1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio-integrity.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/blk-crypto.h>
20 #include <linux/xarray.h>
21
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 #include "blk-cgroup.h"
26
27 #define ALLOC_CACHE_THRESHOLD 16
28 #define ALLOC_CACHE_MAX 256
29
30 struct bio_alloc_cache {
31 struct bio *free_list;
32 struct bio *free_list_irq;
33 unsigned int nr;
34 unsigned int nr_irq;
35 };
36
37 static struct biovec_slab {
38 int nr_vecs;
39 char *name;
40 struct kmem_cache *slab;
41 } bvec_slabs[] __read_mostly = {
42 { .nr_vecs = 16, .name = "biovec-16" },
43 { .nr_vecs = 64, .name = "biovec-64" },
44 { .nr_vecs = 128, .name = "biovec-128" },
45 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46 };
47
biovec_slab(unsigned short nr_vecs)48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49 {
50 switch (nr_vecs) {
51 /* smaller bios use inline vecs */
52 case 5 ... 16:
53 return &bvec_slabs[0];
54 case 17 ... 64:
55 return &bvec_slabs[1];
56 case 65 ... 128:
57 return &bvec_slabs[2];
58 case 129 ... BIO_MAX_VECS:
59 return &bvec_slabs[3];
60 default:
61 BUG();
62 return NULL;
63 }
64 }
65
66 /*
67 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68 * IO code that does not need private memory pools.
69 */
70 struct bio_set fs_bio_set;
71 EXPORT_SYMBOL(fs_bio_set);
72
73 /*
74 * Our slab pool management
75 */
76 struct bio_slab {
77 struct kmem_cache *slab;
78 unsigned int slab_ref;
79 unsigned int slab_size;
80 char name[12];
81 };
82 static DEFINE_MUTEX(bio_slab_lock);
83 static DEFINE_XARRAY(bio_slabs);
84
create_bio_slab(unsigned int size)85 static struct bio_slab *create_bio_slab(unsigned int size)
86 {
87 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88
89 if (!bslab)
90 return NULL;
91
92 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 bslab->slab = kmem_cache_create(bslab->name, size,
94 ARCH_KMALLOC_MINALIGN,
95 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 if (!bslab->slab)
97 goto fail_alloc_slab;
98
99 bslab->slab_ref = 1;
100 bslab->slab_size = size;
101
102 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 return bslab;
104
105 kmem_cache_destroy(bslab->slab);
106
107 fail_alloc_slab:
108 kfree(bslab);
109 return NULL;
110 }
111
bs_bio_slab_size(struct bio_set * bs)112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113 {
114 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115 }
116
bio_find_or_create_slab(struct bio_set * bs)117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118 {
119 unsigned int size = bs_bio_slab_size(bs);
120 struct bio_slab *bslab;
121
122 mutex_lock(&bio_slab_lock);
123 bslab = xa_load(&bio_slabs, size);
124 if (bslab)
125 bslab->slab_ref++;
126 else
127 bslab = create_bio_slab(size);
128 mutex_unlock(&bio_slab_lock);
129
130 if (bslab)
131 return bslab->slab;
132 return NULL;
133 }
134
bio_put_slab(struct bio_set * bs)135 static void bio_put_slab(struct bio_set *bs)
136 {
137 struct bio_slab *bslab = NULL;
138 unsigned int slab_size = bs_bio_slab_size(bs);
139
140 mutex_lock(&bio_slab_lock);
141
142 bslab = xa_load(&bio_slabs, slab_size);
143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 goto out;
145
146 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147
148 WARN_ON(!bslab->slab_ref);
149
150 if (--bslab->slab_ref)
151 goto out;
152
153 xa_erase(&bio_slabs, slab_size);
154
155 kmem_cache_destroy(bslab->slab);
156 kfree(bslab);
157
158 out:
159 mutex_unlock(&bio_slab_lock);
160 }
161
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163 {
164 BUG_ON(nr_vecs > BIO_MAX_VECS);
165
166 if (nr_vecs == BIO_MAX_VECS)
167 mempool_free(bv, pool);
168 else if (nr_vecs > BIO_INLINE_VECS)
169 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170 }
171
172 /*
173 * Make the first allocation restricted and don't dump info on allocation
174 * failures, since we'll fall back to the mempool in case of failure.
175 */
bvec_alloc_gfp(gfp_t gfp)176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177 {
178 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180 }
181
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 gfp_t gfp_mask)
184 {
185 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186
187 if (WARN_ON_ONCE(!bvs))
188 return NULL;
189
190 /*
191 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 * We also rely on this in the bvec_free path.
193 */
194 *nr_vecs = bvs->nr_vecs;
195
196 /*
197 * Try a slab allocation first for all smaller allocations. If that
198 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200 */
201 if (*nr_vecs < BIO_MAX_VECS) {
202 struct bio_vec *bvl;
203
204 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206 return bvl;
207 *nr_vecs = BIO_MAX_VECS;
208 }
209
210 return mempool_alloc(pool, gfp_mask);
211 }
212
bio_uninit(struct bio * bio)213 void bio_uninit(struct bio *bio)
214 {
215 #ifdef CONFIG_BLK_CGROUP
216 if (bio->bi_blkg) {
217 blkg_put(bio->bi_blkg);
218 bio->bi_blkg = NULL;
219 }
220 #endif
221 if (bio_integrity(bio))
222 bio_integrity_free(bio);
223
224 bio_crypt_free_ctx(bio);
225 }
226 EXPORT_SYMBOL(bio_uninit);
227
bio_free(struct bio * bio)228 static void bio_free(struct bio *bio)
229 {
230 struct bio_set *bs = bio->bi_pool;
231 void *p = bio;
232
233 WARN_ON_ONCE(!bs);
234
235 bio_uninit(bio);
236 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 mempool_free(p - bs->front_pad, &bs->bio_pool);
238 }
239
240 /*
241 * Users of this function have their own bio allocation. Subsequently,
242 * they must remember to pair any call to bio_init() with bio_uninit()
243 * when IO has completed, or when the bio is released.
244 */
bio_init(struct bio * bio,struct block_device * bdev,struct bio_vec * table,unsigned short max_vecs,blk_opf_t opf)245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246 unsigned short max_vecs, blk_opf_t opf)
247 {
248 bio->bi_next = NULL;
249 bio->bi_bdev = bdev;
250 bio->bi_opf = opf;
251 bio->bi_flags = 0;
252 bio->bi_ioprio = 0;
253 bio->bi_write_hint = 0;
254 bio->bi_write_stream = 0;
255 bio->bi_status = 0;
256 bio->bi_bvec_gap_bit = 0;
257 bio->bi_iter.bi_sector = 0;
258 bio->bi_iter.bi_size = 0;
259 bio->bi_iter.bi_idx = 0;
260 bio->bi_iter.bi_bvec_done = 0;
261 bio->bi_end_io = NULL;
262 bio->bi_private = NULL;
263 #ifdef CONFIG_BLK_CGROUP
264 bio->bi_blkg = NULL;
265 bio->issue_time_ns = 0;
266 if (bdev)
267 bio_associate_blkg(bio);
268 #ifdef CONFIG_BLK_CGROUP_IOCOST
269 bio->bi_iocost_cost = 0;
270 #endif
271 #endif
272 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
273 bio->bi_crypt_context = NULL;
274 #endif
275 #ifdef CONFIG_BLK_DEV_INTEGRITY
276 bio->bi_integrity = NULL;
277 #endif
278 bio->bi_vcnt = 0;
279
280 atomic_set(&bio->__bi_remaining, 1);
281 atomic_set(&bio->__bi_cnt, 1);
282 bio->bi_cookie = BLK_QC_T_NONE;
283
284 bio->bi_max_vecs = max_vecs;
285 bio->bi_io_vec = table;
286 bio->bi_pool = NULL;
287 }
288 EXPORT_SYMBOL(bio_init);
289
290 /**
291 * bio_reset - reinitialize a bio
292 * @bio: bio to reset
293 * @bdev: block device to use the bio for
294 * @opf: operation and flags for bio
295 *
296 * Description:
297 * After calling bio_reset(), @bio will be in the same state as a freshly
298 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
299 * preserved are the ones that are initialized by bio_alloc_bioset(). See
300 * comment in struct bio.
301 */
bio_reset(struct bio * bio,struct block_device * bdev,blk_opf_t opf)302 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
303 {
304 bio_uninit(bio);
305 memset(bio, 0, BIO_RESET_BYTES);
306 atomic_set(&bio->__bi_remaining, 1);
307 bio->bi_bdev = bdev;
308 if (bio->bi_bdev)
309 bio_associate_blkg(bio);
310 bio->bi_opf = opf;
311 }
312 EXPORT_SYMBOL(bio_reset);
313
__bio_chain_endio(struct bio * bio)314 static struct bio *__bio_chain_endio(struct bio *bio)
315 {
316 struct bio *parent = bio->bi_private;
317
318 if (bio->bi_status && !parent->bi_status)
319 parent->bi_status = bio->bi_status;
320 bio_put(bio);
321 return parent;
322 }
323
bio_chain_endio(struct bio * bio)324 static void bio_chain_endio(struct bio *bio)
325 {
326 bio_endio(__bio_chain_endio(bio));
327 }
328
329 /**
330 * bio_chain - chain bio completions
331 * @bio: the target bio
332 * @parent: the parent bio of @bio
333 *
334 * The caller won't have a bi_end_io called when @bio completes - instead,
335 * @parent's bi_end_io won't be called until both @parent and @bio have
336 * completed; the chained bio will also be freed when it completes.
337 *
338 * The caller must not set bi_private or bi_end_io in @bio.
339 */
bio_chain(struct bio * bio,struct bio * parent)340 void bio_chain(struct bio *bio, struct bio *parent)
341 {
342 BUG_ON(bio->bi_private || bio->bi_end_io);
343
344 bio->bi_private = parent;
345 bio->bi_end_io = bio_chain_endio;
346 bio_inc_remaining(parent);
347 }
348 EXPORT_SYMBOL(bio_chain);
349
350 /**
351 * bio_chain_and_submit - submit a bio after chaining it to another one
352 * @prev: bio to chain and submit
353 * @new: bio to chain to
354 *
355 * If @prev is non-NULL, chain it to @new and submit it.
356 *
357 * Return: @new.
358 */
bio_chain_and_submit(struct bio * prev,struct bio * new)359 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
360 {
361 if (prev) {
362 bio_chain(prev, new);
363 submit_bio(prev);
364 }
365 return new;
366 }
367
blk_next_bio(struct bio * bio,struct block_device * bdev,unsigned int nr_pages,blk_opf_t opf,gfp_t gfp)368 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
369 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
370 {
371 return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
372 }
373 EXPORT_SYMBOL_GPL(blk_next_bio);
374
bio_alloc_rescue(struct work_struct * work)375 static void bio_alloc_rescue(struct work_struct *work)
376 {
377 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
378 struct bio *bio;
379
380 while (1) {
381 spin_lock(&bs->rescue_lock);
382 bio = bio_list_pop(&bs->rescue_list);
383 spin_unlock(&bs->rescue_lock);
384
385 if (!bio)
386 break;
387
388 submit_bio_noacct(bio);
389 }
390 }
391
punt_bios_to_rescuer(struct bio_set * bs)392 static void punt_bios_to_rescuer(struct bio_set *bs)
393 {
394 struct bio_list punt, nopunt;
395 struct bio *bio;
396
397 if (WARN_ON_ONCE(!bs->rescue_workqueue))
398 return;
399 /*
400 * In order to guarantee forward progress we must punt only bios that
401 * were allocated from this bio_set; otherwise, if there was a bio on
402 * there for a stacking driver higher up in the stack, processing it
403 * could require allocating bios from this bio_set, and doing that from
404 * our own rescuer would be bad.
405 *
406 * Since bio lists are singly linked, pop them all instead of trying to
407 * remove from the middle of the list:
408 */
409
410 bio_list_init(&punt);
411 bio_list_init(&nopunt);
412
413 while ((bio = bio_list_pop(¤t->bio_list[0])))
414 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
415 current->bio_list[0] = nopunt;
416
417 bio_list_init(&nopunt);
418 while ((bio = bio_list_pop(¤t->bio_list[1])))
419 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
420 current->bio_list[1] = nopunt;
421
422 spin_lock(&bs->rescue_lock);
423 bio_list_merge(&bs->rescue_list, &punt);
424 spin_unlock(&bs->rescue_lock);
425
426 queue_work(bs->rescue_workqueue, &bs->rescue_work);
427 }
428
bio_alloc_irq_cache_splice(struct bio_alloc_cache * cache)429 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
430 {
431 unsigned long flags;
432
433 /* cache->free_list must be empty */
434 if (WARN_ON_ONCE(cache->free_list))
435 return;
436
437 local_irq_save(flags);
438 cache->free_list = cache->free_list_irq;
439 cache->free_list_irq = NULL;
440 cache->nr += cache->nr_irq;
441 cache->nr_irq = 0;
442 local_irq_restore(flags);
443 }
444
bio_alloc_percpu_cache(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp,struct bio_set * bs)445 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
446 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
447 struct bio_set *bs)
448 {
449 struct bio_alloc_cache *cache;
450 struct bio *bio;
451
452 cache = per_cpu_ptr(bs->cache, get_cpu());
453 if (!cache->free_list) {
454 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
455 bio_alloc_irq_cache_splice(cache);
456 if (!cache->free_list) {
457 put_cpu();
458 return NULL;
459 }
460 }
461 bio = cache->free_list;
462 cache->free_list = bio->bi_next;
463 cache->nr--;
464 put_cpu();
465
466 if (nr_vecs)
467 bio_init_inline(bio, bdev, nr_vecs, opf);
468 else
469 bio_init(bio, bdev, NULL, nr_vecs, opf);
470 bio->bi_pool = bs;
471 return bio;
472 }
473
474 /**
475 * bio_alloc_bioset - allocate a bio for I/O
476 * @bdev: block device to allocate the bio for (can be %NULL)
477 * @nr_vecs: number of bvecs to pre-allocate
478 * @opf: operation and flags for bio
479 * @gfp_mask: the GFP_* mask given to the slab allocator
480 * @bs: the bio_set to allocate from.
481 *
482 * Allocate a bio from the mempools in @bs.
483 *
484 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
485 * allocate a bio. This is due to the mempool guarantees. To make this work,
486 * callers must never allocate more than 1 bio at a time from the general pool.
487 * Callers that need to allocate more than 1 bio must always submit the
488 * previously allocated bio for IO before attempting to allocate a new one.
489 * Failure to do so can cause deadlocks under memory pressure.
490 *
491 * Note that when running under submit_bio_noacct() (i.e. any block driver),
492 * bios are not submitted until after you return - see the code in
493 * submit_bio_noacct() that converts recursion into iteration, to prevent
494 * stack overflows.
495 *
496 * This would normally mean allocating multiple bios under submit_bio_noacct()
497 * would be susceptible to deadlocks, but we have
498 * deadlock avoidance code that resubmits any blocked bios from a rescuer
499 * thread.
500 *
501 * However, we do not guarantee forward progress for allocations from other
502 * mempools. Doing multiple allocations from the same mempool under
503 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
504 * for per bio allocations.
505 *
506 * Returns: Pointer to new bio on success, NULL on failure.
507 */
bio_alloc_bioset(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask,struct bio_set * bs)508 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
509 blk_opf_t opf, gfp_t gfp_mask,
510 struct bio_set *bs)
511 {
512 gfp_t saved_gfp = gfp_mask;
513 struct bio *bio;
514 void *p;
515
516 /* should not use nobvec bioset for nr_vecs > 0 */
517 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
518 return NULL;
519
520 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
521 opf |= REQ_ALLOC_CACHE;
522 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
523 gfp_mask, bs);
524 if (bio)
525 return bio;
526 /*
527 * No cached bio available, bio returned below marked with
528 * REQ_ALLOC_CACHE to participate in per-cpu alloc cache.
529 */
530 } else
531 opf &= ~REQ_ALLOC_CACHE;
532
533 /*
534 * submit_bio_noacct() converts recursion to iteration; this means if
535 * we're running beneath it, any bios we allocate and submit will not be
536 * submitted (and thus freed) until after we return.
537 *
538 * This exposes us to a potential deadlock if we allocate multiple bios
539 * from the same bio_set() while running underneath submit_bio_noacct().
540 * If we were to allocate multiple bios (say a stacking block driver
541 * that was splitting bios), we would deadlock if we exhausted the
542 * mempool's reserve.
543 *
544 * We solve this, and guarantee forward progress, with a rescuer
545 * workqueue per bio_set. If we go to allocate and there are bios on
546 * current->bio_list, we first try the allocation without
547 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
548 * blocking to the rescuer workqueue before we retry with the original
549 * gfp_flags.
550 */
551 if (current->bio_list &&
552 (!bio_list_empty(¤t->bio_list[0]) ||
553 !bio_list_empty(¤t->bio_list[1])) &&
554 bs->rescue_workqueue)
555 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
556
557 p = mempool_alloc(&bs->bio_pool, gfp_mask);
558 if (!p && gfp_mask != saved_gfp) {
559 punt_bios_to_rescuer(bs);
560 gfp_mask = saved_gfp;
561 p = mempool_alloc(&bs->bio_pool, gfp_mask);
562 }
563 if (unlikely(!p))
564 return NULL;
565 if (!mempool_is_saturated(&bs->bio_pool))
566 opf &= ~REQ_ALLOC_CACHE;
567
568 bio = p + bs->front_pad;
569 if (nr_vecs > BIO_INLINE_VECS) {
570 struct bio_vec *bvl = NULL;
571
572 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
573 if (!bvl && gfp_mask != saved_gfp) {
574 punt_bios_to_rescuer(bs);
575 gfp_mask = saved_gfp;
576 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
577 }
578 if (unlikely(!bvl))
579 goto err_free;
580
581 bio_init(bio, bdev, bvl, nr_vecs, opf);
582 } else if (nr_vecs) {
583 bio_init_inline(bio, bdev, BIO_INLINE_VECS, opf);
584 } else {
585 bio_init(bio, bdev, NULL, 0, opf);
586 }
587
588 bio->bi_pool = bs;
589 return bio;
590
591 err_free:
592 mempool_free(p, &bs->bio_pool);
593 return NULL;
594 }
595 EXPORT_SYMBOL(bio_alloc_bioset);
596
597 /**
598 * bio_kmalloc - kmalloc a bio
599 * @nr_vecs: number of bio_vecs to allocate
600 * @gfp_mask: the GFP_* mask given to the slab allocator
601 *
602 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
603 * using bio_init() before use. To free a bio returned from this function use
604 * kfree() after calling bio_uninit(). A bio returned from this function can
605 * be reused by calling bio_uninit() before calling bio_init() again.
606 *
607 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
608 * function are not backed by a mempool can fail. Do not use this function
609 * for allocations in the file system I/O path.
610 *
611 * Returns: Pointer to new bio on success, NULL on failure.
612 */
bio_kmalloc(unsigned short nr_vecs,gfp_t gfp_mask)613 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
614 {
615 struct bio *bio;
616
617 if (nr_vecs > BIO_MAX_INLINE_VECS)
618 return NULL;
619 return kmalloc(sizeof(*bio) + nr_vecs * sizeof(struct bio_vec),
620 gfp_mask);
621 }
622 EXPORT_SYMBOL(bio_kmalloc);
623
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)624 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
625 {
626 struct bio_vec bv;
627 struct bvec_iter iter;
628
629 __bio_for_each_segment(bv, bio, iter, start)
630 memzero_bvec(&bv);
631 }
632 EXPORT_SYMBOL(zero_fill_bio_iter);
633
634 /**
635 * bio_truncate - truncate the bio to small size of @new_size
636 * @bio: the bio to be truncated
637 * @new_size: new size for truncating the bio
638 *
639 * Description:
640 * Truncate the bio to new size of @new_size. If bio_op(bio) is
641 * REQ_OP_READ, zero the truncated part. This function should only
642 * be used for handling corner cases, such as bio eod.
643 */
bio_truncate(struct bio * bio,unsigned new_size)644 static void bio_truncate(struct bio *bio, unsigned new_size)
645 {
646 struct bio_vec bv;
647 struct bvec_iter iter;
648 unsigned int done = 0;
649 bool truncated = false;
650
651 if (new_size >= bio->bi_iter.bi_size)
652 return;
653
654 if (bio_op(bio) != REQ_OP_READ)
655 goto exit;
656
657 bio_for_each_segment(bv, bio, iter) {
658 if (done + bv.bv_len > new_size) {
659 size_t offset;
660
661 if (!truncated)
662 offset = new_size - done;
663 else
664 offset = 0;
665 memzero_page(bv.bv_page, bv.bv_offset + offset,
666 bv.bv_len - offset);
667 truncated = true;
668 }
669 done += bv.bv_len;
670 }
671
672 exit:
673 /*
674 * Don't touch bvec table here and make it really immutable, since
675 * fs bio user has to retrieve all pages via bio_for_each_segment_all
676 * in its .end_bio() callback.
677 *
678 * It is enough to truncate bio by updating .bi_size since we can make
679 * correct bvec with the updated .bi_size for drivers.
680 */
681 bio->bi_iter.bi_size = new_size;
682 }
683
684 /**
685 * guard_bio_eod - truncate a BIO to fit the block device
686 * @bio: bio to truncate
687 *
688 * This allows us to do IO even on the odd last sectors of a device, even if the
689 * block size is some multiple of the physical sector size.
690 *
691 * We'll just truncate the bio to the size of the device, and clear the end of
692 * the buffer head manually. Truly out-of-range accesses will turn into actual
693 * I/O errors, this only handles the "we need to be able to do I/O at the final
694 * sector" case.
695 */
guard_bio_eod(struct bio * bio)696 void guard_bio_eod(struct bio *bio)
697 {
698 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
699
700 if (!maxsector)
701 return;
702
703 /*
704 * If the *whole* IO is past the end of the device,
705 * let it through, and the IO layer will turn it into
706 * an EIO.
707 */
708 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
709 return;
710
711 maxsector -= bio->bi_iter.bi_sector;
712 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
713 return;
714
715 bio_truncate(bio, maxsector << 9);
716 }
717
__bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)718 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
719 unsigned int nr)
720 {
721 unsigned int i = 0;
722 struct bio *bio;
723
724 while ((bio = cache->free_list) != NULL) {
725 cache->free_list = bio->bi_next;
726 cache->nr--;
727 bio_free(bio);
728 if (++i == nr)
729 break;
730 }
731 return i;
732 }
733
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)734 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
735 unsigned int nr)
736 {
737 nr -= __bio_alloc_cache_prune(cache, nr);
738 if (!READ_ONCE(cache->free_list)) {
739 bio_alloc_irq_cache_splice(cache);
740 __bio_alloc_cache_prune(cache, nr);
741 }
742 }
743
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)744 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
745 {
746 struct bio_set *bs;
747
748 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
749 if (bs->cache) {
750 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
751
752 bio_alloc_cache_prune(cache, -1U);
753 }
754 return 0;
755 }
756
bio_alloc_cache_destroy(struct bio_set * bs)757 static void bio_alloc_cache_destroy(struct bio_set *bs)
758 {
759 int cpu;
760
761 if (!bs->cache)
762 return;
763
764 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
765 for_each_possible_cpu(cpu) {
766 struct bio_alloc_cache *cache;
767
768 cache = per_cpu_ptr(bs->cache, cpu);
769 bio_alloc_cache_prune(cache, -1U);
770 }
771 free_percpu(bs->cache);
772 bs->cache = NULL;
773 }
774
bio_put_percpu_cache(struct bio * bio)775 static inline void bio_put_percpu_cache(struct bio *bio)
776 {
777 struct bio_alloc_cache *cache;
778
779 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
780 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
781 goto out_free;
782
783 if (in_task()) {
784 bio_uninit(bio);
785 bio->bi_next = cache->free_list;
786 /* Not necessary but helps not to iopoll already freed bios */
787 bio->bi_bdev = NULL;
788 cache->free_list = bio;
789 cache->nr++;
790 } else if (in_hardirq()) {
791 lockdep_assert_irqs_disabled();
792
793 bio_uninit(bio);
794 bio->bi_next = cache->free_list_irq;
795 cache->free_list_irq = bio;
796 cache->nr_irq++;
797 } else {
798 goto out_free;
799 }
800 put_cpu();
801 return;
802 out_free:
803 put_cpu();
804 bio_free(bio);
805 }
806
807 /**
808 * bio_put - release a reference to a bio
809 * @bio: bio to release reference to
810 *
811 * Description:
812 * Put a reference to a &struct bio, either one you have gotten with
813 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
814 **/
bio_put(struct bio * bio)815 void bio_put(struct bio *bio)
816 {
817 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
818 BUG_ON(!atomic_read(&bio->__bi_cnt));
819 if (!atomic_dec_and_test(&bio->__bi_cnt))
820 return;
821 }
822 if (bio->bi_opf & REQ_ALLOC_CACHE)
823 bio_put_percpu_cache(bio);
824 else
825 bio_free(bio);
826 }
827 EXPORT_SYMBOL(bio_put);
828
__bio_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp)829 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
830 {
831 bio_set_flag(bio, BIO_CLONED);
832 bio->bi_ioprio = bio_src->bi_ioprio;
833 bio->bi_write_hint = bio_src->bi_write_hint;
834 bio->bi_write_stream = bio_src->bi_write_stream;
835 bio->bi_iter = bio_src->bi_iter;
836
837 if (bio->bi_bdev) {
838 if (bio->bi_bdev == bio_src->bi_bdev &&
839 bio_flagged(bio_src, BIO_REMAPPED))
840 bio_set_flag(bio, BIO_REMAPPED);
841 bio_clone_blkg_association(bio, bio_src);
842 }
843
844 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
845 return -ENOMEM;
846 if (bio_integrity(bio_src) &&
847 bio_integrity_clone(bio, bio_src, gfp) < 0)
848 return -ENOMEM;
849 return 0;
850 }
851
852 /**
853 * bio_alloc_clone - clone a bio that shares the original bio's biovec
854 * @bdev: block_device to clone onto
855 * @bio_src: bio to clone from
856 * @gfp: allocation priority
857 * @bs: bio_set to allocate from
858 *
859 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
860 * bio, but not the actual data it points to.
861 *
862 * The caller must ensure that the return bio is not freed before @bio_src.
863 */
bio_alloc_clone(struct block_device * bdev,struct bio * bio_src,gfp_t gfp,struct bio_set * bs)864 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
865 gfp_t gfp, struct bio_set *bs)
866 {
867 struct bio *bio;
868
869 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
870 if (!bio)
871 return NULL;
872
873 if (__bio_clone(bio, bio_src, gfp) < 0) {
874 bio_put(bio);
875 return NULL;
876 }
877 bio->bi_io_vec = bio_src->bi_io_vec;
878
879 return bio;
880 }
881 EXPORT_SYMBOL(bio_alloc_clone);
882
883 /**
884 * bio_init_clone - clone a bio that shares the original bio's biovec
885 * @bdev: block_device to clone onto
886 * @bio: bio to clone into
887 * @bio_src: bio to clone from
888 * @gfp: allocation priority
889 *
890 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
891 * The caller owns the returned bio, but not the actual data it points to.
892 *
893 * The caller must ensure that @bio_src is not freed before @bio.
894 */
bio_init_clone(struct block_device * bdev,struct bio * bio,struct bio * bio_src,gfp_t gfp)895 int bio_init_clone(struct block_device *bdev, struct bio *bio,
896 struct bio *bio_src, gfp_t gfp)
897 {
898 int ret;
899
900 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
901 ret = __bio_clone(bio, bio_src, gfp);
902 if (ret)
903 bio_uninit(bio);
904 return ret;
905 }
906 EXPORT_SYMBOL(bio_init_clone);
907
908 /**
909 * bio_full - check if the bio is full
910 * @bio: bio to check
911 * @len: length of one segment to be added
912 *
913 * Return true if @bio is full and one segment with @len bytes can't be
914 * added to the bio, otherwise return false
915 */
bio_full(struct bio * bio,unsigned len)916 static inline bool bio_full(struct bio *bio, unsigned len)
917 {
918 if (bio->bi_vcnt >= bio->bi_max_vecs)
919 return true;
920 if (bio->bi_iter.bi_size > UINT_MAX - len)
921 return true;
922 return false;
923 }
924
bvec_try_merge_page(struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off)925 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
926 unsigned int len, unsigned int off)
927 {
928 size_t bv_end = bv->bv_offset + bv->bv_len;
929 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
930 phys_addr_t page_addr = page_to_phys(page);
931
932 if (vec_end_addr + 1 != page_addr + off)
933 return false;
934 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
935 return false;
936
937 if ((vec_end_addr & PAGE_MASK) != ((page_addr + off) & PAGE_MASK)) {
938 if (IS_ENABLED(CONFIG_KMSAN))
939 return false;
940 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
941 return false;
942 }
943
944 bv->bv_len += len;
945 return true;
946 }
947
948 /*
949 * Try to merge a page into a segment, while obeying the hardware segment
950 * size limit.
951 *
952 * This is kept around for the integrity metadata, which is still tries
953 * to build the initial bio to the hardware limit and doesn't have proper
954 * helpers to split. Hopefully this will go away soon.
955 */
bvec_try_merge_hw_page(struct request_queue * q,struct bio_vec * bv,struct page * page,unsigned len,unsigned offset)956 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
957 struct page *page, unsigned len, unsigned offset)
958 {
959 unsigned long mask = queue_segment_boundary(q);
960 phys_addr_t addr1 = bvec_phys(bv);
961 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
962
963 if ((addr1 | mask) != (addr2 | mask))
964 return false;
965 if (len > queue_max_segment_size(q) - bv->bv_len)
966 return false;
967 return bvec_try_merge_page(bv, page, len, offset);
968 }
969
970 /**
971 * __bio_add_page - add page(s) to a bio in a new segment
972 * @bio: destination bio
973 * @page: start page to add
974 * @len: length of the data to add, may cross pages
975 * @off: offset of the data relative to @page, may cross pages
976 *
977 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
978 * that @bio has space for another bvec.
979 */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)980 void __bio_add_page(struct bio *bio, struct page *page,
981 unsigned int len, unsigned int off)
982 {
983 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
984 WARN_ON_ONCE(bio_full(bio, len));
985
986 if (is_pci_p2pdma_page(page))
987 bio->bi_opf |= REQ_NOMERGE;
988
989 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
990 bio->bi_iter.bi_size += len;
991 bio->bi_vcnt++;
992 }
993 EXPORT_SYMBOL_GPL(__bio_add_page);
994
995 /**
996 * bio_add_virt_nofail - add data in the direct kernel mapping to a bio
997 * @bio: destination bio
998 * @vaddr: data to add
999 * @len: length of the data to add, may cross pages
1000 *
1001 * Add the data at @vaddr to @bio. The caller must have ensure a segment
1002 * is available for the added data. No merging into an existing segment
1003 * will be performed.
1004 */
bio_add_virt_nofail(struct bio * bio,void * vaddr,unsigned len)1005 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len)
1006 {
1007 __bio_add_page(bio, virt_to_page(vaddr), len, offset_in_page(vaddr));
1008 }
1009 EXPORT_SYMBOL_GPL(bio_add_virt_nofail);
1010
1011 /**
1012 * bio_add_page - attempt to add page(s) to bio
1013 * @bio: destination bio
1014 * @page: start page to add
1015 * @len: vec entry length, may cross pages
1016 * @offset: vec entry offset relative to @page, may cross pages
1017 *
1018 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1019 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1020 */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1021 int bio_add_page(struct bio *bio, struct page *page,
1022 unsigned int len, unsigned int offset)
1023 {
1024 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1025 return 0;
1026 if (bio->bi_iter.bi_size > UINT_MAX - len)
1027 return 0;
1028
1029 if (bio->bi_vcnt > 0) {
1030 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1031
1032 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
1033 return 0;
1034
1035 if (bvec_try_merge_page(bv, page, len, offset)) {
1036 bio->bi_iter.bi_size += len;
1037 return len;
1038 }
1039 }
1040
1041 if (bio->bi_vcnt >= bio->bi_max_vecs)
1042 return 0;
1043 __bio_add_page(bio, page, len, offset);
1044 return len;
1045 }
1046 EXPORT_SYMBOL(bio_add_page);
1047
bio_add_folio_nofail(struct bio * bio,struct folio * folio,size_t len,size_t off)1048 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1049 size_t off)
1050 {
1051 unsigned long nr = off / PAGE_SIZE;
1052
1053 WARN_ON_ONCE(len > UINT_MAX);
1054 __bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE);
1055 }
1056 EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1057
1058 /**
1059 * bio_add_folio - Attempt to add part of a folio to a bio.
1060 * @bio: BIO to add to.
1061 * @folio: Folio to add.
1062 * @len: How many bytes from the folio to add.
1063 * @off: First byte in this folio to add.
1064 *
1065 * Filesystems that use folios can call this function instead of calling
1066 * bio_add_page() for each page in the folio. If @off is bigger than
1067 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1068 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1069 *
1070 * Return: Whether the addition was successful.
1071 */
bio_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t off)1072 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1073 size_t off)
1074 {
1075 unsigned long nr = off / PAGE_SIZE;
1076
1077 if (len > UINT_MAX)
1078 return false;
1079 return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0;
1080 }
1081 EXPORT_SYMBOL(bio_add_folio);
1082
1083 /**
1084 * bio_add_vmalloc_chunk - add a vmalloc chunk to a bio
1085 * @bio: destination bio
1086 * @vaddr: vmalloc address to add
1087 * @len: total length in bytes of the data to add
1088 *
1089 * Add data starting at @vaddr to @bio and return how many bytes were added.
1090 * This may be less than the amount originally asked. Returns 0 if no data
1091 * could be added to @bio.
1092 *
1093 * This helper calls flush_kernel_vmap_range() for the range added. For reads
1094 * the caller still needs to manually call invalidate_kernel_vmap_range() in
1095 * the completion handler.
1096 */
bio_add_vmalloc_chunk(struct bio * bio,void * vaddr,unsigned len)1097 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len)
1098 {
1099 unsigned int offset = offset_in_page(vaddr);
1100
1101 len = min(len, PAGE_SIZE - offset);
1102 if (bio_add_page(bio, vmalloc_to_page(vaddr), len, offset) < len)
1103 return 0;
1104 if (op_is_write(bio_op(bio)))
1105 flush_kernel_vmap_range(vaddr, len);
1106 return len;
1107 }
1108 EXPORT_SYMBOL_GPL(bio_add_vmalloc_chunk);
1109
1110 /**
1111 * bio_add_vmalloc - add a vmalloc region to a bio
1112 * @bio: destination bio
1113 * @vaddr: vmalloc address to add
1114 * @len: total length in bytes of the data to add
1115 *
1116 * Add data starting at @vaddr to @bio. Return %true on success or %false if
1117 * @bio does not have enough space for the payload.
1118 *
1119 * This helper calls flush_kernel_vmap_range() for the range added. For reads
1120 * the caller still needs to manually call invalidate_kernel_vmap_range() in
1121 * the completion handler.
1122 */
bio_add_vmalloc(struct bio * bio,void * vaddr,unsigned int len)1123 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len)
1124 {
1125 do {
1126 unsigned int added = bio_add_vmalloc_chunk(bio, vaddr, len);
1127
1128 if (!added)
1129 return false;
1130 vaddr += added;
1131 len -= added;
1132 } while (len);
1133
1134 return true;
1135 }
1136 EXPORT_SYMBOL_GPL(bio_add_vmalloc);
1137
__bio_release_pages(struct bio * bio,bool mark_dirty)1138 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1139 {
1140 struct folio_iter fi;
1141
1142 bio_for_each_folio_all(fi, bio) {
1143 size_t nr_pages;
1144
1145 if (mark_dirty) {
1146 folio_lock(fi.folio);
1147 folio_mark_dirty(fi.folio);
1148 folio_unlock(fi.folio);
1149 }
1150 nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1151 fi.offset / PAGE_SIZE + 1;
1152 unpin_user_folio(fi.folio, nr_pages);
1153 }
1154 }
1155 EXPORT_SYMBOL_GPL(__bio_release_pages);
1156
bio_iov_bvec_set(struct bio * bio,const struct iov_iter * iter)1157 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter)
1158 {
1159 WARN_ON_ONCE(bio->bi_max_vecs);
1160
1161 bio->bi_vcnt = iter->nr_segs;
1162 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1163 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1164 bio->bi_iter.bi_size = iov_iter_count(iter);
1165 bio_set_flag(bio, BIO_CLONED);
1166 }
1167
get_contig_folio_len(unsigned int * num_pages,struct page ** pages,unsigned int i,struct folio * folio,size_t left,size_t offset)1168 static unsigned int get_contig_folio_len(unsigned int *num_pages,
1169 struct page **pages, unsigned int i,
1170 struct folio *folio, size_t left,
1171 size_t offset)
1172 {
1173 size_t bytes = left;
1174 size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1175 unsigned int j;
1176
1177 /*
1178 * We might COW a single page in the middle of
1179 * a large folio, so we have to check that all
1180 * pages belong to the same folio.
1181 */
1182 bytes -= contig_sz;
1183 for (j = i + 1; j < i + *num_pages; j++) {
1184 size_t next = min_t(size_t, PAGE_SIZE, bytes);
1185
1186 if (page_folio(pages[j]) != folio ||
1187 pages[j] != pages[j - 1] + 1) {
1188 break;
1189 }
1190 contig_sz += next;
1191 bytes -= next;
1192 }
1193 *num_pages = j - i;
1194
1195 return contig_sz;
1196 }
1197
1198 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1199
1200 /**
1201 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1202 * @bio: bio to add pages to
1203 * @iter: iov iterator describing the region to be mapped
1204 *
1205 * Extracts pages from *iter and appends them to @bio's bvec array. The pages
1206 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1207 * For a multi-segment *iter, this function only adds pages from the next
1208 * non-empty segment of the iov iterator.
1209 */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1210 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1211 {
1212 iov_iter_extraction_t extraction_flags = 0;
1213 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1214 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1215 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1216 struct page **pages = (struct page **)bv;
1217 ssize_t size;
1218 unsigned int num_pages, i = 0;
1219 size_t offset, folio_offset, left, len;
1220 int ret = 0;
1221
1222 /*
1223 * Move page array up in the allocated memory for the bio vecs as far as
1224 * possible so that we can start filling biovecs from the beginning
1225 * without overwriting the temporary page array.
1226 */
1227 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1228 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1229
1230 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1231 extraction_flags |= ITER_ALLOW_P2PDMA;
1232
1233 size = iov_iter_extract_pages(iter, &pages,
1234 UINT_MAX - bio->bi_iter.bi_size,
1235 nr_pages, extraction_flags, &offset);
1236 if (unlikely(size <= 0))
1237 return size ? size : -EFAULT;
1238
1239 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1240 for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
1241 struct page *page = pages[i];
1242 struct folio *folio = page_folio(page);
1243 unsigned int old_vcnt = bio->bi_vcnt;
1244
1245 folio_offset = ((size_t)folio_page_idx(folio, page) <<
1246 PAGE_SHIFT) + offset;
1247
1248 len = min(folio_size(folio) - folio_offset, left);
1249
1250 num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1251
1252 if (num_pages > 1)
1253 len = get_contig_folio_len(&num_pages, pages, i,
1254 folio, left, offset);
1255
1256 if (!bio_add_folio(bio, folio, len, folio_offset)) {
1257 WARN_ON_ONCE(1);
1258 ret = -EINVAL;
1259 goto out;
1260 }
1261
1262 if (bio_flagged(bio, BIO_PAGE_PINNED)) {
1263 /*
1264 * We're adding another fragment of a page that already
1265 * was part of the last segment. Undo our pin as the
1266 * page was pinned when an earlier fragment of it was
1267 * added to the bio and __bio_release_pages expects a
1268 * single pin per page.
1269 */
1270 if (offset && bio->bi_vcnt == old_vcnt)
1271 unpin_user_folio(folio, 1);
1272 }
1273 offset = 0;
1274 }
1275
1276 iov_iter_revert(iter, left);
1277 out:
1278 while (i < nr_pages)
1279 bio_release_page(bio, pages[i++]);
1280
1281 return ret;
1282 }
1283
1284 /*
1285 * Aligns the bio size to the len_align_mask, releasing excessive bio vecs that
1286 * __bio_iov_iter_get_pages may have inserted, and reverts the trimmed length
1287 * for the next iteration.
1288 */
bio_iov_iter_align_down(struct bio * bio,struct iov_iter * iter,unsigned len_align_mask)1289 static int bio_iov_iter_align_down(struct bio *bio, struct iov_iter *iter,
1290 unsigned len_align_mask)
1291 {
1292 size_t nbytes = bio->bi_iter.bi_size & len_align_mask;
1293
1294 if (!nbytes)
1295 return 0;
1296
1297 iov_iter_revert(iter, nbytes);
1298 bio->bi_iter.bi_size -= nbytes;
1299 do {
1300 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1301
1302 if (nbytes < bv->bv_len) {
1303 bv->bv_len -= nbytes;
1304 break;
1305 }
1306
1307 bio_release_page(bio, bv->bv_page);
1308 bio->bi_vcnt--;
1309 nbytes -= bv->bv_len;
1310 } while (nbytes);
1311
1312 if (!bio->bi_vcnt)
1313 return -EFAULT;
1314 return 0;
1315 }
1316
1317 /**
1318 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1319 * @bio: bio to add pages to
1320 * @iter: iov iterator describing the region to be added
1321 * @len_align_mask: the mask to align the total size to, 0 for any length
1322 *
1323 * This takes either an iterator pointing to user memory, or one pointing to
1324 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1325 * map them into the kernel. On IO completion, the caller should put those
1326 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1327 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1328 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1329 * completed by a call to ->ki_complete() or returns with an error other than
1330 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1331 * on IO completion. If it isn't, then pages should be released.
1332 *
1333 * The function tries, but does not guarantee, to pin as many pages as
1334 * fit into the bio, or are requested in @iter, whatever is smaller. If
1335 * MM encounters an error pinning the requested pages, it stops. Error
1336 * is returned only if 0 pages could be pinned.
1337 */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter,unsigned len_align_mask)1338 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter,
1339 unsigned len_align_mask)
1340 {
1341 int ret = 0;
1342
1343 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1344 return -EIO;
1345
1346 if (iov_iter_is_bvec(iter)) {
1347 bio_iov_bvec_set(bio, iter);
1348 iov_iter_advance(iter, bio->bi_iter.bi_size);
1349 return 0;
1350 }
1351
1352 if (iov_iter_extract_will_pin(iter))
1353 bio_set_flag(bio, BIO_PAGE_PINNED);
1354 do {
1355 ret = __bio_iov_iter_get_pages(bio, iter);
1356 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1357
1358 if (bio->bi_vcnt)
1359 return bio_iov_iter_align_down(bio, iter, len_align_mask);
1360 return ret;
1361 }
1362
submit_bio_wait_endio(struct bio * bio)1363 static void submit_bio_wait_endio(struct bio *bio)
1364 {
1365 complete(bio->bi_private);
1366 }
1367
1368 /**
1369 * submit_bio_wait - submit a bio, and wait until it completes
1370 * @bio: The &struct bio which describes the I/O
1371 *
1372 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1373 * bio_endio() on failure.
1374 *
1375 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1376 * result in bio reference to be consumed. The caller must drop the reference
1377 * on his own.
1378 */
submit_bio_wait(struct bio * bio)1379 int submit_bio_wait(struct bio *bio)
1380 {
1381 DECLARE_COMPLETION_ONSTACK_MAP(done,
1382 bio->bi_bdev->bd_disk->lockdep_map);
1383
1384 bio->bi_private = &done;
1385 bio->bi_end_io = submit_bio_wait_endio;
1386 bio->bi_opf |= REQ_SYNC;
1387 submit_bio(bio);
1388 blk_wait_io(&done);
1389
1390 return blk_status_to_errno(bio->bi_status);
1391 }
1392 EXPORT_SYMBOL(submit_bio_wait);
1393
1394 /**
1395 * bdev_rw_virt - synchronously read into / write from kernel mapping
1396 * @bdev: block device to access
1397 * @sector: sector to access
1398 * @data: data to read/write
1399 * @len: length in byte to read/write
1400 * @op: operation (e.g. REQ_OP_READ/REQ_OP_WRITE)
1401 *
1402 * Performs synchronous I/O to @bdev for @data/@len. @data must be in
1403 * the kernel direct mapping and not a vmalloc address.
1404 */
bdev_rw_virt(struct block_device * bdev,sector_t sector,void * data,size_t len,enum req_op op)1405 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
1406 size_t len, enum req_op op)
1407 {
1408 struct bio_vec bv;
1409 struct bio bio;
1410 int error;
1411
1412 if (WARN_ON_ONCE(is_vmalloc_addr(data)))
1413 return -EIO;
1414
1415 bio_init(&bio, bdev, &bv, 1, op);
1416 bio.bi_iter.bi_sector = sector;
1417 bio_add_virt_nofail(&bio, data, len);
1418 error = submit_bio_wait(&bio);
1419 bio_uninit(&bio);
1420 return error;
1421 }
1422 EXPORT_SYMBOL_GPL(bdev_rw_virt);
1423
bio_wait_end_io(struct bio * bio)1424 static void bio_wait_end_io(struct bio *bio)
1425 {
1426 complete(bio->bi_private);
1427 bio_put(bio);
1428 }
1429
1430 /*
1431 * bio_await_chain - ends @bio and waits for every chained bio to complete
1432 */
bio_await_chain(struct bio * bio)1433 void bio_await_chain(struct bio *bio)
1434 {
1435 DECLARE_COMPLETION_ONSTACK_MAP(done,
1436 bio->bi_bdev->bd_disk->lockdep_map);
1437
1438 bio->bi_private = &done;
1439 bio->bi_end_io = bio_wait_end_io;
1440 bio_endio(bio);
1441 blk_wait_io(&done);
1442 }
1443
__bio_advance(struct bio * bio,unsigned bytes)1444 void __bio_advance(struct bio *bio, unsigned bytes)
1445 {
1446 if (bio_integrity(bio))
1447 bio_integrity_advance(bio, bytes);
1448
1449 bio_crypt_advance(bio, bytes);
1450 bio_advance_iter(bio, &bio->bi_iter, bytes);
1451 }
1452 EXPORT_SYMBOL(__bio_advance);
1453
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1454 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1455 struct bio *src, struct bvec_iter *src_iter)
1456 {
1457 while (src_iter->bi_size && dst_iter->bi_size) {
1458 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1459 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1460 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1461 void *src_buf = bvec_kmap_local(&src_bv);
1462 void *dst_buf = bvec_kmap_local(&dst_bv);
1463
1464 memcpy(dst_buf, src_buf, bytes);
1465
1466 kunmap_local(dst_buf);
1467 kunmap_local(src_buf);
1468
1469 bio_advance_iter_single(src, src_iter, bytes);
1470 bio_advance_iter_single(dst, dst_iter, bytes);
1471 }
1472 }
1473 EXPORT_SYMBOL(bio_copy_data_iter);
1474
1475 /**
1476 * bio_copy_data - copy contents of data buffers from one bio to another
1477 * @src: source bio
1478 * @dst: destination bio
1479 *
1480 * Stops when it reaches the end of either @src or @dst - that is, copies
1481 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1482 */
bio_copy_data(struct bio * dst,struct bio * src)1483 void bio_copy_data(struct bio *dst, struct bio *src)
1484 {
1485 struct bvec_iter src_iter = src->bi_iter;
1486 struct bvec_iter dst_iter = dst->bi_iter;
1487
1488 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1489 }
1490 EXPORT_SYMBOL(bio_copy_data);
1491
bio_free_pages(struct bio * bio)1492 void bio_free_pages(struct bio *bio)
1493 {
1494 struct bio_vec *bvec;
1495 struct bvec_iter_all iter_all;
1496
1497 bio_for_each_segment_all(bvec, bio, iter_all)
1498 __free_page(bvec->bv_page);
1499 }
1500 EXPORT_SYMBOL(bio_free_pages);
1501
1502 /*
1503 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1504 * for performing direct-IO in BIOs.
1505 *
1506 * The problem is that we cannot run folio_mark_dirty() from interrupt context
1507 * because the required locks are not interrupt-safe. So what we can do is to
1508 * mark the pages dirty _before_ performing IO. And in interrupt context,
1509 * check that the pages are still dirty. If so, fine. If not, redirty them
1510 * in process context.
1511 *
1512 * Note that this code is very hard to test under normal circumstances because
1513 * direct-io pins the pages with get_user_pages(). This makes
1514 * is_page_cache_freeable return false, and the VM will not clean the pages.
1515 * But other code (eg, flusher threads) could clean the pages if they are mapped
1516 * pagecache.
1517 *
1518 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1519 * deferred bio dirtying paths.
1520 */
1521
1522 /*
1523 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1524 */
bio_set_pages_dirty(struct bio * bio)1525 void bio_set_pages_dirty(struct bio *bio)
1526 {
1527 struct folio_iter fi;
1528
1529 bio_for_each_folio_all(fi, bio) {
1530 folio_lock(fi.folio);
1531 folio_mark_dirty(fi.folio);
1532 folio_unlock(fi.folio);
1533 }
1534 }
1535 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1536
1537 /*
1538 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1539 * If they are, then fine. If, however, some pages are clean then they must
1540 * have been written out during the direct-IO read. So we take another ref on
1541 * the BIO and re-dirty the pages in process context.
1542 *
1543 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1544 * here on. It will unpin each page and will run one bio_put() against the
1545 * BIO.
1546 */
1547
1548 static void bio_dirty_fn(struct work_struct *work);
1549
1550 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1551 static DEFINE_SPINLOCK(bio_dirty_lock);
1552 static struct bio *bio_dirty_list;
1553
1554 /*
1555 * This runs in process context
1556 */
bio_dirty_fn(struct work_struct * work)1557 static void bio_dirty_fn(struct work_struct *work)
1558 {
1559 struct bio *bio, *next;
1560
1561 spin_lock_irq(&bio_dirty_lock);
1562 next = bio_dirty_list;
1563 bio_dirty_list = NULL;
1564 spin_unlock_irq(&bio_dirty_lock);
1565
1566 while ((bio = next) != NULL) {
1567 next = bio->bi_private;
1568
1569 bio_release_pages(bio, true);
1570 bio_put(bio);
1571 }
1572 }
1573
bio_check_pages_dirty(struct bio * bio)1574 void bio_check_pages_dirty(struct bio *bio)
1575 {
1576 struct folio_iter fi;
1577 unsigned long flags;
1578
1579 bio_for_each_folio_all(fi, bio) {
1580 if (!folio_test_dirty(fi.folio))
1581 goto defer;
1582 }
1583
1584 bio_release_pages(bio, false);
1585 bio_put(bio);
1586 return;
1587 defer:
1588 spin_lock_irqsave(&bio_dirty_lock, flags);
1589 bio->bi_private = bio_dirty_list;
1590 bio_dirty_list = bio;
1591 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1592 schedule_work(&bio_dirty_work);
1593 }
1594 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1595
bio_remaining_done(struct bio * bio)1596 static inline bool bio_remaining_done(struct bio *bio)
1597 {
1598 /*
1599 * If we're not chaining, then ->__bi_remaining is always 1 and
1600 * we always end io on the first invocation.
1601 */
1602 if (!bio_flagged(bio, BIO_CHAIN))
1603 return true;
1604
1605 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1606
1607 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1608 bio_clear_flag(bio, BIO_CHAIN);
1609 return true;
1610 }
1611
1612 return false;
1613 }
1614
1615 /**
1616 * bio_endio - end I/O on a bio
1617 * @bio: bio
1618 *
1619 * Description:
1620 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1621 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1622 * bio unless they own it and thus know that it has an end_io function.
1623 *
1624 * bio_endio() can be called several times on a bio that has been chained
1625 * using bio_chain(). The ->bi_end_io() function will only be called the
1626 * last time.
1627 **/
bio_endio(struct bio * bio)1628 void bio_endio(struct bio *bio)
1629 {
1630 again:
1631 if (!bio_remaining_done(bio))
1632 return;
1633 if (!bio_integrity_endio(bio))
1634 return;
1635
1636 blk_zone_bio_endio(bio);
1637
1638 rq_qos_done_bio(bio);
1639
1640 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1641 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1642 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1643 }
1644
1645 /*
1646 * Need to have a real endio function for chained bios, otherwise
1647 * various corner cases will break (like stacking block devices that
1648 * save/restore bi_end_io) - however, we want to avoid unbounded
1649 * recursion and blowing the stack. Tail call optimization would
1650 * handle this, but compiling with frame pointers also disables
1651 * gcc's sibling call optimization.
1652 */
1653 if (bio->bi_end_io == bio_chain_endio) {
1654 bio = __bio_chain_endio(bio);
1655 goto again;
1656 }
1657
1658 #ifdef CONFIG_BLK_CGROUP
1659 /*
1660 * Release cgroup info. We shouldn't have to do this here, but quite
1661 * a few callers of bio_init fail to call bio_uninit, so we cover up
1662 * for that here at least for now.
1663 */
1664 if (bio->bi_blkg) {
1665 blkg_put(bio->bi_blkg);
1666 bio->bi_blkg = NULL;
1667 }
1668 #endif
1669
1670 if (bio->bi_end_io)
1671 bio->bi_end_io(bio);
1672 }
1673 EXPORT_SYMBOL(bio_endio);
1674
1675 /**
1676 * bio_split - split a bio
1677 * @bio: bio to split
1678 * @sectors: number of sectors to split from the front of @bio
1679 * @gfp: gfp mask
1680 * @bs: bio set to allocate from
1681 *
1682 * Allocates and returns a new bio which represents @sectors from the start of
1683 * @bio, and updates @bio to represent the remaining sectors.
1684 *
1685 * Unless this is a discard request the newly allocated bio will point
1686 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1687 * neither @bio nor @bs are freed before the split bio.
1688 */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1689 struct bio *bio_split(struct bio *bio, int sectors,
1690 gfp_t gfp, struct bio_set *bs)
1691 {
1692 struct bio *split;
1693
1694 if (WARN_ON_ONCE(sectors <= 0))
1695 return ERR_PTR(-EINVAL);
1696 if (WARN_ON_ONCE(sectors >= bio_sectors(bio)))
1697 return ERR_PTR(-EINVAL);
1698
1699 /* Zone append commands cannot be split */
1700 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1701 return ERR_PTR(-EINVAL);
1702
1703 /* atomic writes cannot be split */
1704 if (bio->bi_opf & REQ_ATOMIC)
1705 return ERR_PTR(-EINVAL);
1706
1707 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1708 if (!split)
1709 return ERR_PTR(-ENOMEM);
1710
1711 split->bi_iter.bi_size = sectors << 9;
1712
1713 if (bio_integrity(split))
1714 bio_integrity_trim(split);
1715
1716 bio_advance(bio, split->bi_iter.bi_size);
1717
1718 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1719 bio_set_flag(split, BIO_TRACE_COMPLETION);
1720
1721 return split;
1722 }
1723 EXPORT_SYMBOL(bio_split);
1724
1725 /**
1726 * bio_trim - trim a bio
1727 * @bio: bio to trim
1728 * @offset: number of sectors to trim from the front of @bio
1729 * @size: size we want to trim @bio to, in sectors
1730 *
1731 * This function is typically used for bios that are cloned and submitted
1732 * to the underlying device in parts.
1733 */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1734 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1735 {
1736 /* We should never trim an atomic write */
1737 if (WARN_ON_ONCE(bio->bi_opf & REQ_ATOMIC && size))
1738 return;
1739
1740 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1741 offset + size > bio_sectors(bio)))
1742 return;
1743
1744 size <<= 9;
1745 if (offset == 0 && size == bio->bi_iter.bi_size)
1746 return;
1747
1748 bio_advance(bio, offset << 9);
1749 bio->bi_iter.bi_size = size;
1750
1751 if (bio_integrity(bio))
1752 bio_integrity_trim(bio);
1753 }
1754 EXPORT_SYMBOL_GPL(bio_trim);
1755
1756 /*
1757 * create memory pools for biovec's in a bio_set.
1758 * use the global biovec slabs created for general use.
1759 */
biovec_init_pool(mempool_t * pool,int pool_entries)1760 int biovec_init_pool(mempool_t *pool, int pool_entries)
1761 {
1762 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1763
1764 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1765 }
1766
1767 /*
1768 * bioset_exit - exit a bioset initialized with bioset_init()
1769 *
1770 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1771 * kzalloc()).
1772 */
bioset_exit(struct bio_set * bs)1773 void bioset_exit(struct bio_set *bs)
1774 {
1775 bio_alloc_cache_destroy(bs);
1776 if (bs->rescue_workqueue)
1777 destroy_workqueue(bs->rescue_workqueue);
1778 bs->rescue_workqueue = NULL;
1779
1780 mempool_exit(&bs->bio_pool);
1781 mempool_exit(&bs->bvec_pool);
1782
1783 if (bs->bio_slab)
1784 bio_put_slab(bs);
1785 bs->bio_slab = NULL;
1786 }
1787 EXPORT_SYMBOL(bioset_exit);
1788
1789 /**
1790 * bioset_init - Initialize a bio_set
1791 * @bs: pool to initialize
1792 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1793 * @front_pad: Number of bytes to allocate in front of the returned bio
1794 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1795 * and %BIOSET_NEED_RESCUER
1796 *
1797 * Description:
1798 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1799 * to ask for a number of bytes to be allocated in front of the bio.
1800 * Front pad allocation is useful for embedding the bio inside
1801 * another structure, to avoid allocating extra data to go with the bio.
1802 * Note that the bio must be embedded at the END of that structure always,
1803 * or things will break badly.
1804 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1805 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1806 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1807 * to dispatch queued requests when the mempool runs out of space.
1808 *
1809 */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1810 int bioset_init(struct bio_set *bs,
1811 unsigned int pool_size,
1812 unsigned int front_pad,
1813 int flags)
1814 {
1815 bs->front_pad = front_pad;
1816 if (flags & BIOSET_NEED_BVECS)
1817 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1818 else
1819 bs->back_pad = 0;
1820
1821 spin_lock_init(&bs->rescue_lock);
1822 bio_list_init(&bs->rescue_list);
1823 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1824
1825 bs->bio_slab = bio_find_or_create_slab(bs);
1826 if (!bs->bio_slab)
1827 return -ENOMEM;
1828
1829 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1830 goto bad;
1831
1832 if ((flags & BIOSET_NEED_BVECS) &&
1833 biovec_init_pool(&bs->bvec_pool, pool_size))
1834 goto bad;
1835
1836 if (flags & BIOSET_NEED_RESCUER) {
1837 bs->rescue_workqueue = alloc_workqueue("bioset",
1838 WQ_MEM_RECLAIM, 0);
1839 if (!bs->rescue_workqueue)
1840 goto bad;
1841 }
1842 if (flags & BIOSET_PERCPU_CACHE) {
1843 bs->cache = alloc_percpu(struct bio_alloc_cache);
1844 if (!bs->cache)
1845 goto bad;
1846 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1847 }
1848
1849 return 0;
1850 bad:
1851 bioset_exit(bs);
1852 return -ENOMEM;
1853 }
1854 EXPORT_SYMBOL(bioset_init);
1855
init_bio(void)1856 static int __init init_bio(void)
1857 {
1858 int i;
1859
1860 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1861
1862 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1863 struct biovec_slab *bvs = bvec_slabs + i;
1864
1865 bvs->slab = kmem_cache_create(bvs->name,
1866 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1867 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1868 }
1869
1870 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1871 bio_cpu_dead);
1872
1873 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1874 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1875 panic("bio: can't allocate bios\n");
1876
1877 return 0;
1878 }
1879 subsys_initcall(init_bio);
1880