xref: /linux/security/commoncap.c (revision 754916d4a2b970bc1b5104d552b5d16ab54954c0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Common capabilities, needed by capability.o.
3  */
4 
5 #include <linux/capability.h>
6 #include <linux/audit.h>
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/lsm_hooks.h>
10 #include <linux/file.h>
11 #include <linux/mm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/skbuff.h>
16 #include <linux/netlink.h>
17 #include <linux/ptrace.h>
18 #include <linux/xattr.h>
19 #include <linux/hugetlb.h>
20 #include <linux/mount.h>
21 #include <linux/sched.h>
22 #include <linux/prctl.h>
23 #include <linux/securebits.h>
24 #include <linux/user_namespace.h>
25 #include <linux/binfmts.h>
26 #include <linux/personality.h>
27 #include <linux/mnt_idmapping.h>
28 #include <uapi/linux/lsm.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/capability.h>
32 
33 /*
34  * If a non-root user executes a setuid-root binary in
35  * !secure(SECURE_NOROOT) mode, then we raise capabilities.
36  * However if fE is also set, then the intent is for only
37  * the file capabilities to be applied, and the setuid-root
38  * bit is left on either to change the uid (plausible) or
39  * to get full privilege on a kernel without file capabilities
40  * support.  So in that case we do not raise capabilities.
41  *
42  * Warn if that happens, once per boot.
43  */
warn_setuid_and_fcaps_mixed(const char * fname)44 static void warn_setuid_and_fcaps_mixed(const char *fname)
45 {
46 	static int warned;
47 	if (!warned) {
48 		printk(KERN_INFO "warning: `%s' has both setuid-root and"
49 			" effective capabilities. Therefore not raising all"
50 			" capabilities.\n", fname);
51 		warned = 1;
52 	}
53 }
54 
55 /**
56  * cap_capable_helper - Determine whether a task has a particular effective
57  * capability.
58  * @cred: The credentials to use
59  * @target_ns:  The user namespace of the resource being accessed
60  * @cred_ns:  The user namespace of the credentials
61  * @cap: The capability to check for
62  *
63  * Determine whether the nominated task has the specified capability amongst
64  * its effective set, returning 0 if it does, -ve if it does not.
65  *
66  * See cap_capable for more details.
67  */
cap_capable_helper(const struct cred * cred,struct user_namespace * target_ns,const struct user_namespace * cred_ns,int cap)68 static inline int cap_capable_helper(const struct cred *cred,
69 				     struct user_namespace *target_ns,
70 				     const struct user_namespace *cred_ns,
71 				     int cap)
72 {
73 	struct user_namespace *ns = target_ns;
74 
75 	/* See if cred has the capability in the target user namespace
76 	 * by examining the target user namespace and all of the target
77 	 * user namespace's parents.
78 	 */
79 	for (;;) {
80 		/* Do we have the necessary capabilities? */
81 		if (likely(ns == cred_ns))
82 			return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
83 
84 		/*
85 		 * If we're already at a lower level than we're looking for,
86 		 * we're done searching.
87 		 */
88 		if (ns->level <= cred_ns->level)
89 			return -EPERM;
90 
91 		/*
92 		 * The owner of the user namespace in the parent of the
93 		 * user namespace has all caps.
94 		 */
95 		if ((ns->parent == cred_ns) && uid_eq(ns->owner, cred->euid))
96 			return 0;
97 
98 		/*
99 		 * If you have a capability in a parent user ns, then you have
100 		 * it over all children user namespaces as well.
101 		 */
102 		ns = ns->parent;
103 	}
104 
105 	/* We never get here */
106 }
107 
108 /**
109  * cap_capable - Determine whether a task has a particular effective capability
110  * @cred: The credentials to use
111  * @target_ns:  The user namespace of the resource being accessed
112  * @cap: The capability to check for
113  * @opts: Bitmask of options defined in include/linux/security.h (unused)
114  *
115  * Determine whether the nominated task has the specified capability amongst
116  * its effective set, returning 0 if it does, -ve if it does not.
117  *
118  * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
119  * and has_capability() functions.  That is, it has the reverse semantics:
120  * cap_has_capability() returns 0 when a task has a capability, but the
121  * kernel's capable() and has_capability() returns 1 for this case.
122  */
cap_capable(const struct cred * cred,struct user_namespace * target_ns,int cap,unsigned int opts)123 int cap_capable(const struct cred *cred, struct user_namespace *target_ns,
124 		int cap, unsigned int opts)
125 {
126 	const struct user_namespace *cred_ns = cred->user_ns;
127 	int ret = cap_capable_helper(cred, target_ns, cred_ns, cap);
128 
129 	trace_cap_capable(cred, target_ns, cred_ns, cap, ret);
130 	return ret;
131 }
132 
133 /**
134  * cap_settime - Determine whether the current process may set the system clock
135  * @ts: The time to set
136  * @tz: The timezone to set
137  *
138  * Determine whether the current process may set the system clock and timezone
139  * information, returning 0 if permission granted, -ve if denied.
140  */
cap_settime(const struct timespec64 * ts,const struct timezone * tz)141 int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
142 {
143 	if (!capable(CAP_SYS_TIME))
144 		return -EPERM;
145 	return 0;
146 }
147 
148 /**
149  * cap_ptrace_access_check - Determine whether the current process may access
150  *			   another
151  * @child: The process to be accessed
152  * @mode: The mode of attachment.
153  *
154  * If we are in the same or an ancestor user_ns and have all the target
155  * task's capabilities, then ptrace access is allowed.
156  * If we have the ptrace capability to the target user_ns, then ptrace
157  * access is allowed.
158  * Else denied.
159  *
160  * Determine whether a process may access another, returning 0 if permission
161  * granted, -ve if denied.
162  */
cap_ptrace_access_check(struct task_struct * child,unsigned int mode)163 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
164 {
165 	int ret = 0;
166 	const struct cred *cred, *child_cred;
167 	const kernel_cap_t *caller_caps;
168 
169 	rcu_read_lock();
170 	cred = current_cred();
171 	child_cred = __task_cred(child);
172 	if (mode & PTRACE_MODE_FSCREDS)
173 		caller_caps = &cred->cap_effective;
174 	else
175 		caller_caps = &cred->cap_permitted;
176 	if (cred->user_ns == child_cred->user_ns &&
177 	    cap_issubset(child_cred->cap_permitted, *caller_caps))
178 		goto out;
179 	if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
180 		goto out;
181 	ret = -EPERM;
182 out:
183 	rcu_read_unlock();
184 	return ret;
185 }
186 
187 /**
188  * cap_ptrace_traceme - Determine whether another process may trace the current
189  * @parent: The task proposed to be the tracer
190  *
191  * If parent is in the same or an ancestor user_ns and has all current's
192  * capabilities, then ptrace access is allowed.
193  * If parent has the ptrace capability to current's user_ns, then ptrace
194  * access is allowed.
195  * Else denied.
196  *
197  * Determine whether the nominated task is permitted to trace the current
198  * process, returning 0 if permission is granted, -ve if denied.
199  */
cap_ptrace_traceme(struct task_struct * parent)200 int cap_ptrace_traceme(struct task_struct *parent)
201 {
202 	int ret = 0;
203 	const struct cred *cred, *child_cred;
204 
205 	rcu_read_lock();
206 	cred = __task_cred(parent);
207 	child_cred = current_cred();
208 	if (cred->user_ns == child_cred->user_ns &&
209 	    cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
210 		goto out;
211 	if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
212 		goto out;
213 	ret = -EPERM;
214 out:
215 	rcu_read_unlock();
216 	return ret;
217 }
218 
219 /**
220  * cap_capget - Retrieve a task's capability sets
221  * @target: The task from which to retrieve the capability sets
222  * @effective: The place to record the effective set
223  * @inheritable: The place to record the inheritable set
224  * @permitted: The place to record the permitted set
225  *
226  * This function retrieves the capabilities of the nominated task and returns
227  * them to the caller.
228  */
cap_capget(const struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)229 int cap_capget(const struct task_struct *target, kernel_cap_t *effective,
230 	       kernel_cap_t *inheritable, kernel_cap_t *permitted)
231 {
232 	const struct cred *cred;
233 
234 	/* Derived from kernel/capability.c:sys_capget. */
235 	rcu_read_lock();
236 	cred = __task_cred(target);
237 	*effective   = cred->cap_effective;
238 	*inheritable = cred->cap_inheritable;
239 	*permitted   = cred->cap_permitted;
240 	rcu_read_unlock();
241 	return 0;
242 }
243 
244 /*
245  * Determine whether the inheritable capabilities are limited to the old
246  * permitted set.  Returns 1 if they are limited, 0 if they are not.
247  */
cap_inh_is_capped(void)248 static inline int cap_inh_is_capped(void)
249 {
250 	/* they are so limited unless the current task has the CAP_SETPCAP
251 	 * capability
252 	 */
253 	if (cap_capable(current_cred(), current_cred()->user_ns,
254 			CAP_SETPCAP, CAP_OPT_NONE) == 0)
255 		return 0;
256 	return 1;
257 }
258 
259 /**
260  * cap_capset - Validate and apply proposed changes to current's capabilities
261  * @new: The proposed new credentials; alterations should be made here
262  * @old: The current task's current credentials
263  * @effective: A pointer to the proposed new effective capabilities set
264  * @inheritable: A pointer to the proposed new inheritable capabilities set
265  * @permitted: A pointer to the proposed new permitted capabilities set
266  *
267  * This function validates and applies a proposed mass change to the current
268  * process's capability sets.  The changes are made to the proposed new
269  * credentials, and assuming no error, will be committed by the caller of LSM.
270  */
cap_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)271 int cap_capset(struct cred *new,
272 	       const struct cred *old,
273 	       const kernel_cap_t *effective,
274 	       const kernel_cap_t *inheritable,
275 	       const kernel_cap_t *permitted)
276 {
277 	if (cap_inh_is_capped() &&
278 	    !cap_issubset(*inheritable,
279 			  cap_combine(old->cap_inheritable,
280 				      old->cap_permitted)))
281 		/* incapable of using this inheritable set */
282 		return -EPERM;
283 
284 	if (!cap_issubset(*inheritable,
285 			  cap_combine(old->cap_inheritable,
286 				      old->cap_bset)))
287 		/* no new pI capabilities outside bounding set */
288 		return -EPERM;
289 
290 	/* verify restrictions on target's new Permitted set */
291 	if (!cap_issubset(*permitted, old->cap_permitted))
292 		return -EPERM;
293 
294 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
295 	if (!cap_issubset(*effective, *permitted))
296 		return -EPERM;
297 
298 	new->cap_effective   = *effective;
299 	new->cap_inheritable = *inheritable;
300 	new->cap_permitted   = *permitted;
301 
302 	/*
303 	 * Mask off ambient bits that are no longer both permitted and
304 	 * inheritable.
305 	 */
306 	new->cap_ambient = cap_intersect(new->cap_ambient,
307 					 cap_intersect(*permitted,
308 						       *inheritable));
309 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
310 		return -EINVAL;
311 	return 0;
312 }
313 
314 /**
315  * cap_inode_need_killpriv - Determine if inode change affects privileges
316  * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
317  *
318  * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
319  * affects the security markings on that inode, and if it is, should
320  * inode_killpriv() be invoked or the change rejected.
321  *
322  * Return: 1 if security.capability has a value, meaning inode_killpriv()
323  * is required, 0 otherwise, meaning inode_killpriv() is not required.
324  */
cap_inode_need_killpriv(struct dentry * dentry)325 int cap_inode_need_killpriv(struct dentry *dentry)
326 {
327 	struct inode *inode = d_backing_inode(dentry);
328 	int error;
329 
330 	error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
331 	return error > 0;
332 }
333 
334 /**
335  * cap_inode_killpriv - Erase the security markings on an inode
336  *
337  * @idmap:	idmap of the mount the inode was found from
338  * @dentry:	The inode/dentry to alter
339  *
340  * Erase the privilege-enhancing security markings on an inode.
341  *
342  * If the inode has been found through an idmapped mount the idmap of
343  * the vfsmount must be passed through @idmap. This function will then
344  * take care to map the inode according to @idmap before checking
345  * permissions. On non-idmapped mounts or if permission checking is to be
346  * performed on the raw inode simply pass @nop_mnt_idmap.
347  *
348  * Return: 0 if successful, -ve on error.
349  */
cap_inode_killpriv(struct mnt_idmap * idmap,struct dentry * dentry)350 int cap_inode_killpriv(struct mnt_idmap *idmap, struct dentry *dentry)
351 {
352 	int error;
353 
354 	error = __vfs_removexattr(idmap, dentry, XATTR_NAME_CAPS);
355 	if (error == -EOPNOTSUPP)
356 		error = 0;
357 	return error;
358 }
359 
rootid_owns_currentns(vfsuid_t rootvfsuid)360 static bool rootid_owns_currentns(vfsuid_t rootvfsuid)
361 {
362 	struct user_namespace *ns;
363 	kuid_t kroot;
364 
365 	if (!vfsuid_valid(rootvfsuid))
366 		return false;
367 
368 	kroot = vfsuid_into_kuid(rootvfsuid);
369 	for (ns = current_user_ns();; ns = ns->parent) {
370 		if (from_kuid(ns, kroot) == 0)
371 			return true;
372 		if (ns == &init_user_ns)
373 			break;
374 	}
375 
376 	return false;
377 }
378 
sansflags(__u32 m)379 static __u32 sansflags(__u32 m)
380 {
381 	return m & ~VFS_CAP_FLAGS_EFFECTIVE;
382 }
383 
is_v2header(int size,const struct vfs_cap_data * cap)384 static bool is_v2header(int size, const struct vfs_cap_data *cap)
385 {
386 	if (size != XATTR_CAPS_SZ_2)
387 		return false;
388 	return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
389 }
390 
is_v3header(int size,const struct vfs_cap_data * cap)391 static bool is_v3header(int size, const struct vfs_cap_data *cap)
392 {
393 	if (size != XATTR_CAPS_SZ_3)
394 		return false;
395 	return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
396 }
397 
398 /*
399  * getsecurity: We are called for security.* before any attempt to read the
400  * xattr from the inode itself.
401  *
402  * This gives us a chance to read the on-disk value and convert it.  If we
403  * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
404  *
405  * Note we are not called by vfs_getxattr_alloc(), but that is only called
406  * by the integrity subsystem, which really wants the unconverted values -
407  * so that's good.
408  */
cap_inode_getsecurity(struct mnt_idmap * idmap,struct inode * inode,const char * name,void ** buffer,bool alloc)409 int cap_inode_getsecurity(struct mnt_idmap *idmap,
410 			  struct inode *inode, const char *name, void **buffer,
411 			  bool alloc)
412 {
413 	int size;
414 	kuid_t kroot;
415 	vfsuid_t vfsroot;
416 	u32 nsmagic, magic;
417 	uid_t root, mappedroot;
418 	char *tmpbuf = NULL;
419 	struct vfs_cap_data *cap;
420 	struct vfs_ns_cap_data *nscap = NULL;
421 	struct dentry *dentry;
422 	struct user_namespace *fs_ns;
423 
424 	if (strcmp(name, "capability") != 0)
425 		return -EOPNOTSUPP;
426 
427 	dentry = d_find_any_alias(inode);
428 	if (!dentry)
429 		return -EINVAL;
430 	size = vfs_getxattr_alloc(idmap, dentry, XATTR_NAME_CAPS, &tmpbuf,
431 				  sizeof(struct vfs_ns_cap_data), GFP_NOFS);
432 	dput(dentry);
433 	/* gcc11 complains if we don't check for !tmpbuf */
434 	if (size < 0 || !tmpbuf)
435 		goto out_free;
436 
437 	fs_ns = inode->i_sb->s_user_ns;
438 	cap = (struct vfs_cap_data *) tmpbuf;
439 	if (is_v2header(size, cap)) {
440 		root = 0;
441 	} else if (is_v3header(size, cap)) {
442 		nscap = (struct vfs_ns_cap_data *) tmpbuf;
443 		root = le32_to_cpu(nscap->rootid);
444 	} else {
445 		size = -EINVAL;
446 		goto out_free;
447 	}
448 
449 	kroot = make_kuid(fs_ns, root);
450 
451 	/* If this is an idmapped mount shift the kuid. */
452 	vfsroot = make_vfsuid(idmap, fs_ns, kroot);
453 
454 	/* If the root kuid maps to a valid uid in current ns, then return
455 	 * this as a nscap. */
456 	mappedroot = from_kuid(current_user_ns(), vfsuid_into_kuid(vfsroot));
457 	if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
458 		size = sizeof(struct vfs_ns_cap_data);
459 		if (alloc) {
460 			if (!nscap) {
461 				/* v2 -> v3 conversion */
462 				nscap = kzalloc(size, GFP_ATOMIC);
463 				if (!nscap) {
464 					size = -ENOMEM;
465 					goto out_free;
466 				}
467 				nsmagic = VFS_CAP_REVISION_3;
468 				magic = le32_to_cpu(cap->magic_etc);
469 				if (magic & VFS_CAP_FLAGS_EFFECTIVE)
470 					nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
471 				memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
472 				nscap->magic_etc = cpu_to_le32(nsmagic);
473 			} else {
474 				/* use allocated v3 buffer */
475 				tmpbuf = NULL;
476 			}
477 			nscap->rootid = cpu_to_le32(mappedroot);
478 			*buffer = nscap;
479 		}
480 		goto out_free;
481 	}
482 
483 	if (!rootid_owns_currentns(vfsroot)) {
484 		size = -EOVERFLOW;
485 		goto out_free;
486 	}
487 
488 	/* This comes from a parent namespace.  Return as a v2 capability */
489 	size = sizeof(struct vfs_cap_data);
490 	if (alloc) {
491 		if (nscap) {
492 			/* v3 -> v2 conversion */
493 			cap = kzalloc(size, GFP_ATOMIC);
494 			if (!cap) {
495 				size = -ENOMEM;
496 				goto out_free;
497 			}
498 			magic = VFS_CAP_REVISION_2;
499 			nsmagic = le32_to_cpu(nscap->magic_etc);
500 			if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
501 				magic |= VFS_CAP_FLAGS_EFFECTIVE;
502 			memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
503 			cap->magic_etc = cpu_to_le32(magic);
504 		} else {
505 			/* use unconverted v2 */
506 			tmpbuf = NULL;
507 		}
508 		*buffer = cap;
509 	}
510 out_free:
511 	kfree(tmpbuf);
512 	return size;
513 }
514 
515 /**
516  * rootid_from_xattr - translate root uid of vfs caps
517  *
518  * @value:	vfs caps value which may be modified by this function
519  * @size:	size of @ivalue
520  * @task_ns:	user namespace of the caller
521  */
rootid_from_xattr(const void * value,size_t size,struct user_namespace * task_ns)522 static vfsuid_t rootid_from_xattr(const void *value, size_t size,
523 				  struct user_namespace *task_ns)
524 {
525 	const struct vfs_ns_cap_data *nscap = value;
526 	uid_t rootid = 0;
527 
528 	if (size == XATTR_CAPS_SZ_3)
529 		rootid = le32_to_cpu(nscap->rootid);
530 
531 	return VFSUIDT_INIT(make_kuid(task_ns, rootid));
532 }
533 
validheader(size_t size,const struct vfs_cap_data * cap)534 static bool validheader(size_t size, const struct vfs_cap_data *cap)
535 {
536 	return is_v2header(size, cap) || is_v3header(size, cap);
537 }
538 
539 /**
540  * cap_convert_nscap - check vfs caps
541  *
542  * @idmap:	idmap of the mount the inode was found from
543  * @dentry:	used to retrieve inode to check permissions on
544  * @ivalue:	vfs caps value which may be modified by this function
545  * @size:	size of @ivalue
546  *
547  * User requested a write of security.capability.  If needed, update the
548  * xattr to change from v2 to v3, or to fixup the v3 rootid.
549  *
550  * If the inode has been found through an idmapped mount the idmap of
551  * the vfsmount must be passed through @idmap. This function will then
552  * take care to map the inode according to @idmap before checking
553  * permissions. On non-idmapped mounts or if permission checking is to be
554  * performed on the raw inode simply pass @nop_mnt_idmap.
555  *
556  * Return: On success, return the new size; on error, return < 0.
557  */
cap_convert_nscap(struct mnt_idmap * idmap,struct dentry * dentry,const void ** ivalue,size_t size)558 int cap_convert_nscap(struct mnt_idmap *idmap, struct dentry *dentry,
559 		      const void **ivalue, size_t size)
560 {
561 	struct vfs_ns_cap_data *nscap;
562 	uid_t nsrootid;
563 	const struct vfs_cap_data *cap = *ivalue;
564 	__u32 magic, nsmagic;
565 	struct inode *inode = d_backing_inode(dentry);
566 	struct user_namespace *task_ns = current_user_ns(),
567 		*fs_ns = inode->i_sb->s_user_ns;
568 	kuid_t rootid;
569 	vfsuid_t vfsrootid;
570 	size_t newsize;
571 
572 	if (!*ivalue)
573 		return -EINVAL;
574 	if (!validheader(size, cap))
575 		return -EINVAL;
576 	if (!capable_wrt_inode_uidgid(idmap, inode, CAP_SETFCAP))
577 		return -EPERM;
578 	if (size == XATTR_CAPS_SZ_2 && (idmap == &nop_mnt_idmap))
579 		if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
580 			/* user is privileged, just write the v2 */
581 			return size;
582 
583 	vfsrootid = rootid_from_xattr(*ivalue, size, task_ns);
584 	if (!vfsuid_valid(vfsrootid))
585 		return -EINVAL;
586 
587 	rootid = from_vfsuid(idmap, fs_ns, vfsrootid);
588 	if (!uid_valid(rootid))
589 		return -EINVAL;
590 
591 	nsrootid = from_kuid(fs_ns, rootid);
592 	if (nsrootid == -1)
593 		return -EINVAL;
594 
595 	newsize = sizeof(struct vfs_ns_cap_data);
596 	nscap = kmalloc(newsize, GFP_ATOMIC);
597 	if (!nscap)
598 		return -ENOMEM;
599 	nscap->rootid = cpu_to_le32(nsrootid);
600 	nsmagic = VFS_CAP_REVISION_3;
601 	magic = le32_to_cpu(cap->magic_etc);
602 	if (magic & VFS_CAP_FLAGS_EFFECTIVE)
603 		nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
604 	nscap->magic_etc = cpu_to_le32(nsmagic);
605 	memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
606 
607 	*ivalue = nscap;
608 	return newsize;
609 }
610 
611 /*
612  * Calculate the new process capability sets from the capability sets attached
613  * to a file.
614  */
bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data * caps,struct linux_binprm * bprm,bool * effective,bool * has_fcap)615 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
616 					  struct linux_binprm *bprm,
617 					  bool *effective,
618 					  bool *has_fcap)
619 {
620 	struct cred *new = bprm->cred;
621 	int ret = 0;
622 
623 	if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
624 		*effective = true;
625 
626 	if (caps->magic_etc & VFS_CAP_REVISION_MASK)
627 		*has_fcap = true;
628 
629 	/*
630 	 * pP' = (X & fP) | (pI & fI)
631 	 * The addition of pA' is handled later.
632 	 */
633 	new->cap_permitted.val =
634 		(new->cap_bset.val & caps->permitted.val) |
635 		(new->cap_inheritable.val & caps->inheritable.val);
636 
637 	if (caps->permitted.val & ~new->cap_permitted.val)
638 		/* insufficient to execute correctly */
639 		ret = -EPERM;
640 
641 	/*
642 	 * For legacy apps, with no internal support for recognizing they
643 	 * do not have enough capabilities, we return an error if they are
644 	 * missing some "forced" (aka file-permitted) capabilities.
645 	 */
646 	return *effective ? ret : 0;
647 }
648 
649 /**
650  * get_vfs_caps_from_disk - retrieve vfs caps from disk
651  *
652  * @idmap:	idmap of the mount the inode was found from
653  * @dentry:	dentry from which @inode is retrieved
654  * @cpu_caps:	vfs capabilities
655  *
656  * Extract the on-exec-apply capability sets for an executable file.
657  *
658  * If the inode has been found through an idmapped mount the idmap of
659  * the vfsmount must be passed through @idmap. This function will then
660  * take care to map the inode according to @idmap before checking
661  * permissions. On non-idmapped mounts or if permission checking is to be
662  * performed on the raw inode simply pass @nop_mnt_idmap.
663  */
get_vfs_caps_from_disk(struct mnt_idmap * idmap,const struct dentry * dentry,struct cpu_vfs_cap_data * cpu_caps)664 int get_vfs_caps_from_disk(struct mnt_idmap *idmap,
665 			   const struct dentry *dentry,
666 			   struct cpu_vfs_cap_data *cpu_caps)
667 {
668 	struct inode *inode = d_backing_inode(dentry);
669 	__u32 magic_etc;
670 	int size;
671 	struct vfs_ns_cap_data data, *nscaps = &data;
672 	struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
673 	kuid_t rootkuid;
674 	vfsuid_t rootvfsuid;
675 	struct user_namespace *fs_ns;
676 
677 	memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
678 
679 	if (!inode)
680 		return -ENODATA;
681 
682 	fs_ns = inode->i_sb->s_user_ns;
683 	size = __vfs_getxattr((struct dentry *)dentry, inode,
684 			      XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
685 	if (size == -ENODATA || size == -EOPNOTSUPP)
686 		/* no data, that's ok */
687 		return -ENODATA;
688 
689 	if (size < 0)
690 		return size;
691 
692 	if (size < sizeof(magic_etc))
693 		return -EINVAL;
694 
695 	cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
696 
697 	rootkuid = make_kuid(fs_ns, 0);
698 	switch (magic_etc & VFS_CAP_REVISION_MASK) {
699 	case VFS_CAP_REVISION_1:
700 		if (size != XATTR_CAPS_SZ_1)
701 			return -EINVAL;
702 		break;
703 	case VFS_CAP_REVISION_2:
704 		if (size != XATTR_CAPS_SZ_2)
705 			return -EINVAL;
706 		break;
707 	case VFS_CAP_REVISION_3:
708 		if (size != XATTR_CAPS_SZ_3)
709 			return -EINVAL;
710 		rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
711 		break;
712 
713 	default:
714 		return -EINVAL;
715 	}
716 
717 	rootvfsuid = make_vfsuid(idmap, fs_ns, rootkuid);
718 	if (!vfsuid_valid(rootvfsuid))
719 		return -ENODATA;
720 
721 	/* Limit the caps to the mounter of the filesystem
722 	 * or the more limited uid specified in the xattr.
723 	 */
724 	if (!rootid_owns_currentns(rootvfsuid))
725 		return -ENODATA;
726 
727 	cpu_caps->permitted.val = le32_to_cpu(caps->data[0].permitted);
728 	cpu_caps->inheritable.val = le32_to_cpu(caps->data[0].inheritable);
729 
730 	/*
731 	 * Rev1 had just a single 32-bit word, later expanded
732 	 * to a second one for the high bits
733 	 */
734 	if ((magic_etc & VFS_CAP_REVISION_MASK) != VFS_CAP_REVISION_1) {
735 		cpu_caps->permitted.val += (u64)le32_to_cpu(caps->data[1].permitted) << 32;
736 		cpu_caps->inheritable.val += (u64)le32_to_cpu(caps->data[1].inheritable) << 32;
737 	}
738 
739 	cpu_caps->permitted.val &= CAP_VALID_MASK;
740 	cpu_caps->inheritable.val &= CAP_VALID_MASK;
741 
742 	cpu_caps->rootid = vfsuid_into_kuid(rootvfsuid);
743 
744 	return 0;
745 }
746 
747 /*
748  * Attempt to get the on-exec apply capability sets for an executable file from
749  * its xattrs and, if present, apply them to the proposed credentials being
750  * constructed by execve().
751  */
get_file_caps(struct linux_binprm * bprm,const struct file * file,bool * effective,bool * has_fcap)752 static int get_file_caps(struct linux_binprm *bprm, const struct file *file,
753 			 bool *effective, bool *has_fcap)
754 {
755 	int rc = 0;
756 	struct cpu_vfs_cap_data vcaps;
757 
758 	cap_clear(bprm->cred->cap_permitted);
759 
760 	if (!file_caps_enabled)
761 		return 0;
762 
763 	if (!mnt_may_suid(file->f_path.mnt))
764 		return 0;
765 
766 	/*
767 	 * This check is redundant with mnt_may_suid() but is kept to make
768 	 * explicit that capability bits are limited to s_user_ns and its
769 	 * descendants.
770 	 */
771 	if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
772 		return 0;
773 
774 	rc = get_vfs_caps_from_disk(file_mnt_idmap(file),
775 				    file->f_path.dentry, &vcaps);
776 	if (rc < 0) {
777 		if (rc == -EINVAL)
778 			printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
779 					bprm->filename);
780 		else if (rc == -ENODATA)
781 			rc = 0;
782 		goto out;
783 	}
784 
785 	rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
786 
787 out:
788 	if (rc)
789 		cap_clear(bprm->cred->cap_permitted);
790 
791 	return rc;
792 }
793 
root_privileged(void)794 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
795 
__is_real(kuid_t uid,struct cred * cred)796 static inline bool __is_real(kuid_t uid, struct cred *cred)
797 { return uid_eq(cred->uid, uid); }
798 
__is_eff(kuid_t uid,struct cred * cred)799 static inline bool __is_eff(kuid_t uid, struct cred *cred)
800 { return uid_eq(cred->euid, uid); }
801 
__is_suid(kuid_t uid,struct cred * cred)802 static inline bool __is_suid(kuid_t uid, struct cred *cred)
803 { return !__is_real(uid, cred) && __is_eff(uid, cred); }
804 
805 /*
806  * handle_privileged_root - Handle case of privileged root
807  * @bprm: The execution parameters, including the proposed creds
808  * @has_fcap: Are any file capabilities set?
809  * @effective: Do we have effective root privilege?
810  * @root_uid: This namespace' root UID WRT initial USER namespace
811  *
812  * Handle the case where root is privileged and hasn't been neutered by
813  * SECURE_NOROOT.  If file capabilities are set, they won't be combined with
814  * set UID root and nothing is changed.  If we are root, cap_permitted is
815  * updated.  If we have become set UID root, the effective bit is set.
816  */
handle_privileged_root(struct linux_binprm * bprm,bool has_fcap,bool * effective,kuid_t root_uid)817 static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
818 				   bool *effective, kuid_t root_uid)
819 {
820 	const struct cred *old = current_cred();
821 	struct cred *new = bprm->cred;
822 
823 	if (!root_privileged())
824 		return;
825 	/*
826 	 * If the legacy file capability is set, then don't set privs
827 	 * for a setuid root binary run by a non-root user.  Do set it
828 	 * for a root user just to cause least surprise to an admin.
829 	 */
830 	if (has_fcap && __is_suid(root_uid, new)) {
831 		warn_setuid_and_fcaps_mixed(bprm->filename);
832 		return;
833 	}
834 	/*
835 	 * To support inheritance of root-permissions and suid-root
836 	 * executables under compatibility mode, we override the
837 	 * capability sets for the file.
838 	 */
839 	if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
840 		/* pP' = (cap_bset & ~0) | (pI & ~0) */
841 		new->cap_permitted = cap_combine(old->cap_bset,
842 						 old->cap_inheritable);
843 	}
844 	/*
845 	 * If only the real uid is 0, we do not set the effective bit.
846 	 */
847 	if (__is_eff(root_uid, new))
848 		*effective = true;
849 }
850 
851 #define __cap_gained(field, target, source) \
852 	!cap_issubset(target->cap_##field, source->cap_##field)
853 #define __cap_grew(target, source, cred) \
854 	!cap_issubset(cred->cap_##target, cred->cap_##source)
855 #define __cap_full(field, cred) \
856 	cap_issubset(CAP_FULL_SET, cred->cap_##field)
857 
__is_setuid(struct cred * new,const struct cred * old)858 static inline bool __is_setuid(struct cred *new, const struct cred *old)
859 { return !uid_eq(new->euid, old->uid); }
860 
__is_setgid(struct cred * new,const struct cred * old)861 static inline bool __is_setgid(struct cred *new, const struct cred *old)
862 { return !gid_eq(new->egid, old->gid); }
863 
864 /*
865  * 1) Audit candidate if current->cap_effective is set
866  *
867  * We do not bother to audit if 3 things are true:
868  *   1) cap_effective has all caps
869  *   2) we became root *OR* are were already root
870  *   3) root is supposed to have all caps (SECURE_NOROOT)
871  * Since this is just a normal root execing a process.
872  *
873  * Number 1 above might fail if you don't have a full bset, but I think
874  * that is interesting information to audit.
875  *
876  * A number of other conditions require logging:
877  * 2) something prevented setuid root getting all caps
878  * 3) non-setuid root gets fcaps
879  * 4) non-setuid root gets ambient
880  */
nonroot_raised_pE(struct cred * new,const struct cred * old,kuid_t root,bool has_fcap)881 static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
882 				     kuid_t root, bool has_fcap)
883 {
884 	bool ret = false;
885 
886 	if ((__cap_grew(effective, ambient, new) &&
887 	     !(__cap_full(effective, new) &&
888 	       (__is_eff(root, new) || __is_real(root, new)) &&
889 	       root_privileged())) ||
890 	    (root_privileged() &&
891 	     __is_suid(root, new) &&
892 	     !__cap_full(effective, new)) ||
893 	    (!__is_setuid(new, old) &&
894 	     ((has_fcap &&
895 	       __cap_gained(permitted, new, old)) ||
896 	      __cap_gained(ambient, new, old))))
897 
898 		ret = true;
899 
900 	return ret;
901 }
902 
903 /**
904  * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
905  * @bprm: The execution parameters, including the proposed creds
906  * @file: The file to pull the credentials from
907  *
908  * Set up the proposed credentials for a new execution context being
909  * constructed by execve().  The proposed creds in @bprm->cred is altered,
910  * which won't take effect immediately.
911  *
912  * Return: 0 if successful, -ve on error.
913  */
cap_bprm_creds_from_file(struct linux_binprm * bprm,const struct file * file)914 int cap_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
915 {
916 	/* Process setpcap binaries and capabilities for uid 0 */
917 	const struct cred *old = current_cred();
918 	struct cred *new = bprm->cred;
919 	bool effective = false, has_fcap = false, is_setid;
920 	int ret;
921 	kuid_t root_uid;
922 
923 	if (WARN_ON(!cap_ambient_invariant_ok(old)))
924 		return -EPERM;
925 
926 	ret = get_file_caps(bprm, file, &effective, &has_fcap);
927 	if (ret < 0)
928 		return ret;
929 
930 	root_uid = make_kuid(new->user_ns, 0);
931 
932 	handle_privileged_root(bprm, has_fcap, &effective, root_uid);
933 
934 	/* if we have fs caps, clear dangerous personality flags */
935 	if (__cap_gained(permitted, new, old))
936 		bprm->per_clear |= PER_CLEAR_ON_SETID;
937 
938 	/* Don't let someone trace a set[ug]id/setpcap binary with the revised
939 	 * credentials unless they have the appropriate permit.
940 	 *
941 	 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
942 	 */
943 	is_setid = __is_setuid(new, old) || __is_setgid(new, old);
944 
945 	if ((is_setid || __cap_gained(permitted, new, old)) &&
946 	    ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
947 	     !ptracer_capable(current, new->user_ns))) {
948 		/* downgrade; they get no more than they had, and maybe less */
949 		if (!ns_capable(new->user_ns, CAP_SETUID) ||
950 		    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
951 			new->euid = new->uid;
952 			new->egid = new->gid;
953 		}
954 		new->cap_permitted = cap_intersect(new->cap_permitted,
955 						   old->cap_permitted);
956 	}
957 
958 	new->suid = new->fsuid = new->euid;
959 	new->sgid = new->fsgid = new->egid;
960 
961 	/* File caps or setid cancels ambient. */
962 	if (has_fcap || is_setid)
963 		cap_clear(new->cap_ambient);
964 
965 	/*
966 	 * Now that we've computed pA', update pP' to give:
967 	 *   pP' = (X & fP) | (pI & fI) | pA'
968 	 */
969 	new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
970 
971 	/*
972 	 * Set pE' = (fE ? pP' : pA').  Because pA' is zero if fE is set,
973 	 * this is the same as pE' = (fE ? pP' : 0) | pA'.
974 	 */
975 	if (effective)
976 		new->cap_effective = new->cap_permitted;
977 	else
978 		new->cap_effective = new->cap_ambient;
979 
980 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
981 		return -EPERM;
982 
983 	if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
984 		ret = audit_log_bprm_fcaps(bprm, new, old);
985 		if (ret < 0)
986 			return ret;
987 	}
988 
989 	new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
990 
991 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
992 		return -EPERM;
993 
994 	/* Check for privilege-elevated exec. */
995 	if (is_setid ||
996 	    (!__is_real(root_uid, new) &&
997 	     (effective ||
998 	      __cap_grew(permitted, ambient, new))))
999 		bprm->secureexec = 1;
1000 
1001 	return 0;
1002 }
1003 
1004 /**
1005  * cap_inode_setxattr - Determine whether an xattr may be altered
1006  * @dentry: The inode/dentry being altered
1007  * @name: The name of the xattr to be changed
1008  * @value: The value that the xattr will be changed to
1009  * @size: The size of value
1010  * @flags: The replacement flag
1011  *
1012  * Determine whether an xattr may be altered or set on an inode, returning 0 if
1013  * permission is granted, -ve if denied.
1014  *
1015  * This is used to make sure security xattrs don't get updated or set by those
1016  * who aren't privileged to do so.
1017  */
cap_inode_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1018 int cap_inode_setxattr(struct dentry *dentry, const char *name,
1019 		       const void *value, size_t size, int flags)
1020 {
1021 	struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
1022 
1023 	/* Ignore non-security xattrs */
1024 	if (strncmp(name, XATTR_SECURITY_PREFIX,
1025 			XATTR_SECURITY_PREFIX_LEN) != 0)
1026 		return 0;
1027 
1028 	/*
1029 	 * For XATTR_NAME_CAPS the check will be done in
1030 	 * cap_convert_nscap(), called by setxattr()
1031 	 */
1032 	if (strcmp(name, XATTR_NAME_CAPS) == 0)
1033 		return 0;
1034 
1035 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1036 		return -EPERM;
1037 	return 0;
1038 }
1039 
1040 /**
1041  * cap_inode_removexattr - Determine whether an xattr may be removed
1042  *
1043  * @idmap:	idmap of the mount the inode was found from
1044  * @dentry:	The inode/dentry being altered
1045  * @name:	The name of the xattr to be changed
1046  *
1047  * Determine whether an xattr may be removed from an inode, returning 0 if
1048  * permission is granted, -ve if denied.
1049  *
1050  * If the inode has been found through an idmapped mount the idmap of
1051  * the vfsmount must be passed through @idmap. This function will then
1052  * take care to map the inode according to @idmap before checking
1053  * permissions. On non-idmapped mounts or if permission checking is to be
1054  * performed on the raw inode simply pass @nop_mnt_idmap.
1055  *
1056  * This is used to make sure security xattrs don't get removed by those who
1057  * aren't privileged to remove them.
1058  */
cap_inode_removexattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name)1059 int cap_inode_removexattr(struct mnt_idmap *idmap,
1060 			  struct dentry *dentry, const char *name)
1061 {
1062 	struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
1063 
1064 	/* Ignore non-security xattrs */
1065 	if (strncmp(name, XATTR_SECURITY_PREFIX,
1066 			XATTR_SECURITY_PREFIX_LEN) != 0)
1067 		return 0;
1068 
1069 	if (strcmp(name, XATTR_NAME_CAPS) == 0) {
1070 		/* security.capability gets namespaced */
1071 		struct inode *inode = d_backing_inode(dentry);
1072 		if (!inode)
1073 			return -EINVAL;
1074 		if (!capable_wrt_inode_uidgid(idmap, inode, CAP_SETFCAP))
1075 			return -EPERM;
1076 		return 0;
1077 	}
1078 
1079 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1080 		return -EPERM;
1081 	return 0;
1082 }
1083 
1084 /*
1085  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
1086  * a process after a call to setuid, setreuid, or setresuid.
1087  *
1088  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
1089  *  {r,e,s}uid != 0, the permitted and effective capabilities are
1090  *  cleared.
1091  *
1092  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
1093  *  capabilities of the process are cleared.
1094  *
1095  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
1096  *  capabilities are set to the permitted capabilities.
1097  *
1098  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
1099  *  never happen.
1100  *
1101  *  -astor
1102  *
1103  * cevans - New behaviour, Oct '99
1104  * A process may, via prctl(), elect to keep its capabilities when it
1105  * calls setuid() and switches away from uid==0. Both permitted and
1106  * effective sets will be retained.
1107  * Without this change, it was impossible for a daemon to drop only some
1108  * of its privilege. The call to setuid(!=0) would drop all privileges!
1109  * Keeping uid 0 is not an option because uid 0 owns too many vital
1110  * files..
1111  * Thanks to Olaf Kirch and Peter Benie for spotting this.
1112  */
cap_emulate_setxuid(struct cred * new,const struct cred * old)1113 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1114 {
1115 	kuid_t root_uid = make_kuid(old->user_ns, 0);
1116 
1117 	if ((uid_eq(old->uid, root_uid) ||
1118 	     uid_eq(old->euid, root_uid) ||
1119 	     uid_eq(old->suid, root_uid)) &&
1120 	    (!uid_eq(new->uid, root_uid) &&
1121 	     !uid_eq(new->euid, root_uid) &&
1122 	     !uid_eq(new->suid, root_uid))) {
1123 		if (!issecure(SECURE_KEEP_CAPS)) {
1124 			cap_clear(new->cap_permitted);
1125 			cap_clear(new->cap_effective);
1126 		}
1127 
1128 		/*
1129 		 * Pre-ambient programs expect setresuid to nonroot followed
1130 		 * by exec to drop capabilities.  We should make sure that
1131 		 * this remains the case.
1132 		 */
1133 		cap_clear(new->cap_ambient);
1134 	}
1135 	if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1136 		cap_clear(new->cap_effective);
1137 	if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1138 		new->cap_effective = new->cap_permitted;
1139 }
1140 
1141 /**
1142  * cap_task_fix_setuid - Fix up the results of setuid() call
1143  * @new: The proposed credentials
1144  * @old: The current task's current credentials
1145  * @flags: Indications of what has changed
1146  *
1147  * Fix up the results of setuid() call before the credential changes are
1148  * actually applied.
1149  *
1150  * Return: 0 to grant the changes, -ve to deny them.
1151  */
cap_task_fix_setuid(struct cred * new,const struct cred * old,int flags)1152 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1153 {
1154 	switch (flags) {
1155 	case LSM_SETID_RE:
1156 	case LSM_SETID_ID:
1157 	case LSM_SETID_RES:
1158 		/* juggle the capabilities to follow [RES]UID changes unless
1159 		 * otherwise suppressed */
1160 		if (!issecure(SECURE_NO_SETUID_FIXUP))
1161 			cap_emulate_setxuid(new, old);
1162 		break;
1163 
1164 	case LSM_SETID_FS:
1165 		/* juggle the capabilities to follow FSUID changes, unless
1166 		 * otherwise suppressed
1167 		 *
1168 		 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1169 		 *          if not, we might be a bit too harsh here.
1170 		 */
1171 		if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1172 			kuid_t root_uid = make_kuid(old->user_ns, 0);
1173 			if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1174 				new->cap_effective =
1175 					cap_drop_fs_set(new->cap_effective);
1176 
1177 			if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1178 				new->cap_effective =
1179 					cap_raise_fs_set(new->cap_effective,
1180 							 new->cap_permitted);
1181 		}
1182 		break;
1183 
1184 	default:
1185 		return -EINVAL;
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 /*
1192  * Rationale: code calling task_setscheduler, task_setioprio, and
1193  * task_setnice, assumes that
1194  *   . if capable(cap_sys_nice), then those actions should be allowed
1195  *   . if not capable(cap_sys_nice), but acting on your own processes,
1196  *   	then those actions should be allowed
1197  * This is insufficient now since you can call code without suid, but
1198  * yet with increased caps.
1199  * So we check for increased caps on the target process.
1200  */
cap_safe_nice(struct task_struct * p)1201 static int cap_safe_nice(struct task_struct *p)
1202 {
1203 	int is_subset, ret = 0;
1204 
1205 	rcu_read_lock();
1206 	is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1207 				 current_cred()->cap_permitted);
1208 	if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1209 		ret = -EPERM;
1210 	rcu_read_unlock();
1211 
1212 	return ret;
1213 }
1214 
1215 /**
1216  * cap_task_setscheduler - Determine if scheduler policy change is permitted
1217  * @p: The task to affect
1218  *
1219  * Determine if the requested scheduler policy change is permitted for the
1220  * specified task.
1221  *
1222  * Return: 0 if permission is granted, -ve if denied.
1223  */
cap_task_setscheduler(struct task_struct * p)1224 int cap_task_setscheduler(struct task_struct *p)
1225 {
1226 	return cap_safe_nice(p);
1227 }
1228 
1229 /**
1230  * cap_task_setioprio - Determine if I/O priority change is permitted
1231  * @p: The task to affect
1232  * @ioprio: The I/O priority to set
1233  *
1234  * Determine if the requested I/O priority change is permitted for the specified
1235  * task.
1236  *
1237  * Return: 0 if permission is granted, -ve if denied.
1238  */
cap_task_setioprio(struct task_struct * p,int ioprio)1239 int cap_task_setioprio(struct task_struct *p, int ioprio)
1240 {
1241 	return cap_safe_nice(p);
1242 }
1243 
1244 /**
1245  * cap_task_setnice - Determine if task priority change is permitted
1246  * @p: The task to affect
1247  * @nice: The nice value to set
1248  *
1249  * Determine if the requested task priority change is permitted for the
1250  * specified task.
1251  *
1252  * Return: 0 if permission is granted, -ve if denied.
1253  */
cap_task_setnice(struct task_struct * p,int nice)1254 int cap_task_setnice(struct task_struct *p, int nice)
1255 {
1256 	return cap_safe_nice(p);
1257 }
1258 
1259 /*
1260  * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
1261  * the current task's bounding set.  Returns 0 on success, -ve on error.
1262  */
cap_prctl_drop(unsigned long cap)1263 static int cap_prctl_drop(unsigned long cap)
1264 {
1265 	struct cred *new;
1266 
1267 	if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1268 		return -EPERM;
1269 	if (!cap_valid(cap))
1270 		return -EINVAL;
1271 
1272 	new = prepare_creds();
1273 	if (!new)
1274 		return -ENOMEM;
1275 	cap_lower(new->cap_bset, cap);
1276 	return commit_creds(new);
1277 }
1278 
1279 /**
1280  * cap_task_prctl - Implement process control functions for this security module
1281  * @option: The process control function requested
1282  * @arg2: The argument data for this function
1283  * @arg3: The argument data for this function
1284  * @arg4: The argument data for this function
1285  * @arg5: The argument data for this function
1286  *
1287  * Allow process control functions (sys_prctl()) to alter capabilities; may
1288  * also deny access to other functions not otherwise implemented here.
1289  *
1290  * Return: 0 or +ve on success, -ENOSYS if this function is not implemented
1291  * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
1292  * modules will consider performing the function.
1293  */
cap_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)1294 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1295 		   unsigned long arg4, unsigned long arg5)
1296 {
1297 	const struct cred *old = current_cred();
1298 	struct cred *new;
1299 
1300 	switch (option) {
1301 	case PR_CAPBSET_READ:
1302 		if (!cap_valid(arg2))
1303 			return -EINVAL;
1304 		return !!cap_raised(old->cap_bset, arg2);
1305 
1306 	case PR_CAPBSET_DROP:
1307 		return cap_prctl_drop(arg2);
1308 
1309 	/*
1310 	 * The next four prctl's remain to assist with transitioning a
1311 	 * system from legacy UID=0 based privilege (when filesystem
1312 	 * capabilities are not in use) to a system using filesystem
1313 	 * capabilities only - as the POSIX.1e draft intended.
1314 	 *
1315 	 * Note:
1316 	 *
1317 	 *  PR_SET_SECUREBITS =
1318 	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1319 	 *    | issecure_mask(SECURE_NOROOT)
1320 	 *    | issecure_mask(SECURE_NOROOT_LOCKED)
1321 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
1322 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1323 	 *
1324 	 * will ensure that the current process and all of its
1325 	 * children will be locked into a pure
1326 	 * capability-based-privilege environment.
1327 	 */
1328 	case PR_SET_SECUREBITS:
1329 		if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1330 		     & (old->securebits ^ arg2))			/*[1]*/
1331 		    || ((old->securebits & SECURE_ALL_LOCKS & ~arg2))	/*[2]*/
1332 		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))	/*[3]*/
1333 			/*
1334 			 * [1] no changing of bits that are locked
1335 			 * [2] no unlocking of locks
1336 			 * [3] no setting of unsupported bits
1337 			 */
1338 		    )
1339 			/* cannot change a locked bit */
1340 			return -EPERM;
1341 
1342 		/*
1343 		 * Doing anything requires privilege (go read about the
1344 		 * "sendmail capabilities bug"), except for unprivileged bits.
1345 		 * Indeed, the SECURE_ALL_UNPRIVILEGED bits are not
1346 		 * restrictions enforced by the kernel but by user space on
1347 		 * itself.
1348 		 */
1349 		if (cap_capable(current_cred(), current_cred()->user_ns,
1350 				CAP_SETPCAP, CAP_OPT_NONE) != 0) {
1351 			const unsigned long unpriv_and_locks =
1352 				SECURE_ALL_UNPRIVILEGED |
1353 				SECURE_ALL_UNPRIVILEGED << 1;
1354 			const unsigned long changed = old->securebits ^ arg2;
1355 
1356 			/* For legacy reason, denies non-change. */
1357 			if (!changed)
1358 				return -EPERM;
1359 
1360 			/* Denies privileged changes. */
1361 			if (changed & ~unpriv_and_locks)
1362 				return -EPERM;
1363 		}
1364 
1365 		new = prepare_creds();
1366 		if (!new)
1367 			return -ENOMEM;
1368 		new->securebits = arg2;
1369 		return commit_creds(new);
1370 
1371 	case PR_GET_SECUREBITS:
1372 		return old->securebits;
1373 
1374 	case PR_GET_KEEPCAPS:
1375 		return !!issecure(SECURE_KEEP_CAPS);
1376 
1377 	case PR_SET_KEEPCAPS:
1378 		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1379 			return -EINVAL;
1380 		if (issecure(SECURE_KEEP_CAPS_LOCKED))
1381 			return -EPERM;
1382 
1383 		new = prepare_creds();
1384 		if (!new)
1385 			return -ENOMEM;
1386 		if (arg2)
1387 			new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1388 		else
1389 			new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1390 		return commit_creds(new);
1391 
1392 	case PR_CAP_AMBIENT:
1393 		if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1394 			if (arg3 | arg4 | arg5)
1395 				return -EINVAL;
1396 
1397 			new = prepare_creds();
1398 			if (!new)
1399 				return -ENOMEM;
1400 			cap_clear(new->cap_ambient);
1401 			return commit_creds(new);
1402 		}
1403 
1404 		if (((!cap_valid(arg3)) | arg4 | arg5))
1405 			return -EINVAL;
1406 
1407 		if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1408 			return !!cap_raised(current_cred()->cap_ambient, arg3);
1409 		} else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1410 			   arg2 != PR_CAP_AMBIENT_LOWER) {
1411 			return -EINVAL;
1412 		} else {
1413 			if (arg2 == PR_CAP_AMBIENT_RAISE &&
1414 			    (!cap_raised(current_cred()->cap_permitted, arg3) ||
1415 			     !cap_raised(current_cred()->cap_inheritable,
1416 					 arg3) ||
1417 			     issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1418 				return -EPERM;
1419 
1420 			new = prepare_creds();
1421 			if (!new)
1422 				return -ENOMEM;
1423 			if (arg2 == PR_CAP_AMBIENT_RAISE)
1424 				cap_raise(new->cap_ambient, arg3);
1425 			else
1426 				cap_lower(new->cap_ambient, arg3);
1427 			return commit_creds(new);
1428 		}
1429 
1430 	default:
1431 		/* No functionality available - continue with default */
1432 		return -ENOSYS;
1433 	}
1434 }
1435 
1436 /**
1437  * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1438  * @mm: The VM space in which the new mapping is to be made
1439  * @pages: The size of the mapping
1440  *
1441  * Determine whether the allocation of a new virtual mapping by the current
1442  * task is permitted.
1443  *
1444  * Return: 0 if permission granted, negative error code if not.
1445  */
cap_vm_enough_memory(struct mm_struct * mm,long pages)1446 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1447 {
1448 	return cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1449 			   CAP_OPT_NOAUDIT);
1450 }
1451 
1452 /**
1453  * cap_mmap_addr - check if able to map given addr
1454  * @addr: address attempting to be mapped
1455  *
1456  * If the process is attempting to map memory below dac_mmap_min_addr they need
1457  * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
1458  * capability security module.
1459  *
1460  * Return: 0 if this mapping should be allowed or -EPERM if not.
1461  */
cap_mmap_addr(unsigned long addr)1462 int cap_mmap_addr(unsigned long addr)
1463 {
1464 	int ret = 0;
1465 
1466 	if (addr < dac_mmap_min_addr) {
1467 		ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1468 				  CAP_OPT_NONE);
1469 		/* set PF_SUPERPRIV if it turns out we allow the low mmap */
1470 		if (ret == 0)
1471 			current->flags |= PF_SUPERPRIV;
1472 	}
1473 	return ret;
1474 }
1475 
1476 #ifdef CONFIG_SECURITY
1477 
1478 static const struct lsm_id capability_lsmid = {
1479 	.name = "capability",
1480 	.id = LSM_ID_CAPABILITY,
1481 };
1482 
1483 static struct security_hook_list capability_hooks[] __ro_after_init = {
1484 	LSM_HOOK_INIT(capable, cap_capable),
1485 	LSM_HOOK_INIT(settime, cap_settime),
1486 	LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1487 	LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1488 	LSM_HOOK_INIT(capget, cap_capget),
1489 	LSM_HOOK_INIT(capset, cap_capset),
1490 	LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
1491 	LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1492 	LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1493 	LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1494 	LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1495 	LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1496 	LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1497 	LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1498 	LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1499 	LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1500 	LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1501 };
1502 
capability_init(void)1503 static int __init capability_init(void)
1504 {
1505 	security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1506 			   &capability_lsmid);
1507 	return 0;
1508 }
1509 
1510 DEFINE_LSM(capability) = {
1511 	.name = "capability",
1512 	.order = LSM_ORDER_FIRST,
1513 	.init = capability_init,
1514 };
1515 
1516 #endif /* CONFIG_SECURITY */
1517