xref: /linux/drivers/firmware/efi/libstub/x86-stub.c (revision b1dd1e2f3e4ed970949ab4bb982bb0165f3e979d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /* -----------------------------------------------------------------------
4  *
5  *   Copyright 2011 Intel Corporation; author Matt Fleming
6  *
7  * ----------------------------------------------------------------------- */
8 
9 #include <linux/efi.h>
10 #include <linux/pci.h>
11 #include <linux/stddef.h>
12 
13 #include <asm/efi.h>
14 #include <asm/e820/types.h>
15 #include <asm/setup.h>
16 #include <asm/desc.h>
17 #include <asm/boot.h>
18 #include <asm/kaslr.h>
19 #include <asm/sev.h>
20 
21 #include "efistub.h"
22 #include "x86-stub.h"
23 
24 extern char _bss[], _ebss[];
25 
26 const efi_system_table_t *efi_system_table;
27 const efi_dxe_services_table_t *efi_dxe_table;
28 static efi_loaded_image_t *image = NULL;
29 static efi_memory_attribute_protocol_t *memattr;
30 
31 typedef union sev_memory_acceptance_protocol sev_memory_acceptance_protocol_t;
32 union sev_memory_acceptance_protocol {
33 	struct {
34 		efi_status_t (__efiapi * allow_unaccepted_memory)(
35 			sev_memory_acceptance_protocol_t *);
36 	};
37 	struct {
38 		u32 allow_unaccepted_memory;
39 	} mixed_mode;
40 };
41 
42 static efi_status_t
43 preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom)
44 {
45 	struct pci_setup_rom *rom __free(efi_pool) = NULL;
46 	efi_status_t status;
47 	unsigned long size;
48 	uint64_t romsize;
49 	void *romimage;
50 
51 	/*
52 	 * Some firmware images contain EFI function pointers at the place where
53 	 * the romimage and romsize fields are supposed to be. Typically the EFI
54 	 * code is mapped at high addresses, translating to an unrealistically
55 	 * large romsize. The UEFI spec limits the size of option ROMs to 16
56 	 * MiB so we reject any ROMs over 16 MiB in size to catch this.
57 	 */
58 	romimage = efi_table_attr(pci, romimage);
59 	romsize = efi_table_attr(pci, romsize);
60 	if (!romimage || !romsize || romsize > SZ_16M)
61 		return EFI_INVALID_PARAMETER;
62 
63 	size = romsize + sizeof(*rom);
64 
65 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
66 			     (void **)&rom);
67 	if (status != EFI_SUCCESS) {
68 		efi_err("Failed to allocate memory for 'rom'\n");
69 		return status;
70 	}
71 
72 	memset(rom, 0, sizeof(*rom));
73 
74 	rom->data.type	= SETUP_PCI;
75 	rom->data.len	= size - sizeof(struct setup_data);
76 	rom->data.next	= 0;
77 	rom->pcilen	= romsize;
78 
79 	status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
80 				PCI_VENDOR_ID, 1, &rom->vendor);
81 
82 	if (status != EFI_SUCCESS) {
83 		efi_err("Failed to read rom->vendor\n");
84 		return status;
85 	}
86 
87 	status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
88 				PCI_DEVICE_ID, 1, &rom->devid);
89 
90 	if (status != EFI_SUCCESS) {
91 		efi_err("Failed to read rom->devid\n");
92 		return status;
93 	}
94 
95 	status = efi_call_proto(pci, get_location, &rom->segment, &rom->bus,
96 				&rom->device, &rom->function);
97 
98 	if (status != EFI_SUCCESS)
99 		return status;
100 
101 	memcpy(rom->romdata, romimage, romsize);
102 	*__rom = no_free_ptr(rom);
103 	return EFI_SUCCESS;
104 }
105 
106 /*
107  * There's no way to return an informative status from this function,
108  * because any analysis (and printing of error messages) needs to be
109  * done directly at the EFI function call-site.
110  *
111  * For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we
112  * just didn't find any PCI devices, but there's no way to tell outside
113  * the context of the call.
114  */
115 static void setup_efi_pci(struct boot_params *params)
116 {
117 	efi_status_t status;
118 	efi_handle_t *pci_handle __free(efi_pool) = NULL;
119 	efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
120 	struct setup_data *data;
121 	unsigned long num;
122 	efi_handle_t h;
123 
124 	status = efi_bs_call(locate_handle_buffer, EFI_LOCATE_BY_PROTOCOL,
125 			     &pci_proto, NULL, &num, &pci_handle);
126 	if (status != EFI_SUCCESS)
127 		return;
128 
129 	data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
130 
131 	while (data && data->next)
132 		data = (struct setup_data *)(unsigned long)data->next;
133 
134 	for_each_efi_handle(h, pci_handle, num) {
135 		efi_pci_io_protocol_t *pci = NULL;
136 		struct pci_setup_rom *rom;
137 
138 		status = efi_bs_call(handle_protocol, h, &pci_proto,
139 				     (void **)&pci);
140 		if (status != EFI_SUCCESS || !pci)
141 			continue;
142 
143 		status = preserve_pci_rom_image(pci, &rom);
144 		if (status != EFI_SUCCESS)
145 			continue;
146 
147 		if (data)
148 			data->next = (unsigned long)rom;
149 		else
150 			params->hdr.setup_data = (unsigned long)rom;
151 
152 		data = (struct setup_data *)rom;
153 	}
154 }
155 
156 static void retrieve_apple_device_properties(struct boot_params *boot_params)
157 {
158 	efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID;
159 	struct setup_data *data, *new;
160 	efi_status_t status;
161 	u32 size = 0;
162 	apple_properties_protocol_t *p;
163 
164 	status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&p);
165 	if (status != EFI_SUCCESS)
166 		return;
167 
168 	if (efi_table_attr(p, version) != 0x10000) {
169 		efi_err("Unsupported properties proto version\n");
170 		return;
171 	}
172 
173 	efi_call_proto(p, get_all, NULL, &size);
174 	if (!size)
175 		return;
176 
177 	do {
178 		status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
179 				     size + sizeof(struct setup_data),
180 				     (void **)&new);
181 		if (status != EFI_SUCCESS) {
182 			efi_err("Failed to allocate memory for 'properties'\n");
183 			return;
184 		}
185 
186 		status = efi_call_proto(p, get_all, new->data, &size);
187 
188 		if (status == EFI_BUFFER_TOO_SMALL)
189 			efi_bs_call(free_pool, new);
190 	} while (status == EFI_BUFFER_TOO_SMALL);
191 
192 	new->type = SETUP_APPLE_PROPERTIES;
193 	new->len  = size;
194 	new->next = 0;
195 
196 	data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
197 	if (!data) {
198 		boot_params->hdr.setup_data = (unsigned long)new;
199 	} else {
200 		while (data->next)
201 			data = (struct setup_data *)(unsigned long)data->next;
202 		data->next = (unsigned long)new;
203 	}
204 }
205 
206 struct smbios_entry_point {
207 	u8	anchor[4];
208 	u8	ep_checksum;
209 	u8	ep_length;
210 	u8	major_version;
211 	u8	minor_version;
212 	u16	max_size_entry;
213 	u8	ep_rev;
214 	u8	reserved[5];
215 
216 	struct __packed {
217 		u8	anchor[5];
218 		u8	checksum;
219 		u16	st_length;
220 		u32	st_address;
221 		u16	number_of_entries;
222 		u8	bcd_rev;
223 	} intm;
224 };
225 
226 static bool verify_ep_checksum(const void *ptr, int length)
227 {
228 	u8 sum = 0;
229 
230 	for (int i = 0; i < length; i++)
231 		sum += ((u8 *)ptr)[i];
232 
233 	return sum == 0;
234 }
235 
236 static bool verify_ep_integrity(const struct smbios_entry_point *ep)
237 {
238 	if (memcmp(ep->anchor, "_SM_", sizeof(ep->anchor)) != 0)
239 		return false;
240 
241 	if (memcmp(ep->intm.anchor, "_DMI_", sizeof(ep->intm.anchor)) != 0)
242 		return false;
243 
244 	if (!verify_ep_checksum(ep, ep->ep_length) ||
245 	    !verify_ep_checksum(&ep->intm, sizeof(ep->intm)))
246 		return false;
247 
248 	return true;
249 }
250 
251 static const struct efi_smbios_record *search_record(void *table, u32 length,
252 						     u8 type)
253 {
254 	const u8 *p, *end;
255 
256 	p = (u8 *)table;
257 	end = p + length;
258 
259 	while (p + sizeof(struct efi_smbios_record) < end) {
260 		const struct efi_smbios_record *hdr =
261 			(struct efi_smbios_record *)p;
262 		const u8 *next;
263 
264 		if (hdr->type == type)
265 			return hdr;
266 
267 		/* Type 127 = End-of-Table */
268 		if (hdr->type == 0x7F)
269 			return NULL;
270 
271 		/* Jumping to the unformed section */
272 		next = p + hdr->length;
273 
274 		/* Unformed section ends with 0000h */
275 		while ((next[0] != 0 || next[1] != 0) && next + 1 < end)
276 			next++;
277 
278 		next += 2;
279 		p = next;
280 	}
281 
282 	return NULL;
283 }
284 
285 static const struct efi_smbios_record *get_table_record(u8 type)
286 {
287 	const struct smbios_entry_point *ep;
288 
289 	/*
290 	 * Locate the legacy 32-bit SMBIOS entrypoint in memory, and parse it
291 	 * directly. Needed by some Macs that do not implement the EFI protocol.
292 	 */
293 	ep = get_efi_config_table(SMBIOS_TABLE_GUID);
294 	if (!ep)
295 		return NULL;
296 
297 	if (!verify_ep_integrity(ep))
298 		return NULL;
299 
300 	return search_record((void *)(unsigned long)ep->intm.st_address,
301 			     ep->intm.st_length, type);
302 }
303 
304 static bool apple_match_product_name(void)
305 {
306 	static const char type1_product_matches[][15] = {
307 		"MacBookPro11,3",
308 		"MacBookPro11,5",
309 		"MacBookPro13,3",
310 		"MacBookPro14,3",
311 		"MacBookPro15,1",
312 		"MacBookPro15,3",
313 		"MacBookPro16,1",
314 		"MacBookPro16,4",
315 	};
316 	const struct efi_smbios_type1_record *record;
317 	const u8 *product;
318 
319 	record = (struct efi_smbios_type1_record *)
320 			(efi_get_smbios_record(1) ?: get_table_record(1));
321 	if (!record)
322 		return false;
323 
324 	product = efi_get_smbios_string(record, product_name);
325 	if (!product)
326 		return false;
327 
328 	for (int i = 0; i < ARRAY_SIZE(type1_product_matches); i++) {
329 		if (!strcmp(product, type1_product_matches[i]))
330 			return true;
331 	}
332 
333 	return false;
334 }
335 
336 static void apple_set_os(void)
337 {
338 	struct {
339 		unsigned long version;
340 		efi_status_t (__efiapi *set_os_version)(const char *);
341 		efi_status_t (__efiapi *set_os_vendor)(const char *);
342 	} *set_os;
343 	efi_status_t status;
344 
345 	if (!efi_is_64bit() || !apple_match_product_name())
346 		return;
347 
348 	status = efi_bs_call(locate_protocol, &APPLE_SET_OS_PROTOCOL_GUID, NULL,
349 			     (void **)&set_os);
350 	if (status != EFI_SUCCESS)
351 		return;
352 
353 	if (set_os->version >= 2) {
354 		status = set_os->set_os_vendor("Apple Inc.");
355 		if (status != EFI_SUCCESS)
356 			efi_err("Failed to set OS vendor via apple_set_os\n");
357 	}
358 
359 	if (set_os->version > 0) {
360 		/* The version being set doesn't seem to matter */
361 		status = set_os->set_os_version("Mac OS X 10.9");
362 		if (status != EFI_SUCCESS)
363 			efi_err("Failed to set OS version via apple_set_os\n");
364 	}
365 }
366 
367 efi_status_t efi_adjust_memory_range_protection(unsigned long start,
368 						unsigned long size)
369 {
370 	efi_status_t status;
371 	efi_gcd_memory_space_desc_t desc;
372 	unsigned long end, next;
373 	unsigned long rounded_start, rounded_end;
374 	unsigned long unprotect_start, unprotect_size;
375 
376 	rounded_start = rounddown(start, EFI_PAGE_SIZE);
377 	rounded_end = roundup(start + size, EFI_PAGE_SIZE);
378 
379 	if (memattr != NULL) {
380 		status = efi_call_proto(memattr, set_memory_attributes,
381 					rounded_start,
382 					rounded_end - rounded_start,
383 					EFI_MEMORY_RO);
384 		if (status != EFI_SUCCESS) {
385 			efi_warn("Failed to set EFI_MEMORY_RO attribute\n");
386 			return status;
387 		}
388 
389 		status = efi_call_proto(memattr, clear_memory_attributes,
390 					rounded_start,
391 					rounded_end - rounded_start,
392 					EFI_MEMORY_XP);
393 		if (status != EFI_SUCCESS)
394 			efi_warn("Failed to clear EFI_MEMORY_XP attribute\n");
395 		return status;
396 	}
397 
398 	if (efi_dxe_table == NULL)
399 		return EFI_SUCCESS;
400 
401 	/*
402 	 * Don't modify memory region attributes, if they are
403 	 * already suitable, to lower the possibility to
404 	 * encounter firmware bugs.
405 	 */
406 
407 	for (end = start + size; start < end; start = next) {
408 
409 		status = efi_dxe_call(get_memory_space_descriptor, start, &desc);
410 
411 		if (status != EFI_SUCCESS)
412 			break;
413 
414 		next = desc.base_address + desc.length;
415 
416 		/*
417 		 * Only system memory and more reliable memory are suitable for
418 		 * trampoline/kernel image placement. So only those memory types
419 		 * may need to have attributes modified.
420 		 */
421 
422 		if ((desc.gcd_memory_type != EfiGcdMemoryTypeSystemMemory &&
423 		     desc.gcd_memory_type != EfiGcdMemoryTypeMoreReliable) ||
424 		    (desc.attributes & (EFI_MEMORY_RO | EFI_MEMORY_XP)) == 0)
425 			continue;
426 
427 		unprotect_start = max(rounded_start, (unsigned long)desc.base_address);
428 		unprotect_size = min(rounded_end, next) - unprotect_start;
429 
430 		status = efi_dxe_call(set_memory_space_attributes,
431 				      unprotect_start, unprotect_size,
432 				      EFI_MEMORY_WB);
433 
434 		if (status != EFI_SUCCESS) {
435 			efi_warn("Unable to unprotect memory range [%08lx,%08lx]: %lx\n",
436 				 unprotect_start,
437 				 unprotect_start + unprotect_size,
438 				 status);
439 			break;
440 		}
441 	}
442 	return EFI_SUCCESS;
443 }
444 
445 static void setup_unaccepted_memory(void)
446 {
447 	efi_guid_t mem_acceptance_proto = OVMF_SEV_MEMORY_ACCEPTANCE_PROTOCOL_GUID;
448 	sev_memory_acceptance_protocol_t *proto;
449 	efi_status_t status;
450 
451 	if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
452 		return;
453 
454 	/*
455 	 * Enable unaccepted memory before calling exit boot services in order
456 	 * for the UEFI to not accept all memory on EBS.
457 	 */
458 	status = efi_bs_call(locate_protocol, &mem_acceptance_proto, NULL,
459 			     (void **)&proto);
460 	if (status != EFI_SUCCESS)
461 		return;
462 
463 	status = efi_call_proto(proto, allow_unaccepted_memory);
464 	if (status != EFI_SUCCESS)
465 		efi_err("Memory acceptance protocol failed\n");
466 }
467 
468 static efi_char16_t *efistub_fw_vendor(void)
469 {
470 	unsigned long vendor = efi_table_attr(efi_system_table, fw_vendor);
471 
472 	return (efi_char16_t *)vendor;
473 }
474 
475 static const efi_char16_t apple[] = L"Apple";
476 
477 static void setup_quirks(struct boot_params *boot_params)
478 {
479 	if (!memcmp(efistub_fw_vendor(), apple, sizeof(apple))) {
480 		if (IS_ENABLED(CONFIG_APPLE_PROPERTIES))
481 			retrieve_apple_device_properties(boot_params);
482 
483 		apple_set_os();
484 	}
485 }
486 
487 static void setup_graphics(struct boot_params *boot_params)
488 {
489 	struct screen_info *si = memset(&boot_params->screen_info, 0, sizeof(*si));
490 	struct edid_info *edid = memset(&boot_params->edid_info, 0, sizeof(*edid));
491 
492 	efi_setup_graphics(si, edid);
493 }
494 
495 static void __noreturn efi_exit(efi_handle_t handle, efi_status_t status)
496 {
497 	efi_bs_call(exit, handle, status, 0, NULL);
498 	for(;;)
499 		asm("hlt");
500 }
501 
502 /*
503  * Because the x86 boot code expects to be passed a boot_params we
504  * need to create one ourselves (usually the bootloader would create
505  * one for us).
506  */
507 static efi_status_t efi_allocate_bootparams(efi_handle_t handle,
508 					    struct boot_params **bp)
509 {
510 	efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
511 	struct boot_params *boot_params;
512 	struct setup_header *hdr;
513 	efi_status_t status;
514 	unsigned long alloc;
515 	char *cmdline_ptr;
516 
517 	status = efi_bs_call(handle_protocol, handle, &proto, (void **)&image);
518 	if (status != EFI_SUCCESS) {
519 		efi_err("Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
520 		return status;
521 	}
522 
523 	status = efi_allocate_pages(PARAM_SIZE, &alloc, ULONG_MAX);
524 	if (status != EFI_SUCCESS)
525 		return status;
526 
527 	boot_params = memset((void *)alloc, 0x0, PARAM_SIZE);
528 	hdr	    = &boot_params->hdr;
529 
530 	/* Assign the setup_header fields that the kernel actually cares about */
531 	hdr->root_flags	= 1;
532 	hdr->vid_mode	= 0xffff;
533 
534 	hdr->type_of_loader = 0x21;
535 	hdr->initrd_addr_max = INT_MAX;
536 
537 	/* Convert unicode cmdline to ascii */
538 	cmdline_ptr = efi_convert_cmdline(image);
539 	if (!cmdline_ptr) {
540 		efi_free(PARAM_SIZE, alloc);
541 		return EFI_OUT_OF_RESOURCES;
542 	}
543 
544 	efi_set_u64_split((unsigned long)cmdline_ptr, &hdr->cmd_line_ptr,
545 			  &boot_params->ext_cmd_line_ptr);
546 
547 	*bp = boot_params;
548 	return EFI_SUCCESS;
549 }
550 
551 static void add_e820ext(struct boot_params *params,
552 			struct setup_data *e820ext, u32 nr_entries)
553 {
554 	struct setup_data *data;
555 
556 	e820ext->type = SETUP_E820_EXT;
557 	e820ext->len  = nr_entries * sizeof(struct boot_e820_entry);
558 	e820ext->next = 0;
559 
560 	data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
561 
562 	while (data && data->next)
563 		data = (struct setup_data *)(unsigned long)data->next;
564 
565 	if (data)
566 		data->next = (unsigned long)e820ext;
567 	else
568 		params->hdr.setup_data = (unsigned long)e820ext;
569 }
570 
571 static efi_status_t
572 setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size)
573 {
574 	struct boot_e820_entry *entry = params->e820_table;
575 	struct efi_info *efi = &params->efi_info;
576 	struct boot_e820_entry *prev = NULL;
577 	u32 nr_entries;
578 	u32 nr_desc;
579 	int i;
580 
581 	nr_entries = 0;
582 	nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size;
583 
584 	for (i = 0; i < nr_desc; i++) {
585 		efi_memory_desc_t *d;
586 		unsigned int e820_type = 0;
587 		unsigned long m = efi->efi_memmap;
588 
589 #ifdef CONFIG_X86_64
590 		m |= (u64)efi->efi_memmap_hi << 32;
591 #endif
592 
593 		d = efi_memdesc_ptr(m, efi->efi_memdesc_size, i);
594 		switch (d->type) {
595 		case EFI_RESERVED_TYPE:
596 		case EFI_RUNTIME_SERVICES_CODE:
597 		case EFI_RUNTIME_SERVICES_DATA:
598 		case EFI_MEMORY_MAPPED_IO:
599 		case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
600 		case EFI_PAL_CODE:
601 			e820_type = E820_TYPE_RESERVED;
602 			break;
603 
604 		case EFI_UNUSABLE_MEMORY:
605 			e820_type = E820_TYPE_UNUSABLE;
606 			break;
607 
608 		case EFI_ACPI_RECLAIM_MEMORY:
609 			e820_type = E820_TYPE_ACPI;
610 			break;
611 
612 		case EFI_LOADER_CODE:
613 		case EFI_LOADER_DATA:
614 		case EFI_BOOT_SERVICES_CODE:
615 		case EFI_BOOT_SERVICES_DATA:
616 		case EFI_CONVENTIONAL_MEMORY:
617 			if (efi_soft_reserve_enabled() &&
618 			    (d->attribute & EFI_MEMORY_SP))
619 				e820_type = E820_TYPE_SOFT_RESERVED;
620 			else
621 				e820_type = E820_TYPE_RAM;
622 			break;
623 
624 		case EFI_ACPI_MEMORY_NVS:
625 			e820_type = E820_TYPE_NVS;
626 			break;
627 
628 		case EFI_PERSISTENT_MEMORY:
629 			e820_type = E820_TYPE_PMEM;
630 			break;
631 
632 		case EFI_UNACCEPTED_MEMORY:
633 			if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
634 				continue;
635 			e820_type = E820_TYPE_RAM;
636 			process_unaccepted_memory(d->phys_addr,
637 						  d->phys_addr + PAGE_SIZE * d->num_pages);
638 			break;
639 		default:
640 			continue;
641 		}
642 
643 		/* Merge adjacent mappings */
644 		if (prev && prev->type == e820_type &&
645 		    (prev->addr + prev->size) == d->phys_addr) {
646 			prev->size += d->num_pages << 12;
647 			continue;
648 		}
649 
650 		if (nr_entries == ARRAY_SIZE(params->e820_table)) {
651 			u32 need = (nr_desc - i) * sizeof(struct e820_entry) +
652 				   sizeof(struct setup_data);
653 
654 			if (!e820ext || e820ext_size < need)
655 				return EFI_BUFFER_TOO_SMALL;
656 
657 			/* boot_params map full, switch to e820 extended */
658 			entry = (struct boot_e820_entry *)e820ext->data;
659 		}
660 
661 		entry->addr = d->phys_addr;
662 		entry->size = d->num_pages << PAGE_SHIFT;
663 		entry->type = e820_type;
664 		prev = entry++;
665 		nr_entries++;
666 	}
667 
668 	if (nr_entries > ARRAY_SIZE(params->e820_table)) {
669 		u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table);
670 
671 		add_e820ext(params, e820ext, nr_e820ext);
672 		nr_entries -= nr_e820ext;
673 	}
674 
675 	params->e820_entries = (u8)nr_entries;
676 
677 	return EFI_SUCCESS;
678 }
679 
680 static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext,
681 				  u32 *e820ext_size)
682 {
683 	efi_status_t status;
684 	unsigned long size;
685 
686 	size = sizeof(struct setup_data) +
687 		sizeof(struct e820_entry) * nr_desc;
688 
689 	if (*e820ext) {
690 		efi_bs_call(free_pool, *e820ext);
691 		*e820ext = NULL;
692 		*e820ext_size = 0;
693 	}
694 
695 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
696 			     (void **)e820ext);
697 	if (status == EFI_SUCCESS)
698 		*e820ext_size = size;
699 
700 	return status;
701 }
702 
703 static efi_status_t allocate_e820(struct boot_params *params,
704 				  struct setup_data **e820ext,
705 				  u32 *e820ext_size)
706 {
707 	struct efi_boot_memmap *map __free(efi_pool) = NULL;
708 	efi_status_t status;
709 	__u32 nr_desc;
710 
711 	status = efi_get_memory_map(&map, false);
712 	if (status != EFI_SUCCESS)
713 		return status;
714 
715 	nr_desc = map->map_size / map->desc_size;
716 	if (nr_desc > ARRAY_SIZE(params->e820_table) - EFI_MMAP_NR_SLACK_SLOTS) {
717 		u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table) +
718 				 EFI_MMAP_NR_SLACK_SLOTS;
719 
720 		status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size);
721 		if (status != EFI_SUCCESS)
722 			return status;
723 	}
724 
725 	if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
726 		return allocate_unaccepted_bitmap(nr_desc, map);
727 
728 	return EFI_SUCCESS;
729 }
730 
731 struct exit_boot_struct {
732 	struct boot_params	*boot_params;
733 	struct efi_info		*efi;
734 };
735 
736 static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
737 				   void *priv)
738 {
739 	const char *signature;
740 	struct exit_boot_struct *p = priv;
741 
742 	signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE
743 				   : EFI32_LOADER_SIGNATURE;
744 	memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32));
745 
746 	efi_set_u64_split((unsigned long)efi_system_table,
747 			  &p->efi->efi_systab, &p->efi->efi_systab_hi);
748 	p->efi->efi_memdesc_size	= map->desc_size;
749 	p->efi->efi_memdesc_version	= map->desc_ver;
750 	efi_set_u64_split((unsigned long)map->map,
751 			  &p->efi->efi_memmap, &p->efi->efi_memmap_hi);
752 	p->efi->efi_memmap_size		= map->map_size;
753 
754 	return EFI_SUCCESS;
755 }
756 
757 static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
758 {
759 	struct setup_data *e820ext = NULL;
760 	__u32 e820ext_size = 0;
761 	efi_status_t status;
762 	struct exit_boot_struct priv;
763 
764 	priv.boot_params	= boot_params;
765 	priv.efi		= &boot_params->efi_info;
766 
767 	status = allocate_e820(boot_params, &e820ext, &e820ext_size);
768 	if (status != EFI_SUCCESS)
769 		return status;
770 
771 	/* Might as well exit boot services now */
772 	status = efi_exit_boot_services(handle, &priv, exit_boot_func);
773 	if (status != EFI_SUCCESS)
774 		return status;
775 
776 	/* Historic? */
777 	boot_params->alt_mem_k	= 32 * 1024;
778 
779 	status = setup_e820(boot_params, e820ext, e820ext_size);
780 	if (status != EFI_SUCCESS)
781 		return status;
782 
783 	return EFI_SUCCESS;
784 }
785 
786 static bool have_unsupported_snp_features(void)
787 {
788 	u64 unsupported;
789 
790 	unsupported = snp_get_unsupported_features(sev_get_status());
791 	if (unsupported) {
792 		efi_err("Unsupported SEV-SNP features detected: 0x%llx\n",
793 			unsupported);
794 		return true;
795 	}
796 	return false;
797 }
798 
799 static void efi_get_seed(void *seed, int size)
800 {
801 	efi_get_random_bytes(size, seed);
802 
803 	/*
804 	 * This only updates seed[0] when running on 32-bit, but in that case,
805 	 * seed[1] is not used anyway, as there is no virtual KASLR on 32-bit.
806 	 */
807 	*(unsigned long *)seed ^= kaslr_get_random_long("EFI");
808 }
809 
810 static void error(char *str)
811 {
812 	efi_warn("Decompression failed: %s\n", str);
813 }
814 
815 static const char *cmdline_memmap_override;
816 
817 static efi_status_t parse_options(const char *cmdline)
818 {
819 	static const char opts[][14] = {
820 		"mem=", "memmap=", "hugepages="
821 	};
822 
823 	for (int i = 0; i < ARRAY_SIZE(opts); i++) {
824 		const char *p = strstr(cmdline, opts[i]);
825 
826 		if (p == cmdline || (p > cmdline && isspace(p[-1]))) {
827 			cmdline_memmap_override = opts[i];
828 			break;
829 		}
830 	}
831 
832 	return efi_parse_options(cmdline);
833 }
834 
835 static efi_status_t efi_decompress_kernel(unsigned long *kernel_entry,
836 					  struct boot_params *boot_params)
837 {
838 	unsigned long virt_addr = LOAD_PHYSICAL_ADDR;
839 	unsigned long addr, alloc_size, entry;
840 	efi_status_t status;
841 	u32 seed[2] = {};
842 
843 	boot_params_ptr	= boot_params;
844 
845 	/* determine the required size of the allocation */
846 	alloc_size = ALIGN(max_t(unsigned long, output_len, kernel_total_size),
847 			   MIN_KERNEL_ALIGN);
848 
849 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !efi_nokaslr) {
850 		u64 range = KERNEL_IMAGE_SIZE - LOAD_PHYSICAL_ADDR - kernel_total_size;
851 		static const efi_char16_t ami[] = L"American Megatrends";
852 
853 		efi_get_seed(seed, sizeof(seed));
854 
855 		virt_addr += (range * seed[1]) >> 32;
856 		virt_addr &= ~(CONFIG_PHYSICAL_ALIGN - 1);
857 
858 		/*
859 		 * Older Dell systems with AMI UEFI firmware v2.0 may hang
860 		 * while decompressing the kernel if physical address
861 		 * randomization is enabled.
862 		 *
863 		 * https://bugzilla.kernel.org/show_bug.cgi?id=218173
864 		 */
865 		if (efi_system_table->hdr.revision <= EFI_2_00_SYSTEM_TABLE_REVISION &&
866 		    !memcmp(efistub_fw_vendor(), ami, sizeof(ami))) {
867 			efi_debug("AMI firmware v2.0 or older detected - disabling physical KASLR\n");
868 			seed[0] = 0;
869 		} else if (cmdline_memmap_override) {
870 			efi_info("%s detected on the kernel command line - disabling physical KASLR\n",
871 				 cmdline_memmap_override);
872 			seed[0] = 0;
873 		}
874 
875 		boot_params->hdr.loadflags |= KASLR_FLAG;
876 	}
877 
878 	status = efi_random_alloc(alloc_size, CONFIG_PHYSICAL_ALIGN, &addr,
879 				  seed[0], EFI_LOADER_CODE,
880 				  LOAD_PHYSICAL_ADDR,
881 				  EFI_X86_KERNEL_ALLOC_LIMIT);
882 	if (status != EFI_SUCCESS)
883 		return status;
884 
885 	entry = decompress_kernel((void *)addr, virt_addr, error);
886 	if (entry == ULONG_MAX) {
887 		efi_free(alloc_size, addr);
888 		return EFI_LOAD_ERROR;
889 	}
890 
891 	*kernel_entry = addr + entry;
892 
893 	return efi_adjust_memory_range_protection(addr, kernel_text_size) ?:
894 	       efi_adjust_memory_range_protection(addr + kernel_inittext_offset,
895 						  kernel_inittext_size);
896 }
897 
898 static void __noreturn enter_kernel(unsigned long kernel_addr,
899 				    struct boot_params *boot_params)
900 {
901 	/* enter decompressed kernel with boot_params pointer in RSI/ESI */
902 	asm("jmp *%0"::"r"(kernel_addr), "S"(boot_params));
903 
904 	unreachable();
905 }
906 
907 /*
908  * On success, this routine will jump to the relocated image directly and never
909  * return.  On failure, it will exit to the firmware via efi_exit() instead of
910  * returning.
911  */
912 void __noreturn efi_stub_entry(efi_handle_t handle,
913 			       efi_system_table_t *sys_table_arg,
914 			       struct boot_params *boot_params)
915 
916 {
917 	efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID;
918 	const struct linux_efi_initrd *initrd = NULL;
919 	unsigned long kernel_entry;
920 	struct setup_header *hdr;
921 	efi_status_t status;
922 
923 	efi_system_table = sys_table_arg;
924 	/* Check if we were booted by the EFI firmware */
925 	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
926 		efi_exit(handle, EFI_INVALID_PARAMETER);
927 
928 	if (!IS_ENABLED(CONFIG_EFI_HANDOVER_PROTOCOL) || !boot_params) {
929 		status = efi_allocate_bootparams(handle, &boot_params);
930 		if (status != EFI_SUCCESS)
931 			efi_exit(handle, status);
932 	}
933 
934 	hdr = &boot_params->hdr;
935 
936 	if (have_unsupported_snp_features())
937 		efi_exit(handle, EFI_UNSUPPORTED);
938 
939 	if (IS_ENABLED(CONFIG_EFI_DXE_MEM_ATTRIBUTES)) {
940 		efi_dxe_table = get_efi_config_table(EFI_DXE_SERVICES_TABLE_GUID);
941 		if (efi_dxe_table &&
942 		    efi_dxe_table->hdr.signature != EFI_DXE_SERVICES_TABLE_SIGNATURE) {
943 			efi_warn("Ignoring DXE services table: invalid signature\n");
944 			efi_dxe_table = NULL;
945 		}
946 	}
947 
948 	/* grab the memory attributes protocol if it exists */
949 	efi_bs_call(locate_protocol, &guid, NULL, (void **)&memattr);
950 
951 	status = efi_setup_5level_paging();
952 	if (status != EFI_SUCCESS) {
953 		efi_err("efi_setup_5level_paging() failed!\n");
954 		goto fail;
955 	}
956 
957 #ifdef CONFIG_CMDLINE_BOOL
958 	status = parse_options(CONFIG_CMDLINE);
959 	if (status != EFI_SUCCESS) {
960 		efi_err("Failed to parse options\n");
961 		goto fail;
962 	}
963 #endif
964 	if (!IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
965 		unsigned long cmdline_paddr = ((u64)hdr->cmd_line_ptr |
966 					       ((u64)boot_params->ext_cmd_line_ptr << 32));
967 		status = parse_options((char *)cmdline_paddr);
968 		if (status != EFI_SUCCESS) {
969 			efi_err("Failed to parse options\n");
970 			goto fail;
971 		}
972 	}
973 
974 	if (efi_mem_encrypt > 0)
975 		hdr->xloadflags |= XLF_MEM_ENCRYPTION;
976 
977 	status = efi_decompress_kernel(&kernel_entry, boot_params);
978 	if (status != EFI_SUCCESS) {
979 		efi_err("Failed to decompress kernel\n");
980 		goto fail;
981 	}
982 
983 	/*
984 	 * At this point, an initrd may already have been loaded by the
985 	 * bootloader and passed via bootparams. We permit an initrd loaded
986 	 * from the LINUX_EFI_INITRD_MEDIA_GUID device path to supersede it.
987 	 *
988 	 * If the device path is not present, any command-line initrd=
989 	 * arguments will be processed only if image is not NULL, which will be
990 	 * the case only if we were loaded via the PE entry point.
991 	 */
992 	status = efi_load_initrd(image, hdr->initrd_addr_max, ULONG_MAX,
993 				 &initrd);
994 	if (status != EFI_SUCCESS)
995 		goto fail;
996 	if (initrd && initrd->size > 0) {
997 		efi_set_u64_split(initrd->base, &hdr->ramdisk_image,
998 				  &boot_params->ext_ramdisk_image);
999 		efi_set_u64_split(initrd->size, &hdr->ramdisk_size,
1000 				  &boot_params->ext_ramdisk_size);
1001 	}
1002 
1003 
1004 	/*
1005 	 * If the boot loader gave us a value for secure_boot then we use that,
1006 	 * otherwise we ask the BIOS.
1007 	 */
1008 	if (boot_params->secure_boot == efi_secureboot_mode_unset)
1009 		boot_params->secure_boot = efi_get_secureboot();
1010 
1011 	/* Ask the firmware to clear memory on unclean shutdown */
1012 	efi_enable_reset_attack_mitigation();
1013 
1014 	efi_random_get_seed();
1015 
1016 	efi_retrieve_eventlog();
1017 
1018 	setup_graphics(boot_params);
1019 
1020 	setup_efi_pci(boot_params);
1021 
1022 	setup_quirks(boot_params);
1023 
1024 	setup_unaccepted_memory();
1025 
1026 	status = exit_boot(boot_params, handle);
1027 	if (status != EFI_SUCCESS) {
1028 		efi_err("exit_boot() failed!\n");
1029 		goto fail;
1030 	}
1031 
1032 	/*
1033 	 * Call the SEV init code while still running with the firmware's
1034 	 * GDT/IDT, so #VC exceptions will be handled by EFI.
1035 	 */
1036 	sev_enable(boot_params);
1037 
1038 	efi_5level_switch();
1039 
1040 	enter_kernel(kernel_entry, boot_params);
1041 fail:
1042 	efi_err("efi_stub_entry() failed!\n");
1043 
1044 	efi_exit(handle, status);
1045 }
1046 
1047 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
1048 				   efi_system_table_t *sys_table_arg)
1049 {
1050 	efi_stub_entry(handle, sys_table_arg, NULL);
1051 }
1052 
1053 #ifdef CONFIG_EFI_HANDOVER_PROTOCOL
1054 void efi_handover_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
1055 			struct boot_params *boot_params)
1056 {
1057 	memset(_bss, 0, _ebss - _bss);
1058 	efi_stub_entry(handle, sys_table_arg, boot_params);
1059 }
1060 
1061 #ifndef CONFIG_EFI_MIXED
1062 extern __alias(efi_handover_entry)
1063 void efi32_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
1064 		      struct boot_params *boot_params);
1065 
1066 extern __alias(efi_handover_entry)
1067 void efi64_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
1068 		      struct boot_params *boot_params);
1069 #endif
1070 #endif
1071