xref: /linux/lib/zstd/decompress/zstd_decompress_block.c (revision e61f33273ca755b3e2ebee4520a76097199dc7a8)
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (c) Meta Platforms, Inc. and affiliates.
4  * All rights reserved.
5  *
6  * This source code is licensed under both the BSD-style license (found in the
7  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
8  * in the COPYING file in the root directory of this source tree).
9  * You may select, at your option, one of the above-listed licenses.
10  */
11 
12 /* zstd_decompress_block :
13  * this module takes care of decompressing _compressed_ block */
14 
15 /*-*******************************************************
16 *  Dependencies
17 *********************************************************/
18 #include "../common/zstd_deps.h"   /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
19 #include "../common/compiler.h"    /* prefetch */
20 #include "../common/cpu.h"         /* bmi2 */
21 #include "../common/mem.h"         /* low level memory routines */
22 #define FSE_STATIC_LINKING_ONLY
23 #include "../common/fse.h"
24 #include "../common/huf.h"
25 #include "../common/zstd_internal.h"
26 #include "zstd_decompress_internal.h"   /* ZSTD_DCtx */
27 #include "zstd_ddict.h"  /* ZSTD_DDictDictContent */
28 #include "zstd_decompress_block.h"
29 #include "../common/bits.h"  /* ZSTD_highbit32 */
30 
31 /*_*******************************************************
32 *  Macros
33 **********************************************************/
34 
35 /* These two optional macros force the use one way or another of the two
36  * ZSTD_decompressSequences implementations. You can't force in both directions
37  * at the same time.
38  */
39 #if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
40     defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
41 #error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!"
42 #endif
43 
44 
45 /*_*******************************************************
46 *  Memory operations
47 **********************************************************/
ZSTD_copy4(void * dst,const void * src)48 static void ZSTD_copy4(void* dst, const void* src) { ZSTD_memcpy(dst, src, 4); }
49 
50 
51 /*-*************************************************************
52  *   Block decoding
53  ***************************************************************/
54 
ZSTD_blockSizeMax(ZSTD_DCtx const * dctx)55 static size_t ZSTD_blockSizeMax(ZSTD_DCtx const* dctx)
56 {
57     size_t const blockSizeMax = dctx->isFrameDecompression ? dctx->fParams.blockSizeMax : ZSTD_BLOCKSIZE_MAX;
58     assert(blockSizeMax <= ZSTD_BLOCKSIZE_MAX);
59     return blockSizeMax;
60 }
61 
62 /*! ZSTD_getcBlockSize() :
63  *  Provides the size of compressed block from block header `src` */
ZSTD_getcBlockSize(const void * src,size_t srcSize,blockProperties_t * bpPtr)64 size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
65                           blockProperties_t* bpPtr)
66 {
67     RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, "");
68 
69     {   U32 const cBlockHeader = MEM_readLE24(src);
70         U32 const cSize = cBlockHeader >> 3;
71         bpPtr->lastBlock = cBlockHeader & 1;
72         bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
73         bpPtr->origSize = cSize;   /* only useful for RLE */
74         if (bpPtr->blockType == bt_rle) return 1;
75         RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, "");
76         return cSize;
77     }
78 }
79 
80 /* Allocate buffer for literals, either overlapping current dst, or split between dst and litExtraBuffer, or stored entirely within litExtraBuffer */
ZSTD_allocateLiteralsBuffer(ZSTD_DCtx * dctx,void * const dst,const size_t dstCapacity,const size_t litSize,const streaming_operation streaming,const size_t expectedWriteSize,const unsigned splitImmediately)81 static void ZSTD_allocateLiteralsBuffer(ZSTD_DCtx* dctx, void* const dst, const size_t dstCapacity, const size_t litSize,
82     const streaming_operation streaming, const size_t expectedWriteSize, const unsigned splitImmediately)
83 {
84     size_t const blockSizeMax = ZSTD_blockSizeMax(dctx);
85     assert(litSize <= blockSizeMax);
86     assert(dctx->isFrameDecompression || streaming == not_streaming);
87     assert(expectedWriteSize <= blockSizeMax);
88     if (streaming == not_streaming && dstCapacity > blockSizeMax + WILDCOPY_OVERLENGTH + litSize + WILDCOPY_OVERLENGTH) {
89         /* If we aren't streaming, we can just put the literals after the output
90          * of the current block. We don't need to worry about overwriting the
91          * extDict of our window, because it doesn't exist.
92          * So if we have space after the end of the block, just put it there.
93          */
94         dctx->litBuffer = (BYTE*)dst + blockSizeMax + WILDCOPY_OVERLENGTH;
95         dctx->litBufferEnd = dctx->litBuffer + litSize;
96         dctx->litBufferLocation = ZSTD_in_dst;
97     } else if (litSize <= ZSTD_LITBUFFEREXTRASIZE) {
98         /* Literals fit entirely within the extra buffer, put them there to avoid
99          * having to split the literals.
100          */
101         dctx->litBuffer = dctx->litExtraBuffer;
102         dctx->litBufferEnd = dctx->litBuffer + litSize;
103         dctx->litBufferLocation = ZSTD_not_in_dst;
104     } else {
105         assert(blockSizeMax > ZSTD_LITBUFFEREXTRASIZE);
106         /* Literals must be split between the output block and the extra lit
107          * buffer. We fill the extra lit buffer with the tail of the literals,
108          * and put the rest of the literals at the end of the block, with
109          * WILDCOPY_OVERLENGTH of buffer room to allow for overreads.
110          * This MUST not write more than our maxBlockSize beyond dst, because in
111          * streaming mode, that could overwrite part of our extDict window.
112          */
113         if (splitImmediately) {
114             /* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */
115             dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
116             dctx->litBufferEnd = dctx->litBuffer + litSize - ZSTD_LITBUFFEREXTRASIZE;
117         } else {
118             /* initially this will be stored entirely in dst during huffman decoding, it will partially be shifted to litExtraBuffer after */
119             dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize;
120             dctx->litBufferEnd = (BYTE*)dst + expectedWriteSize;
121         }
122         dctx->litBufferLocation = ZSTD_split;
123         assert(dctx->litBufferEnd <= (BYTE*)dst + expectedWriteSize);
124     }
125 }
126 
127 /*! ZSTD_decodeLiteralsBlock() :
128  * Where it is possible to do so without being stomped by the output during decompression, the literals block will be stored
129  * in the dstBuffer.  If there is room to do so, it will be stored in full in the excess dst space after where the current
130  * block will be output.  Otherwise it will be stored at the end of the current dst blockspace, with a small portion being
131  * stored in dctx->litExtraBuffer to help keep it "ahead" of the current output write.
132  *
133  * @return : nb of bytes read from src (< srcSize )
134  *  note : symbol not declared but exposed for fullbench */
ZSTD_decodeLiteralsBlock(ZSTD_DCtx * dctx,const void * src,size_t srcSize,void * dst,size_t dstCapacity,const streaming_operation streaming)135 static size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
136                           const void* src, size_t srcSize,   /* note : srcSize < BLOCKSIZE */
137                           void* dst, size_t dstCapacity, const streaming_operation streaming)
138 {
139     DEBUGLOG(5, "ZSTD_decodeLiteralsBlock");
140     RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, "");
141 
142     {   const BYTE* const istart = (const BYTE*) src;
143         SymbolEncodingType_e const litEncType = (SymbolEncodingType_e)(istart[0] & 3);
144         size_t const blockSizeMax = ZSTD_blockSizeMax(dctx);
145 
146         switch(litEncType)
147         {
148         case set_repeat:
149             DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block");
150             RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, "");
151             ZSTD_FALLTHROUGH;
152 
153         case set_compressed:
154             RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need up to 5 for case 3");
155             {   size_t lhSize, litSize, litCSize;
156                 U32 singleStream=0;
157                 U32 const lhlCode = (istart[0] >> 2) & 3;
158                 U32 const lhc = MEM_readLE32(istart);
159                 size_t hufSuccess;
160                 size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
161                 int const flags = 0
162                     | (ZSTD_DCtx_get_bmi2(dctx) ? HUF_flags_bmi2 : 0)
163                     | (dctx->disableHufAsm ? HUF_flags_disableAsm : 0);
164                 switch(lhlCode)
165                 {
166                 case 0: case 1: default:   /* note : default is impossible, since lhlCode into [0..3] */
167                     /* 2 - 2 - 10 - 10 */
168                     singleStream = !lhlCode;
169                     lhSize = 3;
170                     litSize  = (lhc >> 4) & 0x3FF;
171                     litCSize = (lhc >> 14) & 0x3FF;
172                     break;
173                 case 2:
174                     /* 2 - 2 - 14 - 14 */
175                     lhSize = 4;
176                     litSize  = (lhc >> 4) & 0x3FFF;
177                     litCSize = lhc >> 18;
178                     break;
179                 case 3:
180                     /* 2 - 2 - 18 - 18 */
181                     lhSize = 5;
182                     litSize  = (lhc >> 4) & 0x3FFFF;
183                     litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
184                     break;
185                 }
186                 RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
187                 RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
188                 if (!singleStream)
189                     RETURN_ERROR_IF(litSize < MIN_LITERALS_FOR_4_STREAMS, literals_headerWrong,
190                         "Not enough literals (%zu) for the 4-streams mode (min %u)",
191                         litSize, MIN_LITERALS_FOR_4_STREAMS);
192                 RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");
193                 RETURN_ERROR_IF(expectedWriteSize < litSize , dstSize_tooSmall, "");
194                 ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 0);
195 
196                 /* prefetch huffman table if cold */
197                 if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
198                     PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
199                 }
200 
201                 if (litEncType==set_repeat) {
202                     if (singleStream) {
203                         hufSuccess = HUF_decompress1X_usingDTable(
204                             dctx->litBuffer, litSize, istart+lhSize, litCSize,
205                             dctx->HUFptr, flags);
206                     } else {
207                         assert(litSize >= MIN_LITERALS_FOR_4_STREAMS);
208                         hufSuccess = HUF_decompress4X_usingDTable(
209                             dctx->litBuffer, litSize, istart+lhSize, litCSize,
210                             dctx->HUFptr, flags);
211                     }
212                 } else {
213                     if (singleStream) {
214 #if defined(HUF_FORCE_DECOMPRESS_X2)
215                         hufSuccess = HUF_decompress1X_DCtx_wksp(
216                             dctx->entropy.hufTable, dctx->litBuffer, litSize,
217                             istart+lhSize, litCSize, dctx->workspace,
218                             sizeof(dctx->workspace), flags);
219 #else
220                         hufSuccess = HUF_decompress1X1_DCtx_wksp(
221                             dctx->entropy.hufTable, dctx->litBuffer, litSize,
222                             istart+lhSize, litCSize, dctx->workspace,
223                             sizeof(dctx->workspace), flags);
224 #endif
225                     } else {
226                         hufSuccess = HUF_decompress4X_hufOnly_wksp(
227                             dctx->entropy.hufTable, dctx->litBuffer, litSize,
228                             istart+lhSize, litCSize, dctx->workspace,
229                             sizeof(dctx->workspace), flags);
230                     }
231                 }
232                 if (dctx->litBufferLocation == ZSTD_split)
233                 {
234                     assert(litSize > ZSTD_LITBUFFEREXTRASIZE);
235                     ZSTD_memcpy(dctx->litExtraBuffer, dctx->litBufferEnd - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
236                     ZSTD_memmove(dctx->litBuffer + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH, dctx->litBuffer, litSize - ZSTD_LITBUFFEREXTRASIZE);
237                     dctx->litBuffer += ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
238                     dctx->litBufferEnd -= WILDCOPY_OVERLENGTH;
239                     assert(dctx->litBufferEnd <= (BYTE*)dst + blockSizeMax);
240                 }
241 
242                 RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, "");
243 
244                 dctx->litPtr = dctx->litBuffer;
245                 dctx->litSize = litSize;
246                 dctx->litEntropy = 1;
247                 if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
248                 return litCSize + lhSize;
249             }
250 
251         case set_basic:
252             {   size_t litSize, lhSize;
253                 U32 const lhlCode = ((istart[0]) >> 2) & 3;
254                 size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
255                 switch(lhlCode)
256                 {
257                 case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
258                     lhSize = 1;
259                     litSize = istart[0] >> 3;
260                     break;
261                 case 1:
262                     lhSize = 2;
263                     litSize = MEM_readLE16(istart) >> 4;
264                     break;
265                 case 3:
266                     lhSize = 3;
267                     RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize = 3");
268                     litSize = MEM_readLE24(istart) >> 4;
269                     break;
270                 }
271 
272                 RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
273                 RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
274                 RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
275                 ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
276                 if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) {  /* risk reading beyond src buffer with wildcopy */
277                     RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, "");
278                     if (dctx->litBufferLocation == ZSTD_split)
279                     {
280                         ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize - ZSTD_LITBUFFEREXTRASIZE);
281                         ZSTD_memcpy(dctx->litExtraBuffer, istart + lhSize + litSize - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
282                     }
283                     else
284                     {
285                         ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize);
286                     }
287                     dctx->litPtr = dctx->litBuffer;
288                     dctx->litSize = litSize;
289                     return lhSize+litSize;
290                 }
291                 /* direct reference into compressed stream */
292                 dctx->litPtr = istart+lhSize;
293                 dctx->litSize = litSize;
294                 dctx->litBufferEnd = dctx->litPtr + litSize;
295                 dctx->litBufferLocation = ZSTD_not_in_dst;
296                 return lhSize+litSize;
297             }
298 
299         case set_rle:
300             {   U32 const lhlCode = ((istart[0]) >> 2) & 3;
301                 size_t litSize, lhSize;
302                 size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
303                 switch(lhlCode)
304                 {
305                 case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
306                     lhSize = 1;
307                     litSize = istart[0] >> 3;
308                     break;
309                 case 1:
310                     lhSize = 2;
311                     RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 3");
312                     litSize = MEM_readLE16(istart) >> 4;
313                     break;
314                 case 3:
315                     lhSize = 3;
316                     RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 4");
317                     litSize = MEM_readLE24(istart) >> 4;
318                     break;
319                 }
320                 RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
321                 RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
322                 RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
323                 ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
324                 if (dctx->litBufferLocation == ZSTD_split)
325                 {
326                     ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize - ZSTD_LITBUFFEREXTRASIZE);
327                     ZSTD_memset(dctx->litExtraBuffer, istart[lhSize], ZSTD_LITBUFFEREXTRASIZE);
328                 }
329                 else
330                 {
331                     ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize);
332                 }
333                 dctx->litPtr = dctx->litBuffer;
334                 dctx->litSize = litSize;
335                 return lhSize+1;
336             }
337         default:
338             RETURN_ERROR(corruption_detected, "impossible");
339         }
340     }
341 }
342 
343 /* Hidden declaration for fullbench */
344 size_t ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx* dctx,
345                           const void* src, size_t srcSize,
346                           void* dst, size_t dstCapacity);
ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx * dctx,const void * src,size_t srcSize,void * dst,size_t dstCapacity)347 size_t ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx* dctx,
348                           const void* src, size_t srcSize,
349                           void* dst, size_t dstCapacity)
350 {
351     dctx->isFrameDecompression = 0;
352     return ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, not_streaming);
353 }
354 
355 /* Default FSE distribution tables.
356  * These are pre-calculated FSE decoding tables using default distributions as defined in specification :
357  * https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#default-distributions
358  * They were generated programmatically with following method :
359  * - start from default distributions, present in /lib/common/zstd_internal.h
360  * - generate tables normally, using ZSTD_buildFSETable()
361  * - printout the content of tables
362  * - prettify output, report below, test with fuzzer to ensure it's correct */
363 
364 /* Default FSE distribution table for Literal Lengths */
365 static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
366      {  1,  1,  1, LL_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
367      /* nextState, nbAddBits, nbBits, baseVal */
368      {  0,  0,  4,    0},  { 16,  0,  4,    0},
369      { 32,  0,  5,    1},  {  0,  0,  5,    3},
370      {  0,  0,  5,    4},  {  0,  0,  5,    6},
371      {  0,  0,  5,    7},  {  0,  0,  5,    9},
372      {  0,  0,  5,   10},  {  0,  0,  5,   12},
373      {  0,  0,  6,   14},  {  0,  1,  5,   16},
374      {  0,  1,  5,   20},  {  0,  1,  5,   22},
375      {  0,  2,  5,   28},  {  0,  3,  5,   32},
376      {  0,  4,  5,   48},  { 32,  6,  5,   64},
377      {  0,  7,  5,  128},  {  0,  8,  6,  256},
378      {  0, 10,  6, 1024},  {  0, 12,  6, 4096},
379      { 32,  0,  4,    0},  {  0,  0,  4,    1},
380      {  0,  0,  5,    2},  { 32,  0,  5,    4},
381      {  0,  0,  5,    5},  { 32,  0,  5,    7},
382      {  0,  0,  5,    8},  { 32,  0,  5,   10},
383      {  0,  0,  5,   11},  {  0,  0,  6,   13},
384      { 32,  1,  5,   16},  {  0,  1,  5,   18},
385      { 32,  1,  5,   22},  {  0,  2,  5,   24},
386      { 32,  3,  5,   32},  {  0,  3,  5,   40},
387      {  0,  6,  4,   64},  { 16,  6,  4,   64},
388      { 32,  7,  5,  128},  {  0,  9,  6,  512},
389      {  0, 11,  6, 2048},  { 48,  0,  4,    0},
390      { 16,  0,  4,    1},  { 32,  0,  5,    2},
391      { 32,  0,  5,    3},  { 32,  0,  5,    5},
392      { 32,  0,  5,    6},  { 32,  0,  5,    8},
393      { 32,  0,  5,    9},  { 32,  0,  5,   11},
394      { 32,  0,  5,   12},  {  0,  0,  6,   15},
395      { 32,  1,  5,   18},  { 32,  1,  5,   20},
396      { 32,  2,  5,   24},  { 32,  2,  5,   28},
397      { 32,  3,  5,   40},  { 32,  4,  5,   48},
398      {  0, 16,  6,65536},  {  0, 15,  6,32768},
399      {  0, 14,  6,16384},  {  0, 13,  6, 8192},
400 };   /* LL_defaultDTable */
401 
402 /* Default FSE distribution table for Offset Codes */
403 static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
404     {  1,  1,  1, OF_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
405     /* nextState, nbAddBits, nbBits, baseVal */
406     {  0,  0,  5,    0},     {  0,  6,  4,   61},
407     {  0,  9,  5,  509},     {  0, 15,  5,32765},
408     {  0, 21,  5,2097149},   {  0,  3,  5,    5},
409     {  0,  7,  4,  125},     {  0, 12,  5, 4093},
410     {  0, 18,  5,262141},    {  0, 23,  5,8388605},
411     {  0,  5,  5,   29},     {  0,  8,  4,  253},
412     {  0, 14,  5,16381},     {  0, 20,  5,1048573},
413     {  0,  2,  5,    1},     { 16,  7,  4,  125},
414     {  0, 11,  5, 2045},     {  0, 17,  5,131069},
415     {  0, 22,  5,4194301},   {  0,  4,  5,   13},
416     { 16,  8,  4,  253},     {  0, 13,  5, 8189},
417     {  0, 19,  5,524285},    {  0,  1,  5,    1},
418     { 16,  6,  4,   61},     {  0, 10,  5, 1021},
419     {  0, 16,  5,65533},     {  0, 28,  5,268435453},
420     {  0, 27,  5,134217725}, {  0, 26,  5,67108861},
421     {  0, 25,  5,33554429},  {  0, 24,  5,16777213},
422 };   /* OF_defaultDTable */
423 
424 
425 /* Default FSE distribution table for Match Lengths */
426 static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
427     {  1,  1,  1, ML_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
428     /* nextState, nbAddBits, nbBits, baseVal */
429     {  0,  0,  6,    3},  {  0,  0,  4,    4},
430     { 32,  0,  5,    5},  {  0,  0,  5,    6},
431     {  0,  0,  5,    8},  {  0,  0,  5,    9},
432     {  0,  0,  5,   11},  {  0,  0,  6,   13},
433     {  0,  0,  6,   16},  {  0,  0,  6,   19},
434     {  0,  0,  6,   22},  {  0,  0,  6,   25},
435     {  0,  0,  6,   28},  {  0,  0,  6,   31},
436     {  0,  0,  6,   34},  {  0,  1,  6,   37},
437     {  0,  1,  6,   41},  {  0,  2,  6,   47},
438     {  0,  3,  6,   59},  {  0,  4,  6,   83},
439     {  0,  7,  6,  131},  {  0,  9,  6,  515},
440     { 16,  0,  4,    4},  {  0,  0,  4,    5},
441     { 32,  0,  5,    6},  {  0,  0,  5,    7},
442     { 32,  0,  5,    9},  {  0,  0,  5,   10},
443     {  0,  0,  6,   12},  {  0,  0,  6,   15},
444     {  0,  0,  6,   18},  {  0,  0,  6,   21},
445     {  0,  0,  6,   24},  {  0,  0,  6,   27},
446     {  0,  0,  6,   30},  {  0,  0,  6,   33},
447     {  0,  1,  6,   35},  {  0,  1,  6,   39},
448     {  0,  2,  6,   43},  {  0,  3,  6,   51},
449     {  0,  4,  6,   67},  {  0,  5,  6,   99},
450     {  0,  8,  6,  259},  { 32,  0,  4,    4},
451     { 48,  0,  4,    4},  { 16,  0,  4,    5},
452     { 32,  0,  5,    7},  { 32,  0,  5,    8},
453     { 32,  0,  5,   10},  { 32,  0,  5,   11},
454     {  0,  0,  6,   14},  {  0,  0,  6,   17},
455     {  0,  0,  6,   20},  {  0,  0,  6,   23},
456     {  0,  0,  6,   26},  {  0,  0,  6,   29},
457     {  0,  0,  6,   32},  {  0, 16,  6,65539},
458     {  0, 15,  6,32771},  {  0, 14,  6,16387},
459     {  0, 13,  6, 8195},  {  0, 12,  6, 4099},
460     {  0, 11,  6, 2051},  {  0, 10,  6, 1027},
461 };   /* ML_defaultDTable */
462 
463 
ZSTD_buildSeqTable_rle(ZSTD_seqSymbol * dt,U32 baseValue,U8 nbAddBits)464 static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U8 nbAddBits)
465 {
466     void* ptr = dt;
467     ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
468     ZSTD_seqSymbol* const cell = dt + 1;
469 
470     DTableH->tableLog = 0;
471     DTableH->fastMode = 0;
472 
473     cell->nbBits = 0;
474     cell->nextState = 0;
475     assert(nbAddBits < 255);
476     cell->nbAdditionalBits = nbAddBits;
477     cell->baseValue = baseValue;
478 }
479 
480 
481 /* ZSTD_buildFSETable() :
482  * generate FSE decoding table for one symbol (ll, ml or off)
483  * cannot fail if input is valid =>
484  * all inputs are presumed validated at this stage */
485 FORCE_INLINE_TEMPLATE
ZSTD_buildFSETable_body(ZSTD_seqSymbol * dt,const short * normalizedCounter,unsigned maxSymbolValue,const U32 * baseValue,const U8 * nbAdditionalBits,unsigned tableLog,void * wksp,size_t wkspSize)486 void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt,
487             const short* normalizedCounter, unsigned maxSymbolValue,
488             const U32* baseValue, const U8* nbAdditionalBits,
489             unsigned tableLog, void* wksp, size_t wkspSize)
490 {
491     ZSTD_seqSymbol* const tableDecode = dt+1;
492     U32 const maxSV1 = maxSymbolValue + 1;
493     U32 const tableSize = 1 << tableLog;
494 
495     U16* symbolNext = (U16*)wksp;
496     BYTE* spread = (BYTE*)(symbolNext + MaxSeq + 1);
497     U32 highThreshold = tableSize - 1;
498 
499 
500     /* Sanity Checks */
501     assert(maxSymbolValue <= MaxSeq);
502     assert(tableLog <= MaxFSELog);
503     assert(wkspSize >= ZSTD_BUILD_FSE_TABLE_WKSP_SIZE);
504     (void)wkspSize;
505     /* Init, lay down lowprob symbols */
506     {   ZSTD_seqSymbol_header DTableH;
507         DTableH.tableLog = tableLog;
508         DTableH.fastMode = 1;
509         {   S16 const largeLimit= (S16)(1 << (tableLog-1));
510             U32 s;
511             for (s=0; s<maxSV1; s++) {
512                 if (normalizedCounter[s]==-1) {
513                     tableDecode[highThreshold--].baseValue = s;
514                     symbolNext[s] = 1;
515                 } else {
516                     if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
517                     assert(normalizedCounter[s]>=0);
518                     symbolNext[s] = (U16)normalizedCounter[s];
519         }   }   }
520         ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
521     }
522 
523     /* Spread symbols */
524     assert(tableSize <= 512);
525     /* Specialized symbol spreading for the case when there are
526      * no low probability (-1 count) symbols. When compressing
527      * small blocks we avoid low probability symbols to hit this
528      * case, since header decoding speed matters more.
529      */
530     if (highThreshold == tableSize - 1) {
531         size_t const tableMask = tableSize-1;
532         size_t const step = FSE_TABLESTEP(tableSize);
533         /* First lay down the symbols in order.
534          * We use a uint64_t to lay down 8 bytes at a time. This reduces branch
535          * misses since small blocks generally have small table logs, so nearly
536          * all symbols have counts <= 8. We ensure we have 8 bytes at the end of
537          * our buffer to handle the over-write.
538          */
539         {
540             U64 const add = 0x0101010101010101ull;
541             size_t pos = 0;
542             U64 sv = 0;
543             U32 s;
544             for (s=0; s<maxSV1; ++s, sv += add) {
545                 int i;
546                 int const n = normalizedCounter[s];
547                 MEM_write64(spread + pos, sv);
548                 for (i = 8; i < n; i += 8) {
549                     MEM_write64(spread + pos + i, sv);
550                 }
551                 assert(n>=0);
552                 pos += (size_t)n;
553             }
554         }
555         /* Now we spread those positions across the table.
556          * The benefit of doing it in two stages is that we avoid the
557          * variable size inner loop, which caused lots of branch misses.
558          * Now we can run through all the positions without any branch misses.
559          * We unroll the loop twice, since that is what empirically worked best.
560          */
561         {
562             size_t position = 0;
563             size_t s;
564             size_t const unroll = 2;
565             assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
566             for (s = 0; s < (size_t)tableSize; s += unroll) {
567                 size_t u;
568                 for (u = 0; u < unroll; ++u) {
569                     size_t const uPosition = (position + (u * step)) & tableMask;
570                     tableDecode[uPosition].baseValue = spread[s + u];
571                 }
572                 position = (position + (unroll * step)) & tableMask;
573             }
574             assert(position == 0);
575         }
576     } else {
577         U32 const tableMask = tableSize-1;
578         U32 const step = FSE_TABLESTEP(tableSize);
579         U32 s, position = 0;
580         for (s=0; s<maxSV1; s++) {
581             int i;
582             int const n = normalizedCounter[s];
583             for (i=0; i<n; i++) {
584                 tableDecode[position].baseValue = s;
585                 position = (position + step) & tableMask;
586                 while (UNLIKELY(position > highThreshold)) position = (position + step) & tableMask;   /* lowprob area */
587         }   }
588         assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
589     }
590 
591     /* Build Decoding table */
592     {
593         U32 u;
594         for (u=0; u<tableSize; u++) {
595             U32 const symbol = tableDecode[u].baseValue;
596             U32 const nextState = symbolNext[symbol]++;
597             tableDecode[u].nbBits = (BYTE) (tableLog - ZSTD_highbit32(nextState) );
598             tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
599             assert(nbAdditionalBits[symbol] < 255);
600             tableDecode[u].nbAdditionalBits = nbAdditionalBits[symbol];
601             tableDecode[u].baseValue = baseValue[symbol];
602         }
603     }
604 }
605 
606 /* Avoids the FORCE_INLINE of the _body() function. */
ZSTD_buildFSETable_body_default(ZSTD_seqSymbol * dt,const short * normalizedCounter,unsigned maxSymbolValue,const U32 * baseValue,const U8 * nbAdditionalBits,unsigned tableLog,void * wksp,size_t wkspSize)607 static void ZSTD_buildFSETable_body_default(ZSTD_seqSymbol* dt,
608             const short* normalizedCounter, unsigned maxSymbolValue,
609             const U32* baseValue, const U8* nbAdditionalBits,
610             unsigned tableLog, void* wksp, size_t wkspSize)
611 {
612     ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
613             baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
614 }
615 
616 #if DYNAMIC_BMI2
ZSTD_buildFSETable_body_bmi2(ZSTD_seqSymbol * dt,const short * normalizedCounter,unsigned maxSymbolValue,const U32 * baseValue,const U8 * nbAdditionalBits,unsigned tableLog,void * wksp,size_t wkspSize)617 BMI2_TARGET_ATTRIBUTE static void ZSTD_buildFSETable_body_bmi2(ZSTD_seqSymbol* dt,
618             const short* normalizedCounter, unsigned maxSymbolValue,
619             const U32* baseValue, const U8* nbAdditionalBits,
620             unsigned tableLog, void* wksp, size_t wkspSize)
621 {
622     ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
623             baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
624 }
625 #endif
626 
ZSTD_buildFSETable(ZSTD_seqSymbol * dt,const short * normalizedCounter,unsigned maxSymbolValue,const U32 * baseValue,const U8 * nbAdditionalBits,unsigned tableLog,void * wksp,size_t wkspSize,int bmi2)627 void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
628             const short* normalizedCounter, unsigned maxSymbolValue,
629             const U32* baseValue, const U8* nbAdditionalBits,
630             unsigned tableLog, void* wksp, size_t wkspSize, int bmi2)
631 {
632 #if DYNAMIC_BMI2
633     if (bmi2) {
634         ZSTD_buildFSETable_body_bmi2(dt, normalizedCounter, maxSymbolValue,
635                 baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
636         return;
637     }
638 #endif
639     (void)bmi2;
640     ZSTD_buildFSETable_body_default(dt, normalizedCounter, maxSymbolValue,
641             baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
642 }
643 
644 
645 /*! ZSTD_buildSeqTable() :
646  * @return : nb bytes read from src,
647  *           or an error code if it fails */
ZSTD_buildSeqTable(ZSTD_seqSymbol * DTableSpace,const ZSTD_seqSymbol ** DTablePtr,SymbolEncodingType_e type,unsigned max,U32 maxLog,const void * src,size_t srcSize,const U32 * baseValue,const U8 * nbAdditionalBits,const ZSTD_seqSymbol * defaultTable,U32 flagRepeatTable,int ddictIsCold,int nbSeq,U32 * wksp,size_t wkspSize,int bmi2)648 static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
649                                  SymbolEncodingType_e type, unsigned max, U32 maxLog,
650                                  const void* src, size_t srcSize,
651                                  const U32* baseValue, const U8* nbAdditionalBits,
652                                  const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
653                                  int ddictIsCold, int nbSeq, U32* wksp, size_t wkspSize,
654                                  int bmi2)
655 {
656     switch(type)
657     {
658     case set_rle :
659         RETURN_ERROR_IF(!srcSize, srcSize_wrong, "");
660         RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected, "");
661         {   U32 const symbol = *(const BYTE*)src;
662             U32 const baseline = baseValue[symbol];
663             U8 const nbBits = nbAdditionalBits[symbol];
664             ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
665         }
666         *DTablePtr = DTableSpace;
667         return 1;
668     case set_basic :
669         *DTablePtr = defaultTable;
670         return 0;
671     case set_repeat:
672         RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, "");
673         /* prefetch FSE table if used */
674         if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
675             const void* const pStart = *DTablePtr;
676             size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
677             PREFETCH_AREA(pStart, pSize);
678         }
679         return 0;
680     case set_compressed :
681         {   unsigned tableLog;
682             S16 norm[MaxSeq+1];
683             size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
684             RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, "");
685             RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, "");
686             ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog, wksp, wkspSize, bmi2);
687             *DTablePtr = DTableSpace;
688             return headerSize;
689         }
690     default :
691         assert(0);
692         RETURN_ERROR(GENERIC, "impossible");
693     }
694 }
695 
ZSTD_decodeSeqHeaders(ZSTD_DCtx * dctx,int * nbSeqPtr,const void * src,size_t srcSize)696 size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
697                              const void* src, size_t srcSize)
698 {
699     const BYTE* const istart = (const BYTE*)src;
700     const BYTE* const iend = istart + srcSize;
701     const BYTE* ip = istart;
702     int nbSeq;
703     DEBUGLOG(5, "ZSTD_decodeSeqHeaders");
704 
705     /* check */
706     RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, "");
707 
708     /* SeqHead */
709     nbSeq = *ip++;
710     if (nbSeq > 0x7F) {
711         if (nbSeq == 0xFF) {
712             RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, "");
713             nbSeq = MEM_readLE16(ip) + LONGNBSEQ;
714             ip+=2;
715         } else {
716             RETURN_ERROR_IF(ip >= iend, srcSize_wrong, "");
717             nbSeq = ((nbSeq-0x80)<<8) + *ip++;
718         }
719     }
720     *nbSeqPtr = nbSeq;
721 
722     if (nbSeq == 0) {
723         /* No sequence : section ends immediately */
724         RETURN_ERROR_IF(ip != iend, corruption_detected,
725             "extraneous data present in the Sequences section");
726         return (size_t)(ip - istart);
727     }
728 
729     /* FSE table descriptors */
730     RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */
731     RETURN_ERROR_IF(*ip & 3, corruption_detected, ""); /* The last field, Reserved, must be all-zeroes. */
732     {   SymbolEncodingType_e const LLtype = (SymbolEncodingType_e)(*ip >> 6);
733         SymbolEncodingType_e const OFtype = (SymbolEncodingType_e)((*ip >> 4) & 3);
734         SymbolEncodingType_e const MLtype = (SymbolEncodingType_e)((*ip >> 2) & 3);
735         ip++;
736 
737         /* Build DTables */
738         {   size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
739                                                       LLtype, MaxLL, LLFSELog,
740                                                       ip, iend-ip,
741                                                       LL_base, LL_bits,
742                                                       LL_defaultDTable, dctx->fseEntropy,
743                                                       dctx->ddictIsCold, nbSeq,
744                                                       dctx->workspace, sizeof(dctx->workspace),
745                                                       ZSTD_DCtx_get_bmi2(dctx));
746             RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed");
747             ip += llhSize;
748         }
749 
750         {   size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
751                                                       OFtype, MaxOff, OffFSELog,
752                                                       ip, iend-ip,
753                                                       OF_base, OF_bits,
754                                                       OF_defaultDTable, dctx->fseEntropy,
755                                                       dctx->ddictIsCold, nbSeq,
756                                                       dctx->workspace, sizeof(dctx->workspace),
757                                                       ZSTD_DCtx_get_bmi2(dctx));
758             RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed");
759             ip += ofhSize;
760         }
761 
762         {   size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
763                                                       MLtype, MaxML, MLFSELog,
764                                                       ip, iend-ip,
765                                                       ML_base, ML_bits,
766                                                       ML_defaultDTable, dctx->fseEntropy,
767                                                       dctx->ddictIsCold, nbSeq,
768                                                       dctx->workspace, sizeof(dctx->workspace),
769                                                       ZSTD_DCtx_get_bmi2(dctx));
770             RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed");
771             ip += mlhSize;
772         }
773     }
774 
775     return ip-istart;
776 }
777 
778 
779 typedef struct {
780     size_t litLength;
781     size_t matchLength;
782     size_t offset;
783 } seq_t;
784 
785 typedef struct {
786     size_t state;
787     const ZSTD_seqSymbol* table;
788 } ZSTD_fseState;
789 
790 typedef struct {
791     BIT_DStream_t DStream;
792     ZSTD_fseState stateLL;
793     ZSTD_fseState stateOffb;
794     ZSTD_fseState stateML;
795     size_t prevOffset[ZSTD_REP_NUM];
796 } seqState_t;
797 
798 /*! ZSTD_overlapCopy8() :
799  *  Copies 8 bytes from ip to op and updates op and ip where ip <= op.
800  *  If the offset is < 8 then the offset is spread to at least 8 bytes.
801  *
802  *  Precondition: *ip <= *op
803  *  Postcondition: *op - *op >= 8
804  */
ZSTD_overlapCopy8(BYTE ** op,BYTE const ** ip,size_t offset)805 HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) {
806     assert(*ip <= *op);
807     if (offset < 8) {
808         /* close range match, overlap */
809         static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 };   /* added */
810         static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 };   /* subtracted */
811         int const sub2 = dec64table[offset];
812         (*op)[0] = (*ip)[0];
813         (*op)[1] = (*ip)[1];
814         (*op)[2] = (*ip)[2];
815         (*op)[3] = (*ip)[3];
816         *ip += dec32table[offset];
817         ZSTD_copy4(*op+4, *ip);
818         *ip -= sub2;
819     } else {
820         ZSTD_copy8(*op, *ip);
821     }
822     *ip += 8;
823     *op += 8;
824     assert(*op - *ip >= 8);
825 }
826 
827 /*! ZSTD_safecopy() :
828  *  Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer
829  *  and write up to 16 bytes past oend_w (op >= oend_w is allowed).
830  *  This function is only called in the uncommon case where the sequence is near the end of the block. It
831  *  should be fast for a single long sequence, but can be slow for several short sequences.
832  *
833  *  @param ovtype controls the overlap detection
834  *         - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
835  *         - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart.
836  *           The src buffer must be before the dst buffer.
837  */
ZSTD_safecopy(BYTE * op,const BYTE * const oend_w,BYTE const * ip,ptrdiff_t length,ZSTD_overlap_e ovtype)838 static void ZSTD_safecopy(BYTE* op, const BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) {
839     ptrdiff_t const diff = op - ip;
840     BYTE* const oend = op + length;
841 
842     assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) ||
843            (ovtype == ZSTD_overlap_src_before_dst && diff >= 0));
844 
845     if (length < 8) {
846         /* Handle short lengths. */
847         while (op < oend) *op++ = *ip++;
848         return;
849     }
850     if (ovtype == ZSTD_overlap_src_before_dst) {
851         /* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */
852         assert(length >= 8);
853         ZSTD_overlapCopy8(&op, &ip, diff);
854         length -= 8;
855         assert(op - ip >= 8);
856         assert(op <= oend);
857     }
858 
859     if (oend <= oend_w) {
860         /* No risk of overwrite. */
861         ZSTD_wildcopy(op, ip, length, ovtype);
862         return;
863     }
864     if (op <= oend_w) {
865         /* Wildcopy until we get close to the end. */
866         assert(oend > oend_w);
867         ZSTD_wildcopy(op, ip, oend_w - op, ovtype);
868         ip += oend_w - op;
869         op += oend_w - op;
870     }
871     /* Handle the leftovers. */
872     while (op < oend) *op++ = *ip++;
873 }
874 
875 /* ZSTD_safecopyDstBeforeSrc():
876  * This version allows overlap with dst before src, or handles the non-overlap case with dst after src
877  * Kept separate from more common ZSTD_safecopy case to avoid performance impact to the safecopy common case */
ZSTD_safecopyDstBeforeSrc(BYTE * op,const BYTE * ip,ptrdiff_t length)878 static void ZSTD_safecopyDstBeforeSrc(BYTE* op, const BYTE* ip, ptrdiff_t length) {
879     ptrdiff_t const diff = op - ip;
880     BYTE* const oend = op + length;
881 
882     if (length < 8 || diff > -8) {
883         /* Handle short lengths, close overlaps, and dst not before src. */
884         while (op < oend) *op++ = *ip++;
885         return;
886     }
887 
888     if (op <= oend - WILDCOPY_OVERLENGTH && diff < -WILDCOPY_VECLEN) {
889         ZSTD_wildcopy(op, ip, oend - WILDCOPY_OVERLENGTH - op, ZSTD_no_overlap);
890         ip += oend - WILDCOPY_OVERLENGTH - op;
891         op += oend - WILDCOPY_OVERLENGTH - op;
892     }
893 
894     /* Handle the leftovers. */
895     while (op < oend) *op++ = *ip++;
896 }
897 
898 /* ZSTD_execSequenceEnd():
899  * This version handles cases that are near the end of the output buffer. It requires
900  * more careful checks to make sure there is no overflow. By separating out these hard
901  * and unlikely cases, we can speed up the common cases.
902  *
903  * NOTE: This function needs to be fast for a single long sequence, but doesn't need
904  * to be optimized for many small sequences, since those fall into ZSTD_execSequence().
905  */
906 FORCE_NOINLINE
907 ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
ZSTD_execSequenceEnd(BYTE * op,BYTE * const oend,seq_t sequence,const BYTE ** litPtr,const BYTE * const litLimit,const BYTE * const prefixStart,const BYTE * const virtualStart,const BYTE * const dictEnd)908 size_t ZSTD_execSequenceEnd(BYTE* op,
909     BYTE* const oend, seq_t sequence,
910     const BYTE** litPtr, const BYTE* const litLimit,
911     const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
912 {
913     BYTE* const oLitEnd = op + sequence.litLength;
914     size_t const sequenceLength = sequence.litLength + sequence.matchLength;
915     const BYTE* const iLitEnd = *litPtr + sequence.litLength;
916     const BYTE* match = oLitEnd - sequence.offset;
917     BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
918 
919     /* bounds checks : careful of address space overflow in 32-bit mode */
920     RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
921     RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
922     assert(op < op + sequenceLength);
923     assert(oLitEnd < op + sequenceLength);
924 
925     /* copy literals */
926     ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap);
927     op = oLitEnd;
928     *litPtr = iLitEnd;
929 
930     /* copy Match */
931     if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
932         /* offset beyond prefix */
933         RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
934         match = dictEnd - (prefixStart - match);
935         if (match + sequence.matchLength <= dictEnd) {
936             ZSTD_memmove(oLitEnd, match, sequence.matchLength);
937             return sequenceLength;
938         }
939         /* span extDict & currentPrefixSegment */
940         {   size_t const length1 = dictEnd - match;
941         ZSTD_memmove(oLitEnd, match, length1);
942         op = oLitEnd + length1;
943         sequence.matchLength -= length1;
944         match = prefixStart;
945         }
946     }
947     ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
948     return sequenceLength;
949 }
950 
951 /* ZSTD_execSequenceEndSplitLitBuffer():
952  * This version is intended to be used during instances where the litBuffer is still split.  It is kept separate to avoid performance impact for the good case.
953  */
954 FORCE_NOINLINE
955 ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
ZSTD_execSequenceEndSplitLitBuffer(BYTE * op,BYTE * const oend,const BYTE * const oend_w,seq_t sequence,const BYTE ** litPtr,const BYTE * const litLimit,const BYTE * const prefixStart,const BYTE * const virtualStart,const BYTE * const dictEnd)956 size_t ZSTD_execSequenceEndSplitLitBuffer(BYTE* op,
957     BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
958     const BYTE** litPtr, const BYTE* const litLimit,
959     const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
960 {
961     BYTE* const oLitEnd = op + sequence.litLength;
962     size_t const sequenceLength = sequence.litLength + sequence.matchLength;
963     const BYTE* const iLitEnd = *litPtr + sequence.litLength;
964     const BYTE* match = oLitEnd - sequence.offset;
965 
966 
967     /* bounds checks : careful of address space overflow in 32-bit mode */
968     RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
969     RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
970     assert(op < op + sequenceLength);
971     assert(oLitEnd < op + sequenceLength);
972 
973     /* copy literals */
974     RETURN_ERROR_IF(op > *litPtr && op < *litPtr + sequence.litLength, dstSize_tooSmall, "output should not catch up to and overwrite literal buffer");
975     ZSTD_safecopyDstBeforeSrc(op, *litPtr, sequence.litLength);
976     op = oLitEnd;
977     *litPtr = iLitEnd;
978 
979     /* copy Match */
980     if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
981         /* offset beyond prefix */
982         RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
983         match = dictEnd - (prefixStart - match);
984         if (match + sequence.matchLength <= dictEnd) {
985             ZSTD_memmove(oLitEnd, match, sequence.matchLength);
986             return sequenceLength;
987         }
988         /* span extDict & currentPrefixSegment */
989         {   size_t const length1 = dictEnd - match;
990         ZSTD_memmove(oLitEnd, match, length1);
991         op = oLitEnd + length1;
992         sequence.matchLength -= length1;
993         match = prefixStart;
994         }
995     }
996     ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
997     return sequenceLength;
998 }
999 
1000 HINT_INLINE
1001 ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
ZSTD_execSequence(BYTE * op,BYTE * const oend,seq_t sequence,const BYTE ** litPtr,const BYTE * const litLimit,const BYTE * const prefixStart,const BYTE * const virtualStart,const BYTE * const dictEnd)1002 size_t ZSTD_execSequence(BYTE* op,
1003     BYTE* const oend, seq_t sequence,
1004     const BYTE** litPtr, const BYTE* const litLimit,
1005     const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
1006 {
1007     BYTE* const oLitEnd = op + sequence.litLength;
1008     size_t const sequenceLength = sequence.litLength + sequence.matchLength;
1009     BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
1010     BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;   /* risk : address space underflow on oend=NULL */
1011     const BYTE* const iLitEnd = *litPtr + sequence.litLength;
1012     const BYTE* match = oLitEnd - sequence.offset;
1013 
1014     assert(op != NULL /* Precondition */);
1015     assert(oend_w < oend /* No underflow */);
1016 
1017 #if defined(__aarch64__)
1018     /* prefetch sequence starting from match that will be used for copy later */
1019     PREFETCH_L1(match);
1020 #endif
1021     /* Handle edge cases in a slow path:
1022      *   - Read beyond end of literals
1023      *   - Match end is within WILDCOPY_OVERLIMIT of oend
1024      *   - 32-bit mode and the match length overflows
1025      */
1026     if (UNLIKELY(
1027         iLitEnd > litLimit ||
1028         oMatchEnd > oend_w ||
1029         (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
1030         return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
1031 
1032     /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
1033     assert(op <= oLitEnd /* No overflow */);
1034     assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
1035     assert(oMatchEnd <= oend /* No underflow */);
1036     assert(iLitEnd <= litLimit /* Literal length is in bounds */);
1037     assert(oLitEnd <= oend_w /* Can wildcopy literals */);
1038     assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
1039 
1040     /* Copy Literals:
1041      * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
1042      * We likely don't need the full 32-byte wildcopy.
1043      */
1044     assert(WILDCOPY_OVERLENGTH >= 16);
1045     ZSTD_copy16(op, (*litPtr));
1046     if (UNLIKELY(sequence.litLength > 16)) {
1047         ZSTD_wildcopy(op + 16, (*litPtr) + 16, sequence.litLength - 16, ZSTD_no_overlap);
1048     }
1049     op = oLitEnd;
1050     *litPtr = iLitEnd;   /* update for next sequence */
1051 
1052     /* Copy Match */
1053     if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
1054         /* offset beyond prefix -> go into extDict */
1055         RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
1056         match = dictEnd + (match - prefixStart);
1057         if (match + sequence.matchLength <= dictEnd) {
1058             ZSTD_memmove(oLitEnd, match, sequence.matchLength);
1059             return sequenceLength;
1060         }
1061         /* span extDict & currentPrefixSegment */
1062         {   size_t const length1 = dictEnd - match;
1063         ZSTD_memmove(oLitEnd, match, length1);
1064         op = oLitEnd + length1;
1065         sequence.matchLength -= length1;
1066         match = prefixStart;
1067         }
1068     }
1069     /* Match within prefix of 1 or more bytes */
1070     assert(op <= oMatchEnd);
1071     assert(oMatchEnd <= oend_w);
1072     assert(match >= prefixStart);
1073     assert(sequence.matchLength >= 1);
1074 
1075     /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
1076      * without overlap checking.
1077      */
1078     if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
1079         /* We bet on a full wildcopy for matches, since we expect matches to be
1080          * longer than literals (in general). In silesia, ~10% of matches are longer
1081          * than 16 bytes.
1082          */
1083         ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
1084         return sequenceLength;
1085     }
1086     assert(sequence.offset < WILDCOPY_VECLEN);
1087 
1088     /* Copy 8 bytes and spread the offset to be >= 8. */
1089     ZSTD_overlapCopy8(&op, &match, sequence.offset);
1090 
1091     /* If the match length is > 8 bytes, then continue with the wildcopy. */
1092     if (sequence.matchLength > 8) {
1093         assert(op < oMatchEnd);
1094         ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength - 8, ZSTD_overlap_src_before_dst);
1095     }
1096     return sequenceLength;
1097 }
1098 
1099 HINT_INLINE
1100 ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
ZSTD_execSequenceSplitLitBuffer(BYTE * op,BYTE * const oend,const BYTE * const oend_w,seq_t sequence,const BYTE ** litPtr,const BYTE * const litLimit,const BYTE * const prefixStart,const BYTE * const virtualStart,const BYTE * const dictEnd)1101 size_t ZSTD_execSequenceSplitLitBuffer(BYTE* op,
1102     BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
1103     const BYTE** litPtr, const BYTE* const litLimit,
1104     const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
1105 {
1106     BYTE* const oLitEnd = op + sequence.litLength;
1107     size_t const sequenceLength = sequence.litLength + sequence.matchLength;
1108     BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
1109     const BYTE* const iLitEnd = *litPtr + sequence.litLength;
1110     const BYTE* match = oLitEnd - sequence.offset;
1111 
1112     assert(op != NULL /* Precondition */);
1113     assert(oend_w < oend /* No underflow */);
1114     /* Handle edge cases in a slow path:
1115      *   - Read beyond end of literals
1116      *   - Match end is within WILDCOPY_OVERLIMIT of oend
1117      *   - 32-bit mode and the match length overflows
1118      */
1119     if (UNLIKELY(
1120             iLitEnd > litLimit ||
1121             oMatchEnd > oend_w ||
1122             (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
1123         return ZSTD_execSequenceEndSplitLitBuffer(op, oend, oend_w, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
1124 
1125     /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
1126     assert(op <= oLitEnd /* No overflow */);
1127     assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
1128     assert(oMatchEnd <= oend /* No underflow */);
1129     assert(iLitEnd <= litLimit /* Literal length is in bounds */);
1130     assert(oLitEnd <= oend_w /* Can wildcopy literals */);
1131     assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
1132 
1133     /* Copy Literals:
1134      * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
1135      * We likely don't need the full 32-byte wildcopy.
1136      */
1137     assert(WILDCOPY_OVERLENGTH >= 16);
1138     ZSTD_copy16(op, (*litPtr));
1139     if (UNLIKELY(sequence.litLength > 16)) {
1140         ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap);
1141     }
1142     op = oLitEnd;
1143     *litPtr = iLitEnd;   /* update for next sequence */
1144 
1145     /* Copy Match */
1146     if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
1147         /* offset beyond prefix -> go into extDict */
1148         RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
1149         match = dictEnd + (match - prefixStart);
1150         if (match + sequence.matchLength <= dictEnd) {
1151             ZSTD_memmove(oLitEnd, match, sequence.matchLength);
1152             return sequenceLength;
1153         }
1154         /* span extDict & currentPrefixSegment */
1155         {   size_t const length1 = dictEnd - match;
1156             ZSTD_memmove(oLitEnd, match, length1);
1157             op = oLitEnd + length1;
1158             sequence.matchLength -= length1;
1159             match = prefixStart;
1160     }   }
1161     /* Match within prefix of 1 or more bytes */
1162     assert(op <= oMatchEnd);
1163     assert(oMatchEnd <= oend_w);
1164     assert(match >= prefixStart);
1165     assert(sequence.matchLength >= 1);
1166 
1167     /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
1168      * without overlap checking.
1169      */
1170     if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
1171         /* We bet on a full wildcopy for matches, since we expect matches to be
1172          * longer than literals (in general). In silesia, ~10% of matches are longer
1173          * than 16 bytes.
1174          */
1175         ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
1176         return sequenceLength;
1177     }
1178     assert(sequence.offset < WILDCOPY_VECLEN);
1179 
1180     /* Copy 8 bytes and spread the offset to be >= 8. */
1181     ZSTD_overlapCopy8(&op, &match, sequence.offset);
1182 
1183     /* If the match length is > 8 bytes, then continue with the wildcopy. */
1184     if (sequence.matchLength > 8) {
1185         assert(op < oMatchEnd);
1186         ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst);
1187     }
1188     return sequenceLength;
1189 }
1190 
1191 
1192 static void
ZSTD_initFseState(ZSTD_fseState * DStatePtr,BIT_DStream_t * bitD,const ZSTD_seqSymbol * dt)1193 ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
1194 {
1195     const void* ptr = dt;
1196     const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
1197     DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
1198     DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
1199                 (U32)DStatePtr->state, DTableH->tableLog);
1200     BIT_reloadDStream(bitD);
1201     DStatePtr->table = dt + 1;
1202 }
1203 
1204 FORCE_INLINE_TEMPLATE void
ZSTD_updateFseStateWithDInfo(ZSTD_fseState * DStatePtr,BIT_DStream_t * bitD,U16 nextState,U32 nbBits)1205 ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, U16 nextState, U32 nbBits)
1206 {
1207     size_t const lowBits = BIT_readBits(bitD, nbBits);
1208     DStatePtr->state = nextState + lowBits;
1209 }
1210 
1211 /* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
1212  * offset bits. But we can only read at most STREAM_ACCUMULATOR_MIN_32
1213  * bits before reloading. This value is the maximum number of bytes we read
1214  * after reloading when we are decoding long offsets.
1215  */
1216 #define LONG_OFFSETS_MAX_EXTRA_BITS_32                       \
1217     (ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32       \
1218         ? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32  \
1219         : 0)
1220 
1221 typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
1222 
1223 /*
1224  * ZSTD_decodeSequence():
1225  * @p longOffsets : tells the decoder to reload more bit while decoding large offsets
1226  *                  only used in 32-bit mode
1227  * @return : Sequence (litL + matchL + offset)
1228  */
1229 FORCE_INLINE_TEMPLATE seq_t
ZSTD_decodeSequence(seqState_t * seqState,const ZSTD_longOffset_e longOffsets,const int isLastSeq)1230 ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets, const int isLastSeq)
1231 {
1232     seq_t seq;
1233     /*
1234      * ZSTD_seqSymbol is a 64 bits wide structure.
1235      * It can be loaded in one operation
1236      * and its fields extracted by simply shifting or bit-extracting on aarch64.
1237      * GCC doesn't recognize this and generates more unnecessary ldr/ldrb/ldrh
1238      * operations that cause performance drop. This can be avoided by using this
1239      * ZSTD_memcpy hack.
1240      */
1241 #if defined(__aarch64__) && (defined(__GNUC__) && !defined(__clang__))
1242     ZSTD_seqSymbol llDInfoS, mlDInfoS, ofDInfoS;
1243     ZSTD_seqSymbol* const llDInfo = &llDInfoS;
1244     ZSTD_seqSymbol* const mlDInfo = &mlDInfoS;
1245     ZSTD_seqSymbol* const ofDInfo = &ofDInfoS;
1246     ZSTD_memcpy(llDInfo, seqState->stateLL.table + seqState->stateLL.state, sizeof(ZSTD_seqSymbol));
1247     ZSTD_memcpy(mlDInfo, seqState->stateML.table + seqState->stateML.state, sizeof(ZSTD_seqSymbol));
1248     ZSTD_memcpy(ofDInfo, seqState->stateOffb.table + seqState->stateOffb.state, sizeof(ZSTD_seqSymbol));
1249 #else
1250     const ZSTD_seqSymbol* const llDInfo = seqState->stateLL.table + seqState->stateLL.state;
1251     const ZSTD_seqSymbol* const mlDInfo = seqState->stateML.table + seqState->stateML.state;
1252     const ZSTD_seqSymbol* const ofDInfo = seqState->stateOffb.table + seqState->stateOffb.state;
1253 #endif
1254     seq.matchLength = mlDInfo->baseValue;
1255     seq.litLength = llDInfo->baseValue;
1256     {   U32 const ofBase = ofDInfo->baseValue;
1257         BYTE const llBits = llDInfo->nbAdditionalBits;
1258         BYTE const mlBits = mlDInfo->nbAdditionalBits;
1259         BYTE const ofBits = ofDInfo->nbAdditionalBits;
1260         BYTE const totalBits = llBits+mlBits+ofBits;
1261 
1262         U16 const llNext = llDInfo->nextState;
1263         U16 const mlNext = mlDInfo->nextState;
1264         U16 const ofNext = ofDInfo->nextState;
1265         U32 const llnbBits = llDInfo->nbBits;
1266         U32 const mlnbBits = mlDInfo->nbBits;
1267         U32 const ofnbBits = ofDInfo->nbBits;
1268 
1269         assert(llBits <= MaxLLBits);
1270         assert(mlBits <= MaxMLBits);
1271         assert(ofBits <= MaxOff);
1272         /*
1273          * As gcc has better branch and block analyzers, sometimes it is only
1274          * valuable to mark likeliness for clang, it gives around 3-4% of
1275          * performance.
1276          */
1277 
1278         /* sequence */
1279         {   size_t offset;
1280             if (ofBits > 1) {
1281                 ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
1282                 ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
1283                 ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 > LONG_OFFSETS_MAX_EXTRA_BITS_32);
1284                 ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 - LONG_OFFSETS_MAX_EXTRA_BITS_32 >= MaxMLBits);
1285                 if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
1286                     /* Always read extra bits, this keeps the logic simple,
1287                      * avoids branches, and avoids accidentally reading 0 bits.
1288                      */
1289                     U32 const extraBits = LONG_OFFSETS_MAX_EXTRA_BITS_32;
1290                     offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
1291                     BIT_reloadDStream(&seqState->DStream);
1292                     offset += BIT_readBitsFast(&seqState->DStream, extraBits);
1293                 } else {
1294                     offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/);   /* <=  (ZSTD_WINDOWLOG_MAX-1) bits */
1295                     if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
1296                 }
1297                 seqState->prevOffset[2] = seqState->prevOffset[1];
1298                 seqState->prevOffset[1] = seqState->prevOffset[0];
1299                 seqState->prevOffset[0] = offset;
1300             } else {
1301                 U32 const ll0 = (llDInfo->baseValue == 0);
1302                 if (LIKELY((ofBits == 0))) {
1303                     offset = seqState->prevOffset[ll0];
1304                     seqState->prevOffset[1] = seqState->prevOffset[!ll0];
1305                     seqState->prevOffset[0] = offset;
1306                 } else {
1307                     offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
1308                     {   size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
1309                         temp -= !temp; /* 0 is not valid: input corrupted => force offset to -1 => corruption detected at execSequence */
1310                         if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
1311                         seqState->prevOffset[1] = seqState->prevOffset[0];
1312                         seqState->prevOffset[0] = offset = temp;
1313             }   }   }
1314             seq.offset = offset;
1315         }
1316 
1317         if (mlBits > 0)
1318             seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);
1319 
1320         if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
1321             BIT_reloadDStream(&seqState->DStream);
1322         if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
1323             BIT_reloadDStream(&seqState->DStream);
1324         /* Ensure there are enough bits to read the rest of data in 64-bit mode. */
1325         ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
1326 
1327         if (llBits > 0)
1328             seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);
1329 
1330         if (MEM_32bits())
1331             BIT_reloadDStream(&seqState->DStream);
1332 
1333         DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
1334                     (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
1335 
1336         if (!isLastSeq) {
1337             /* don't update FSE state for last Sequence */
1338             ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llNext, llnbBits);    /* <=  9 bits */
1339             ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlNext, mlnbBits);    /* <=  9 bits */
1340             if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);    /* <= 18 bits */
1341             ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofNext, ofnbBits);  /* <=  8 bits */
1342             BIT_reloadDStream(&seqState->DStream);
1343         }
1344     }
1345 
1346     return seq;
1347 }
1348 
1349 #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1350 #if DEBUGLEVEL >= 1
ZSTD_dictionaryIsActive(ZSTD_DCtx const * dctx,BYTE const * prefixStart,BYTE const * oLitEnd)1351 static int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd)
1352 {
1353     size_t const windowSize = dctx->fParams.windowSize;
1354     /* No dictionary used. */
1355     if (dctx->dictContentEndForFuzzing == NULL) return 0;
1356     /* Dictionary is our prefix. */
1357     if (prefixStart == dctx->dictContentBeginForFuzzing) return 1;
1358     /* Dictionary is not our ext-dict. */
1359     if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0;
1360     /* Dictionary is not within our window size. */
1361     if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0;
1362     /* Dictionary is active. */
1363     return 1;
1364 }
1365 #endif
1366 
ZSTD_assertValidSequence(ZSTD_DCtx const * dctx,BYTE const * op,BYTE const * oend,seq_t const seq,BYTE const * prefixStart,BYTE const * virtualStart)1367 static void ZSTD_assertValidSequence(
1368         ZSTD_DCtx const* dctx,
1369         BYTE const* op, BYTE const* oend,
1370         seq_t const seq,
1371         BYTE const* prefixStart, BYTE const* virtualStart)
1372 {
1373 #if DEBUGLEVEL >= 1
1374     if (dctx->isFrameDecompression) {
1375         size_t const windowSize = dctx->fParams.windowSize;
1376         size_t const sequenceSize = seq.litLength + seq.matchLength;
1377         BYTE const* const oLitEnd = op + seq.litLength;
1378         DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u",
1379                 (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
1380         assert(op <= oend);
1381         assert((size_t)(oend - op) >= sequenceSize);
1382         assert(sequenceSize <= ZSTD_blockSizeMax(dctx));
1383         if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) {
1384             size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing);
1385             /* Offset must be within the dictionary. */
1386             assert(seq.offset <= (size_t)(oLitEnd - virtualStart));
1387             assert(seq.offset <= windowSize + dictSize);
1388         } else {
1389             /* Offset must be within our window. */
1390             assert(seq.offset <= windowSize);
1391         }
1392     }
1393 #else
1394     (void)dctx, (void)op, (void)oend, (void)seq, (void)prefixStart, (void)virtualStart;
1395 #endif
1396 }
1397 #endif
1398 
1399 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1400 
1401 
1402 FORCE_INLINE_TEMPLATE size_t
1403 DONT_VECTORIZE
ZSTD_decompressSequences_bodySplitLitBuffer(ZSTD_DCtx * dctx,void * dst,size_t maxDstSize,const void * seqStart,size_t seqSize,int nbSeq,const ZSTD_longOffset_e isLongOffset)1404 ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx,
1405                                void* dst, size_t maxDstSize,
1406                          const void* seqStart, size_t seqSize, int nbSeq,
1407                          const ZSTD_longOffset_e isLongOffset)
1408 {
1409     const BYTE* ip = (const BYTE*)seqStart;
1410     const BYTE* const iend = ip + seqSize;
1411     BYTE* const ostart = (BYTE*)dst;
1412     BYTE* const oend = ZSTD_maybeNullPtrAdd(ostart, maxDstSize);
1413     BYTE* op = ostart;
1414     const BYTE* litPtr = dctx->litPtr;
1415     const BYTE* litBufferEnd = dctx->litBufferEnd;
1416     const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
1417     const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
1418     const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
1419     DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer (%i seqs)", nbSeq);
1420 
1421     /* Literals are split between internal buffer & output buffer */
1422     if (nbSeq) {
1423         seqState_t seqState;
1424         dctx->fseEntropy = 1;
1425         { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1426         RETURN_ERROR_IF(
1427             ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
1428             corruption_detected, "");
1429         ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1430         ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1431         ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1432         assert(dst != NULL);
1433 
1434         ZSTD_STATIC_ASSERT(
1435                 BIT_DStream_unfinished < BIT_DStream_completed &&
1436                 BIT_DStream_endOfBuffer < BIT_DStream_completed &&
1437                 BIT_DStream_completed < BIT_DStream_overflow);
1438 
1439         /* decompress without overrunning litPtr begins */
1440         {   seq_t sequence = {0,0,0};  /* some static analyzer believe that @sequence is not initialized (it necessarily is, since for(;;) loop as at least one iteration) */
1441             /* Align the decompression loop to 32 + 16 bytes.
1442                 *
1443                 * zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression
1444                 * speed swings based on the alignment of the decompression loop. This
1445                 * performance swing is caused by parts of the decompression loop falling
1446                 * out of the DSB. The entire decompression loop should fit in the DSB,
1447                 * when it can't we get much worse performance. You can measure if you've
1448                 * hit the good case or the bad case with this perf command for some
1449                 * compressed file test.zst:
1450                 *
1451                 *   perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \
1452                 *             -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst
1453                 *
1454                 * If you see most cycles served out of the MITE you've hit the bad case.
1455                 * If you see most cycles served out of the DSB you've hit the good case.
1456                 * If it is pretty even then you may be in an okay case.
1457                 *
1458                 * This issue has been reproduced on the following CPUs:
1459                 *   - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9
1460                 *               Use Instruments->Counters to get DSB/MITE cycles.
1461                 *               I never got performance swings, but I was able to
1462                 *               go from the good case of mostly DSB to half of the
1463                 *               cycles served from MITE.
1464                 *   - Coffeelake: Intel i9-9900k
1465                 *   - Coffeelake: Intel i7-9700k
1466                 *
1467                 * I haven't been able to reproduce the instability or DSB misses on any
1468                 * of the following CPUS:
1469                 *   - Haswell
1470                 *   - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH
1471                 *   - Skylake
1472                 *
1473                 * Alignment is done for each of the three major decompression loops:
1474                 *   - ZSTD_decompressSequences_bodySplitLitBuffer - presplit section of the literal buffer
1475                 *   - ZSTD_decompressSequences_bodySplitLitBuffer - postsplit section of the literal buffer
1476                 *   - ZSTD_decompressSequences_body
1477                 * Alignment choices are made to minimize large swings on bad cases and influence on performance
1478                 * from changes external to this code, rather than to overoptimize on the current commit.
1479                 *
1480                 * If you are seeing performance stability this script can help test.
1481                 * It tests on 4 commits in zstd where I saw performance change.
1482                 *
1483                 *   https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4
1484                 */
1485 #if defined(__x86_64__)
1486             __asm__(".p2align 6");
1487 #  if __GNUC__ >= 7
1488 	    /* good for gcc-7, gcc-9, and gcc-11 */
1489             __asm__("nop");
1490             __asm__(".p2align 5");
1491             __asm__("nop");
1492             __asm__(".p2align 4");
1493 #    if __GNUC__ == 8 || __GNUC__ == 10
1494 	    /* good for gcc-8 and gcc-10 */
1495             __asm__("nop");
1496             __asm__(".p2align 3");
1497 #    endif
1498 #  endif
1499 #endif
1500 
1501             /* Handle the initial state where litBuffer is currently split between dst and litExtraBuffer */
1502             for ( ; nbSeq; nbSeq--) {
1503                 sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
1504                 if (litPtr + sequence.litLength > dctx->litBufferEnd) break;
1505                 {   size_t const oneSeqSize = ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence.litLength - WILDCOPY_OVERLENGTH, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1506 #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1507                     assert(!ZSTD_isError(oneSeqSize));
1508                     ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1509 #endif
1510                     if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1511                         return oneSeqSize;
1512                     DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1513                     op += oneSeqSize;
1514             }   }
1515             DEBUGLOG(6, "reached: (litPtr + sequence.litLength > dctx->litBufferEnd)");
1516 
1517             /* If there are more sequences, they will need to read literals from litExtraBuffer; copy over the remainder from dst and update litPtr and litEnd */
1518             if (nbSeq > 0) {
1519                 const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1520                 DEBUGLOG(6, "There are %i sequences left, and %zu/%zu literals left in buffer", nbSeq, leftoverLit, sequence.litLength);
1521                 if (leftoverLit) {
1522                     RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1523                     ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1524                     sequence.litLength -= leftoverLit;
1525                     op += leftoverLit;
1526                 }
1527                 litPtr = dctx->litExtraBuffer;
1528                 litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1529                 dctx->litBufferLocation = ZSTD_not_in_dst;
1530                 {   size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1531 #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1532                     assert(!ZSTD_isError(oneSeqSize));
1533                     ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1534 #endif
1535                     if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1536                         return oneSeqSize;
1537                     DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1538                     op += oneSeqSize;
1539                 }
1540                 nbSeq--;
1541             }
1542         }
1543 
1544         if (nbSeq > 0) {
1545             /* there is remaining lit from extra buffer */
1546 
1547 #if defined(__x86_64__)
1548             __asm__(".p2align 6");
1549             __asm__("nop");
1550 #  if __GNUC__ != 7
1551             /* worse for gcc-7 better for gcc-8, gcc-9, and gcc-10 and clang */
1552             __asm__(".p2align 4");
1553             __asm__("nop");
1554             __asm__(".p2align 3");
1555 #  elif __GNUC__ >= 11
1556             __asm__(".p2align 3");
1557 #  else
1558             __asm__(".p2align 5");
1559             __asm__("nop");
1560             __asm__(".p2align 3");
1561 #  endif
1562 #endif
1563 
1564             for ( ; nbSeq ; nbSeq--) {
1565                 seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
1566                 size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1567 #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1568                 assert(!ZSTD_isError(oneSeqSize));
1569                 ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1570 #endif
1571                 if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1572                     return oneSeqSize;
1573                 DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1574                 op += oneSeqSize;
1575             }
1576         }
1577 
1578         /* check if reached exact end */
1579         DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer: after decode loop, remaining nbSeq : %i", nbSeq);
1580         RETURN_ERROR_IF(nbSeq, corruption_detected, "");
1581         DEBUGLOG(5, "bitStream : start=%p, ptr=%p, bitsConsumed=%u", seqState.DStream.start, seqState.DStream.ptr, seqState.DStream.bitsConsumed);
1582         RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
1583         /* save reps for next block */
1584         { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1585     }
1586 
1587     /* last literal segment */
1588     if (dctx->litBufferLocation == ZSTD_split) {
1589         /* split hasn't been reached yet, first get dst then copy litExtraBuffer */
1590         size_t const lastLLSize = (size_t)(litBufferEnd - litPtr);
1591         DEBUGLOG(6, "copy last literals from segment : %u", (U32)lastLLSize);
1592         RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
1593         if (op != NULL) {
1594             ZSTD_memmove(op, litPtr, lastLLSize);
1595             op += lastLLSize;
1596         }
1597         litPtr = dctx->litExtraBuffer;
1598         litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1599         dctx->litBufferLocation = ZSTD_not_in_dst;
1600     }
1601     /* copy last literals from internal buffer */
1602     {   size_t const lastLLSize = (size_t)(litBufferEnd - litPtr);
1603         DEBUGLOG(6, "copy last literals from internal buffer : %u", (U32)lastLLSize);
1604         RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1605         if (op != NULL) {
1606             ZSTD_memcpy(op, litPtr, lastLLSize);
1607             op += lastLLSize;
1608     }   }
1609 
1610     DEBUGLOG(6, "decoded block of size %u bytes", (U32)(op - ostart));
1611     return (size_t)(op - ostart);
1612 }
1613 
1614 FORCE_INLINE_TEMPLATE size_t
1615 DONT_VECTORIZE
ZSTD_decompressSequences_body(ZSTD_DCtx * dctx,void * dst,size_t maxDstSize,const void * seqStart,size_t seqSize,int nbSeq,const ZSTD_longOffset_e isLongOffset)1616 ZSTD_decompressSequences_body(ZSTD_DCtx* dctx,
1617     void* dst, size_t maxDstSize,
1618     const void* seqStart, size_t seqSize, int nbSeq,
1619     const ZSTD_longOffset_e isLongOffset)
1620 {
1621     const BYTE* ip = (const BYTE*)seqStart;
1622     const BYTE* const iend = ip + seqSize;
1623     BYTE* const ostart = (BYTE*)dst;
1624     BYTE* const oend = dctx->litBufferLocation == ZSTD_not_in_dst ? ZSTD_maybeNullPtrAdd(ostart, maxDstSize) : dctx->litBuffer;
1625     BYTE* op = ostart;
1626     const BYTE* litPtr = dctx->litPtr;
1627     const BYTE* const litEnd = litPtr + dctx->litSize;
1628     const BYTE* const prefixStart = (const BYTE*)(dctx->prefixStart);
1629     const BYTE* const vBase = (const BYTE*)(dctx->virtualStart);
1630     const BYTE* const dictEnd = (const BYTE*)(dctx->dictEnd);
1631     DEBUGLOG(5, "ZSTD_decompressSequences_body: nbSeq = %d", nbSeq);
1632 
1633     /* Regen sequences */
1634     if (nbSeq) {
1635         seqState_t seqState;
1636         dctx->fseEntropy = 1;
1637         { U32 i; for (i = 0; i < ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1638         RETURN_ERROR_IF(
1639             ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend - ip)),
1640             corruption_detected, "");
1641         ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1642         ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1643         ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1644         assert(dst != NULL);
1645 
1646 #if defined(__x86_64__)
1647             __asm__(".p2align 6");
1648             __asm__("nop");
1649 #  if __GNUC__ >= 7
1650             __asm__(".p2align 5");
1651             __asm__("nop");
1652             __asm__(".p2align 3");
1653 #  else
1654             __asm__(".p2align 4");
1655             __asm__("nop");
1656             __asm__(".p2align 3");
1657 #  endif
1658 #endif
1659 
1660         for ( ; nbSeq ; nbSeq--) {
1661             seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
1662             size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
1663 #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1664             assert(!ZSTD_isError(oneSeqSize));
1665             ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1666 #endif
1667             if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1668                 return oneSeqSize;
1669             DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1670             op += oneSeqSize;
1671         }
1672 
1673         /* check if reached exact end */
1674         assert(nbSeq == 0);
1675         RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
1676         /* save reps for next block */
1677         { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1678     }
1679 
1680     /* last literal segment */
1681     {   size_t const lastLLSize = (size_t)(litEnd - litPtr);
1682         DEBUGLOG(6, "copy last literals : %u", (U32)lastLLSize);
1683         RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1684         if (op != NULL) {
1685             ZSTD_memcpy(op, litPtr, lastLLSize);
1686             op += lastLLSize;
1687     }   }
1688 
1689     DEBUGLOG(6, "decoded block of size %u bytes", (U32)(op - ostart));
1690     return (size_t)(op - ostart);
1691 }
1692 
1693 static size_t
ZSTD_decompressSequences_default(ZSTD_DCtx * dctx,void * dst,size_t maxDstSize,const void * seqStart,size_t seqSize,int nbSeq,const ZSTD_longOffset_e isLongOffset)1694 ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
1695                                  void* dst, size_t maxDstSize,
1696                            const void* seqStart, size_t seqSize, int nbSeq,
1697                            const ZSTD_longOffset_e isLongOffset)
1698 {
1699     return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1700 }
1701 
1702 static size_t
ZSTD_decompressSequencesSplitLitBuffer_default(ZSTD_DCtx * dctx,void * dst,size_t maxDstSize,const void * seqStart,size_t seqSize,int nbSeq,const ZSTD_longOffset_e isLongOffset)1703 ZSTD_decompressSequencesSplitLitBuffer_default(ZSTD_DCtx* dctx,
1704                                                void* dst, size_t maxDstSize,
1705                                          const void* seqStart, size_t seqSize, int nbSeq,
1706                                          const ZSTD_longOffset_e isLongOffset)
1707 {
1708     return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1709 }
1710 #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1711 
1712 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1713 
1714 FORCE_INLINE_TEMPLATE
1715 
ZSTD_prefetchMatch(size_t prefetchPos,seq_t const sequence,const BYTE * const prefixStart,const BYTE * const dictEnd)1716 size_t ZSTD_prefetchMatch(size_t prefetchPos, seq_t const sequence,
1717                    const BYTE* const prefixStart, const BYTE* const dictEnd)
1718 {
1719     prefetchPos += sequence.litLength;
1720     {   const BYTE* const matchBase = (sequence.offset > prefetchPos) ? dictEnd : prefixStart;
1721         /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
1722          * No consequence though : memory address is only used for prefetching, not for dereferencing */
1723         const BYTE* const match = ZSTD_wrappedPtrSub(ZSTD_wrappedPtrAdd(matchBase, prefetchPos), sequence.offset);
1724         PREFETCH_L1(match); PREFETCH_L1(match+CACHELINE_SIZE);   /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
1725     }
1726     return prefetchPos + sequence.matchLength;
1727 }
1728 
1729 /* This decoding function employs prefetching
1730  * to reduce latency impact of cache misses.
1731  * It's generally employed when block contains a significant portion of long-distance matches
1732  * or when coupled with a "cold" dictionary */
1733 FORCE_INLINE_TEMPLATE size_t
ZSTD_decompressSequencesLong_body(ZSTD_DCtx * dctx,void * dst,size_t maxDstSize,const void * seqStart,size_t seqSize,int nbSeq,const ZSTD_longOffset_e isLongOffset)1734 ZSTD_decompressSequencesLong_body(
1735                                ZSTD_DCtx* dctx,
1736                                void* dst, size_t maxDstSize,
1737                          const void* seqStart, size_t seqSize, int nbSeq,
1738                          const ZSTD_longOffset_e isLongOffset)
1739 {
1740     const BYTE* ip = (const BYTE*)seqStart;
1741     const BYTE* const iend = ip + seqSize;
1742     BYTE* const ostart = (BYTE*)dst;
1743     BYTE* const oend = dctx->litBufferLocation == ZSTD_in_dst ? dctx->litBuffer : ZSTD_maybeNullPtrAdd(ostart, maxDstSize);
1744     BYTE* op = ostart;
1745     const BYTE* litPtr = dctx->litPtr;
1746     const BYTE* litBufferEnd = dctx->litBufferEnd;
1747     const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
1748     const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
1749     const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
1750 
1751     /* Regen sequences */
1752     if (nbSeq) {
1753 #define STORED_SEQS 8
1754 #define STORED_SEQS_MASK (STORED_SEQS-1)
1755 #define ADVANCED_SEQS STORED_SEQS
1756         seq_t sequences[STORED_SEQS];
1757         int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
1758         seqState_t seqState;
1759         int seqNb;
1760         size_t prefetchPos = (size_t)(op-prefixStart); /* track position relative to prefixStart */
1761 
1762         dctx->fseEntropy = 1;
1763         { int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1764         assert(dst != NULL);
1765         assert(iend >= ip);
1766         RETURN_ERROR_IF(
1767             ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
1768             corruption_detected, "");
1769         ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1770         ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1771         ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1772 
1773         /* prepare in advance */
1774         for (seqNb=0; seqNb<seqAdvance; seqNb++) {
1775             seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, seqNb == nbSeq-1);
1776             prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1777             sequences[seqNb] = sequence;
1778         }
1779 
1780         /* decompress without stomping litBuffer */
1781         for (; seqNb < nbSeq; seqNb++) {
1782             seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset, seqNb == nbSeq-1);
1783 
1784             if (dctx->litBufferLocation == ZSTD_split && litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength > dctx->litBufferEnd) {
1785                 /* lit buffer is reaching split point, empty out the first buffer and transition to litExtraBuffer */
1786                 const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1787                 if (leftoverLit)
1788                 {
1789                     RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1790                     ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1791                     sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength -= leftoverLit;
1792                     op += leftoverLit;
1793                 }
1794                 litPtr = dctx->litExtraBuffer;
1795                 litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1796                 dctx->litBufferLocation = ZSTD_not_in_dst;
1797                 {   size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1798 #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1799                     assert(!ZSTD_isError(oneSeqSize));
1800                     ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
1801 #endif
1802                     if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1803 
1804                     prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1805                     sequences[seqNb & STORED_SEQS_MASK] = sequence;
1806                     op += oneSeqSize;
1807             }   }
1808             else
1809             {
1810                 /* lit buffer is either wholly contained in first or second split, or not split at all*/
1811                 size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
1812                     ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength - WILDCOPY_OVERLENGTH, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
1813                     ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1814 #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1815                 assert(!ZSTD_isError(oneSeqSize));
1816                 ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
1817 #endif
1818                 if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1819 
1820                 prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1821                 sequences[seqNb & STORED_SEQS_MASK] = sequence;
1822                 op += oneSeqSize;
1823             }
1824         }
1825         RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
1826 
1827         /* finish queue */
1828         seqNb -= seqAdvance;
1829         for ( ; seqNb<nbSeq ; seqNb++) {
1830             seq_t *sequence = &(sequences[seqNb&STORED_SEQS_MASK]);
1831             if (dctx->litBufferLocation == ZSTD_split && litPtr + sequence->litLength > dctx->litBufferEnd) {
1832                 const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1833                 if (leftoverLit) {
1834                     RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1835                     ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1836                     sequence->litLength -= leftoverLit;
1837                     op += leftoverLit;
1838                 }
1839                 litPtr = dctx->litExtraBuffer;
1840                 litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1841                 dctx->litBufferLocation = ZSTD_not_in_dst;
1842                 {   size_t const oneSeqSize = ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1843 #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1844                     assert(!ZSTD_isError(oneSeqSize));
1845                     ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
1846 #endif
1847                     if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1848                     op += oneSeqSize;
1849                 }
1850             }
1851             else
1852             {
1853                 size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
1854                     ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence->litLength - WILDCOPY_OVERLENGTH, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
1855                     ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1856 #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1857                 assert(!ZSTD_isError(oneSeqSize));
1858                 ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
1859 #endif
1860                 if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1861                 op += oneSeqSize;
1862             }
1863         }
1864 
1865         /* save reps for next block */
1866         { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1867     }
1868 
1869     /* last literal segment */
1870     if (dctx->litBufferLocation == ZSTD_split) { /* first deplete literal buffer in dst, then copy litExtraBuffer */
1871         size_t const lastLLSize = litBufferEnd - litPtr;
1872         RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
1873         if (op != NULL) {
1874             ZSTD_memmove(op, litPtr, lastLLSize);
1875             op += lastLLSize;
1876         }
1877         litPtr = dctx->litExtraBuffer;
1878         litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1879     }
1880     {   size_t const lastLLSize = litBufferEnd - litPtr;
1881         RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1882         if (op != NULL) {
1883             ZSTD_memmove(op, litPtr, lastLLSize);
1884             op += lastLLSize;
1885         }
1886     }
1887 
1888     return (size_t)(op - ostart);
1889 }
1890 
1891 static size_t
ZSTD_decompressSequencesLong_default(ZSTD_DCtx * dctx,void * dst,size_t maxDstSize,const void * seqStart,size_t seqSize,int nbSeq,const ZSTD_longOffset_e isLongOffset)1892 ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
1893                                  void* dst, size_t maxDstSize,
1894                            const void* seqStart, size_t seqSize, int nbSeq,
1895                            const ZSTD_longOffset_e isLongOffset)
1896 {
1897     return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1898 }
1899 #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1900 
1901 
1902 
1903 #if DYNAMIC_BMI2
1904 
1905 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1906 static BMI2_TARGET_ATTRIBUTE size_t
1907 DONT_VECTORIZE
ZSTD_decompressSequences_bmi2(ZSTD_DCtx * dctx,void * dst,size_t maxDstSize,const void * seqStart,size_t seqSize,int nbSeq,const ZSTD_longOffset_e isLongOffset)1908 ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
1909                                  void* dst, size_t maxDstSize,
1910                            const void* seqStart, size_t seqSize, int nbSeq,
1911                            const ZSTD_longOffset_e isLongOffset)
1912 {
1913     return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1914 }
1915 static BMI2_TARGET_ATTRIBUTE size_t
1916 DONT_VECTORIZE
ZSTD_decompressSequencesSplitLitBuffer_bmi2(ZSTD_DCtx * dctx,void * dst,size_t maxDstSize,const void * seqStart,size_t seqSize,int nbSeq,const ZSTD_longOffset_e isLongOffset)1917 ZSTD_decompressSequencesSplitLitBuffer_bmi2(ZSTD_DCtx* dctx,
1918                                  void* dst, size_t maxDstSize,
1919                            const void* seqStart, size_t seqSize, int nbSeq,
1920                            const ZSTD_longOffset_e isLongOffset)
1921 {
1922     return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1923 }
1924 #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1925 
1926 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1927 static BMI2_TARGET_ATTRIBUTE size_t
ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx * dctx,void * dst,size_t maxDstSize,const void * seqStart,size_t seqSize,int nbSeq,const ZSTD_longOffset_e isLongOffset)1928 ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
1929                                  void* dst, size_t maxDstSize,
1930                            const void* seqStart, size_t seqSize, int nbSeq,
1931                            const ZSTD_longOffset_e isLongOffset)
1932 {
1933     return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1934 }
1935 #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1936 
1937 #endif /* DYNAMIC_BMI2 */
1938 
1939 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1940 static size_t
ZSTD_decompressSequences(ZSTD_DCtx * dctx,void * dst,size_t maxDstSize,const void * seqStart,size_t seqSize,int nbSeq,const ZSTD_longOffset_e isLongOffset)1941 ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
1942                    const void* seqStart, size_t seqSize, int nbSeq,
1943                    const ZSTD_longOffset_e isLongOffset)
1944 {
1945     DEBUGLOG(5, "ZSTD_decompressSequences");
1946 #if DYNAMIC_BMI2
1947     if (ZSTD_DCtx_get_bmi2(dctx)) {
1948         return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1949     }
1950 #endif
1951     return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1952 }
1953 static size_t
ZSTD_decompressSequencesSplitLitBuffer(ZSTD_DCtx * dctx,void * dst,size_t maxDstSize,const void * seqStart,size_t seqSize,int nbSeq,const ZSTD_longOffset_e isLongOffset)1954 ZSTD_decompressSequencesSplitLitBuffer(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
1955                                  const void* seqStart, size_t seqSize, int nbSeq,
1956                                  const ZSTD_longOffset_e isLongOffset)
1957 {
1958     DEBUGLOG(5, "ZSTD_decompressSequencesSplitLitBuffer");
1959 #if DYNAMIC_BMI2
1960     if (ZSTD_DCtx_get_bmi2(dctx)) {
1961         return ZSTD_decompressSequencesSplitLitBuffer_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1962     }
1963 #endif
1964     return ZSTD_decompressSequencesSplitLitBuffer_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1965 }
1966 #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1967 
1968 
1969 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1970 /* ZSTD_decompressSequencesLong() :
1971  * decompression function triggered when a minimum share of offsets is considered "long",
1972  * aka out of cache.
1973  * note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
1974  * This function will try to mitigate main memory latency through the use of prefetching */
1975 static size_t
ZSTD_decompressSequencesLong(ZSTD_DCtx * dctx,void * dst,size_t maxDstSize,const void * seqStart,size_t seqSize,int nbSeq,const ZSTD_longOffset_e isLongOffset)1976 ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
1977                              void* dst, size_t maxDstSize,
1978                              const void* seqStart, size_t seqSize, int nbSeq,
1979                              const ZSTD_longOffset_e isLongOffset)
1980 {
1981     DEBUGLOG(5, "ZSTD_decompressSequencesLong");
1982 #if DYNAMIC_BMI2
1983     if (ZSTD_DCtx_get_bmi2(dctx)) {
1984         return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1985     }
1986 #endif
1987   return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1988 }
1989 #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1990 
1991 
1992 /*
1993  * @returns The total size of the history referenceable by zstd, including
1994  * both the prefix and the extDict. At @p op any offset larger than this
1995  * is invalid.
1996  */
ZSTD_totalHistorySize(BYTE * op,BYTE const * virtualStart)1997 static size_t ZSTD_totalHistorySize(BYTE* op, BYTE const* virtualStart)
1998 {
1999     return (size_t)(op - virtualStart);
2000 }
2001 
2002 typedef struct {
2003     unsigned longOffsetShare;
2004     unsigned maxNbAdditionalBits;
2005 } ZSTD_OffsetInfo;
2006 
2007 /* ZSTD_getOffsetInfo() :
2008  * condition : offTable must be valid
2009  * @return : "share" of long offsets (arbitrarily defined as > (1<<23))
2010  *           compared to maximum possible of (1<<OffFSELog),
2011  *           as well as the maximum number additional bits required.
2012  */
2013 static ZSTD_OffsetInfo
ZSTD_getOffsetInfo(const ZSTD_seqSymbol * offTable,int nbSeq)2014 ZSTD_getOffsetInfo(const ZSTD_seqSymbol* offTable, int nbSeq)
2015 {
2016     ZSTD_OffsetInfo info = {0, 0};
2017     /* If nbSeq == 0, then the offTable is uninitialized, but we have
2018      * no sequences, so both values should be 0.
2019      */
2020     if (nbSeq != 0) {
2021         const void* ptr = offTable;
2022         U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
2023         const ZSTD_seqSymbol* table = offTable + 1;
2024         U32 const max = 1 << tableLog;
2025         U32 u;
2026         DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
2027 
2028         assert(max <= (1 << OffFSELog));  /* max not too large */
2029         for (u=0; u<max; u++) {
2030             info.maxNbAdditionalBits = MAX(info.maxNbAdditionalBits, table[u].nbAdditionalBits);
2031             if (table[u].nbAdditionalBits > 22) info.longOffsetShare += 1;
2032         }
2033 
2034         assert(tableLog <= OffFSELog);
2035         info.longOffsetShare <<= (OffFSELog - tableLog);  /* scale to OffFSELog */
2036     }
2037 
2038     return info;
2039 }
2040 
2041 /*
2042  * @returns The maximum offset we can decode in one read of our bitstream, without
2043  * reloading more bits in the middle of the offset bits read. Any offsets larger
2044  * than this must use the long offset decoder.
2045  */
ZSTD_maxShortOffset(void)2046 static size_t ZSTD_maxShortOffset(void)
2047 {
2048     if (MEM_64bits()) {
2049         /* We can decode any offset without reloading bits.
2050          * This might change if the max window size grows.
2051          */
2052         ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31);
2053         return (size_t)-1;
2054     } else {
2055         /* The maximum offBase is (1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1.
2056          * This offBase would require STREAM_ACCUMULATOR_MIN extra bits.
2057          * Then we have to subtract ZSTD_REP_NUM to get the maximum possible offset.
2058          */
2059         size_t const maxOffbase = ((size_t)1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1;
2060         size_t const maxOffset = maxOffbase - ZSTD_REP_NUM;
2061         assert(ZSTD_highbit32((U32)maxOffbase) == STREAM_ACCUMULATOR_MIN);
2062         return maxOffset;
2063     }
2064 }
2065 
2066 size_t
ZSTD_decompressBlock_internal(ZSTD_DCtx * dctx,void * dst,size_t dstCapacity,const void * src,size_t srcSize,const streaming_operation streaming)2067 ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
2068                               void* dst, size_t dstCapacity,
2069                         const void* src, size_t srcSize, const streaming_operation streaming)
2070 {   /* blockType == blockCompressed */
2071     const BYTE* ip = (const BYTE*)src;
2072     DEBUGLOG(5, "ZSTD_decompressBlock_internal (cSize : %u)", (unsigned)srcSize);
2073 
2074     /* Note : the wording of the specification
2075      * allows compressed block to be sized exactly ZSTD_blockSizeMax(dctx).
2076      * This generally does not happen, as it makes little sense,
2077      * since an uncompressed block would feature same size and have no decompression cost.
2078      * Also, note that decoder from reference libzstd before < v1.5.4
2079      * would consider this edge case as an error.
2080      * As a consequence, avoid generating compressed blocks of size ZSTD_blockSizeMax(dctx)
2081      * for broader compatibility with the deployed ecosystem of zstd decoders */
2082     RETURN_ERROR_IF(srcSize > ZSTD_blockSizeMax(dctx), srcSize_wrong, "");
2083 
2084     /* Decode literals section */
2085     {   size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, streaming);
2086         DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : cSize=%u, nbLiterals=%zu", (U32)litCSize, dctx->litSize);
2087         if (ZSTD_isError(litCSize)) return litCSize;
2088         ip += litCSize;
2089         srcSize -= litCSize;
2090     }
2091 
2092     /* Build Decoding Tables */
2093     {
2094         /* Compute the maximum block size, which must also work when !frame and fParams are unset.
2095          * Additionally, take the min with dstCapacity to ensure that the totalHistorySize fits in a size_t.
2096          */
2097         size_t const blockSizeMax = MIN(dstCapacity, ZSTD_blockSizeMax(dctx));
2098         size_t const totalHistorySize = ZSTD_totalHistorySize(ZSTD_maybeNullPtrAdd((BYTE*)dst, blockSizeMax), (BYTE const*)dctx->virtualStart);
2099         /* isLongOffset must be true if there are long offsets.
2100          * Offsets are long if they are larger than ZSTD_maxShortOffset().
2101          * We don't expect that to be the case in 64-bit mode.
2102          *
2103          * We check here to see if our history is large enough to allow long offsets.
2104          * If it isn't, then we can't possible have (valid) long offsets. If the offset
2105          * is invalid, then it is okay to read it incorrectly.
2106          *
2107          * If isLongOffsets is true, then we will later check our decoding table to see
2108          * if it is even possible to generate long offsets.
2109          */
2110         ZSTD_longOffset_e isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (totalHistorySize > ZSTD_maxShortOffset()));
2111         /* These macros control at build-time which decompressor implementation
2112          * we use. If neither is defined, we do some inspection and dispatch at
2113          * runtime.
2114          */
2115 #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
2116     !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
2117         int usePrefetchDecoder = dctx->ddictIsCold;
2118 #else
2119         /* Set to 1 to avoid computing offset info if we don't need to.
2120          * Otherwise this value is ignored.
2121          */
2122         int usePrefetchDecoder = 1;
2123 #endif
2124         int nbSeq;
2125         size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
2126         if (ZSTD_isError(seqHSize)) return seqHSize;
2127         ip += seqHSize;
2128         srcSize -= seqHSize;
2129 
2130         RETURN_ERROR_IF((dst == NULL || dstCapacity == 0) && nbSeq > 0, dstSize_tooSmall, "NULL not handled");
2131         RETURN_ERROR_IF(MEM_64bits() && sizeof(size_t) == sizeof(void*) && (size_t)(-1) - (size_t)dst < (size_t)(1 << 20), dstSize_tooSmall,
2132                 "invalid dst");
2133 
2134         /* If we could potentially have long offsets, or we might want to use the prefetch decoder,
2135          * compute information about the share of long offsets, and the maximum nbAdditionalBits.
2136          * NOTE: could probably use a larger nbSeq limit
2137          */
2138         if (isLongOffset || (!usePrefetchDecoder && (totalHistorySize > (1u << 24)) && (nbSeq > 8))) {
2139             ZSTD_OffsetInfo const info = ZSTD_getOffsetInfo(dctx->OFTptr, nbSeq);
2140             if (isLongOffset && info.maxNbAdditionalBits <= STREAM_ACCUMULATOR_MIN) {
2141                 /* If isLongOffset, but the maximum number of additional bits that we see in our table is small
2142                  * enough, then we know it is impossible to have too long an offset in this block, so we can
2143                  * use the regular offset decoder.
2144                  */
2145                 isLongOffset = ZSTD_lo_isRegularOffset;
2146             }
2147             if (!usePrefetchDecoder) {
2148                 U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
2149                 usePrefetchDecoder = (info.longOffsetShare >= minShare);
2150             }
2151         }
2152 
2153         dctx->ddictIsCold = 0;
2154 
2155 #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
2156     !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
2157         if (usePrefetchDecoder) {
2158 #else
2159         (void)usePrefetchDecoder;
2160         {
2161 #endif
2162 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
2163             return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
2164 #endif
2165         }
2166 
2167 #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
2168         /* else */
2169         if (dctx->litBufferLocation == ZSTD_split)
2170             return ZSTD_decompressSequencesSplitLitBuffer(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
2171         else
2172             return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
2173 #endif
2174     }
2175 }
2176 
2177 
2178 ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
2179 void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize)
2180 {
2181     if (dst != dctx->previousDstEnd && dstSize > 0) {   /* not contiguous */
2182         dctx->dictEnd = dctx->previousDstEnd;
2183         dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
2184         dctx->prefixStart = dst;
2185         dctx->previousDstEnd = dst;
2186     }
2187 }
2188 
2189 
2190 size_t ZSTD_decompressBlock_deprecated(ZSTD_DCtx* dctx,
2191                                        void* dst, size_t dstCapacity,
2192                                  const void* src, size_t srcSize)
2193 {
2194     size_t dSize;
2195     dctx->isFrameDecompression = 0;
2196     ZSTD_checkContinuity(dctx, dst, dstCapacity);
2197     dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, not_streaming);
2198     FORWARD_IF_ERROR(dSize, "");
2199     dctx->previousDstEnd = (char*)dst + dSize;
2200     return dSize;
2201 }
2202 
2203 
2204 /* NOTE: Must just wrap ZSTD_decompressBlock_deprecated() */
2205 size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
2206                             void* dst, size_t dstCapacity,
2207                       const void* src, size_t srcSize)
2208 {
2209     return ZSTD_decompressBlock_deprecated(dctx, dst, dstCapacity, src, srcSize);
2210 }
2211