
257 # define I2S_FORMAT_PHILIPS       (0 << 0)
258 # define I2S_FORMAT_LEFT_J        (2 << 0)
259 # define I2S_FORMAT_RIGHT_J       (3 << 0)
260 #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
261 # define AIP_CLKSEL_AIP_SPDIF	  (0 << 3)
262 # define AIP_CLKSEL_AIP_I2S	  (1 << 3)
263 # define AIP_CLKSEL_FS_ACLK	  (0 << 0)
264 # define AIP_CLKSEL_FS_MCLK	  (1 << 0)
265 # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
266 
267 /* Page 02h: PLL settings */
268 #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
269 # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
270 # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
271 # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
272 #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
273 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
274 # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
275 #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
276 # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
277 # define PLL_SERIAL_3_SRL_DE      (1 << 2)
278 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
279 #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
280 #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
281 #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
282 #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
283 #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
284 #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
285 #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
286 #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
287 #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
288 # define AUDIO_DIV_SERCLK_1       0
289 # define AUDIO_DIV_SERCLK_2       1
290 # define AUDIO_DIV_SERCLK_4       2
291 # define AUDIO_DIV_SERCLK_8       3
292 # define AUDIO_DIV_SERCLK_16      4
293 # define AUDIO_DIV_SERCLK_32      5
294 #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
295 # define SEL_CLK_SEL_CLK1         (1 << 0)
296 # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
297 # define SEL_CLK_ENA_SC_CLK       (1 << 3)
298 #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
299 
300 
301 /* Page 09h: EDID Control */
302 #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
303 /* next 127 successive registers are the EDID block */
304 #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
305 #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
306 #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
307 #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
308 #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
309 
310 
311 /* Page 10h: information frames and packets */
312 #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
313 #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
314 #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
315 #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
316 #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
317 
318 
319 /* Page 11h: audio settings and content info packets */
320 #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
321 # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
322 # define AIP_CNTRL_0_SWAP         (1 << 1)
323 # define AIP_CNTRL_0_LAYOUT       (1 << 2)
324 # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
325 # define AIP_CNTRL_0_RST_CTS      (1 << 6)
326 #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
327 # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
328 # define CA_I2S_HBR_CHSTAT        (1 << 6)
329 #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
330 #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
331 #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
332 #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
333 #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
334 #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
335 #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
336 #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
337 # define CTS_N_K(x)               (((x) & 7) << 0)
338 # define CTS_N_M(x)               (((x) & 3) << 4)
339 #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
340 # define ENC_CNTRL_RST_ENC        (1 << 0)
341 # define ENC_CNTRL_RST_SEL        (1 << 1)
342 # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
343 #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
344 # define DIP_FLAGS_ACR            (1 << 0)
345 # define DIP_FLAGS_GC             (1 << 1)
346 #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
347 # define DIP_IF_FLAGS_IF1         (1 << 1)
348 # define DIP_IF_FLAGS_IF2         (1 << 2)
349 # define DIP_IF_FLAGS_IF3         (1 << 3)
350 # define DIP_IF_FLAGS_IF4         (1 << 4)
351 # define DIP_IF_FLAGS_IF5         (1 << 5)
352 #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
353 
354 
355 /* Page 12h: HDCP and OTP */
356 #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
357 #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
358 # define TX4_PD_RAM               (1 << 1)
359 #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
360 # define TX33_HDMI                (1 << 1)
361 
362 
363 /* Page 13h: Gamut related metadata packets */
364 
365 
366 
367 /* CEC registers: (not paged)
368  */
369 #define REG_CEC_INTSTATUS	  0xee		      /* read */
370 # define CEC_INTSTATUS_CEC	  (1 << 0)
371 # define CEC_INTSTATUS_HDMI	  (1 << 1)
372 #define REG_CEC_CAL_XOSC_CTRL1    0xf2
373 # define CEC_CAL_XOSC_CTRL1_ENA_CAL	BIT(0)
374 #define REG_CEC_DES_FREQ2         0xf5
375 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
376 #define REG_CEC_CLK               0xf6
377 # define CEC_CLK_FRO              0x11
378 #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
379 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
380 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
381 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
382 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
383 #define REG_CEC_RXSHPDINTENA	  0xfc		      /* read/write */
384 #define REG_CEC_RXSHPDINT	  0xfd		      /* read */
385 # define CEC_RXSHPDINT_RXSENS     BIT(0)
386 # define CEC_RXSHPDINT_HPD        BIT(1)
387 #define REG_CEC_RXSHPDLEV         0xfe                /* read */
388 # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
389 # define CEC_RXSHPDLEV_HPD        (1 << 1)
390 
391 #define REG_CEC_ENAMODS           0xff                /* read/write */
392 # define CEC_ENAMODS_EN_CEC_CLK   (1 << 7)
393 # define CEC_ENAMODS_DIS_FRO      (1 << 6)
394 # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
395 # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
396 # define CEC_ENAMODS_EN_HDMI      (1 << 1)
397 # define CEC_ENAMODS_EN_CEC       (1 << 0)
398 
399 
400 /* Device versions: */
401 #define TDA9989N2                 0x0101
402 #define TDA19989                  0x0201
403 #define TDA19989N2                0x0202
404 #define TDA19988                  0x0301
405 
406 static void
cec_write(struct tda998x_priv * priv,u16 addr,u8 val)407 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
408 {
409 	u8 buf[] = {addr, val};
410 	struct i2c_msg msg = {
411 		.addr = priv->cec_addr,
412 		.len = 2,
413 		.buf = buf,
414 	};
415 	int ret;
416 
417 	ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
418 	if (ret < 0)
419 		dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
420 			ret, addr);
421 }
422 
423 static u8
cec_read(struct tda998x_priv * priv,u8 addr)424 cec_read(struct tda998x_priv *priv, u8 addr)
425 {
426 	u8 val;
427 	struct i2c_msg msg[2] = {
428 		{
429 			.addr = priv->cec_addr,
430 			.len = 1,
431 			.buf = &addr,
432 		}, {
433 			.addr = priv->cec_addr,
434 			.flags = I2C_M_RD,
435 			.len = 1,
436 			.buf = &val,
437 		},
438 	};
439 	int ret;
440 
441 	ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
442 	if (ret < 0) {
443 		dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
444 			ret, addr);
445 		val = 0;
446 	}
447 
448 	return val;
449 }
450 
cec_enamods(struct tda998x_priv * priv,u8 mods,bool enable)451 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
452 {
453 	int val = cec_read(priv, REG_CEC_ENAMODS);
454 
455 	if (val < 0)
456 		return;
457 
458 	if (enable)
459 		val |= mods;
460 	else
461 		val &= ~mods;
462 
463 	cec_write(priv, REG_CEC_ENAMODS, val);
464 }
465 
tda998x_cec_set_calibration(struct tda998x_priv * priv,bool enable)466 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
467 {
468 	if (enable) {
469 		u8 val;
470 
471 		cec_write(priv, 0xf3, 0xc0);
472 		cec_write(priv, 0xf4, 0xd4);
473 
474 		/* Enable automatic calibration mode */
475 		val = cec_read(priv, REG_CEC_DES_FREQ2);
476 		val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
477 		cec_write(priv, REG_CEC_DES_FREQ2, val);
478 
479 		/* Enable free running oscillator */
480 		cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
481 		cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
482 
483 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
484 			  CEC_CAL_XOSC_CTRL1_ENA_CAL);
485 	} else {
486 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
487 	}
488 }
489 
490 /*
491  * Calibration for the internal oscillator: we need to set calibration mode,
492  * and then pulse the IRQ line low for a 10ms ± 1% period.
493  */
tda998x_cec_calibration(struct tda998x_priv * priv)494 static void tda998x_cec_calibration(struct tda998x_priv *priv)
495 {
496 	struct gpio_desc *calib = priv->calib;
497 
498 	mutex_lock(&priv->edid_mutex);
499 	if (priv->hdmi->irq > 0)
500 		disable_irq(priv->hdmi->irq);
501 	gpiod_direction_output(calib, 1);
502 	tda998x_cec_set_calibration(priv, true);
503 
504 	local_irq_disable();
505 	gpiod_set_value(calib, 0);
506 	mdelay(10);
507 	gpiod_set_value(calib, 1);
508 	local_irq_enable();
509 
510 	tda998x_cec_set_calibration(priv, false);
511 	gpiod_direction_input(calib);
512 	if (priv->hdmi->irq > 0)
513 		enable_irq(priv->hdmi->irq);
514 	mutex_unlock(&priv->edid_mutex);
515 }
516 
tda998x_cec_hook_init(void * data)517 static int tda998x_cec_hook_init(void *data)
518 {
519 	struct tda998x_priv *priv = data;
520 	struct gpio_desc *calib;
521 
522 	calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
523 	if (IS_ERR(calib)) {
524 		dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
525 			 PTR_ERR(calib));
526 		return PTR_ERR(calib);
527 	}
528 
529 	priv->calib = calib;
530 
531 	return 0;
532 }
533 
tda998x_cec_hook_exit(void * data)534 static void tda998x_cec_hook_exit(void *data)
535 {
536 	struct tda998x_priv *priv = data;
537 
538 	gpiod_put(priv->calib);
539 	priv->calib = NULL;
540 }
541 
tda998x_cec_hook_open(void * data)542 static int tda998x_cec_hook_open(void *data)
543 {
544 	struct tda998x_priv *priv = data;
545 
546 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
547 	tda998x_cec_calibration(priv);
548 
549 	return 0;
550 }
551 
tda998x_cec_hook_release(void * data)552 static void tda998x_cec_hook_release(void *data)
553 {
554 	struct tda998x_priv *priv = data;
555 
556 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
557 }
558 
559 static int
set_page(struct tda998x_priv * priv,u16 reg)560 set_page(struct tda998x_priv *priv, u16 reg)
561 {
562 	if (REG2PAGE(reg) != priv->current_page) {
563 		struct i2c_client *client = priv->hdmi;
564 		u8 buf[] = {
565 				REG_CURPAGE, REG2PAGE(reg)
566 		};
567 		int ret = i2c_master_send(client, buf, sizeof(buf));
568 		if (ret < 0) {
569 			dev_err(&client->dev, "%s %04x err %d\n", __func__,
570 					reg, ret);
571 			return ret;
572 		}
573 
574 		priv->current_page = REG2PAGE(reg);
575 	}
576 	return 0;
577 }
578 
579 static int
reg_read_range(struct tda998x_priv * priv,u16 reg,char * buf,int cnt)580 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
581 {
582 	struct i2c_client *client = priv->hdmi;
583 	u8 addr = REG2ADDR(reg);
584 	int ret;
585 
586 	mutex_lock(&priv->mutex);
587 	ret = set_page(priv, reg);
588 	if (ret < 0)
589 		goto out;
590 
591 	ret = i2c_master_send(client, &addr, sizeof(addr));
592 	if (ret < 0)
593 		goto fail;
594 
595 	ret = i2c_master_recv(client, buf, cnt);
596 	if (ret < 0)
597 		goto fail;
598 
599 	goto out;
600 
601 fail:
602 	dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
603 out:
604 	mutex_unlock(&priv->mutex);
605 	return ret;
606 }
607 
608 #define MAX_WRITE_RANGE_BUF 32
609 
610 static void
reg_write_range(struct tda998x_priv * priv,u16 reg,u8 * p,int cnt)611 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
612 {
613 	struct i2c_client *client = priv->hdmi;
614 	/* This is the maximum size of the buffer passed in */
615 	u8 buf[MAX_WRITE_RANGE_BUF + 1];
616 	int ret;
617 
618 	if (cnt > MAX_WRITE_RANGE_BUF) {
619 		dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
620 				MAX_WRITE_RANGE_BUF);
621 		return;
622 	}
623 
624 	buf[0] = REG2ADDR(reg);
625 	memcpy(&buf[1], p, cnt);
626 
627 	mutex_lock(&priv->mutex);
628 	ret = set_page(priv, reg);
629 	if (ret < 0)
630 		goto out;
631 
632 	ret = i2c_master_send(client, buf, cnt + 1);
633 	if (ret < 0)
634 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
635 out:
636 	mutex_unlock(&priv->mutex);
637 }
638 
639 static int
reg_read(struct tda998x_priv * priv,u16 reg)640 reg_read(struct tda998x_priv *priv, u16 reg)
641 {
642 	u8 val = 0;
643 	int ret;
644 
645 	ret = reg_read_range(priv, reg, &val, sizeof(val));
646 	if (ret < 0)
647 		return ret;
648 	return val;
649 }
650 
651 static void
reg_write(struct tda998x_priv * priv,u16 reg,u8 val)652 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
653 {
654 	struct i2c_client *client = priv->hdmi;
655 	u8 buf[] = {REG2ADDR(reg), val};
656 	int ret;
657 
658 	mutex_lock(&priv->mutex);
659 	ret = set_page(priv, reg);
660 	if (ret < 0)
661 		goto out;
662 
663 	ret = i2c_master_send(client, buf, sizeof(buf));
664 	if (ret < 0)
665 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
666 out:
667 	mutex_unlock(&priv->mutex);
668 }
669 
670 static void
reg_write16(struct tda998x_priv * priv,u16 reg,u16 val)671 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
672 {
673 	struct i2c_client *client = priv->hdmi;
674 	u8 buf[] = {REG2ADDR(reg), val >> 8, val};
675 	int ret;
676 
677 	mutex_lock(&priv->mutex);
678 	ret = set_page(priv, reg);
679 	if (ret < 0)
680 		goto out;
681 
682 	ret = i2c_master_send(client, buf, sizeof(buf));
683 	if (ret < 0)
684 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
685 out:
686 	mutex_unlock(&priv->mutex);
687 }
688 
689 static void
reg_set(struct tda998x_priv * priv,u16 reg,u8 val)690 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
691 {
692 	int old_val;
693 
694 	old_val = reg_read(priv, reg);
695 	if (old_val >= 0)
696 		reg_write(priv, reg, old_val | val);
697 }
698 
699 static void
reg_clear(struct tda998x_priv * priv,u16 reg,u8 val)700 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
701 {
702 	int old_val;
703 
704 	old_val = reg_read(priv, reg);
705 	if (old_val >= 0)
706 		reg_write(priv, reg, old_val & ~val);
707 }
708 
709 static void
tda998x_reset(struct tda998x_priv * priv)710 tda998x_reset(struct tda998x_priv *priv)
711 {
712 	/* reset audio and i2c master: */
713 	reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
714 	msleep(50);
715 	reg_write(priv, REG_SOFTRESET, 0);
716 	msleep(50);
717 
718 	/* reset transmitter: */
719 	reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
720 	reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
721 
722 	/* PLL registers common configuration */
723 	reg_write(priv, REG_PLL_SERIAL_1, 0x00);
724 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
725 	reg_write(priv, REG_PLL_SERIAL_3, 0x00);
726 	reg_write(priv, REG_SERIALIZER,   0x00);
727 	reg_write(priv, REG_BUFFER_OUT,   0x00);
728 	reg_write(priv, REG_PLL_SCG1,     0x00);
729 	reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
730 	reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
731 	reg_write(priv, REG_PLL_SCGN1,    0xfa);
732 	reg_write(priv, REG_PLL_SCGN2,    0x00);
733 	reg_write(priv, REG_PLL_SCGR1,    0x5b);
734 	reg_write(priv, REG_PLL_SCGR2,    0x00);
735 	reg_write(priv, REG_PLL_SCG2,     0x10);
736 
737 	/* Write the default value MUX register */
738 	reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
739 }
740 
741 /*
742  * The TDA998x has a problem when trying to read the EDID close to a
743  * HPD assertion: it needs a delay of 100ms to avoid timing out while
744  * trying to read EDID data.
745  *
746  * However, tda998x_connector_get_modes() may be called at any moment
747  * after tda998x_connector_detect() indicates that we are connected, so
748  * we need to delay probing modes in tda998x_connector_get_modes() after
749  * we have seen a HPD inactive->active transition.  This code implements
750  * that delay.
751  */
tda998x_edid_delay_done(struct timer_list * t)752 static void tda998x_edid_delay_done(struct timer_list *t)
753 {
754 	struct tda998x_priv *priv = timer_container_of(priv, t,
755 						       edid_delay_timer);
756 
757 	priv->edid_delay_active = false;
758 	wake_up(&priv->edid_delay_waitq);
759 	schedule_work(&priv->detect_work);
760 }
761 
tda998x_edid_delay_start(struct tda998x_priv * priv)762 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
763 {
764 	priv->edid_delay_active = true;
765 	mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
766 }
767 
tda998x_edid_delay_wait(struct tda998x_priv * priv)768 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
769 {
770 	return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
771 }
772 
773 /*
774  * We need to run the KMS hotplug event helper outside of our threaded
775  * interrupt routine as this can call back into our get_modes method,
776  * which will want to make use of interrupts.
777  */
tda998x_detect_work(struct work_struct * work)778 static void tda998x_detect_work(struct work_struct *work)
779 {
780 	struct tda998x_priv *priv =
781 		container_of(work, struct tda998x_priv, detect_work);
782 	struct drm_device *dev = priv->connector.dev;
783 
784 	if (dev)
785 		drm_kms_helper_hotplug_event(dev);
786 }
787 
788 /*
789  * only 2 interrupts may occur: screen plug/unplug and EDID read
790  */
tda998x_irq_thread(int irq,void * data)791 static irqreturn_t tda998x_irq_thread(int irq, void *data)
792 {
793 	struct tda998x_priv *priv = data;
794 	u8 sta, cec, lvl, flag0, flag1, flag2;
795 	bool handled = false;
796 
797 	sta = cec_read(priv, REG_CEC_INTSTATUS);
798 	if (sta & CEC_INTSTATUS_HDMI) {
799 		cec = cec_read(priv, REG_CEC_RXSHPDINT);
800 		lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
801 		flag0 = reg_read(priv, REG_INT_FLAGS_0);
802 		flag1 = reg_read(priv, REG_INT_FLAGS_1);
803 		flag2 = reg_read(priv, REG_INT_FLAGS_2);
804 		DRM_DEBUG_DRIVER(
805 			"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
806 			sta, cec, lvl, flag0, flag1, flag2);
807 
808 		if (cec & CEC_RXSHPDINT_HPD) {
809 			if (lvl & CEC_RXSHPDLEV_HPD) {
810 				tda998x_edid_delay_start(priv);
811 			} else {
812 				schedule_work(&priv->detect_work);
813 				cec_notifier_phys_addr_invalidate(
814 						priv->cec_notify);
815 			}
816 
817 			handled = true;
818 		}
819 
820 		if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
821 			priv->wq_edid_wait = 0;
822 			wake_up(&priv->wq_edid);
823 			handled = true;
824 		}
825 	}
826 
827 	return IRQ_RETVAL(handled);
828 }
829 
830 static void
tda998x_write_if(struct tda998x_priv * priv,u8 bit,u16 addr,union hdmi_infoframe * frame)831 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
832 		 union hdmi_infoframe *frame)
833 {
834 	u8 buf[MAX_WRITE_RANGE_BUF];
835 	ssize_t len;
836 
837 	len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
838 	if (len < 0) {
839 		dev_err(&priv->hdmi->dev,
840 			"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
841 			frame->any.type, len);
842 		return;
843 	}
844 
845 	reg_clear(priv, REG_DIP_IF_FLAGS, bit);
846 	reg_write_range(priv, addr, buf, len);
847 	reg_set(priv, REG_DIP_IF_FLAGS, bit);
848 }
849 
tda998x_write_aif(struct tda998x_priv * priv,const struct hdmi_audio_infoframe * cea)850 static void tda998x_write_aif(struct tda998x_priv *priv,
851 			      const struct hdmi_audio_infoframe *cea)
852 {
853 	union hdmi_infoframe frame;
854 
855 	frame.audio = *cea;
856 
857 	tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
858 }
859 
860 static void
tda998x_write_avi(struct tda998x_priv * priv,const struct drm_display_mode * mode)861 tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode)
862 {
863 	union hdmi_infoframe frame;
864 
865 	drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
866 						 &priv->connector, mode);
867 	frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
868 	drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode,
869 					   priv->rgb_quant_range);
870 
871 	tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
872 }
873 
tda998x_write_vsi(struct tda998x_priv * priv,const struct drm_display_mode * mode)874 static void tda998x_write_vsi(struct tda998x_priv *priv,
875 			      const struct drm_display_mode *mode)
876 {
877 	union hdmi_infoframe frame;
878 
879 	if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
880 							&priv->connector,
881 							mode))
882 		reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1);
883 	else
884 		tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame);
885 }
886 
887 /* Audio support */
888 
889 static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = {
890 	[AUDIO_ROUTE_I2S] = {
891 		.ena_aclk = 1,
892 		.mux_ap = MUX_AP_SELECT_I2S,
893 		.aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK,
894 	},
895 	[AUDIO_ROUTE_SPDIF] = {
896 		.ena_aclk = 0,
897 		.mux_ap = MUX_AP_SELECT_SPDIF,
898 		.aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF,
899 	},
900 };
901 
902 /* Configure the TDA998x audio data and clock routing. */
tda998x_derive_routing(struct tda998x_priv * priv,struct tda998x_audio_settings * s,unsigned int route)903 static int tda998x_derive_routing(struct tda998x_priv *priv,
904 				  struct tda998x_audio_settings *s,
905 				  unsigned int route)
906 {
907 	s->route = &tda998x_audio_route[route];
908 	s->ena_ap = priv->audio_port_enable[route];
909 	if (s->ena_ap == 0) {
910 		dev_err(&priv->hdmi->dev, "no audio configuration found\n");
911 		return -EINVAL;
912 	}
913 
914 	return 0;
915 }
916 
917 /*
918  * The audio clock divisor register controls a divider producing Audio_Clk_Out
919  * from SERclk by dividing it by 2^n where 0 <= n <= 5.  We don't know what
920  * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock.
921  *
922  * It seems that Audio_Clk_Out must be the smallest value that is greater
923  * than 128*fs, otherwise audio does not function. There is some suggestion
924  * that 126*fs is a better value.
925  */
tda998x_get_adiv(struct tda998x_priv * priv,unsigned int fs)926 static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs)
927 {
928 	unsigned long min_audio_clk = fs * 128;
929 	unsigned long ser_clk = priv->tmds_clock * 1000;
930 	u8 adiv;
931 
932 	for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--)
933 		if (ser_clk > min_audio_clk << adiv)
934 			break;
935 
936 	dev_dbg(&priv->hdmi->dev,
937 		"ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n",
938 		ser_clk, fs, min_audio_clk, adiv);
939 
940 	return adiv;
941 }
942 
943 /*
944  * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to
945  * generate the CTS value.  It appears that the "measured time stamp" is
946  * the number of TDMS clock cycles within a number of audio input clock
947  * cycles defined by the k and N parameters defined below, in a similar
948  * way to that which is set out in the CTS generation in the HDMI spec.
949  *
950  *  tmdsclk ----> mts -> /m ---> CTS
951  *                 ^
952  *  sclk -> /k -> /N
953  *
954  * CTS = mts / m, where m is 2^M.
955  * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4
956  * /N is a divider based on the HDMI specified N value.
957  *
958  * This produces the following equation:
959  *  CTS = tmds_clock * k * N / (sclk * m)
960  *
961  * When combined with the sink-side equation, and realising that sclk is
962  * bclk_ratio * fs, we end up with:
963  *  k = m * bclk_ratio / 128.
964  *
965  * Note: S/PDIF always uses a bclk_ratio of 64.
966  */
tda998x_derive_cts_n(struct tda998x_priv * priv,struct tda998x_audio_settings * settings,unsigned int ratio)967 static int tda998x_derive_cts_n(struct tda998x_priv *priv,
968 				struct tda998x_audio_settings *settings,
969 				unsigned int ratio)
970 {
971 	switch (ratio) {
972 	case 16:
973 		settings->cts_n = CTS_N_M(3) | CTS_N_K(0);
974 		break;
975 	case 32:
976 		settings->cts_n = CTS_N_M(3) | CTS_N_K(1);
977 		break;
978 	case 48:
979 		settings->cts_n = CTS_N_M(3) | CTS_N_K(2);
980 		break;
981 	case 64:
982 		settings->cts_n = CTS_N_M(3) | CTS_N_K(3);
983 		break;
984 	case 128:
985 		settings->cts_n = CTS_N_M(0) | CTS_N_K(0);
986 		break;
987 	default:
988 		dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n",
989 			ratio);
990 		return -EINVAL;
991 	}
992 	return 0;
993 }
994 
tda998x_audio_mute(struct tda998x_priv * priv,bool on)995 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
996 {
997 	if (on) {
998 		reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
999 		reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
1000 		reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1001 	} else {
1002 		reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1003 	}
1004 }
1005 
tda998x_configure_audio(struct tda998x_priv * priv)1006 static void tda998x_configure_audio(struct tda998x_priv *priv)
1007 {
1008 	const struct tda998x_audio_settings *settings = &priv->audio;
1009 	u8 buf[6], adiv;
1010 	u32 n;
1011 
1012 	/* If audio is not configured, there is nothing to do. */
1013 	if (settings->ena_ap == 0)
1014 		return;
1015 
1016 	adiv = tda998x_get_adiv(priv, settings->sample_rate);
1017 
1018 	/* Enable audio ports */
1019 	reg_write(priv, REG_ENA_AP, settings->ena_ap);
1020 	reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk);
1021 	reg_write(priv, REG_MUX_AP, settings->route->mux_ap);
1022 	reg_write(priv, REG_I2S_FORMAT, settings->i2s_format);
1023 	reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel);
1024 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
1025 					AIP_CNTRL_0_ACR_MAN);	/* auto CTS */
1026 	reg_write(priv, REG_CTS_N, settings->cts_n);
1027 	reg_write(priv, REG_AUDIO_DIV, adiv);
1028 
1029 	/*
1030 	 * This is the approximate value of N, which happens to be
1031 	 * the recommended values for non-coherent clocks.
1032 	 */
1033 	n = 128 * settings->sample_rate / 1000;
1034 
1035 	/* Write the CTS and N values */
1036 	buf[0] = 0x44;
1037 	buf[1] = 0x42;
1038 	buf[2] = 0x01;
1039 	buf[3] = n;
1040 	buf[4] = n >> 8;
1041 	buf[5] = n >> 16;
1042 	reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
1043 
1044 	/* Reset CTS generator */
1045 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1046 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1047 
1048 	/* Write the channel status
1049 	 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
1050 	 * there is a separate register for each I2S wire.
1051 	 */
1052 	buf[0] = settings->status[0];
1053 	buf[1] = settings->status[1];
1054 	buf[2] = settings->status[3];
1055 	buf[3] = settings->status[4];
1056 	reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
1057 
1058 	tda998x_audio_mute(priv, true);
1059 	msleep(20);
1060 	tda998x_audio_mute(priv, false);
1061 
1062 	tda998x_write_aif(priv, &settings->cea);
1063 }
1064 
tda998x_audio_hw_params(struct device * dev,void * data,struct hdmi_codec_daifmt * daifmt,struct hdmi_codec_params * params)1065 static int tda998x_audio_hw_params(struct device *dev, void *data,
1066 				   struct hdmi_codec_daifmt *daifmt,
1067 				   struct hdmi_codec_params *params)
1068 {
1069 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1070 	unsigned int bclk_ratio;
1071 	bool spdif = daifmt->fmt == HDMI_SPDIF;
1072 	int ret;
1073 	struct tda998x_audio_settings audio = {
1074 		.sample_rate = params->sample_rate,
1075 		.cea = params->cea,
1076 	};
1077 
1078 	memcpy(audio.status, params->iec.status,
1079 	       min(sizeof(audio.status), sizeof(params->iec.status)));
1080 
1081 	switch (daifmt->fmt) {
1082 	case HDMI_I2S:
1083 		audio.i2s_format = I2S_FORMAT_PHILIPS;
1084 		break;
1085 	case HDMI_LEFT_J:
1086 		audio.i2s_format = I2S_FORMAT_LEFT_J;
1087 		break;
1088 	case HDMI_RIGHT_J:
1089 		audio.i2s_format = I2S_FORMAT_RIGHT_J;
1090 		break;
1091 	case HDMI_SPDIF:
1092 		audio.i2s_format = 0;
1093 		break;
1094 	default:
1095 		dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1096 		return -EINVAL;
1097 	}
1098 
1099 	if (!spdif &&
1100 	    (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
1101 	     daifmt->bit_clk_provider || daifmt->frame_clk_provider)) {
1102 		dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
1103 			daifmt->bit_clk_inv, daifmt->frame_clk_inv,
1104 			daifmt->bit_clk_provider,
1105 			daifmt->frame_clk_provider);
1106 		return -EINVAL;
1107 	}
1108 
1109 	ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif);
1110 	if (ret < 0)
1111 		return ret;
1112 
1113 	bclk_ratio = spdif ? 64 : params->sample_width * 2;
1114 	ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio);
1115 	if (ret < 0)
1116 		return ret;
1117 
1118 	mutex_lock(&priv->audio_mutex);
1119 	priv->audio = audio;
1120 	if (priv->supports_infoframes && priv->sink_has_audio)
1121 		tda998x_configure_audio(priv);
1122 	mutex_unlock(&priv->audio_mutex);
1123 
1124 	return 0;
1125 }
1126 
tda998x_audio_shutdown(struct device * dev,void * data)1127 static void tda998x_audio_shutdown(struct device *dev, void *data)
1128 {
1129 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1130 
1131 	mutex_lock(&priv->audio_mutex);
1132 
1133 	reg_write(priv, REG_ENA_AP, 0);
1134 	priv->audio.ena_ap = 0;
1135 
1136 	mutex_unlock(&priv->audio_mutex);
1137 }
1138 
tda998x_audio_mute_stream(struct device * dev,void * data,bool enable,int direction)1139 static int tda998x_audio_mute_stream(struct device *dev, void *data,
1140 				     bool enable, int direction)
1141 {
1142 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1143 
1144 	mutex_lock(&priv->audio_mutex);
1145 
1146 	tda998x_audio_mute(priv, enable);
1147 
1148 	mutex_unlock(&priv->audio_mutex);
1149 	return 0;
1150 }
1151 
tda998x_audio_get_eld(struct device * dev,void * data,uint8_t * buf,size_t len)1152 static int tda998x_audio_get_eld(struct device *dev, void *data,
1153 				 uint8_t *buf, size_t len)
1154 {
1155 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1156 
1157 	mutex_lock(&priv->audio_mutex);
1158 	memcpy(buf, priv->connector.eld,
1159 	       min(sizeof(priv->connector.eld), len));
1160 	mutex_unlock(&priv->audio_mutex);
1161 
1162 	return 0;
1163 }
1164 
1165 static const struct hdmi_codec_ops audio_codec_ops = {
1166 	.hw_params = tda998x_audio_hw_params,
1167 	.audio_shutdown = tda998x_audio_shutdown,
1168 	.mute_stream = tda998x_audio_mute_stream,
1169 	.get_eld = tda998x_audio_get_eld,
1170 };
1171 
tda998x_audio_codec_init(struct tda998x_priv * priv,struct device * dev)1172 static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1173 				    struct device *dev)
1174 {
1175 	struct hdmi_codec_pdata codec_data = {
1176 		.ops = &audio_codec_ops,
1177 		.max_i2s_channels = 2,
1178 		.no_i2s_capture = 1,
1179 		.no_spdif_capture = 1,
1180 		.no_capture_mute = 1,
1181 	};
1182 
1183 	if (priv->audio_port_enable[AUDIO_ROUTE_I2S])
1184 		codec_data.i2s = 1;
1185 	if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1186 		codec_data.spdif = 1;
1187 
1188 	priv->audio_pdev = platform_device_register_data(
1189 		dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1190 		&codec_data, sizeof(codec_data));
1191 
1192 	return PTR_ERR_OR_ZERO(priv->audio_pdev);
1193 }
1194 
1195 /* DRM connector functions */
1196 
1197 static enum drm_connector_status
tda998x_connector_detect(struct drm_connector * connector,bool force)1198 tda998x_connector_detect(struct drm_connector *connector, bool force)
1199 {
1200 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1201 	u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1202 
1203 	return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1204 			connector_status_disconnected;
1205 }
1206 
tda998x_connector_destroy(struct drm_connector * connector)1207 static void tda998x_connector_destroy(struct drm_connector *connector)
1208 {
1209 	drm_connector_cleanup(connector);
1210 }
1211 
1212 static const struct drm_connector_funcs tda998x_connector_funcs = {
1213 	.reset = drm_atomic_helper_connector_reset,
1214 	.fill_modes = drm_helper_probe_single_connector_modes,
1215 	.detect = tda998x_connector_detect,
1216 	.destroy = tda998x_connector_destroy,
1217 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1218 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1219 };
1220 
read_edid_block(void * data,u8 * buf,unsigned int blk,size_t length)1221 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1222 {
1223 	struct tda998x_priv *priv = data;
1224 	u8 offset, segptr;
1225 	int ret, i;
1226 
1227 	offset = (blk & 1) ? 128 : 0;
1228 	segptr = blk / 2;
1229 
1230 	mutex_lock(&priv->edid_mutex);
1231 
1232 	reg_write(priv, REG_DDC_ADDR, 0xa0);
1233 	reg_write(priv, REG_DDC_OFFS, offset);
1234 	reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1235 	reg_write(priv, REG_DDC_SEGM, segptr);
1236 
1237 	/* enable reading EDID: */
1238 	priv->wq_edid_wait = 1;
1239 	reg_write(priv, REG_EDID_CTRL, 0x1);
1240 
1241 	/* flag must be cleared by sw: */
1242 	reg_write(priv, REG_EDID_CTRL, 0x0);
1243 
1244 	/* wait for block read to complete: */
1245 	if (priv->hdmi->irq) {
1246 		i = wait_event_timeout(priv->wq_edid,
1247 					!priv->wq_edid_wait,
1248 					msecs_to_jiffies(100));
1249 		if (i < 0) {
1250 			dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1251 			ret = i;
1252 			goto failed;
1253 		}
1254 	} else {
1255 		for (i = 100; i > 0; i--) {
1256 			msleep(1);
1257 			ret = reg_read(priv, REG_INT_FLAGS_2);
1258 			if (ret < 0)
1259 				goto failed;
1260 			if (ret & INT_FLAGS_2_EDID_BLK_RD)
1261 				break;
1262 		}
1263 	}
1264 
1265 	if (i == 0) {
1266 		dev_err(&priv->hdmi->dev, "read edid timeout\n");
1267 		ret = -ETIMEDOUT;
1268 		goto failed;
1269 	}
1270 
1271 	ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1272 	if (ret != length) {
1273 		dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1274 			blk, ret);
1275 		goto failed;
1276 	}
1277 
1278 	ret = 0;
1279 
1280  failed:
1281 	mutex_unlock(&priv->edid_mutex);
1282 	return ret;
1283 }
1284 
tda998x_connector_get_modes(struct drm_connector * connector)1285 static int tda998x_connector_get_modes(struct drm_connector *connector)
1286 {
1287 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1288 	const struct drm_edid *drm_edid;
1289 	int n;
1290 
1291 	/*
1292 	 * If we get killed while waiting for the HPD timeout, return
1293 	 * no modes found: we are not in a restartable path, so we
1294 	 * can't handle signals gracefully.
1295 	 */
1296 	if (tda998x_edid_delay_wait(priv))
1297 		return 0;
1298 
1299 	if (priv->rev == TDA19988)
1300 		reg_clear(priv, REG_TX4, TX4_PD_RAM);
1301 
1302 	drm_edid = drm_edid_read_custom(connector, read_edid_block, priv);
1303 
1304 	if (priv->rev == TDA19988)
1305 		reg_set(priv, REG_TX4, TX4_PD_RAM);
1306 
1307 	drm_edid_connector_update(connector, drm_edid);
1308 	cec_notifier_set_phys_addr(priv->cec_notify,
1309 				   connector->display_info.source_physical_address);
1310 
1311 	if (!drm_edid) {
1312 		dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1313 		return 0;
1314 	}
1315 
1316 	mutex_lock(&priv->audio_mutex);
1317 	n = drm_edid_connector_add_modes(connector);
1318 	priv->sink_has_audio = connector->display_info.has_audio;
1319 	mutex_unlock(&priv->audio_mutex);
1320 
1321 	drm_edid_free(drm_edid);
1322 
1323 	return n;
1324 }
1325 
1326 static struct drm_encoder *
tda998x_connector_best_encoder(struct drm_connector * connector)1327 tda998x_connector_best_encoder(struct drm_connector *connector)
1328 {
1329 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1330 
1331 	return priv->bridge.encoder;
1332 }
1333 
1334 static
1335 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1336 	.get_modes = tda998x_connector_get_modes,
1337 	.best_encoder = tda998x_connector_best_encoder,
1338 };
1339 
tda998x_connector_init(struct tda998x_priv * priv,struct drm_device * drm)1340 static int tda998x_connector_init(struct tda998x_priv *priv,
1341 				  struct drm_device *drm)
1342 {
1343 	struct drm_connector *connector = &priv->connector;
1344 	int ret;
1345 
1346 	connector->interlace_allowed = 1;
1347 
1348 	if (priv->hdmi->irq)
1349 		connector->polled = DRM_CONNECTOR_POLL_HPD;
1350 	else
1351 		connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1352 			DRM_CONNECTOR_POLL_DISCONNECT;
1353 
1354 	drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1355 	ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1356 				 DRM_MODE_CONNECTOR_HDMIA);
1357 	if (ret)
1358 		return ret;
1359 
1360 	drm_connector_attach_encoder(&priv->connector,
1361 				     priv->bridge.encoder);
1362 
1363 	return 0;
1364 }
1365 
1366 /* DRM bridge functions */
1367 
tda998x_bridge_attach(struct drm_bridge * bridge,struct drm_encoder * encoder,enum drm_bridge_attach_flags flags)1368 static int tda998x_bridge_attach(struct drm_bridge *bridge,
1369 				 struct drm_encoder *encoder,
1370 				 enum drm_bridge_attach_flags flags)
1371 {
1372 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1373 
1374 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
1375 		DRM_ERROR("Fix bridge driver to make connector optional!");
1376 		return -EINVAL;
1377 	}
1378 
1379 	return tda998x_connector_init(priv, bridge->dev);
1380 }
1381 
tda998x_bridge_detach(struct drm_bridge * bridge)1382 static void tda998x_bridge_detach(struct drm_bridge *bridge)
1383 {
1384 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1385 
1386 	drm_connector_cleanup(&priv->connector);
1387 }
1388 
tda998x_bridge_mode_valid(struct drm_bridge * bridge,const struct drm_display_info * info,const struct drm_display_mode * mode)1389 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1390 				     const struct drm_display_info *info,
1391 				     const struct drm_display_mode *mode)
1392 {
1393 	/* TDA19988 dotclock can go up to 165MHz */
1394 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1395 
1396 	if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1397 		return MODE_CLOCK_HIGH;
1398 	if (mode->htotal >= BIT(13))
1399 		return MODE_BAD_HVALUE;
1400 	if (mode->vtotal >= BIT(11))
1401 		return MODE_BAD_VVALUE;
1402 	return MODE_OK;
1403 }
1404 
tda998x_bridge_enable(struct drm_bridge * bridge)1405 static void tda998x_bridge_enable(struct drm_bridge *bridge)
1406 {
1407 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1408 
1409 	if (!priv->is_on) {
1410 		/* enable video ports, audio will be enabled later */
1411 		reg_write(priv, REG_ENA_VP_0, 0xff);
1412 		reg_write(priv, REG_ENA_VP_1, 0xff);
1413 		reg_write(priv, REG_ENA_VP_2, 0xff);
1414 		/* set muxing after enabling ports: */
1415 		reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1416 		reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1417 		reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1418 
1419 		priv->is_on = true;
1420 	}
1421 }
1422 
tda998x_bridge_disable(struct drm_bridge * bridge)1423 static void tda998x_bridge_disable(struct drm_bridge *bridge)
1424 {
1425 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1426 
1427 	if (priv->is_on) {
1428 		/* disable video ports */
1429 		reg_write(priv, REG_ENA_VP_0, 0x00);
1430 		reg_write(priv, REG_ENA_VP_1, 0x00);
1431 		reg_write(priv, REG_ENA_VP_2, 0x00);
1432 
1433 		priv->is_on = false;
1434 	}
1435 }
1436 
tda998x_bridge_mode_set(struct drm_bridge * bridge,const struct drm_display_mode * mode,const struct drm_display_mode * adjusted_mode)1437 static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1438 				    const struct drm_display_mode *mode,
1439 				    const struct drm_display_mode *adjusted_mode)
1440 {
1441 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1442 	unsigned long tmds_clock;
1443 	u16 ref_pix, ref_line, n_pix, n_line;
1444 	u16 hs_pix_s, hs_pix_e;
1445 	u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1446 	u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1447 	u16 vwin1_line_s, vwin1_line_e;
1448 	u16 vwin2_line_s, vwin2_line_e;
1449 	u16 de_pix_s, de_pix_e;
1450 	u8 reg, div, rep, sel_clk;
1451 
1452 	/*
1453 	 * Since we are "computer" like, our source invariably produces
1454 	 * full-range RGB.  If the monitor supports full-range, then use
1455 	 * it, otherwise reduce to limited-range.
1456 	 */
1457 	priv->rgb_quant_range =
1458 		priv->connector.display_info.rgb_quant_range_selectable ?
1459 		HDMI_QUANTIZATION_RANGE_FULL :
1460 		drm_default_rgb_quant_range(adjusted_mode);
1461 
1462 	/*
1463 	 * Internally TDA998x is using ITU-R BT.656 style sync but
1464 	 * we get VESA style sync. TDA998x is using a reference pixel
1465 	 * relative to ITU to sync to the input frame and for output
1466 	 * sync generation. Currently, we are using reference detection
1467 	 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1468 	 * which is position of rising VS with coincident rising HS.
1469 	 *
1470 	 * Now there is some issues to take care of:
1471 	 * - HDMI data islands require sync-before-active
1472 	 * - TDA998x register values must be > 0 to be enabled
1473 	 * - REFLINE needs an additional offset of +1
1474 	 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1475 	 *
1476 	 * So we add +1 to all horizontal and vertical register values,
1477 	 * plus an additional +3 for REFPIX as we are using RGB input only.
1478 	 */
1479 	n_pix        = mode->htotal;
1480 	n_line       = mode->vtotal;
1481 
1482 	hs_pix_e     = mode->hsync_end - mode->hdisplay;
1483 	hs_pix_s     = mode->hsync_start - mode->hdisplay;
1484 	de_pix_e     = mode->htotal;
1485 	de_pix_s     = mode->htotal - mode->hdisplay;
1486 	ref_pix      = 3 + hs_pix_s;
1487 
1488 	/*
1489 	 * Attached LCD controllers may generate broken sync. Allow
1490 	 * those to adjust the position of the rising VS edge by adding
1491 	 * HSKEW to ref_pix.
1492 	 */
1493 	if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1494 		ref_pix += adjusted_mode->hskew;
1495 
1496 	if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1497 		ref_line     = 1 + mode->vsync_start - mode->vdisplay;
1498 		vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1499 		vwin1_line_e = vwin1_line_s + mode->vdisplay;
1500 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1501 		vs1_line_s   = mode->vsync_start - mode->vdisplay;
1502 		vs1_line_e   = vs1_line_s +
1503 			       mode->vsync_end - mode->vsync_start;
1504 		vwin2_line_s = vwin2_line_e = 0;
1505 		vs2_pix_s    = vs2_pix_e  = 0;
1506 		vs2_line_s   = vs2_line_e = 0;
1507 	} else {
1508 		ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
1509 		vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1510 		vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1511 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1512 		vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
1513 		vs1_line_e   = vs1_line_s +
1514 			       (mode->vsync_end - mode->vsync_start)/2;
1515 		vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1516 		vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1517 		vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
1518 		vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
1519 		vs2_line_e   = vs2_line_s +
1520 			       (mode->vsync_end - mode->vsync_start)/2;
1521 	}
1522 
1523 	/*
1524 	 * Select pixel repeat depending on the double-clock flag
1525 	 * (which means we have to repeat each pixel once.)
1526 	 */
1527 	rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0;
1528 	sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 |
1529 		  SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0);
1530 
1531 	/* the TMDS clock is scaled up by the pixel repeat */
1532 	tmds_clock = mode->clock * (1 + rep);
1533 
1534 	/*
1535 	 * The divisor is power-of-2. The TDA9983B datasheet gives
1536 	 * this as ranges of Msample/s, which is 10x the TMDS clock:
1537 	 *   0 - 800 to 1500 Msample/s
1538 	 *   1 - 400 to 800 Msample/s
1539 	 *   2 - 200 to 400 Msample/s
1540 	 *   3 - as 2 above
1541 	 */
1542 	for (div = 0; div < 3; div++)
1543 		if (80000 >> div <= tmds_clock)
1544 			break;
1545 
1546 	mutex_lock(&priv->audio_mutex);
1547 
1548 	priv->tmds_clock = tmds_clock;
1549 
1550 	/* mute the audio FIFO: */
1551 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1552 
1553 	/* set HDMI HDCP mode off: */
1554 	reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1555 	reg_clear(priv, REG_TX33, TX33_HDMI);
1556 	reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1557 
1558 	/* no pre-filter or interpolator: */
1559 	reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1560 			HVF_CNTRL_0_INTPOL(0));
1561 	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1562 	reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1563 	reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1564 			VIP_CNTRL_4_BLC(0));
1565 
1566 	reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1567 	reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1568 					  PLL_SERIAL_3_SRL_DE);
1569 	reg_write(priv, REG_SERIALIZER, 0);
1570 	reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1571 
1572 	reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep));
1573 	reg_write(priv, REG_SEL_CLK, sel_clk);
1574 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1575 			PLL_SERIAL_2_SRL_PR(rep));
1576 
1577 	/* set color matrix according to output rgb quant range */
1578 	if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) {
1579 		static u8 tda998x_full_to_limited_range[] = {
1580 			MAT_CONTRL_MAT_SC(2),
1581 			0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1582 			0x03, 0x6f, 0x00, 0x00, 0x00, 0x00,
1583 			0x00, 0x00, 0x03, 0x6f, 0x00, 0x00,
1584 			0x00, 0x00, 0x00, 0x00, 0x03, 0x6f,
1585 			0x00, 0x40, 0x00, 0x40, 0x00, 0x40
1586 		};
1587 		reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1588 		reg_write_range(priv, REG_MAT_CONTRL,
1589 				tda998x_full_to_limited_range,
1590 				sizeof(tda998x_full_to_limited_range));
1591 	} else {
1592 		reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1593 					MAT_CONTRL_MAT_SC(1));
1594 		reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1595 	}
1596 
1597 	/* set BIAS tmds value: */
1598 	reg_write(priv, REG_ANA_GENERAL, 0x09);
1599 
1600 	/*
1601 	 * Sync on rising HSYNC/VSYNC
1602 	 */
1603 	reg = VIP_CNTRL_3_SYNC_HS;
1604 
1605 	/*
1606 	 * TDA19988 requires high-active sync at input stage,
1607 	 * so invert low-active sync provided by master encoder here
1608 	 */
1609 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1610 		reg |= VIP_CNTRL_3_H_TGL;
1611 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1612 		reg |= VIP_CNTRL_3_V_TGL;
1613 	reg_write(priv, REG_VIP_CNTRL_3, reg);
1614 
1615 	reg_write(priv, REG_VIDFORMAT, 0x00);
1616 	reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1617 	reg_write16(priv, REG_REFLINE_MSB, ref_line);
1618 	reg_write16(priv, REG_NPIX_MSB, n_pix);
1619 	reg_write16(priv, REG_NLINE_MSB, n_line);
1620 	reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1621 	reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1622 	reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1623 	reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1624 	reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1625 	reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1626 	reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1627 	reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1628 	reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1629 	reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1630 	reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1631 	reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1632 	reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1633 	reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1634 	reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1635 	reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1636 
1637 	if (priv->rev == TDA19988) {
1638 		/* let incoming pixels fill the active space (if any) */
1639 		reg_write(priv, REG_ENABLE_SPACE, 0x00);
1640 	}
1641 
1642 	/*
1643 	 * Always generate sync polarity relative to input sync and
1644 	 * revert input stage toggled sync at output stage
1645 	 */
1646 	reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1647 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1648 		reg |= TBG_CNTRL_1_H_TGL;
1649 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1650 		reg |= TBG_CNTRL_1_V_TGL;
1651 	reg_write(priv, REG_TBG_CNTRL_1, reg);
1652 
1653 	/* must be last register set: */
1654 	reg_write(priv, REG_TBG_CNTRL_0, 0);
1655 
1656 	/* CEA-861B section 6 says that:
1657 	 * CEA version 1 (CEA-861) has no support for infoframes.
1658 	 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1659 	 * and optional basic audio.
1660 	 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1661 	 * and optional digital audio, with audio infoframes.
1662 	 *
1663 	 * Since we only support generation of version 2 AVI infoframes,
1664 	 * ignore CEA version 2 and below (iow, behave as if we're a
1665 	 * CEA-861 source.)
1666 	 */
1667 	priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1668 
1669 	if (priv->supports_infoframes) {
1670 		/* We need to turn HDMI HDCP stuff on to get audio through */
1671 		reg &= ~TBG_CNTRL_1_DWIN_DIS;
1672 		reg_write(priv, REG_TBG_CNTRL_1, reg);
1673 		reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1674 		reg_set(priv, REG_TX33, TX33_HDMI);
1675 
1676 		tda998x_write_avi(priv, adjusted_mode);
1677 		tda998x_write_vsi(priv, adjusted_mode);
1678 
1679 		if (priv->sink_has_audio)
1680 			tda998x_configure_audio(priv);
1681 	}
1682 
1683 	mutex_unlock(&priv->audio_mutex);
1684 }
1685 
1686 static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1687 	.attach = tda998x_bridge_attach,
1688 	.detach = tda998x_bridge_detach,
1689 	.mode_valid = tda998x_bridge_mode_valid,
1690 	.disable = tda998x_bridge_disable,
1691 	.mode_set = tda998x_bridge_mode_set,
1692 	.enable = tda998x_bridge_enable,
1693 };
1694 
1695 /* I2C driver functions */
1696 
tda998x_get_audio_ports(struct tda998x_priv * priv,struct device_node * np)1697 static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1698 				   struct device_node *np)
1699 {
1700 	const u32 *port_data;
1701 	u32 size;
1702 	int i;
1703 
1704 	port_data = of_get_property(np, "audio-ports", &size);
1705 	if (!port_data)
1706 		return 0;
1707 
1708 	size /= sizeof(u32);
1709 	if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) {
1710 		dev_err(&priv->hdmi->dev,
1711 			"Bad number of elements in audio-ports dt-property\n");
1712 		return -EINVAL;
1713 	}
1714 
1715 	size /= 2;
1716 
1717 	for (i = 0; i < size; i++) {
1718 		unsigned int route;
1719 		u8 afmt = be32_to_cpup(&port_data[2*i]);
1720 		u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1721 
1722 		switch (afmt) {
1723 		case TDA998x_I2S:
1724 			route = AUDIO_ROUTE_I2S;
1725 			break;
1726 		case TDA998x_SPDIF:
1727 			route = AUDIO_ROUTE_SPDIF;
1728 			break;
1729 		default:
1730 			dev_err(&priv->hdmi->dev,
1731 				"Bad audio format %u\n", afmt);
1732 			return -EINVAL;
1733 		}
1734 
1735 		if (!ena_ap) {
1736 			dev_err(&priv->hdmi->dev, "invalid zero port config\n");
1737 			continue;
1738 		}
1739 
1740 		if (priv->audio_port_enable[route]) {
1741 			dev_err(&priv->hdmi->dev,
1742 				"%s format already configured\n",
1743 				route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S");
1744 			return -EINVAL;
1745 		}
1746 
1747 		priv->audio_port_enable[route] = ena_ap;
1748 	}
1749 	return 0;
1750 }
1751 
tda998x_destroy(struct device * dev)1752 static void tda998x_destroy(struct device *dev)
1753 {
1754 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1755 
1756 	drm_bridge_remove(&priv->bridge);
1757 
1758 	/* disable all IRQs and free the IRQ handler */
1759 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1760 	reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1761 
1762 	if (priv->audio_pdev)
1763 		platform_device_unregister(priv->audio_pdev);
1764 
1765 	if (priv->hdmi->irq)
1766 		free_irq(priv->hdmi->irq, priv);
1767 
1768 	timer_delete_sync(&priv->edid_delay_timer);
1769 	cancel_work_sync(&priv->detect_work);
1770 
1771 	i2c_unregister_device(priv->cec);
1772 
1773 	cec_notifier_conn_unregister(priv->cec_notify);
1774 }
1775 
tda998x_create(struct device * dev)1776 static int tda998x_create(struct device *dev)
1777 {
1778 	struct i2c_client *client = to_i2c_client(dev);
1779 	struct device_node *np = client->dev.of_node;
1780 	struct i2c_board_info cec_info;
1781 	struct tda998x_priv *priv;
1782 	u32 video;
1783 	int rev_lo, rev_hi, ret;
1784 
1785 	priv = devm_drm_bridge_alloc(dev, struct tda998x_priv, bridge, &tda998x_bridge_funcs);
1786 	if (IS_ERR(priv))
1787 		return PTR_ERR(priv);
1788 
1789 	dev_set_drvdata(dev, priv);
1790 
1791 	mutex_init(&priv->mutex);	/* protect the page access */
1792 	mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1793 	mutex_init(&priv->edid_mutex);
1794 	INIT_LIST_HEAD(&priv->bridge.list);
1795 	init_waitqueue_head(&priv->edid_delay_waitq);
1796 	timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1797 	INIT_WORK(&priv->detect_work, tda998x_detect_work);
1798 
1799 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1800 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1801 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1802 
1803 	/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1804 	priv->cec_addr = 0x34 + (client->addr & 0x03);
1805 	priv->current_page = 0xff;
1806 	priv->hdmi = client;
1807 
1808 	/* wake up the device: */
1809 	cec_write(priv, REG_CEC_ENAMODS,
1810 			CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1811 
1812 	tda998x_reset(priv);
1813 
1814 	/* read version: */
1815 	rev_lo = reg_read(priv, REG_VERSION_LSB);
1816 	if (rev_lo < 0) {
1817 		dev_err(dev, "failed to read version: %d\n", rev_lo);
1818 		return rev_lo;
1819 	}
1820 
1821 	rev_hi = reg_read(priv, REG_VERSION_MSB);
1822 	if (rev_hi < 0) {
1823 		dev_err(dev, "failed to read version: %d\n", rev_hi);
1824 		return rev_hi;
1825 	}
1826 
1827 	priv->rev = rev_lo | rev_hi << 8;
1828 
1829 	/* mask off feature bits: */
1830 	priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1831 
1832 	switch (priv->rev) {
1833 	case TDA9989N2:
1834 		dev_info(dev, "found TDA9989 n2");
1835 		break;
1836 	case TDA19989:
1837 		dev_info(dev, "found TDA19989");
1838 		break;
1839 	case TDA19989N2:
1840 		dev_info(dev, "found TDA19989 n2");
1841 		break;
1842 	case TDA19988:
1843 		dev_info(dev, "found TDA19988");
1844 		break;
1845 	default:
1846 		dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1847 		return -ENXIO;
1848 	}
1849 
1850 	/* after reset, enable DDC: */
1851 	reg_write(priv, REG_DDC_DISABLE, 0x00);
1852 
1853 	/* set clock on DDC channel: */
1854 	reg_write(priv, REG_TX3, 39);
1855 
1856 	/* if necessary, disable multi-master: */
1857 	if (priv->rev == TDA19989)
1858 		reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1859 
1860 	cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1861 			CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1862 
1863 	/* ensure interrupts are disabled */
1864 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1865 
1866 	/* clear pending interrupts */
1867 	cec_read(priv, REG_CEC_RXSHPDINT);
1868 	reg_read(priv, REG_INT_FLAGS_0);
1869 	reg_read(priv, REG_INT_FLAGS_1);
1870 	reg_read(priv, REG_INT_FLAGS_2);
1871 
1872 	/* initialize the optional IRQ */
1873 	if (client->irq) {
1874 		unsigned long irq_flags;
1875 
1876 		/* init read EDID waitqueue and HDP work */
1877 		init_waitqueue_head(&priv->wq_edid);
1878 
1879 		irq_flags =
1880 			irqd_get_trigger_type(irq_get_irq_data(client->irq));
1881 
1882 		priv->cec_glue.irq_flags = irq_flags;
1883 
1884 		irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1885 		ret = request_threaded_irq(client->irq, NULL,
1886 					   tda998x_irq_thread, irq_flags,
1887 					   "tda998x", priv);
1888 		if (ret) {
1889 			dev_err(dev, "failed to request IRQ#%u: %d\n",
1890 				client->irq, ret);
1891 			goto err_irq;
1892 		}
1893 
1894 		/* enable HPD irq */
1895 		cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1896 	}
1897 
1898 	priv->cec_notify = cec_notifier_conn_register(dev, NULL, NULL);
1899 	if (!priv->cec_notify) {
1900 		ret = -ENOMEM;
1901 		goto fail;
1902 	}
1903 
1904 	priv->cec_glue.parent = dev;
1905 	priv->cec_glue.data = priv;
1906 	priv->cec_glue.init = tda998x_cec_hook_init;
1907 	priv->cec_glue.exit = tda998x_cec_hook_exit;
1908 	priv->cec_glue.open = tda998x_cec_hook_open;
1909 	priv->cec_glue.release = tda998x_cec_hook_release;
1910 
1911 	/*
1912 	 * Some TDA998x are actually two I2C devices merged onto one piece
1913 	 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1914 	 * with a slightly modified TDA9950 CEC device.  The CEC device
1915 	 * is at the TDA9950 address, with the address pins strapped across
1916 	 * to the TDA998x address pins.  Hence, it always has the same
1917 	 * offset.
1918 	 */
1919 	memset(&cec_info, 0, sizeof(cec_info));
1920 	strscpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1921 	cec_info.addr = priv->cec_addr;
1922 	cec_info.platform_data = &priv->cec_glue;
1923 	cec_info.irq = client->irq;
1924 
1925 	priv->cec = i2c_new_client_device(client->adapter, &cec_info);
1926 	if (IS_ERR(priv->cec)) {
1927 		ret = PTR_ERR(priv->cec);
1928 		goto fail;
1929 	}
1930 
1931 	/* enable EDID read irq: */
1932 	reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1933 
1934 	if (np) {
1935 		/* get the device tree parameters */
1936 		ret = of_property_read_u32(np, "video-ports", &video);
1937 		if (ret == 0) {
1938 			priv->vip_cntrl_0 = video >> 16;
1939 			priv->vip_cntrl_1 = video >> 8;
1940 			priv->vip_cntrl_2 = video;
1941 		}
1942 
1943 		ret = tda998x_get_audio_ports(priv, np);
1944 		if (ret)
1945 			goto fail;
1946 
1947 		if (priv->audio_port_enable[AUDIO_ROUTE_I2S] ||
1948 		    priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1949 			tda998x_audio_codec_init(priv, &client->dev);
1950 	}
1951 
1952 #ifdef CONFIG_OF
1953 	priv->bridge.of_node = dev->of_node;
1954 #endif
1955 
1956 	drm_bridge_add(&priv->bridge);
1957 
1958 	return 0;
1959 
1960 fail:
1961 	tda998x_destroy(dev);
1962 err_irq:
1963 	return ret;
1964 }
1965 
1966 /* DRM encoder functions */
1967 
tda998x_encoder_init(struct device * dev,struct drm_device * drm)1968 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
1969 {
1970 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1971 	u32 crtcs = 0;
1972 	int ret;
1973 
1974 	if (dev->of_node)
1975 		crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
1976 
1977 	/* If no CRTCs were found, fall back to our old behaviour */
1978 	if (crtcs == 0) {
1979 		dev_warn(dev, "Falling back to first CRTC\n");
1980 		crtcs = 1 << 0;
1981 	}
1982 
1983 	priv->encoder.possible_crtcs = crtcs;
1984 
1985 	ret = drm_simple_encoder_init(drm, &priv->encoder,
1986 				      DRM_MODE_ENCODER_TMDS);
1987 	if (ret)
1988 		goto err_encoder;
1989 
1990 	ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL, 0);
1991 	if (ret)
1992 		goto err_bridge;
1993 
1994 	return 0;
1995 
1996 err_bridge:
1997 	drm_encoder_cleanup(&priv->encoder);
1998 err_encoder:
1999 	return ret;
2000 }
2001 
tda998x_bind(struct device * dev,struct device * master,void * data)2002 static int tda998x_bind(struct device *dev, struct device *master, void *data)
2003 {
2004 	struct drm_device *drm = data;
2005 
2006 	return tda998x_encoder_init(dev, drm);
2007 }
2008 
tda998x_unbind(struct device * dev,struct device * master,void * data)2009 static void tda998x_unbind(struct device *dev, struct device *master,
2010 			   void *data)
2011 {
2012 	struct tda998x_priv *priv = dev_get_drvdata(dev);
2013 
2014 	drm_encoder_cleanup(&priv->encoder);
2015 }
2016 
2017 static const struct component_ops tda998x_ops = {
2018 	.bind = tda998x_bind,
2019 	.unbind = tda998x_unbind,
2020 };
2021 
2022 static int
tda998x_probe(struct i2c_client * client)2023 tda998x_probe(struct i2c_client *client)
2024 {
2025 	int ret;
2026 
2027 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
2028 		dev_warn(&client->dev, "adapter does not support I2C\n");
2029 		return -EIO;
2030 	}
2031 
2032 	ret = tda998x_create(&client->dev);
2033 	if (ret)
2034 		return ret;
2035 
2036 	ret = component_add(&client->dev, &tda998x_ops);
2037 	if (ret)
2038 		tda998x_destroy(&client->dev);
2039 	return ret;
2040 }
2041 
tda998x_remove(struct i2c_client * client)2042 static void tda998x_remove(struct i2c_client *client)
2043 {
2044 	component_del(&client->dev, &tda998x_ops);
2045 	tda998x_destroy(&client->dev);
2046 }
2047 
2048 #ifdef CONFIG_OF
2049 static const struct of_device_id tda998x_dt_ids[] = {
2050 	{ .compatible = "nxp,tda998x", },
2051 	{ }
2052 };
2053 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
2054 #endif
2055 
2056 static const struct i2c_device_id tda998x_ids[] = {
2057 	{ "tda998x" },
2058 	{ }
2059 };
2060 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
2061 
2062 static struct i2c_driver tda998x_driver = {
2063 	.probe = tda998x_probe,
2064 	.remove = tda998x_remove,
2065 	.driver = {
2066 		.name = "tda998x",
2067 		.of_match_table = of_match_ptr(tda998x_dt_ids),
2068 	},
2069 	.id_table = tda998x_ids,
2070 };
2071 
2072 module_i2c_driver(tda998x_driver);
2073 
2074 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
2075 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
2076 MODULE_LICENSE("GPL");
2077