1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 */
5
6 /*
7 * This code implements the DMA subsystem. It provides a HW-neutral interface
8 * for other kernel code to use asynchronous memory copy capabilities,
9 * if present, and allows different HW DMA drivers to register as providing
10 * this capability.
11 *
12 * Due to the fact we are accelerating what is already a relatively fast
13 * operation, the code goes to great lengths to avoid additional overhead,
14 * such as locking.
15 *
16 * LOCKING:
17 *
18 * The subsystem keeps a global list of dma_device structs it is protected by a
19 * mutex, dma_list_mutex.
20 *
21 * A subsystem can get access to a channel by calling dmaengine_get() followed
22 * by dma_find_channel(), or if it has need for an exclusive channel it can call
23 * dma_request_channel(). Once a channel is allocated a reference is taken
24 * against its corresponding driver to disable removal.
25 *
26 * Each device has a channels list, which runs unlocked but is never modified
27 * once the device is registered, it's just setup by the driver.
28 *
29 * See Documentation/driver-api/dmaengine for more details
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/platform_device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/mm.h>
39 #include <linux/device.h>
40 #include <linux/dmaengine.h>
41 #include <linux/hardirq.h>
42 #include <linux/spinlock.h>
43 #include <linux/percpu.h>
44 #include <linux/rcupdate.h>
45 #include <linux/mutex.h>
46 #include <linux/jiffies.h>
47 #include <linux/rculist.h>
48 #include <linux/idr.h>
49 #include <linux/slab.h>
50 #include <linux/acpi.h>
51 #include <linux/acpi_dma.h>
52 #include <linux/of_dma.h>
53 #include <linux/mempool.h>
54 #include <linux/numa.h>
55
56 #include "dmaengine.h"
57
58 static DEFINE_MUTEX(dma_list_mutex);
59 static DEFINE_IDA(dma_ida);
60 static LIST_HEAD(dma_device_list);
61 static long dmaengine_ref_count;
62
63 /* --- debugfs implementation --- */
64 #ifdef CONFIG_DEBUG_FS
65 #include <linux/debugfs.h>
66
67 static struct dentry *rootdir;
68
dmaengine_debug_register(struct dma_device * dma_dev)69 static void dmaengine_debug_register(struct dma_device *dma_dev)
70 {
71 dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev),
72 rootdir);
73 if (IS_ERR(dma_dev->dbg_dev_root))
74 dma_dev->dbg_dev_root = NULL;
75 }
76
dmaengine_debug_unregister(struct dma_device * dma_dev)77 static void dmaengine_debug_unregister(struct dma_device *dma_dev)
78 {
79 debugfs_remove_recursive(dma_dev->dbg_dev_root);
80 dma_dev->dbg_dev_root = NULL;
81 }
82
dmaengine_dbg_summary_show(struct seq_file * s,struct dma_device * dma_dev)83 static void dmaengine_dbg_summary_show(struct seq_file *s,
84 struct dma_device *dma_dev)
85 {
86 struct dma_chan *chan;
87
88 list_for_each_entry(chan, &dma_dev->channels, device_node) {
89 if (chan->client_count) {
90 seq_printf(s, " %-13s| %s", dma_chan_name(chan),
91 chan->dbg_client_name ?: "in-use");
92
93 if (chan->router)
94 seq_printf(s, " (via router: %s)\n",
95 dev_name(chan->router->dev));
96 else
97 seq_puts(s, "\n");
98 }
99 }
100 }
101
dmaengine_summary_show(struct seq_file * s,void * data)102 static int dmaengine_summary_show(struct seq_file *s, void *data)
103 {
104 struct dma_device *dma_dev = NULL;
105
106 mutex_lock(&dma_list_mutex);
107 list_for_each_entry(dma_dev, &dma_device_list, global_node) {
108 seq_printf(s, "dma%d (%s): number of channels: %u\n",
109 dma_dev->dev_id, dev_name(dma_dev->dev),
110 dma_dev->chancnt);
111
112 if (dma_dev->dbg_summary_show)
113 dma_dev->dbg_summary_show(s, dma_dev);
114 else
115 dmaengine_dbg_summary_show(s, dma_dev);
116
117 if (!list_is_last(&dma_dev->global_node, &dma_device_list))
118 seq_puts(s, "\n");
119 }
120 mutex_unlock(&dma_list_mutex);
121
122 return 0;
123 }
124 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary);
125
dmaengine_debugfs_init(void)126 static void __init dmaengine_debugfs_init(void)
127 {
128 rootdir = debugfs_create_dir("dmaengine", NULL);
129
130 /* /sys/kernel/debug/dmaengine/summary */
131 debugfs_create_file("summary", 0444, rootdir, NULL,
132 &dmaengine_summary_fops);
133 }
134 #else
dmaengine_debugfs_init(void)135 static inline void dmaengine_debugfs_init(void) { }
dmaengine_debug_register(struct dma_device * dma_dev)136 static inline int dmaengine_debug_register(struct dma_device *dma_dev)
137 {
138 return 0;
139 }
140
dmaengine_debug_unregister(struct dma_device * dma_dev)141 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { }
142 #endif /* DEBUG_FS */
143
144 /* --- sysfs implementation --- */
145
146 #define DMA_SLAVE_NAME "slave"
147
148 /**
149 * dev_to_dma_chan - convert a device pointer to its sysfs container object
150 * @dev: device node
151 *
152 * Must be called under dma_list_mutex.
153 */
dev_to_dma_chan(struct device * dev)154 static struct dma_chan *dev_to_dma_chan(struct device *dev)
155 {
156 struct dma_chan_dev *chan_dev;
157
158 chan_dev = container_of(dev, typeof(*chan_dev), device);
159 return chan_dev->chan;
160 }
161
memcpy_count_show(struct device * dev,struct device_attribute * attr,char * buf)162 static ssize_t memcpy_count_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
164 {
165 struct dma_chan *chan;
166 unsigned long count = 0;
167 int i;
168 int err;
169
170 mutex_lock(&dma_list_mutex);
171 chan = dev_to_dma_chan(dev);
172 if (chan) {
173 for_each_possible_cpu(i)
174 count += per_cpu_ptr(chan->local, i)->memcpy_count;
175 err = sysfs_emit(buf, "%lu\n", count);
176 } else
177 err = -ENODEV;
178 mutex_unlock(&dma_list_mutex);
179
180 return err;
181 }
182 static DEVICE_ATTR_RO(memcpy_count);
183
bytes_transferred_show(struct device * dev,struct device_attribute * attr,char * buf)184 static ssize_t bytes_transferred_show(struct device *dev,
185 struct device_attribute *attr, char *buf)
186 {
187 struct dma_chan *chan;
188 unsigned long count = 0;
189 int i;
190 int err;
191
192 mutex_lock(&dma_list_mutex);
193 chan = dev_to_dma_chan(dev);
194 if (chan) {
195 for_each_possible_cpu(i)
196 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
197 err = sysfs_emit(buf, "%lu\n", count);
198 } else
199 err = -ENODEV;
200 mutex_unlock(&dma_list_mutex);
201
202 return err;
203 }
204 static DEVICE_ATTR_RO(bytes_transferred);
205
in_use_show(struct device * dev,struct device_attribute * attr,char * buf)206 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
207 char *buf)
208 {
209 struct dma_chan *chan;
210 int err;
211
212 mutex_lock(&dma_list_mutex);
213 chan = dev_to_dma_chan(dev);
214 if (chan)
215 err = sysfs_emit(buf, "%d\n", chan->client_count);
216 else
217 err = -ENODEV;
218 mutex_unlock(&dma_list_mutex);
219
220 return err;
221 }
222 static DEVICE_ATTR_RO(in_use);
223
224 static struct attribute *dma_dev_attrs[] = {
225 &dev_attr_memcpy_count.attr,
226 &dev_attr_bytes_transferred.attr,
227 &dev_attr_in_use.attr,
228 NULL,
229 };
230 ATTRIBUTE_GROUPS(dma_dev);
231
chan_dev_release(struct device * dev)232 static void chan_dev_release(struct device *dev)
233 {
234 struct dma_chan_dev *chan_dev;
235
236 chan_dev = container_of(dev, typeof(*chan_dev), device);
237 kfree(chan_dev);
238 }
239
240 static struct class dma_devclass = {
241 .name = "dma",
242 .dev_groups = dma_dev_groups,
243 .dev_release = chan_dev_release,
244 };
245
246 /* --- client and device registration --- */
247
248 /* enable iteration over all operation types */
249 static dma_cap_mask_t dma_cap_mask_all;
250
251 /**
252 * struct dma_chan_tbl_ent - tracks channel allocations per core/operation
253 * @chan: associated channel for this entry
254 */
255 struct dma_chan_tbl_ent {
256 struct dma_chan *chan;
257 };
258
259 /* percpu lookup table for memory-to-memory offload providers */
260 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
261
dma_channel_table_init(void)262 static int __init dma_channel_table_init(void)
263 {
264 enum dma_transaction_type cap;
265 int err = 0;
266
267 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
268
269 /* 'interrupt', 'private', and 'slave' are channel capabilities,
270 * but are not associated with an operation so they do not need
271 * an entry in the channel_table
272 */
273 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
274 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
275 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
276
277 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
278 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
279 if (!channel_table[cap]) {
280 err = -ENOMEM;
281 break;
282 }
283 }
284
285 if (err) {
286 pr_err("dmaengine dma_channel_table_init failure: %d\n", err);
287 for_each_dma_cap_mask(cap, dma_cap_mask_all)
288 free_percpu(channel_table[cap]);
289 }
290
291 return err;
292 }
293 arch_initcall(dma_channel_table_init);
294
295 /**
296 * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU
297 * @chan: DMA channel to test
298 * @cpu: CPU index which the channel should be close to
299 *
300 * Returns true if the channel is in the same NUMA-node as the CPU.
301 */
dma_chan_is_local(struct dma_chan * chan,int cpu)302 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
303 {
304 int node = dev_to_node(chan->device->dev);
305 return node == NUMA_NO_NODE ||
306 cpumask_test_cpu(cpu, cpumask_of_node(node));
307 }
308
309 /**
310 * min_chan - finds the channel with min count and in the same NUMA-node as the CPU
311 * @cap: capability to match
312 * @cpu: CPU index which the channel should be close to
313 *
314 * If some channels are close to the given CPU, the one with the lowest
315 * reference count is returned. Otherwise, CPU is ignored and only the
316 * reference count is taken into account.
317 *
318 * Must be called under dma_list_mutex.
319 */
min_chan(enum dma_transaction_type cap,int cpu)320 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
321 {
322 struct dma_device *device;
323 struct dma_chan *chan;
324 struct dma_chan *min = NULL;
325 struct dma_chan *localmin = NULL;
326
327 list_for_each_entry(device, &dma_device_list, global_node) {
328 if (!dma_has_cap(cap, device->cap_mask) ||
329 dma_has_cap(DMA_PRIVATE, device->cap_mask))
330 continue;
331 list_for_each_entry(chan, &device->channels, device_node) {
332 if (!chan->client_count)
333 continue;
334 if (!min || chan->table_count < min->table_count)
335 min = chan;
336
337 if (dma_chan_is_local(chan, cpu))
338 if (!localmin ||
339 chan->table_count < localmin->table_count)
340 localmin = chan;
341 }
342 }
343
344 chan = localmin ? localmin : min;
345
346 if (chan)
347 chan->table_count++;
348
349 return chan;
350 }
351
352 /**
353 * dma_channel_rebalance - redistribute the available channels
354 *
355 * Optimize for CPU isolation (each CPU gets a dedicated channel for an
356 * operation type) in the SMP case, and operation isolation (avoid
357 * multi-tasking channels) in the non-SMP case.
358 *
359 * Must be called under dma_list_mutex.
360 */
dma_channel_rebalance(void)361 static void dma_channel_rebalance(void)
362 {
363 struct dma_chan *chan;
364 struct dma_device *device;
365 int cpu;
366 int cap;
367
368 /* undo the last distribution */
369 for_each_dma_cap_mask(cap, dma_cap_mask_all)
370 for_each_possible_cpu(cpu)
371 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
372
373 list_for_each_entry(device, &dma_device_list, global_node) {
374 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
375 continue;
376 list_for_each_entry(chan, &device->channels, device_node)
377 chan->table_count = 0;
378 }
379
380 /* don't populate the channel_table if no clients are available */
381 if (!dmaengine_ref_count)
382 return;
383
384 /* redistribute available channels */
385 for_each_dma_cap_mask(cap, dma_cap_mask_all)
386 for_each_online_cpu(cpu) {
387 chan = min_chan(cap, cpu);
388 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
389 }
390 }
391
dma_device_satisfies_mask(struct dma_device * device,const dma_cap_mask_t * want)392 static int dma_device_satisfies_mask(struct dma_device *device,
393 const dma_cap_mask_t *want)
394 {
395 dma_cap_mask_t has;
396
397 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
398 DMA_TX_TYPE_END);
399 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
400 }
401
dma_chan_to_owner(struct dma_chan * chan)402 static struct module *dma_chan_to_owner(struct dma_chan *chan)
403 {
404 return chan->device->owner;
405 }
406
407 /**
408 * balance_ref_count - catch up the channel reference count
409 * @chan: channel to balance ->client_count versus dmaengine_ref_count
410 *
411 * Must be called under dma_list_mutex.
412 */
balance_ref_count(struct dma_chan * chan)413 static void balance_ref_count(struct dma_chan *chan)
414 {
415 struct module *owner = dma_chan_to_owner(chan);
416
417 while (chan->client_count < dmaengine_ref_count) {
418 __module_get(owner);
419 chan->client_count++;
420 }
421 }
422
dma_device_release(struct kref * ref)423 static void dma_device_release(struct kref *ref)
424 {
425 struct dma_device *device = container_of(ref, struct dma_device, ref);
426
427 list_del_rcu(&device->global_node);
428 dma_channel_rebalance();
429
430 if (device->device_release)
431 device->device_release(device);
432 }
433
dma_device_put(struct dma_device * device)434 static void dma_device_put(struct dma_device *device)
435 {
436 lockdep_assert_held(&dma_list_mutex);
437 kref_put(&device->ref, dma_device_release);
438 }
439
440 /**
441 * dma_chan_get - try to grab a DMA channel's parent driver module
442 * @chan: channel to grab
443 *
444 * Must be called under dma_list_mutex.
445 */
dma_chan_get(struct dma_chan * chan)446 static int dma_chan_get(struct dma_chan *chan)
447 {
448 struct module *owner = dma_chan_to_owner(chan);
449 int ret;
450
451 /* The channel is already in use, update client count */
452 if (chan->client_count) {
453 __module_get(owner);
454 chan->client_count++;
455 return 0;
456 }
457
458 if (!try_module_get(owner))
459 return -ENODEV;
460
461 ret = kref_get_unless_zero(&chan->device->ref);
462 if (!ret) {
463 ret = -ENODEV;
464 goto module_put_out;
465 }
466
467 /* allocate upon first client reference */
468 if (chan->device->device_alloc_chan_resources) {
469 ret = chan->device->device_alloc_chan_resources(chan);
470 if (ret < 0)
471 goto err_out;
472 }
473
474 chan->client_count++;
475
476 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
477 balance_ref_count(chan);
478
479 return 0;
480
481 err_out:
482 dma_device_put(chan->device);
483 module_put_out:
484 module_put(owner);
485 return ret;
486 }
487
488 /**
489 * dma_chan_put - drop a reference to a DMA channel's parent driver module
490 * @chan: channel to release
491 *
492 * Must be called under dma_list_mutex.
493 */
dma_chan_put(struct dma_chan * chan)494 static void dma_chan_put(struct dma_chan *chan)
495 {
496 /* This channel is not in use, bail out */
497 if (!chan->client_count)
498 return;
499
500 chan->client_count--;
501
502 /* This channel is not in use anymore, free it */
503 if (!chan->client_count && chan->device->device_free_chan_resources) {
504 /* Make sure all operations have completed */
505 dmaengine_synchronize(chan);
506 chan->device->device_free_chan_resources(chan);
507 }
508
509 /* If the channel is used via a DMA request router, free the mapping */
510 if (chan->router && chan->router->route_free) {
511 chan->router->route_free(chan->router->dev, chan->route_data);
512 chan->router = NULL;
513 chan->route_data = NULL;
514 }
515
516 dma_device_put(chan->device);
517 module_put(dma_chan_to_owner(chan));
518 }
519
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)520 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
521 {
522 enum dma_status status;
523 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
524
525 dma_async_issue_pending(chan);
526 do {
527 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
528 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
529 dev_err(chan->device->dev, "%s: timeout!\n", __func__);
530 return DMA_ERROR;
531 }
532 if (status != DMA_IN_PROGRESS)
533 break;
534 cpu_relax();
535 } while (1);
536
537 return status;
538 }
539 EXPORT_SYMBOL(dma_sync_wait);
540
541 /**
542 * dma_find_channel - find a channel to carry out the operation
543 * @tx_type: transaction type
544 */
dma_find_channel(enum dma_transaction_type tx_type)545 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
546 {
547 return this_cpu_read(channel_table[tx_type]->chan);
548 }
549 EXPORT_SYMBOL(dma_find_channel);
550
551 /**
552 * dma_issue_pending_all - flush all pending operations across all channels
553 */
dma_issue_pending_all(void)554 void dma_issue_pending_all(void)
555 {
556 struct dma_device *device;
557 struct dma_chan *chan;
558
559 rcu_read_lock();
560 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
561 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
562 continue;
563 list_for_each_entry(chan, &device->channels, device_node)
564 if (chan->client_count)
565 device->device_issue_pending(chan);
566 }
567 rcu_read_unlock();
568 }
569 EXPORT_SYMBOL(dma_issue_pending_all);
570
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)571 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
572 {
573 struct dma_device *device;
574
575 if (!chan || !caps)
576 return -EINVAL;
577
578 device = chan->device;
579
580 /* check if the channel supports slave transactions */
581 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
582 test_bit(DMA_CYCLIC, device->cap_mask.bits)))
583 return -ENXIO;
584
585 /*
586 * Check whether it reports it uses the generic slave
587 * capabilities, if not, that means it doesn't support any
588 * kind of slave capabilities reporting.
589 */
590 if (!device->directions)
591 return -ENXIO;
592
593 caps->src_addr_widths = device->src_addr_widths;
594 caps->dst_addr_widths = device->dst_addr_widths;
595 caps->directions = device->directions;
596 caps->min_burst = device->min_burst;
597 caps->max_burst = device->max_burst;
598 caps->max_sg_burst = device->max_sg_burst;
599 caps->residue_granularity = device->residue_granularity;
600 caps->descriptor_reuse = device->descriptor_reuse;
601 caps->cmd_pause = !!device->device_pause;
602 caps->cmd_resume = !!device->device_resume;
603 caps->cmd_terminate = !!device->device_terminate_all;
604
605 /*
606 * DMA engine device might be configured with non-uniformly
607 * distributed slave capabilities per device channels. In this
608 * case the corresponding driver may provide the device_caps
609 * callback to override the generic capabilities with
610 * channel-specific ones.
611 */
612 if (device->device_caps)
613 device->device_caps(chan, caps);
614
615 return 0;
616 }
617 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
618
private_candidate(const dma_cap_mask_t * mask,struct dma_device * dev,dma_filter_fn fn,void * fn_param)619 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
620 struct dma_device *dev,
621 dma_filter_fn fn, void *fn_param)
622 {
623 struct dma_chan *chan;
624
625 if (mask && !dma_device_satisfies_mask(dev, mask)) {
626 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
627 return NULL;
628 }
629 /* devices with multiple channels need special handling as we need to
630 * ensure that all channels are either private or public.
631 */
632 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
633 list_for_each_entry(chan, &dev->channels, device_node) {
634 /* some channels are already publicly allocated */
635 if (chan->client_count)
636 return NULL;
637 }
638
639 list_for_each_entry(chan, &dev->channels, device_node) {
640 if (chan->client_count) {
641 dev_dbg(dev->dev, "%s: %s busy\n",
642 __func__, dma_chan_name(chan));
643 continue;
644 }
645 if (fn && !fn(chan, fn_param)) {
646 dev_dbg(dev->dev, "%s: %s filter said false\n",
647 __func__, dma_chan_name(chan));
648 continue;
649 }
650 return chan;
651 }
652
653 return NULL;
654 }
655
find_candidate(struct dma_device * device,const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param)656 static struct dma_chan *find_candidate(struct dma_device *device,
657 const dma_cap_mask_t *mask,
658 dma_filter_fn fn, void *fn_param)
659 {
660 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
661 int err;
662
663 if (chan) {
664 /* Found a suitable channel, try to grab, prep, and return it.
665 * We first set DMA_PRIVATE to disable balance_ref_count as this
666 * channel will not be published in the general-purpose
667 * allocator
668 */
669 dma_cap_set(DMA_PRIVATE, device->cap_mask);
670 device->privatecnt++;
671 err = dma_chan_get(chan);
672
673 if (err) {
674 if (err == -ENODEV) {
675 dev_dbg(device->dev, "%s: %s module removed\n",
676 __func__, dma_chan_name(chan));
677 list_del_rcu(&device->global_node);
678 } else
679 dev_dbg(device->dev,
680 "%s: failed to get %s: (%d)\n",
681 __func__, dma_chan_name(chan), err);
682
683 if (--device->privatecnt == 0)
684 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
685
686 chan = ERR_PTR(err);
687 }
688 }
689
690 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
691 }
692
693 /**
694 * dma_get_slave_channel - try to get specific channel exclusively
695 * @chan: target channel
696 */
dma_get_slave_channel(struct dma_chan * chan)697 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
698 {
699 /* lock against __dma_request_channel */
700 mutex_lock(&dma_list_mutex);
701
702 if (chan->client_count == 0) {
703 struct dma_device *device = chan->device;
704 int err;
705
706 dma_cap_set(DMA_PRIVATE, device->cap_mask);
707 device->privatecnt++;
708 err = dma_chan_get(chan);
709 if (err) {
710 dev_dbg(chan->device->dev,
711 "%s: failed to get %s: (%d)\n",
712 __func__, dma_chan_name(chan), err);
713 chan = NULL;
714 if (--device->privatecnt == 0)
715 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
716 }
717 } else
718 chan = NULL;
719
720 mutex_unlock(&dma_list_mutex);
721
722
723 return chan;
724 }
725 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
726
dma_get_any_slave_channel(struct dma_device * device)727 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
728 {
729 dma_cap_mask_t mask;
730 struct dma_chan *chan;
731
732 dma_cap_zero(mask);
733 dma_cap_set(DMA_SLAVE, mask);
734
735 /* lock against __dma_request_channel */
736 mutex_lock(&dma_list_mutex);
737
738 chan = find_candidate(device, &mask, NULL, NULL);
739
740 mutex_unlock(&dma_list_mutex);
741
742 return IS_ERR(chan) ? NULL : chan;
743 }
744 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
745
746 /**
747 * __dma_request_channel - try to allocate an exclusive channel
748 * @mask: capabilities that the channel must satisfy
749 * @fn: optional callback to disposition available channels
750 * @fn_param: opaque parameter to pass to dma_filter_fn()
751 * @np: device node to look for DMA channels
752 *
753 * Returns pointer to appropriate DMA channel on success or NULL.
754 */
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)755 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
756 dma_filter_fn fn, void *fn_param,
757 struct device_node *np)
758 {
759 struct dma_device *device, *_d;
760 struct dma_chan *chan = NULL;
761
762 /* Find a channel */
763 mutex_lock(&dma_list_mutex);
764 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
765 /* Finds a DMA controller with matching device node */
766 if (np && device->dev->of_node && np != device->dev->of_node)
767 continue;
768
769 chan = find_candidate(device, mask, fn, fn_param);
770 if (!IS_ERR(chan))
771 break;
772
773 chan = NULL;
774 }
775 mutex_unlock(&dma_list_mutex);
776
777 pr_debug("%s: %s (%s)\n",
778 __func__,
779 chan ? "success" : "fail",
780 chan ? dma_chan_name(chan) : NULL);
781
782 return chan;
783 }
784 EXPORT_SYMBOL_GPL(__dma_request_channel);
785
dma_filter_match(struct dma_device * device,const char * name,struct device * dev)786 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
787 const char *name,
788 struct device *dev)
789 {
790 int i;
791
792 if (!device->filter.mapcnt)
793 return NULL;
794
795 for (i = 0; i < device->filter.mapcnt; i++) {
796 const struct dma_slave_map *map = &device->filter.map[i];
797
798 if (!strcmp(map->devname, dev_name(dev)) &&
799 !strcmp(map->slave, name))
800 return map;
801 }
802
803 return NULL;
804 }
805
806 /**
807 * dma_request_chan - try to allocate an exclusive slave channel
808 * @dev: pointer to client device structure
809 * @name: slave channel name
810 *
811 * Returns pointer to appropriate DMA channel on success or an error pointer.
812 */
dma_request_chan(struct device * dev,const char * name)813 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
814 {
815 struct dma_device *d, *_d;
816 struct dma_chan *chan = NULL;
817
818 /* If device-tree is present get slave info from here */
819 if (dev->of_node)
820 chan = of_dma_request_slave_channel(dev->of_node, name);
821
822 /* If device was enumerated by ACPI get slave info from here */
823 if (has_acpi_companion(dev) && !chan)
824 chan = acpi_dma_request_slave_chan_by_name(dev, name);
825
826 if (PTR_ERR(chan) == -EPROBE_DEFER)
827 return chan;
828
829 if (!IS_ERR_OR_NULL(chan))
830 goto found;
831
832 /* Try to find the channel via the DMA filter map(s) */
833 mutex_lock(&dma_list_mutex);
834 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
835 dma_cap_mask_t mask;
836 const struct dma_slave_map *map = dma_filter_match(d, name, dev);
837
838 if (!map)
839 continue;
840
841 dma_cap_zero(mask);
842 dma_cap_set(DMA_SLAVE, mask);
843
844 chan = find_candidate(d, &mask, d->filter.fn, map->param);
845 if (!IS_ERR(chan))
846 break;
847 }
848 mutex_unlock(&dma_list_mutex);
849
850 if (IS_ERR(chan))
851 return chan;
852 if (!chan)
853 return ERR_PTR(-EPROBE_DEFER);
854
855 found:
856 #ifdef CONFIG_DEBUG_FS
857 chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev),
858 name);
859 #endif
860
861 chan->name = kasprintf(GFP_KERNEL, "dma:%s", name);
862 if (!chan->name)
863 return chan;
864 chan->slave = dev;
865
866 if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj,
867 DMA_SLAVE_NAME))
868 dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME);
869 if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name))
870 dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name);
871
872 return chan;
873 }
874 EXPORT_SYMBOL_GPL(dma_request_chan);
875
876 /**
877 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
878 * @mask: capabilities that the channel must satisfy
879 *
880 * Returns pointer to appropriate DMA channel on success or an error pointer.
881 */
dma_request_chan_by_mask(const dma_cap_mask_t * mask)882 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
883 {
884 struct dma_chan *chan;
885
886 if (!mask)
887 return ERR_PTR(-ENODEV);
888
889 chan = __dma_request_channel(mask, NULL, NULL, NULL);
890 if (!chan) {
891 mutex_lock(&dma_list_mutex);
892 if (list_empty(&dma_device_list))
893 chan = ERR_PTR(-EPROBE_DEFER);
894 else
895 chan = ERR_PTR(-ENODEV);
896 mutex_unlock(&dma_list_mutex);
897 }
898
899 return chan;
900 }
901 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
902
dma_release_channel(struct dma_chan * chan)903 void dma_release_channel(struct dma_chan *chan)
904 {
905 mutex_lock(&dma_list_mutex);
906 WARN_ONCE(chan->client_count != 1,
907 "chan reference count %d != 1\n", chan->client_count);
908 dma_chan_put(chan);
909 /* drop PRIVATE cap enabled by __dma_request_channel() */
910 if (--chan->device->privatecnt == 0)
911 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
912
913 if (chan->slave) {
914 sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME);
915 sysfs_remove_link(&chan->slave->kobj, chan->name);
916 kfree(chan->name);
917 chan->name = NULL;
918 chan->slave = NULL;
919 }
920
921 #ifdef CONFIG_DEBUG_FS
922 kfree(chan->dbg_client_name);
923 chan->dbg_client_name = NULL;
924 #endif
925 mutex_unlock(&dma_list_mutex);
926 }
927 EXPORT_SYMBOL_GPL(dma_release_channel);
928
929 /**
930 * dmaengine_get - register interest in dma_channels
931 */
dmaengine_get(void)932 void dmaengine_get(void)
933 {
934 struct dma_device *device, *_d;
935 struct dma_chan *chan;
936 int err;
937
938 mutex_lock(&dma_list_mutex);
939 dmaengine_ref_count++;
940
941 /* try to grab channels */
942 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
943 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
944 continue;
945 list_for_each_entry(chan, &device->channels, device_node) {
946 err = dma_chan_get(chan);
947 if (err == -ENODEV) {
948 /* module removed before we could use it */
949 list_del_rcu(&device->global_node);
950 break;
951 } else if (err)
952 dev_dbg(chan->device->dev,
953 "%s: failed to get %s: (%d)\n",
954 __func__, dma_chan_name(chan), err);
955 }
956 }
957
958 /* if this is the first reference and there were channels
959 * waiting we need to rebalance to get those channels
960 * incorporated into the channel table
961 */
962 if (dmaengine_ref_count == 1)
963 dma_channel_rebalance();
964 mutex_unlock(&dma_list_mutex);
965 }
966 EXPORT_SYMBOL(dmaengine_get);
967
968 /**
969 * dmaengine_put - let DMA drivers be removed when ref_count == 0
970 */
dmaengine_put(void)971 void dmaengine_put(void)
972 {
973 struct dma_device *device, *_d;
974 struct dma_chan *chan;
975
976 mutex_lock(&dma_list_mutex);
977 dmaengine_ref_count--;
978 BUG_ON(dmaengine_ref_count < 0);
979 /* drop channel references */
980 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
981 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
982 continue;
983 list_for_each_entry(chan, &device->channels, device_node)
984 dma_chan_put(chan);
985 }
986 mutex_unlock(&dma_list_mutex);
987 }
988 EXPORT_SYMBOL(dmaengine_put);
989
device_has_all_tx_types(struct dma_device * device)990 static bool device_has_all_tx_types(struct dma_device *device)
991 {
992 /* A device that satisfies this test has channels that will never cause
993 * an async_tx channel switch event as all possible operation types can
994 * be handled.
995 */
996 #ifdef CONFIG_ASYNC_TX_DMA
997 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
998 return false;
999 #endif
1000
1001 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
1002 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
1003 return false;
1004 #endif
1005
1006 #if IS_ENABLED(CONFIG_ASYNC_XOR)
1007 if (!dma_has_cap(DMA_XOR, device->cap_mask))
1008 return false;
1009
1010 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1011 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
1012 return false;
1013 #endif
1014 #endif
1015
1016 #if IS_ENABLED(CONFIG_ASYNC_PQ)
1017 if (!dma_has_cap(DMA_PQ, device->cap_mask))
1018 return false;
1019
1020 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1021 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
1022 return false;
1023 #endif
1024 #endif
1025
1026 return true;
1027 }
1028
get_dma_id(struct dma_device * device)1029 static int get_dma_id(struct dma_device *device)
1030 {
1031 int rc = ida_alloc(&dma_ida, GFP_KERNEL);
1032
1033 if (rc < 0)
1034 return rc;
1035 device->dev_id = rc;
1036 return 0;
1037 }
1038
__dma_async_device_channel_register(struct dma_device * device,struct dma_chan * chan,const char * name)1039 static int __dma_async_device_channel_register(struct dma_device *device,
1040 struct dma_chan *chan,
1041 const char *name)
1042 {
1043 int rc;
1044
1045 chan->local = alloc_percpu(typeof(*chan->local));
1046 if (!chan->local)
1047 return -ENOMEM;
1048 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1049 if (!chan->dev) {
1050 rc = -ENOMEM;
1051 goto err_free_local;
1052 }
1053
1054 /*
1055 * When the chan_id is a negative value, we are dynamically adding
1056 * the channel. Otherwise we are static enumerating.
1057 */
1058 chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL);
1059 if (chan->chan_id < 0) {
1060 pr_err("%s: unable to alloc ida for chan: %d\n",
1061 __func__, chan->chan_id);
1062 rc = chan->chan_id;
1063 goto err_free_dev;
1064 }
1065
1066 chan->dev->device.class = &dma_devclass;
1067 chan->dev->device.parent = device->dev;
1068 chan->dev->chan = chan;
1069 chan->dev->dev_id = device->dev_id;
1070 if (!name)
1071 dev_set_name(&chan->dev->device, "dma%dchan%d", device->dev_id, chan->chan_id);
1072 else
1073 dev_set_name(&chan->dev->device, "%s", name);
1074 rc = device_register(&chan->dev->device);
1075 if (rc)
1076 goto err_out_ida;
1077 chan->client_count = 0;
1078 device->chancnt++;
1079
1080 return 0;
1081
1082 err_out_ida:
1083 ida_free(&device->chan_ida, chan->chan_id);
1084 err_free_dev:
1085 kfree(chan->dev);
1086 err_free_local:
1087 free_percpu(chan->local);
1088 chan->local = NULL;
1089 return rc;
1090 }
1091
dma_async_device_channel_register(struct dma_device * device,struct dma_chan * chan,const char * name)1092 int dma_async_device_channel_register(struct dma_device *device,
1093 struct dma_chan *chan,
1094 const char *name)
1095 {
1096 int rc;
1097
1098 rc = __dma_async_device_channel_register(device, chan, name);
1099 if (rc < 0)
1100 return rc;
1101
1102 dma_channel_rebalance();
1103 return 0;
1104 }
1105 EXPORT_SYMBOL_GPL(dma_async_device_channel_register);
1106
__dma_async_device_channel_unregister(struct dma_device * device,struct dma_chan * chan)1107 static void __dma_async_device_channel_unregister(struct dma_device *device,
1108 struct dma_chan *chan)
1109 {
1110 if (chan->local == NULL)
1111 return;
1112
1113 WARN_ONCE(!device->device_release && chan->client_count,
1114 "%s called while %d clients hold a reference\n",
1115 __func__, chan->client_count);
1116 mutex_lock(&dma_list_mutex);
1117 device->chancnt--;
1118 chan->dev->chan = NULL;
1119 mutex_unlock(&dma_list_mutex);
1120 ida_free(&device->chan_ida, chan->chan_id);
1121 device_unregister(&chan->dev->device);
1122 free_percpu(chan->local);
1123 }
1124
dma_async_device_channel_unregister(struct dma_device * device,struct dma_chan * chan)1125 void dma_async_device_channel_unregister(struct dma_device *device,
1126 struct dma_chan *chan)
1127 {
1128 __dma_async_device_channel_unregister(device, chan);
1129 dma_channel_rebalance();
1130 }
1131 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister);
1132
1133 /**
1134 * dma_async_device_register - registers DMA devices found
1135 * @device: pointer to &struct dma_device
1136 *
1137 * After calling this routine the structure should not be freed except in the
1138 * device_release() callback which will be called after
1139 * dma_async_device_unregister() is called and no further references are taken.
1140 */
dma_async_device_register(struct dma_device * device)1141 int dma_async_device_register(struct dma_device *device)
1142 {
1143 int rc;
1144 struct dma_chan* chan;
1145
1146 if (!device)
1147 return -ENODEV;
1148
1149 /* validate device routines */
1150 if (!device->dev) {
1151 pr_err("DMAdevice must have dev\n");
1152 return -EIO;
1153 }
1154
1155 device->owner = device->dev->driver->owner;
1156
1157 #define CHECK_CAP(_name, _type) \
1158 { \
1159 if (dma_has_cap(_type, device->cap_mask) && !device->device_prep_##_name) { \
1160 dev_err(device->dev, \
1161 "Device claims capability %s, but op is not defined\n", \
1162 __stringify(_type)); \
1163 return -EIO; \
1164 } \
1165 }
1166
1167 CHECK_CAP(dma_memcpy, DMA_MEMCPY);
1168 CHECK_CAP(dma_xor, DMA_XOR);
1169 CHECK_CAP(dma_xor_val, DMA_XOR_VAL);
1170 CHECK_CAP(dma_pq, DMA_PQ);
1171 CHECK_CAP(dma_pq_val, DMA_PQ_VAL);
1172 CHECK_CAP(dma_memset, DMA_MEMSET);
1173 CHECK_CAP(dma_interrupt, DMA_INTERRUPT);
1174 CHECK_CAP(dma_cyclic, DMA_CYCLIC);
1175 CHECK_CAP(interleaved_dma, DMA_INTERLEAVE);
1176
1177 #undef CHECK_CAP
1178
1179 if (!device->device_tx_status) {
1180 dev_err(device->dev, "Device tx_status is not defined\n");
1181 return -EIO;
1182 }
1183
1184
1185 if (!device->device_issue_pending) {
1186 dev_err(device->dev, "Device issue_pending is not defined\n");
1187 return -EIO;
1188 }
1189
1190 if (!device->device_release)
1191 dev_dbg(device->dev,
1192 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n");
1193
1194 kref_init(&device->ref);
1195
1196 /* note: this only matters in the
1197 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1198 */
1199 if (device_has_all_tx_types(device))
1200 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1201
1202 rc = get_dma_id(device);
1203 if (rc != 0)
1204 return rc;
1205
1206 ida_init(&device->chan_ida);
1207
1208 /* represent channels in sysfs. Probably want devs too */
1209 list_for_each_entry(chan, &device->channels, device_node) {
1210 rc = __dma_async_device_channel_register(device, chan, NULL);
1211 if (rc < 0)
1212 goto err_out;
1213 }
1214
1215 mutex_lock(&dma_list_mutex);
1216 /* take references on public channels */
1217 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1218 list_for_each_entry(chan, &device->channels, device_node) {
1219 /* if clients are already waiting for channels we need
1220 * to take references on their behalf
1221 */
1222 if (dma_chan_get(chan) == -ENODEV) {
1223 /* note we can only get here for the first
1224 * channel as the remaining channels are
1225 * guaranteed to get a reference
1226 */
1227 rc = -ENODEV;
1228 mutex_unlock(&dma_list_mutex);
1229 goto err_out;
1230 }
1231 }
1232 list_add_tail_rcu(&device->global_node, &dma_device_list);
1233 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1234 device->privatecnt++; /* Always private */
1235 dma_channel_rebalance();
1236 mutex_unlock(&dma_list_mutex);
1237
1238 dmaengine_debug_register(device);
1239
1240 return 0;
1241
1242 err_out:
1243 /* if we never registered a channel just release the idr */
1244 if (!device->chancnt) {
1245 ida_free(&dma_ida, device->dev_id);
1246 return rc;
1247 }
1248
1249 list_for_each_entry(chan, &device->channels, device_node) {
1250 if (chan->local == NULL)
1251 continue;
1252 mutex_lock(&dma_list_mutex);
1253 chan->dev->chan = NULL;
1254 mutex_unlock(&dma_list_mutex);
1255 device_unregister(&chan->dev->device);
1256 free_percpu(chan->local);
1257 }
1258 return rc;
1259 }
1260 EXPORT_SYMBOL(dma_async_device_register);
1261
1262 /**
1263 * dma_async_device_unregister - unregister a DMA device
1264 * @device: pointer to &struct dma_device
1265 *
1266 * This routine is called by dma driver exit routines, dmaengine holds module
1267 * references to prevent it being called while channels are in use.
1268 */
dma_async_device_unregister(struct dma_device * device)1269 void dma_async_device_unregister(struct dma_device *device)
1270 {
1271 struct dma_chan *chan, *n;
1272
1273 dmaengine_debug_unregister(device);
1274
1275 list_for_each_entry_safe(chan, n, &device->channels, device_node)
1276 __dma_async_device_channel_unregister(device, chan);
1277
1278 mutex_lock(&dma_list_mutex);
1279 /*
1280 * setting DMA_PRIVATE ensures the device being torn down will not
1281 * be used in the channel_table
1282 */
1283 dma_cap_set(DMA_PRIVATE, device->cap_mask);
1284 dma_channel_rebalance();
1285 ida_free(&dma_ida, device->dev_id);
1286 dma_device_put(device);
1287 mutex_unlock(&dma_list_mutex);
1288 }
1289 EXPORT_SYMBOL(dma_async_device_unregister);
1290
dmaenginem_async_device_unregister(void * device)1291 static void dmaenginem_async_device_unregister(void *device)
1292 {
1293 dma_async_device_unregister(device);
1294 }
1295
1296 /**
1297 * dmaenginem_async_device_register - registers DMA devices found
1298 * @device: pointer to &struct dma_device
1299 *
1300 * The operation is managed and will be undone on driver detach.
1301 */
dmaenginem_async_device_register(struct dma_device * device)1302 int dmaenginem_async_device_register(struct dma_device *device)
1303 {
1304 int ret;
1305
1306 ret = dma_async_device_register(device);
1307 if (ret)
1308 return ret;
1309
1310 return devm_add_action_or_reset(device->dev, dmaenginem_async_device_unregister, device);
1311 }
1312 EXPORT_SYMBOL(dmaenginem_async_device_register);
1313
1314 struct dmaengine_unmap_pool {
1315 struct kmem_cache *cache;
1316 const char *name;
1317 mempool_t *pool;
1318 size_t size;
1319 };
1320
1321 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1322 static struct dmaengine_unmap_pool unmap_pool[] = {
1323 __UNMAP_POOL(2),
1324 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1325 __UNMAP_POOL(16),
1326 __UNMAP_POOL(128),
1327 __UNMAP_POOL(256),
1328 #endif
1329 };
1330
__get_unmap_pool(int nr)1331 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1332 {
1333 int order = get_count_order(nr);
1334
1335 switch (order) {
1336 case 0 ... 1:
1337 return &unmap_pool[0];
1338 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1339 case 2 ... 4:
1340 return &unmap_pool[1];
1341 case 5 ... 7:
1342 return &unmap_pool[2];
1343 case 8:
1344 return &unmap_pool[3];
1345 #endif
1346 default:
1347 BUG();
1348 return NULL;
1349 }
1350 }
1351
dmaengine_unmap(struct kref * kref)1352 static void dmaengine_unmap(struct kref *kref)
1353 {
1354 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1355 struct device *dev = unmap->dev;
1356 int cnt, i;
1357
1358 cnt = unmap->to_cnt;
1359 for (i = 0; i < cnt; i++)
1360 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1361 DMA_TO_DEVICE);
1362 cnt += unmap->from_cnt;
1363 for (; i < cnt; i++)
1364 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1365 DMA_FROM_DEVICE);
1366 cnt += unmap->bidi_cnt;
1367 for (; i < cnt; i++) {
1368 if (unmap->addr[i] == 0)
1369 continue;
1370 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1371 DMA_BIDIRECTIONAL);
1372 }
1373 cnt = unmap->map_cnt;
1374 mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1375 }
1376
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)1377 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1378 {
1379 if (unmap)
1380 kref_put(&unmap->kref, dmaengine_unmap);
1381 }
1382 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1383
dmaengine_destroy_unmap_pool(void)1384 static void dmaengine_destroy_unmap_pool(void)
1385 {
1386 int i;
1387
1388 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1389 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1390
1391 mempool_destroy(p->pool);
1392 p->pool = NULL;
1393 kmem_cache_destroy(p->cache);
1394 p->cache = NULL;
1395 }
1396 }
1397
dmaengine_init_unmap_pool(void)1398 static int __init dmaengine_init_unmap_pool(void)
1399 {
1400 int i;
1401
1402 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1403 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1404 size_t size;
1405
1406 size = sizeof(struct dmaengine_unmap_data) +
1407 sizeof(dma_addr_t) * p->size;
1408
1409 p->cache = kmem_cache_create(p->name, size, 0,
1410 SLAB_HWCACHE_ALIGN, NULL);
1411 if (!p->cache)
1412 break;
1413 p->pool = mempool_create_slab_pool(1, p->cache);
1414 if (!p->pool)
1415 break;
1416 }
1417
1418 if (i == ARRAY_SIZE(unmap_pool))
1419 return 0;
1420
1421 dmaengine_destroy_unmap_pool();
1422 return -ENOMEM;
1423 }
1424
1425 struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)1426 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1427 {
1428 struct dmaengine_unmap_data *unmap;
1429
1430 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1431 if (!unmap)
1432 return NULL;
1433
1434 memset(unmap, 0, sizeof(*unmap));
1435 kref_init(&unmap->kref);
1436 unmap->dev = dev;
1437 unmap->map_cnt = nr;
1438
1439 return unmap;
1440 }
1441 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1442
dma_async_tx_descriptor_init(struct dma_async_tx_descriptor * tx,struct dma_chan * chan)1443 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1444 struct dma_chan *chan)
1445 {
1446 tx->chan = chan;
1447 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1448 spin_lock_init(&tx->lock);
1449 #endif
1450 }
1451 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1452
desc_check_and_set_metadata_mode(struct dma_async_tx_descriptor * desc,enum dma_desc_metadata_mode mode)1453 static inline int desc_check_and_set_metadata_mode(
1454 struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode)
1455 {
1456 /* Make sure that the metadata mode is not mixed */
1457 if (!desc->desc_metadata_mode) {
1458 if (dmaengine_is_metadata_mode_supported(desc->chan, mode))
1459 desc->desc_metadata_mode = mode;
1460 else
1461 return -ENOTSUPP;
1462 } else if (desc->desc_metadata_mode != mode) {
1463 return -EINVAL;
1464 }
1465
1466 return 0;
1467 }
1468
dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor * desc,void * data,size_t len)1469 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1470 void *data, size_t len)
1471 {
1472 int ret;
1473
1474 if (!desc)
1475 return -EINVAL;
1476
1477 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT);
1478 if (ret)
1479 return ret;
1480
1481 if (!desc->metadata_ops || !desc->metadata_ops->attach)
1482 return -ENOTSUPP;
1483
1484 return desc->metadata_ops->attach(desc, data, len);
1485 }
1486 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata);
1487
dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor * desc,size_t * payload_len,size_t * max_len)1488 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1489 size_t *payload_len, size_t *max_len)
1490 {
1491 int ret;
1492
1493 if (!desc)
1494 return ERR_PTR(-EINVAL);
1495
1496 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1497 if (ret)
1498 return ERR_PTR(ret);
1499
1500 if (!desc->metadata_ops || !desc->metadata_ops->get_ptr)
1501 return ERR_PTR(-ENOTSUPP);
1502
1503 return desc->metadata_ops->get_ptr(desc, payload_len, max_len);
1504 }
1505 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr);
1506
dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor * desc,size_t payload_len)1507 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1508 size_t payload_len)
1509 {
1510 int ret;
1511
1512 if (!desc)
1513 return -EINVAL;
1514
1515 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1516 if (ret)
1517 return ret;
1518
1519 if (!desc->metadata_ops || !desc->metadata_ops->set_len)
1520 return -ENOTSUPP;
1521
1522 return desc->metadata_ops->set_len(desc, payload_len);
1523 }
1524 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len);
1525
1526 /**
1527 * dma_wait_for_async_tx - spin wait for a transaction to complete
1528 * @tx: in-flight transaction to wait on
1529 */
1530 enum dma_status
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1531 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1532 {
1533 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1534
1535 if (!tx)
1536 return DMA_COMPLETE;
1537
1538 while (tx->cookie == -EBUSY) {
1539 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1540 dev_err(tx->chan->device->dev,
1541 "%s timeout waiting for descriptor submission\n",
1542 __func__);
1543 return DMA_ERROR;
1544 }
1545 cpu_relax();
1546 }
1547 return dma_sync_wait(tx->chan, tx->cookie);
1548 }
1549 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1550
1551 /**
1552 * dma_run_dependencies - process dependent operations on the target channel
1553 * @tx: transaction with dependencies
1554 *
1555 * Helper routine for DMA drivers to process (start) dependent operations
1556 * on their target channel.
1557 */
dma_run_dependencies(struct dma_async_tx_descriptor * tx)1558 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1559 {
1560 struct dma_async_tx_descriptor *dep = txd_next(tx);
1561 struct dma_async_tx_descriptor *dep_next;
1562 struct dma_chan *chan;
1563
1564 if (!dep)
1565 return;
1566
1567 /* we'll submit tx->next now, so clear the link */
1568 txd_clear_next(tx);
1569 chan = dep->chan;
1570
1571 /* keep submitting up until a channel switch is detected
1572 * in that case we will be called again as a result of
1573 * processing the interrupt from async_tx_channel_switch
1574 */
1575 for (; dep; dep = dep_next) {
1576 txd_lock(dep);
1577 txd_clear_parent(dep);
1578 dep_next = txd_next(dep);
1579 if (dep_next && dep_next->chan == chan)
1580 txd_clear_next(dep); /* ->next will be submitted */
1581 else
1582 dep_next = NULL; /* submit current dep and terminate */
1583 txd_unlock(dep);
1584
1585 dep->tx_submit(dep);
1586 }
1587
1588 chan->device->device_issue_pending(chan);
1589 }
1590 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1591
dma_bus_init(void)1592 static int __init dma_bus_init(void)
1593 {
1594 int err = dmaengine_init_unmap_pool();
1595
1596 if (err)
1597 return err;
1598
1599 err = class_register(&dma_devclass);
1600 if (!err)
1601 dmaengine_debugfs_init();
1602
1603 return err;
1604 }
1605 arch_initcall(dma_bus_init);
1606