1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple CPU accounting cgroup controller
4 */
5
6 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
7 #include <asm/cputime.h>
8 #endif
9
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12 /*
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's IRQ time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of IRQ time to wrong
20 * task when IRQ is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each IRQ in account_system_time.
22 */
23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
24
25 int sched_clock_irqtime;
26
enable_sched_clock_irqtime(void)27 void enable_sched_clock_irqtime(void)
28 {
29 sched_clock_irqtime = 1;
30 }
31
disable_sched_clock_irqtime(void)32 void disable_sched_clock_irqtime(void)
33 {
34 sched_clock_irqtime = 0;
35 }
36
irqtime_account_delta(struct irqtime * irqtime,u64 delta,enum cpu_usage_stat idx)37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38 enum cpu_usage_stat idx)
39 {
40 u64 *cpustat = kcpustat_this_cpu->cpustat;
41
42 u64_stats_update_begin(&irqtime->sync);
43 cpustat[idx] += delta;
44 irqtime->total += delta;
45 irqtime->tick_delta += delta;
46 u64_stats_update_end(&irqtime->sync);
47 }
48
49 /*
50 * Called after incrementing preempt_count on {soft,}irq_enter
51 * and before decrementing preempt_count on {soft,}irq_exit.
52 */
irqtime_account_irq(struct task_struct * curr,unsigned int offset)53 void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
54 {
55 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56 unsigned int pc;
57 s64 delta;
58 int cpu;
59
60 if (!irqtime_enabled())
61 return;
62
63 cpu = smp_processor_id();
64 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
65 irqtime->irq_start_time += delta;
66 pc = irq_count() - offset;
67
68 /*
69 * We do not account for softirq time from ksoftirqd here.
70 * We want to continue accounting softirq time to ksoftirqd thread
71 * in that case, so as not to confuse scheduler with a special task
72 * that do not consume any time, but still wants to run.
73 */
74 if (pc & HARDIRQ_MASK)
75 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
76 else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
77 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
78 }
79
irqtime_tick_accounted(u64 maxtime)80 static u64 irqtime_tick_accounted(u64 maxtime)
81 {
82 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
83 u64 delta;
84
85 delta = min(irqtime->tick_delta, maxtime);
86 irqtime->tick_delta -= delta;
87
88 return delta;
89 }
90
91 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
92
irqtime_tick_accounted(u64 dummy)93 static u64 irqtime_tick_accounted(u64 dummy)
94 {
95 return 0;
96 }
97
98 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
99
task_group_account_field(struct task_struct * p,int index,u64 tmp)100 static inline void task_group_account_field(struct task_struct *p, int index,
101 u64 tmp)
102 {
103 /*
104 * Since all updates are sure to touch the root cgroup, we
105 * get ourselves ahead and touch it first. If the root cgroup
106 * is the only cgroup, then nothing else should be necessary.
107 *
108 */
109 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
110
111 cgroup_account_cputime_field(p, index, tmp);
112 }
113
114 /*
115 * Account user CPU time to a process.
116 * @p: the process that the CPU time gets accounted to
117 * @cputime: the CPU time spent in user space since the last update
118 */
account_user_time(struct task_struct * p,u64 cputime)119 void account_user_time(struct task_struct *p, u64 cputime)
120 {
121 int index;
122
123 /* Add user time to process. */
124 p->utime += cputime;
125 account_group_user_time(p, cputime);
126
127 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
128
129 /* Add user time to cpustat. */
130 task_group_account_field(p, index, cputime);
131
132 /* Account for user time used */
133 acct_account_cputime(p);
134 }
135
136 /*
137 * Account guest CPU time to a process.
138 * @p: the process that the CPU time gets accounted to
139 * @cputime: the CPU time spent in virtual machine since the last update
140 */
account_guest_time(struct task_struct * p,u64 cputime)141 void account_guest_time(struct task_struct *p, u64 cputime)
142 {
143 u64 *cpustat = kcpustat_this_cpu->cpustat;
144
145 /* Add guest time to process. */
146 p->utime += cputime;
147 account_group_user_time(p, cputime);
148 p->gtime += cputime;
149
150 /* Add guest time to cpustat. */
151 if (task_nice(p) > 0) {
152 task_group_account_field(p, CPUTIME_NICE, cputime);
153 cpustat[CPUTIME_GUEST_NICE] += cputime;
154 } else {
155 task_group_account_field(p, CPUTIME_USER, cputime);
156 cpustat[CPUTIME_GUEST] += cputime;
157 }
158 }
159
160 /*
161 * Account system CPU time to a process and desired cpustat field
162 * @p: the process that the CPU time gets accounted to
163 * @cputime: the CPU time spent in kernel space since the last update
164 * @index: pointer to cpustat field that has to be updated
165 */
account_system_index_time(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)166 void account_system_index_time(struct task_struct *p,
167 u64 cputime, enum cpu_usage_stat index)
168 {
169 /* Add system time to process. */
170 p->stime += cputime;
171 account_group_system_time(p, cputime);
172
173 /* Add system time to cpustat. */
174 task_group_account_field(p, index, cputime);
175
176 /* Account for system time used */
177 acct_account_cputime(p);
178 }
179
180 /*
181 * Account system CPU time to a process.
182 * @p: the process that the CPU time gets accounted to
183 * @hardirq_offset: the offset to subtract from hardirq_count()
184 * @cputime: the CPU time spent in kernel space since the last update
185 */
account_system_time(struct task_struct * p,int hardirq_offset,u64 cputime)186 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
187 {
188 int index;
189
190 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
191 account_guest_time(p, cputime);
192 return;
193 }
194
195 if (hardirq_count() - hardirq_offset)
196 index = CPUTIME_IRQ;
197 else if (in_serving_softirq())
198 index = CPUTIME_SOFTIRQ;
199 else
200 index = CPUTIME_SYSTEM;
201
202 account_system_index_time(p, cputime, index);
203 }
204
205 /*
206 * Account for involuntary wait time.
207 * @cputime: the CPU time spent in involuntary wait
208 */
account_steal_time(u64 cputime)209 void account_steal_time(u64 cputime)
210 {
211 u64 *cpustat = kcpustat_this_cpu->cpustat;
212
213 cpustat[CPUTIME_STEAL] += cputime;
214 }
215
216 /*
217 * Account for idle time.
218 * @cputime: the CPU time spent in idle wait
219 */
account_idle_time(u64 cputime)220 void account_idle_time(u64 cputime)
221 {
222 u64 *cpustat = kcpustat_this_cpu->cpustat;
223 struct rq *rq = this_rq();
224
225 if (atomic_read(&rq->nr_iowait) > 0)
226 cpustat[CPUTIME_IOWAIT] += cputime;
227 else
228 cpustat[CPUTIME_IDLE] += cputime;
229 }
230
231
232 #ifdef CONFIG_SCHED_CORE
233 /*
234 * Account for forceidle time due to core scheduling.
235 *
236 * REQUIRES: schedstat is enabled.
237 */
__account_forceidle_time(struct task_struct * p,u64 delta)238 void __account_forceidle_time(struct task_struct *p, u64 delta)
239 {
240 __schedstat_add(p->stats.core_forceidle_sum, delta);
241
242 task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
243 }
244 #endif
245
246 /*
247 * When a guest is interrupted for a longer amount of time, missed clock
248 * ticks are not redelivered later. Due to that, this function may on
249 * occasion account more time than the calling functions think elapsed.
250 */
steal_account_process_time(u64 maxtime)251 static __always_inline u64 steal_account_process_time(u64 maxtime)
252 {
253 #ifdef CONFIG_PARAVIRT
254 if (static_key_false(¶virt_steal_enabled)) {
255 u64 steal;
256
257 steal = paravirt_steal_clock(smp_processor_id());
258 steal -= this_rq()->prev_steal_time;
259 steal = min(steal, maxtime);
260 account_steal_time(steal);
261 this_rq()->prev_steal_time += steal;
262
263 return steal;
264 }
265 #endif
266 return 0;
267 }
268
269 /*
270 * Account how much elapsed time was spent in steal, IRQ, or softirq time.
271 */
account_other_time(u64 max)272 static inline u64 account_other_time(u64 max)
273 {
274 u64 accounted;
275
276 lockdep_assert_irqs_disabled();
277
278 accounted = steal_account_process_time(max);
279
280 if (accounted < max)
281 accounted += irqtime_tick_accounted(max - accounted);
282
283 return accounted;
284 }
285
286 #ifdef CONFIG_64BIT
read_sum_exec_runtime(struct task_struct * t)287 static inline u64 read_sum_exec_runtime(struct task_struct *t)
288 {
289 return t->se.sum_exec_runtime;
290 }
291 #else
read_sum_exec_runtime(struct task_struct * t)292 static u64 read_sum_exec_runtime(struct task_struct *t)
293 {
294 u64 ns;
295 struct rq_flags rf;
296 struct rq *rq;
297
298 rq = task_rq_lock(t, &rf);
299 ns = t->se.sum_exec_runtime;
300 task_rq_unlock(rq, t, &rf);
301
302 return ns;
303 }
304 #endif
305
306 /*
307 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
308 * tasks (sum on group iteration) belonging to @tsk's group.
309 */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)310 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
311 {
312 struct signal_struct *sig = tsk->signal;
313 u64 utime, stime;
314 struct task_struct *t;
315 unsigned int seq, nextseq;
316 unsigned long flags;
317
318 /*
319 * Update current task runtime to account pending time since last
320 * scheduler action or thread_group_cputime() call. This thread group
321 * might have other running tasks on different CPUs, but updating
322 * their runtime can affect syscall performance, so we skip account
323 * those pending times and rely only on values updated on tick or
324 * other scheduler action.
325 */
326 if (same_thread_group(current, tsk))
327 (void) task_sched_runtime(current);
328
329 rcu_read_lock();
330 /* Attempt a lockless read on the first round. */
331 nextseq = 0;
332 do {
333 seq = nextseq;
334 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
335 times->utime = sig->utime;
336 times->stime = sig->stime;
337 times->sum_exec_runtime = sig->sum_sched_runtime;
338
339 for_each_thread(tsk, t) {
340 task_cputime(t, &utime, &stime);
341 times->utime += utime;
342 times->stime += stime;
343 times->sum_exec_runtime += read_sum_exec_runtime(t);
344 }
345 /* If lockless access failed, take the lock. */
346 nextseq = 1;
347 } while (need_seqretry(&sig->stats_lock, seq));
348 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
349 rcu_read_unlock();
350 }
351
352 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
353 /*
354 * Account a tick to a process and cpustat
355 * @p: the process that the CPU time gets accounted to
356 * @user_tick: is the tick from userspace
357 * @rq: the pointer to rq
358 *
359 * Tick demultiplexing follows the order
360 * - pending hardirq update
361 * - pending softirq update
362 * - user_time
363 * - idle_time
364 * - system time
365 * - check for guest_time
366 * - else account as system_time
367 *
368 * Check for hardirq is done both for system and user time as there is
369 * no timer going off while we are on hardirq and hence we may never get an
370 * opportunity to update it solely in system time.
371 * p->stime and friends are only updated on system time and not on IRQ
372 * softirq as those do not count in task exec_runtime any more.
373 */
irqtime_account_process_tick(struct task_struct * p,int user_tick,int ticks)374 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
375 int ticks)
376 {
377 u64 other, cputime = TICK_NSEC * ticks;
378
379 /*
380 * When returning from idle, many ticks can get accounted at
381 * once, including some ticks of steal, IRQ, and softirq time.
382 * Subtract those ticks from the amount of time accounted to
383 * idle, or potentially user or system time. Due to rounding,
384 * other time can exceed ticks occasionally.
385 */
386 other = account_other_time(ULONG_MAX);
387 if (other >= cputime)
388 return;
389
390 cputime -= other;
391
392 if (this_cpu_ksoftirqd() == p) {
393 /*
394 * ksoftirqd time do not get accounted in cpu_softirq_time.
395 * So, we have to handle it separately here.
396 * Also, p->stime needs to be updated for ksoftirqd.
397 */
398 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
399 } else if (user_tick) {
400 account_user_time(p, cputime);
401 } else if (p == this_rq()->idle) {
402 account_idle_time(cputime);
403 } else if (p->flags & PF_VCPU) { /* System time or guest time */
404 account_guest_time(p, cputime);
405 } else {
406 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
407 }
408 }
409
irqtime_account_idle_ticks(int ticks)410 static void irqtime_account_idle_ticks(int ticks)
411 {
412 irqtime_account_process_tick(current, 0, ticks);
413 }
414 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)415 static inline void irqtime_account_idle_ticks(int ticks) { }
irqtime_account_process_tick(struct task_struct * p,int user_tick,int nr_ticks)416 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
417 int nr_ticks) { }
418 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
419
420 /*
421 * Use precise platform statistics if available:
422 */
423 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
424
vtime_account_irq(struct task_struct * tsk,unsigned int offset)425 void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
426 {
427 unsigned int pc = irq_count() - offset;
428
429 if (pc & HARDIRQ_OFFSET) {
430 vtime_account_hardirq(tsk);
431 } else if (pc & SOFTIRQ_OFFSET) {
432 vtime_account_softirq(tsk);
433 } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
434 is_idle_task(tsk)) {
435 vtime_account_idle(tsk);
436 } else {
437 vtime_account_kernel(tsk);
438 }
439 }
440
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)441 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
442 u64 *ut, u64 *st)
443 {
444 *ut = curr->utime;
445 *st = curr->stime;
446 }
447
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)448 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
449 {
450 *ut = p->utime;
451 *st = p->stime;
452 }
453 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
454
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)455 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
456 {
457 struct task_cputime cputime;
458
459 thread_group_cputime(p, &cputime);
460
461 *ut = cputime.utime;
462 *st = cputime.stime;
463 }
464
465 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
466
467 /*
468 * Account a single tick of CPU time.
469 * @p: the process that the CPU time gets accounted to
470 * @user_tick: indicates if the tick is a user or a system tick
471 */
account_process_tick(struct task_struct * p,int user_tick)472 void account_process_tick(struct task_struct *p, int user_tick)
473 {
474 u64 cputime, steal;
475
476 if (vtime_accounting_enabled_this_cpu())
477 return;
478
479 if (irqtime_enabled()) {
480 irqtime_account_process_tick(p, user_tick, 1);
481 return;
482 }
483
484 cputime = TICK_NSEC;
485 steal = steal_account_process_time(ULONG_MAX);
486
487 if (steal >= cputime)
488 return;
489
490 cputime -= steal;
491
492 if (user_tick)
493 account_user_time(p, cputime);
494 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
495 account_system_time(p, HARDIRQ_OFFSET, cputime);
496 else
497 account_idle_time(cputime);
498 }
499
500 /*
501 * Account multiple ticks of idle time.
502 * @ticks: number of stolen ticks
503 */
account_idle_ticks(unsigned long ticks)504 void account_idle_ticks(unsigned long ticks)
505 {
506 u64 cputime, steal;
507
508 if (irqtime_enabled()) {
509 irqtime_account_idle_ticks(ticks);
510 return;
511 }
512
513 cputime = ticks * TICK_NSEC;
514 steal = steal_account_process_time(ULONG_MAX);
515
516 if (steal >= cputime)
517 return;
518
519 cputime -= steal;
520 account_idle_time(cputime);
521 }
522
523 /*
524 * Adjust tick based cputime random precision against scheduler runtime
525 * accounting.
526 *
527 * Tick based cputime accounting depend on random scheduling timeslices of a
528 * task to be interrupted or not by the timer. Depending on these
529 * circumstances, the number of these interrupts may be over or
530 * under-optimistic, matching the real user and system cputime with a variable
531 * precision.
532 *
533 * Fix this by scaling these tick based values against the total runtime
534 * accounted by the CFS scheduler.
535 *
536 * This code provides the following guarantees:
537 *
538 * stime + utime == rtime
539 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
540 *
541 * Assuming that rtime_i+1 >= rtime_i.
542 */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)543 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
544 u64 *ut, u64 *st)
545 {
546 u64 rtime, stime, utime;
547 unsigned long flags;
548
549 /* Serialize concurrent callers such that we can honour our guarantees */
550 raw_spin_lock_irqsave(&prev->lock, flags);
551 rtime = curr->sum_exec_runtime;
552
553 /*
554 * This is possible under two circumstances:
555 * - rtime isn't monotonic after all (a bug);
556 * - we got reordered by the lock.
557 *
558 * In both cases this acts as a filter such that the rest of the code
559 * can assume it is monotonic regardless of anything else.
560 */
561 if (prev->stime + prev->utime >= rtime)
562 goto out;
563
564 stime = curr->stime;
565 utime = curr->utime;
566
567 /*
568 * If either stime or utime are 0, assume all runtime is userspace.
569 * Once a task gets some ticks, the monotonicity code at 'update:'
570 * will ensure things converge to the observed ratio.
571 */
572 if (stime == 0) {
573 utime = rtime;
574 goto update;
575 }
576
577 if (utime == 0) {
578 stime = rtime;
579 goto update;
580 }
581
582 stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
583 /*
584 * Because mul_u64_u64_div_u64() can approximate on some
585 * achitectures; enforce the constraint that: a*b/(b+c) <= a.
586 */
587 if (unlikely(stime > rtime))
588 stime = rtime;
589
590 update:
591 /*
592 * Make sure stime doesn't go backwards; this preserves monotonicity
593 * for utime because rtime is monotonic.
594 *
595 * utime_i+1 = rtime_i+1 - stime_i
596 * = rtime_i+1 - (rtime_i - utime_i)
597 * = (rtime_i+1 - rtime_i) + utime_i
598 * >= utime_i
599 */
600 if (stime < prev->stime)
601 stime = prev->stime;
602 utime = rtime - stime;
603
604 /*
605 * Make sure utime doesn't go backwards; this still preserves
606 * monotonicity for stime, analogous argument to above.
607 */
608 if (utime < prev->utime) {
609 utime = prev->utime;
610 stime = rtime - utime;
611 }
612
613 prev->stime = stime;
614 prev->utime = utime;
615 out:
616 *ut = prev->utime;
617 *st = prev->stime;
618 raw_spin_unlock_irqrestore(&prev->lock, flags);
619 }
620
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)621 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
622 {
623 struct task_cputime cputime = {
624 .sum_exec_runtime = p->se.sum_exec_runtime,
625 };
626
627 if (task_cputime(p, &cputime.utime, &cputime.stime))
628 cputime.sum_exec_runtime = task_sched_runtime(p);
629 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
630 }
631 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
632
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)633 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
634 {
635 struct task_cputime cputime;
636
637 thread_group_cputime(p, &cputime);
638 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
639 }
640 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
641
642 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct vtime * vtime)643 static u64 vtime_delta(struct vtime *vtime)
644 {
645 unsigned long long clock;
646
647 clock = sched_clock();
648 if (clock < vtime->starttime)
649 return 0;
650
651 return clock - vtime->starttime;
652 }
653
get_vtime_delta(struct vtime * vtime)654 static u64 get_vtime_delta(struct vtime *vtime)
655 {
656 u64 delta = vtime_delta(vtime);
657 u64 other;
658
659 /*
660 * Unlike tick based timing, vtime based timing never has lost
661 * ticks, and no need for steal time accounting to make up for
662 * lost ticks. Vtime accounts a rounded version of actual
663 * elapsed time. Limit account_other_time to prevent rounding
664 * errors from causing elapsed vtime to go negative.
665 */
666 other = account_other_time(delta);
667 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
668 vtime->starttime += delta;
669
670 return delta - other;
671 }
672
vtime_account_system(struct task_struct * tsk,struct vtime * vtime)673 static void vtime_account_system(struct task_struct *tsk,
674 struct vtime *vtime)
675 {
676 vtime->stime += get_vtime_delta(vtime);
677 if (vtime->stime >= TICK_NSEC) {
678 account_system_time(tsk, irq_count(), vtime->stime);
679 vtime->stime = 0;
680 }
681 }
682
vtime_account_guest(struct task_struct * tsk,struct vtime * vtime)683 static void vtime_account_guest(struct task_struct *tsk,
684 struct vtime *vtime)
685 {
686 vtime->gtime += get_vtime_delta(vtime);
687 if (vtime->gtime >= TICK_NSEC) {
688 account_guest_time(tsk, vtime->gtime);
689 vtime->gtime = 0;
690 }
691 }
692
__vtime_account_kernel(struct task_struct * tsk,struct vtime * vtime)693 static void __vtime_account_kernel(struct task_struct *tsk,
694 struct vtime *vtime)
695 {
696 /* We might have scheduled out from guest path */
697 if (vtime->state == VTIME_GUEST)
698 vtime_account_guest(tsk, vtime);
699 else
700 vtime_account_system(tsk, vtime);
701 }
702
vtime_account_kernel(struct task_struct * tsk)703 void vtime_account_kernel(struct task_struct *tsk)
704 {
705 struct vtime *vtime = &tsk->vtime;
706
707 if (!vtime_delta(vtime))
708 return;
709
710 write_seqcount_begin(&vtime->seqcount);
711 __vtime_account_kernel(tsk, vtime);
712 write_seqcount_end(&vtime->seqcount);
713 }
714
vtime_user_enter(struct task_struct * tsk)715 void vtime_user_enter(struct task_struct *tsk)
716 {
717 struct vtime *vtime = &tsk->vtime;
718
719 write_seqcount_begin(&vtime->seqcount);
720 vtime_account_system(tsk, vtime);
721 vtime->state = VTIME_USER;
722 write_seqcount_end(&vtime->seqcount);
723 }
724
vtime_user_exit(struct task_struct * tsk)725 void vtime_user_exit(struct task_struct *tsk)
726 {
727 struct vtime *vtime = &tsk->vtime;
728
729 write_seqcount_begin(&vtime->seqcount);
730 vtime->utime += get_vtime_delta(vtime);
731 if (vtime->utime >= TICK_NSEC) {
732 account_user_time(tsk, vtime->utime);
733 vtime->utime = 0;
734 }
735 vtime->state = VTIME_SYS;
736 write_seqcount_end(&vtime->seqcount);
737 }
738
vtime_guest_enter(struct task_struct * tsk)739 void vtime_guest_enter(struct task_struct *tsk)
740 {
741 struct vtime *vtime = &tsk->vtime;
742 /*
743 * The flags must be updated under the lock with
744 * the vtime_starttime flush and update.
745 * That enforces a right ordering and update sequence
746 * synchronization against the reader (task_gtime())
747 * that can thus safely catch up with a tickless delta.
748 */
749 write_seqcount_begin(&vtime->seqcount);
750 vtime_account_system(tsk, vtime);
751 tsk->flags |= PF_VCPU;
752 vtime->state = VTIME_GUEST;
753 write_seqcount_end(&vtime->seqcount);
754 }
755 EXPORT_SYMBOL_GPL(vtime_guest_enter);
756
vtime_guest_exit(struct task_struct * tsk)757 void vtime_guest_exit(struct task_struct *tsk)
758 {
759 struct vtime *vtime = &tsk->vtime;
760
761 write_seqcount_begin(&vtime->seqcount);
762 vtime_account_guest(tsk, vtime);
763 tsk->flags &= ~PF_VCPU;
764 vtime->state = VTIME_SYS;
765 write_seqcount_end(&vtime->seqcount);
766 }
767 EXPORT_SYMBOL_GPL(vtime_guest_exit);
768
vtime_account_idle(struct task_struct * tsk)769 void vtime_account_idle(struct task_struct *tsk)
770 {
771 account_idle_time(get_vtime_delta(&tsk->vtime));
772 }
773
vtime_task_switch_generic(struct task_struct * prev)774 void vtime_task_switch_generic(struct task_struct *prev)
775 {
776 struct vtime *vtime = &prev->vtime;
777
778 write_seqcount_begin(&vtime->seqcount);
779 if (vtime->state == VTIME_IDLE)
780 vtime_account_idle(prev);
781 else
782 __vtime_account_kernel(prev, vtime);
783 vtime->state = VTIME_INACTIVE;
784 vtime->cpu = -1;
785 write_seqcount_end(&vtime->seqcount);
786
787 vtime = ¤t->vtime;
788
789 write_seqcount_begin(&vtime->seqcount);
790 if (is_idle_task(current))
791 vtime->state = VTIME_IDLE;
792 else if (current->flags & PF_VCPU)
793 vtime->state = VTIME_GUEST;
794 else
795 vtime->state = VTIME_SYS;
796 vtime->starttime = sched_clock();
797 vtime->cpu = smp_processor_id();
798 write_seqcount_end(&vtime->seqcount);
799 }
800
vtime_init_idle(struct task_struct * t,int cpu)801 void vtime_init_idle(struct task_struct *t, int cpu)
802 {
803 struct vtime *vtime = &t->vtime;
804 unsigned long flags;
805
806 local_irq_save(flags);
807 write_seqcount_begin(&vtime->seqcount);
808 vtime->state = VTIME_IDLE;
809 vtime->starttime = sched_clock();
810 vtime->cpu = cpu;
811 write_seqcount_end(&vtime->seqcount);
812 local_irq_restore(flags);
813 }
814
task_gtime(struct task_struct * t)815 u64 task_gtime(struct task_struct *t)
816 {
817 struct vtime *vtime = &t->vtime;
818 unsigned int seq;
819 u64 gtime;
820
821 if (!vtime_accounting_enabled())
822 return t->gtime;
823
824 do {
825 seq = read_seqcount_begin(&vtime->seqcount);
826
827 gtime = t->gtime;
828 if (vtime->state == VTIME_GUEST)
829 gtime += vtime->gtime + vtime_delta(vtime);
830
831 } while (read_seqcount_retry(&vtime->seqcount, seq));
832
833 return gtime;
834 }
835
836 /*
837 * Fetch cputime raw values from fields of task_struct and
838 * add up the pending nohz execution time since the last
839 * cputime snapshot.
840 */
task_cputime(struct task_struct * t,u64 * utime,u64 * stime)841 bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
842 {
843 struct vtime *vtime = &t->vtime;
844 unsigned int seq;
845 u64 delta;
846 int ret;
847
848 if (!vtime_accounting_enabled()) {
849 *utime = t->utime;
850 *stime = t->stime;
851 return false;
852 }
853
854 do {
855 ret = false;
856 seq = read_seqcount_begin(&vtime->seqcount);
857
858 *utime = t->utime;
859 *stime = t->stime;
860
861 /* Task is sleeping or idle, nothing to add */
862 if (vtime->state < VTIME_SYS)
863 continue;
864
865 ret = true;
866 delta = vtime_delta(vtime);
867
868 /*
869 * Task runs either in user (including guest) or kernel space,
870 * add pending nohz time to the right place.
871 */
872 if (vtime->state == VTIME_SYS)
873 *stime += vtime->stime + delta;
874 else
875 *utime += vtime->utime + delta;
876 } while (read_seqcount_retry(&vtime->seqcount, seq));
877
878 return ret;
879 }
880
vtime_state_fetch(struct vtime * vtime,int cpu)881 static int vtime_state_fetch(struct vtime *vtime, int cpu)
882 {
883 int state = READ_ONCE(vtime->state);
884
885 /*
886 * We raced against a context switch, fetch the
887 * kcpustat task again.
888 */
889 if (vtime->cpu != cpu && vtime->cpu != -1)
890 return -EAGAIN;
891
892 /*
893 * Two possible things here:
894 * 1) We are seeing the scheduling out task (prev) or any past one.
895 * 2) We are seeing the scheduling in task (next) but it hasn't
896 * passed though vtime_task_switch() yet so the pending
897 * cputime of the prev task may not be flushed yet.
898 *
899 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
900 */
901 if (state == VTIME_INACTIVE)
902 return -EAGAIN;
903
904 return state;
905 }
906
kcpustat_user_vtime(struct vtime * vtime)907 static u64 kcpustat_user_vtime(struct vtime *vtime)
908 {
909 if (vtime->state == VTIME_USER)
910 return vtime->utime + vtime_delta(vtime);
911 else if (vtime->state == VTIME_GUEST)
912 return vtime->gtime + vtime_delta(vtime);
913 return 0;
914 }
915
kcpustat_field_vtime(u64 * cpustat,struct task_struct * tsk,enum cpu_usage_stat usage,int cpu,u64 * val)916 static int kcpustat_field_vtime(u64 *cpustat,
917 struct task_struct *tsk,
918 enum cpu_usage_stat usage,
919 int cpu, u64 *val)
920 {
921 struct vtime *vtime = &tsk->vtime;
922 unsigned int seq;
923
924 do {
925 int state;
926
927 seq = read_seqcount_begin(&vtime->seqcount);
928
929 state = vtime_state_fetch(vtime, cpu);
930 if (state < 0)
931 return state;
932
933 *val = cpustat[usage];
934
935 /*
936 * Nice VS unnice cputime accounting may be inaccurate if
937 * the nice value has changed since the last vtime update.
938 * But proper fix would involve interrupting target on nice
939 * updates which is a no go on nohz_full (although the scheduler
940 * may still interrupt the target if rescheduling is needed...)
941 */
942 switch (usage) {
943 case CPUTIME_SYSTEM:
944 if (state == VTIME_SYS)
945 *val += vtime->stime + vtime_delta(vtime);
946 break;
947 case CPUTIME_USER:
948 if (task_nice(tsk) <= 0)
949 *val += kcpustat_user_vtime(vtime);
950 break;
951 case CPUTIME_NICE:
952 if (task_nice(tsk) > 0)
953 *val += kcpustat_user_vtime(vtime);
954 break;
955 case CPUTIME_GUEST:
956 if (state == VTIME_GUEST && task_nice(tsk) <= 0)
957 *val += vtime->gtime + vtime_delta(vtime);
958 break;
959 case CPUTIME_GUEST_NICE:
960 if (state == VTIME_GUEST && task_nice(tsk) > 0)
961 *val += vtime->gtime + vtime_delta(vtime);
962 break;
963 default:
964 break;
965 }
966 } while (read_seqcount_retry(&vtime->seqcount, seq));
967
968 return 0;
969 }
970
kcpustat_field(struct kernel_cpustat * kcpustat,enum cpu_usage_stat usage,int cpu)971 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
972 enum cpu_usage_stat usage, int cpu)
973 {
974 u64 *cpustat = kcpustat->cpustat;
975 u64 val = cpustat[usage];
976 struct rq *rq;
977 int err;
978
979 if (!vtime_accounting_enabled_cpu(cpu))
980 return val;
981
982 rq = cpu_rq(cpu);
983
984 for (;;) {
985 struct task_struct *curr;
986
987 rcu_read_lock();
988 curr = rcu_dereference(rq->curr);
989 if (WARN_ON_ONCE(!curr)) {
990 rcu_read_unlock();
991 return cpustat[usage];
992 }
993
994 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
995 rcu_read_unlock();
996
997 if (!err)
998 return val;
999
1000 cpu_relax();
1001 }
1002 }
1003 EXPORT_SYMBOL_GPL(kcpustat_field);
1004
kcpustat_cpu_fetch_vtime(struct kernel_cpustat * dst,const struct kernel_cpustat * src,struct task_struct * tsk,int cpu)1005 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1006 const struct kernel_cpustat *src,
1007 struct task_struct *tsk, int cpu)
1008 {
1009 struct vtime *vtime = &tsk->vtime;
1010 unsigned int seq;
1011
1012 do {
1013 u64 *cpustat;
1014 u64 delta;
1015 int state;
1016
1017 seq = read_seqcount_begin(&vtime->seqcount);
1018
1019 state = vtime_state_fetch(vtime, cpu);
1020 if (state < 0)
1021 return state;
1022
1023 *dst = *src;
1024 cpustat = dst->cpustat;
1025
1026 /* Task is sleeping, dead or idle, nothing to add */
1027 if (state < VTIME_SYS)
1028 continue;
1029
1030 delta = vtime_delta(vtime);
1031
1032 /*
1033 * Task runs either in user (including guest) or kernel space,
1034 * add pending nohz time to the right place.
1035 */
1036 if (state == VTIME_SYS) {
1037 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1038 } else if (state == VTIME_USER) {
1039 if (task_nice(tsk) > 0)
1040 cpustat[CPUTIME_NICE] += vtime->utime + delta;
1041 else
1042 cpustat[CPUTIME_USER] += vtime->utime + delta;
1043 } else {
1044 WARN_ON_ONCE(state != VTIME_GUEST);
1045 if (task_nice(tsk) > 0) {
1046 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1047 cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1048 } else {
1049 cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1050 cpustat[CPUTIME_USER] += vtime->gtime + delta;
1051 }
1052 }
1053 } while (read_seqcount_retry(&vtime->seqcount, seq));
1054
1055 return 0;
1056 }
1057
kcpustat_cpu_fetch(struct kernel_cpustat * dst,int cpu)1058 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1059 {
1060 const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1061 struct rq *rq;
1062 int err;
1063
1064 if (!vtime_accounting_enabled_cpu(cpu)) {
1065 *dst = *src;
1066 return;
1067 }
1068
1069 rq = cpu_rq(cpu);
1070
1071 for (;;) {
1072 struct task_struct *curr;
1073
1074 rcu_read_lock();
1075 curr = rcu_dereference(rq->curr);
1076 if (WARN_ON_ONCE(!curr)) {
1077 rcu_read_unlock();
1078 *dst = *src;
1079 return;
1080 }
1081
1082 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1083 rcu_read_unlock();
1084
1085 if (!err)
1086 return;
1087
1088 cpu_relax();
1089 }
1090 }
1091 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1092
1093 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1094