xref: /linux/block/bio.c (revision 4482ebb2970efa58173075c101426b2f3af40b41)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio-integrity.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/blk-crypto.h>
20 #include <linux/xarray.h>
21 
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 #include "blk-cgroup.h"
26 
27 #define ALLOC_CACHE_THRESHOLD	16
28 #define ALLOC_CACHE_MAX		256
29 
30 struct bio_alloc_cache {
31 	struct bio		*free_list;
32 	struct bio		*free_list_irq;
33 	unsigned int		nr;
34 	unsigned int		nr_irq;
35 };
36 
37 static struct biovec_slab {
38 	int nr_vecs;
39 	char *name;
40 	struct kmem_cache *slab;
41 } bvec_slabs[] __read_mostly = {
42 	{ .nr_vecs = 16, .name = "biovec-16" },
43 	{ .nr_vecs = 64, .name = "biovec-64" },
44 	{ .nr_vecs = 128, .name = "biovec-128" },
45 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46 };
47 
biovec_slab(unsigned short nr_vecs)48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49 {
50 	switch (nr_vecs) {
51 	/* smaller bios use inline vecs */
52 	case 5 ... 16:
53 		return &bvec_slabs[0];
54 	case 17 ... 64:
55 		return &bvec_slabs[1];
56 	case 65 ... 128:
57 		return &bvec_slabs[2];
58 	case 129 ... BIO_MAX_VECS:
59 		return &bvec_slabs[3];
60 	default:
61 		BUG();
62 		return NULL;
63 	}
64 }
65 
66 /*
67  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68  * IO code that does not need private memory pools.
69  */
70 struct bio_set fs_bio_set;
71 EXPORT_SYMBOL(fs_bio_set);
72 
73 /*
74  * Our slab pool management
75  */
76 struct bio_slab {
77 	struct kmem_cache *slab;
78 	unsigned int slab_ref;
79 	unsigned int slab_size;
80 	char name[12];
81 };
82 static DEFINE_MUTEX(bio_slab_lock);
83 static DEFINE_XARRAY(bio_slabs);
84 
create_bio_slab(unsigned int size)85 static struct bio_slab *create_bio_slab(unsigned int size)
86 {
87 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88 
89 	if (!bslab)
90 		return NULL;
91 
92 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 	bslab->slab = kmem_cache_create(bslab->name, size,
94 			ARCH_KMALLOC_MINALIGN,
95 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 	if (!bslab->slab)
97 		goto fail_alloc_slab;
98 
99 	bslab->slab_ref = 1;
100 	bslab->slab_size = size;
101 
102 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 		return bslab;
104 
105 	kmem_cache_destroy(bslab->slab);
106 
107 fail_alloc_slab:
108 	kfree(bslab);
109 	return NULL;
110 }
111 
bs_bio_slab_size(struct bio_set * bs)112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113 {
114 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115 }
116 
bio_find_or_create_slab(struct bio_set * bs)117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118 {
119 	unsigned int size = bs_bio_slab_size(bs);
120 	struct bio_slab *bslab;
121 
122 	mutex_lock(&bio_slab_lock);
123 	bslab = xa_load(&bio_slabs, size);
124 	if (bslab)
125 		bslab->slab_ref++;
126 	else
127 		bslab = create_bio_slab(size);
128 	mutex_unlock(&bio_slab_lock);
129 
130 	if (bslab)
131 		return bslab->slab;
132 	return NULL;
133 }
134 
bio_put_slab(struct bio_set * bs)135 static void bio_put_slab(struct bio_set *bs)
136 {
137 	struct bio_slab *bslab = NULL;
138 	unsigned int slab_size = bs_bio_slab_size(bs);
139 
140 	mutex_lock(&bio_slab_lock);
141 
142 	bslab = xa_load(&bio_slabs, slab_size);
143 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 		goto out;
145 
146 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147 
148 	WARN_ON(!bslab->slab_ref);
149 
150 	if (--bslab->slab_ref)
151 		goto out;
152 
153 	xa_erase(&bio_slabs, slab_size);
154 
155 	kmem_cache_destroy(bslab->slab);
156 	kfree(bslab);
157 
158 out:
159 	mutex_unlock(&bio_slab_lock);
160 }
161 
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163 {
164 	BUG_ON(nr_vecs > BIO_MAX_VECS);
165 
166 	if (nr_vecs == BIO_MAX_VECS)
167 		mempool_free(bv, pool);
168 	else if (nr_vecs > BIO_INLINE_VECS)
169 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170 }
171 
172 /*
173  * Make the first allocation restricted and don't dump info on allocation
174  * failures, since we'll fall back to the mempool in case of failure.
175  */
bvec_alloc_gfp(gfp_t gfp)176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177 {
178 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180 }
181 
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 		gfp_t gfp_mask)
184 {
185 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186 
187 	if (WARN_ON_ONCE(!bvs))
188 		return NULL;
189 
190 	/*
191 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 	 * We also rely on this in the bvec_free path.
193 	 */
194 	*nr_vecs = bvs->nr_vecs;
195 
196 	/*
197 	 * Try a slab allocation first for all smaller allocations.  If that
198 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200 	 */
201 	if (*nr_vecs < BIO_MAX_VECS) {
202 		struct bio_vec *bvl;
203 
204 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206 			return bvl;
207 		*nr_vecs = BIO_MAX_VECS;
208 	}
209 
210 	return mempool_alloc(pool, gfp_mask);
211 }
212 
bio_uninit(struct bio * bio)213 void bio_uninit(struct bio *bio)
214 {
215 #ifdef CONFIG_BLK_CGROUP
216 	if (bio->bi_blkg) {
217 		blkg_put(bio->bi_blkg);
218 		bio->bi_blkg = NULL;
219 	}
220 #endif
221 	if (bio_integrity(bio))
222 		bio_integrity_free(bio);
223 
224 	bio_crypt_free_ctx(bio);
225 }
226 EXPORT_SYMBOL(bio_uninit);
227 
bio_free(struct bio * bio)228 static void bio_free(struct bio *bio)
229 {
230 	struct bio_set *bs = bio->bi_pool;
231 	void *p = bio;
232 
233 	WARN_ON_ONCE(!bs);
234 
235 	bio_uninit(bio);
236 	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 	mempool_free(p - bs->front_pad, &bs->bio_pool);
238 }
239 
240 /*
241  * Users of this function have their own bio allocation. Subsequently,
242  * they must remember to pair any call to bio_init() with bio_uninit()
243  * when IO has completed, or when the bio is released.
244  */
bio_init(struct bio * bio,struct block_device * bdev,struct bio_vec * table,unsigned short max_vecs,blk_opf_t opf)245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246 	      unsigned short max_vecs, blk_opf_t opf)
247 {
248 	bio->bi_next = NULL;
249 	bio->bi_bdev = bdev;
250 	bio->bi_opf = opf;
251 	bio->bi_flags = 0;
252 	bio->bi_ioprio = 0;
253 	bio->bi_write_hint = 0;
254 	bio->bi_write_stream = 0;
255 	bio->bi_status = 0;
256 	bio->bi_bvec_gap_bit = 0;
257 	bio->bi_iter.bi_sector = 0;
258 	bio->bi_iter.bi_size = 0;
259 	bio->bi_iter.bi_idx = 0;
260 	bio->bi_iter.bi_bvec_done = 0;
261 	bio->bi_end_io = NULL;
262 	bio->bi_private = NULL;
263 #ifdef CONFIG_BLK_CGROUP
264 	bio->bi_blkg = NULL;
265 	bio->issue_time_ns = 0;
266 	if (bdev)
267 		bio_associate_blkg(bio);
268 #ifdef CONFIG_BLK_CGROUP_IOCOST
269 	bio->bi_iocost_cost = 0;
270 #endif
271 #endif
272 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
273 	bio->bi_crypt_context = NULL;
274 #endif
275 #ifdef CONFIG_BLK_DEV_INTEGRITY
276 	bio->bi_integrity = NULL;
277 #endif
278 	bio->bi_vcnt = 0;
279 
280 	atomic_set(&bio->__bi_remaining, 1);
281 	atomic_set(&bio->__bi_cnt, 1);
282 	bio->bi_cookie = BLK_QC_T_NONE;
283 
284 	bio->bi_max_vecs = max_vecs;
285 	bio->bi_io_vec = table;
286 	bio->bi_pool = NULL;
287 }
288 EXPORT_SYMBOL(bio_init);
289 
290 /**
291  * bio_reset - reinitialize a bio
292  * @bio:	bio to reset
293  * @bdev:	block device to use the bio for
294  * @opf:	operation and flags for bio
295  *
296  * Description:
297  *   After calling bio_reset(), @bio will be in the same state as a freshly
298  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
299  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
300  *   comment in struct bio.
301  */
bio_reset(struct bio * bio,struct block_device * bdev,blk_opf_t opf)302 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
303 {
304 	bio_uninit(bio);
305 	memset(bio, 0, BIO_RESET_BYTES);
306 	atomic_set(&bio->__bi_remaining, 1);
307 	bio->bi_bdev = bdev;
308 	if (bio->bi_bdev)
309 		bio_associate_blkg(bio);
310 	bio->bi_opf = opf;
311 }
312 EXPORT_SYMBOL(bio_reset);
313 
__bio_chain_endio(struct bio * bio)314 static struct bio *__bio_chain_endio(struct bio *bio)
315 {
316 	struct bio *parent = bio->bi_private;
317 
318 	if (bio->bi_status && !parent->bi_status)
319 		parent->bi_status = bio->bi_status;
320 	bio_put(bio);
321 	return parent;
322 }
323 
bio_chain_endio(struct bio * bio)324 static void bio_chain_endio(struct bio *bio)
325 {
326 	bio_endio(__bio_chain_endio(bio));
327 }
328 
329 /**
330  * bio_chain - chain bio completions
331  * @bio: the target bio
332  * @parent: the parent bio of @bio
333  *
334  * The caller won't have a bi_end_io called when @bio completes - instead,
335  * @parent's bi_end_io won't be called until both @parent and @bio have
336  * completed; the chained bio will also be freed when it completes.
337  *
338  * The caller must not set bi_private or bi_end_io in @bio.
339  */
bio_chain(struct bio * bio,struct bio * parent)340 void bio_chain(struct bio *bio, struct bio *parent)
341 {
342 	BUG_ON(bio->bi_private || bio->bi_end_io);
343 
344 	bio->bi_private = parent;
345 	bio->bi_end_io	= bio_chain_endio;
346 	bio_inc_remaining(parent);
347 }
348 EXPORT_SYMBOL(bio_chain);
349 
350 /**
351  * bio_chain_and_submit - submit a bio after chaining it to another one
352  * @prev: bio to chain and submit
353  * @new: bio to chain to
354  *
355  * If @prev is non-NULL, chain it to @new and submit it.
356  *
357  * Return: @new.
358  */
bio_chain_and_submit(struct bio * prev,struct bio * new)359 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
360 {
361 	if (prev) {
362 		bio_chain(prev, new);
363 		submit_bio(prev);
364 	}
365 	return new;
366 }
367 
blk_next_bio(struct bio * bio,struct block_device * bdev,unsigned int nr_pages,blk_opf_t opf,gfp_t gfp)368 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
369 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
370 {
371 	return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
372 }
373 EXPORT_SYMBOL_GPL(blk_next_bio);
374 
bio_alloc_rescue(struct work_struct * work)375 static void bio_alloc_rescue(struct work_struct *work)
376 {
377 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
378 	struct bio *bio;
379 
380 	while (1) {
381 		spin_lock(&bs->rescue_lock);
382 		bio = bio_list_pop(&bs->rescue_list);
383 		spin_unlock(&bs->rescue_lock);
384 
385 		if (!bio)
386 			break;
387 
388 		submit_bio_noacct(bio);
389 	}
390 }
391 
punt_bios_to_rescuer(struct bio_set * bs)392 static void punt_bios_to_rescuer(struct bio_set *bs)
393 {
394 	struct bio_list punt, nopunt;
395 	struct bio *bio;
396 
397 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
398 		return;
399 	/*
400 	 * In order to guarantee forward progress we must punt only bios that
401 	 * were allocated from this bio_set; otherwise, if there was a bio on
402 	 * there for a stacking driver higher up in the stack, processing it
403 	 * could require allocating bios from this bio_set, and doing that from
404 	 * our own rescuer would be bad.
405 	 *
406 	 * Since bio lists are singly linked, pop them all instead of trying to
407 	 * remove from the middle of the list:
408 	 */
409 
410 	bio_list_init(&punt);
411 	bio_list_init(&nopunt);
412 
413 	while ((bio = bio_list_pop(&current->bio_list[0])))
414 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
415 	current->bio_list[0] = nopunt;
416 
417 	bio_list_init(&nopunt);
418 	while ((bio = bio_list_pop(&current->bio_list[1])))
419 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
420 	current->bio_list[1] = nopunt;
421 
422 	spin_lock(&bs->rescue_lock);
423 	bio_list_merge(&bs->rescue_list, &punt);
424 	spin_unlock(&bs->rescue_lock);
425 
426 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
427 }
428 
bio_alloc_irq_cache_splice(struct bio_alloc_cache * cache)429 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
430 {
431 	unsigned long flags;
432 
433 	/* cache->free_list must be empty */
434 	if (WARN_ON_ONCE(cache->free_list))
435 		return;
436 
437 	local_irq_save(flags);
438 	cache->free_list = cache->free_list_irq;
439 	cache->free_list_irq = NULL;
440 	cache->nr += cache->nr_irq;
441 	cache->nr_irq = 0;
442 	local_irq_restore(flags);
443 }
444 
bio_alloc_percpu_cache(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp,struct bio_set * bs)445 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
446 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
447 		struct bio_set *bs)
448 {
449 	struct bio_alloc_cache *cache;
450 	struct bio *bio;
451 
452 	cache = per_cpu_ptr(bs->cache, get_cpu());
453 	if (!cache->free_list) {
454 		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
455 			bio_alloc_irq_cache_splice(cache);
456 		if (!cache->free_list) {
457 			put_cpu();
458 			return NULL;
459 		}
460 	}
461 	bio = cache->free_list;
462 	cache->free_list = bio->bi_next;
463 	cache->nr--;
464 	put_cpu();
465 
466 	if (nr_vecs)
467 		bio_init_inline(bio, bdev, nr_vecs, opf);
468 	else
469 		bio_init(bio, bdev, NULL, nr_vecs, opf);
470 	bio->bi_pool = bs;
471 	return bio;
472 }
473 
474 /**
475  * bio_alloc_bioset - allocate a bio for I/O
476  * @bdev:	block device to allocate the bio for (can be %NULL)
477  * @nr_vecs:	number of bvecs to pre-allocate
478  * @opf:	operation and flags for bio
479  * @gfp_mask:   the GFP_* mask given to the slab allocator
480  * @bs:		the bio_set to allocate from.
481  *
482  * Allocate a bio from the mempools in @bs.
483  *
484  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
485  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
486  * callers must never allocate more than 1 bio at a time from the general pool.
487  * Callers that need to allocate more than 1 bio must always submit the
488  * previously allocated bio for IO before attempting to allocate a new one.
489  * Failure to do so can cause deadlocks under memory pressure.
490  *
491  * Note that when running under submit_bio_noacct() (i.e. any block driver),
492  * bios are not submitted until after you return - see the code in
493  * submit_bio_noacct() that converts recursion into iteration, to prevent
494  * stack overflows.
495  *
496  * This would normally mean allocating multiple bios under submit_bio_noacct()
497  * would be susceptible to deadlocks, but we have
498  * deadlock avoidance code that resubmits any blocked bios from a rescuer
499  * thread.
500  *
501  * However, we do not guarantee forward progress for allocations from other
502  * mempools. Doing multiple allocations from the same mempool under
503  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
504  * for per bio allocations.
505  *
506  * Returns: Pointer to new bio on success, NULL on failure.
507  */
bio_alloc_bioset(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask,struct bio_set * bs)508 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
509 			     blk_opf_t opf, gfp_t gfp_mask,
510 			     struct bio_set *bs)
511 {
512 	gfp_t saved_gfp = gfp_mask;
513 	struct bio *bio;
514 	void *p;
515 
516 	/* should not use nobvec bioset for nr_vecs > 0 */
517 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
518 		return NULL;
519 
520 	if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
521 		opf |= REQ_ALLOC_CACHE;
522 		bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
523 					     gfp_mask, bs);
524 		if (bio)
525 			return bio;
526 		/*
527 		 * No cached bio available, bio returned below marked with
528 		 * REQ_ALLOC_CACHE to participate in per-cpu alloc cache.
529 		 */
530 	} else
531 		opf &= ~REQ_ALLOC_CACHE;
532 
533 	/*
534 	 * submit_bio_noacct() converts recursion to iteration; this means if
535 	 * we're running beneath it, any bios we allocate and submit will not be
536 	 * submitted (and thus freed) until after we return.
537 	 *
538 	 * This exposes us to a potential deadlock if we allocate multiple bios
539 	 * from the same bio_set() while running underneath submit_bio_noacct().
540 	 * If we were to allocate multiple bios (say a stacking block driver
541 	 * that was splitting bios), we would deadlock if we exhausted the
542 	 * mempool's reserve.
543 	 *
544 	 * We solve this, and guarantee forward progress, with a rescuer
545 	 * workqueue per bio_set. If we go to allocate and there are bios on
546 	 * current->bio_list, we first try the allocation without
547 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
548 	 * blocking to the rescuer workqueue before we retry with the original
549 	 * gfp_flags.
550 	 */
551 	if (current->bio_list &&
552 	    (!bio_list_empty(&current->bio_list[0]) ||
553 	     !bio_list_empty(&current->bio_list[1])) &&
554 	    bs->rescue_workqueue)
555 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
556 
557 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
558 	if (!p && gfp_mask != saved_gfp) {
559 		punt_bios_to_rescuer(bs);
560 		gfp_mask = saved_gfp;
561 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
562 	}
563 	if (unlikely(!p))
564 		return NULL;
565 	if (!mempool_is_saturated(&bs->bio_pool))
566 		opf &= ~REQ_ALLOC_CACHE;
567 
568 	bio = p + bs->front_pad;
569 	if (nr_vecs > BIO_INLINE_VECS) {
570 		struct bio_vec *bvl = NULL;
571 
572 		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
573 		if (!bvl && gfp_mask != saved_gfp) {
574 			punt_bios_to_rescuer(bs);
575 			gfp_mask = saved_gfp;
576 			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
577 		}
578 		if (unlikely(!bvl))
579 			goto err_free;
580 
581 		bio_init(bio, bdev, bvl, nr_vecs, opf);
582 	} else if (nr_vecs) {
583 		bio_init_inline(bio, bdev, BIO_INLINE_VECS, opf);
584 	} else {
585 		bio_init(bio, bdev, NULL, 0, opf);
586 	}
587 
588 	bio->bi_pool = bs;
589 	return bio;
590 
591 err_free:
592 	mempool_free(p, &bs->bio_pool);
593 	return NULL;
594 }
595 EXPORT_SYMBOL(bio_alloc_bioset);
596 
597 /**
598  * bio_kmalloc - kmalloc a bio
599  * @nr_vecs:	number of bio_vecs to allocate
600  * @gfp_mask:   the GFP_* mask given to the slab allocator
601  *
602  * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
603  * using bio_init() before use.  To free a bio returned from this function use
604  * kfree() after calling bio_uninit().  A bio returned from this function can
605  * be reused by calling bio_uninit() before calling bio_init() again.
606  *
607  * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
608  * function are not backed by a mempool can fail.  Do not use this function
609  * for allocations in the file system I/O path.
610  *
611  * Returns: Pointer to new bio on success, NULL on failure.
612  */
bio_kmalloc(unsigned short nr_vecs,gfp_t gfp_mask)613 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
614 {
615 	struct bio *bio;
616 
617 	if (nr_vecs > BIO_MAX_INLINE_VECS)
618 		return NULL;
619 	return kmalloc(sizeof(*bio) + nr_vecs * sizeof(struct bio_vec),
620 			gfp_mask);
621 }
622 EXPORT_SYMBOL(bio_kmalloc);
623 
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)624 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
625 {
626 	struct bio_vec bv;
627 	struct bvec_iter iter;
628 
629 	__bio_for_each_segment(bv, bio, iter, start)
630 		memzero_bvec(&bv);
631 }
632 EXPORT_SYMBOL(zero_fill_bio_iter);
633 
634 /**
635  * bio_truncate - truncate the bio to small size of @new_size
636  * @bio:	the bio to be truncated
637  * @new_size:	new size for truncating the bio
638  *
639  * Description:
640  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
641  *   REQ_OP_READ, zero the truncated part. This function should only
642  *   be used for handling corner cases, such as bio eod.
643  */
bio_truncate(struct bio * bio,unsigned new_size)644 static void bio_truncate(struct bio *bio, unsigned new_size)
645 {
646 	struct bio_vec bv;
647 	struct bvec_iter iter;
648 	unsigned int done = 0;
649 	bool truncated = false;
650 
651 	if (new_size >= bio->bi_iter.bi_size)
652 		return;
653 
654 	if (bio_op(bio) != REQ_OP_READ)
655 		goto exit;
656 
657 	bio_for_each_segment(bv, bio, iter) {
658 		if (done + bv.bv_len > new_size) {
659 			size_t offset;
660 
661 			if (!truncated)
662 				offset = new_size - done;
663 			else
664 				offset = 0;
665 			memzero_page(bv.bv_page, bv.bv_offset + offset,
666 				  bv.bv_len - offset);
667 			truncated = true;
668 		}
669 		done += bv.bv_len;
670 	}
671 
672  exit:
673 	/*
674 	 * Don't touch bvec table here and make it really immutable, since
675 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
676 	 * in its .end_bio() callback.
677 	 *
678 	 * It is enough to truncate bio by updating .bi_size since we can make
679 	 * correct bvec with the updated .bi_size for drivers.
680 	 */
681 	bio->bi_iter.bi_size = new_size;
682 }
683 
684 /**
685  * guard_bio_eod - truncate a BIO to fit the block device
686  * @bio:	bio to truncate
687  *
688  * This allows us to do IO even on the odd last sectors of a device, even if the
689  * block size is some multiple of the physical sector size.
690  *
691  * We'll just truncate the bio to the size of the device, and clear the end of
692  * the buffer head manually.  Truly out-of-range accesses will turn into actual
693  * I/O errors, this only handles the "we need to be able to do I/O at the final
694  * sector" case.
695  */
guard_bio_eod(struct bio * bio)696 void guard_bio_eod(struct bio *bio)
697 {
698 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
699 
700 	if (!maxsector)
701 		return;
702 
703 	/*
704 	 * If the *whole* IO is past the end of the device,
705 	 * let it through, and the IO layer will turn it into
706 	 * an EIO.
707 	 */
708 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
709 		return;
710 
711 	maxsector -= bio->bi_iter.bi_sector;
712 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
713 		return;
714 
715 	bio_truncate(bio, maxsector << 9);
716 }
717 
__bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)718 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
719 				   unsigned int nr)
720 {
721 	unsigned int i = 0;
722 	struct bio *bio;
723 
724 	while ((bio = cache->free_list) != NULL) {
725 		cache->free_list = bio->bi_next;
726 		cache->nr--;
727 		bio_free(bio);
728 		if (++i == nr)
729 			break;
730 	}
731 	return i;
732 }
733 
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)734 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
735 				  unsigned int nr)
736 {
737 	nr -= __bio_alloc_cache_prune(cache, nr);
738 	if (!READ_ONCE(cache->free_list)) {
739 		bio_alloc_irq_cache_splice(cache);
740 		__bio_alloc_cache_prune(cache, nr);
741 	}
742 }
743 
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)744 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
745 {
746 	struct bio_set *bs;
747 
748 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
749 	if (bs->cache) {
750 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
751 
752 		bio_alloc_cache_prune(cache, -1U);
753 	}
754 	return 0;
755 }
756 
bio_alloc_cache_destroy(struct bio_set * bs)757 static void bio_alloc_cache_destroy(struct bio_set *bs)
758 {
759 	int cpu;
760 
761 	if (!bs->cache)
762 		return;
763 
764 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
765 	for_each_possible_cpu(cpu) {
766 		struct bio_alloc_cache *cache;
767 
768 		cache = per_cpu_ptr(bs->cache, cpu);
769 		bio_alloc_cache_prune(cache, -1U);
770 	}
771 	free_percpu(bs->cache);
772 	bs->cache = NULL;
773 }
774 
bio_put_percpu_cache(struct bio * bio)775 static inline void bio_put_percpu_cache(struct bio *bio)
776 {
777 	struct bio_alloc_cache *cache;
778 
779 	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
780 	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
781 		goto out_free;
782 
783 	if (in_task()) {
784 		bio_uninit(bio);
785 		bio->bi_next = cache->free_list;
786 		/* Not necessary but helps not to iopoll already freed bios */
787 		bio->bi_bdev = NULL;
788 		cache->free_list = bio;
789 		cache->nr++;
790 	} else if (in_hardirq()) {
791 		lockdep_assert_irqs_disabled();
792 
793 		bio_uninit(bio);
794 		bio->bi_next = cache->free_list_irq;
795 		cache->free_list_irq = bio;
796 		cache->nr_irq++;
797 	} else {
798 		goto out_free;
799 	}
800 	put_cpu();
801 	return;
802 out_free:
803 	put_cpu();
804 	bio_free(bio);
805 }
806 
807 /**
808  * bio_put - release a reference to a bio
809  * @bio:   bio to release reference to
810  *
811  * Description:
812  *   Put a reference to a &struct bio, either one you have gotten with
813  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
814  **/
bio_put(struct bio * bio)815 void bio_put(struct bio *bio)
816 {
817 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
818 		BUG_ON(!atomic_read(&bio->__bi_cnt));
819 		if (!atomic_dec_and_test(&bio->__bi_cnt))
820 			return;
821 	}
822 	if (bio->bi_opf & REQ_ALLOC_CACHE)
823 		bio_put_percpu_cache(bio);
824 	else
825 		bio_free(bio);
826 }
827 EXPORT_SYMBOL(bio_put);
828 
__bio_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp)829 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
830 {
831 	bio_set_flag(bio, BIO_CLONED);
832 	bio->bi_ioprio = bio_src->bi_ioprio;
833 	bio->bi_write_hint = bio_src->bi_write_hint;
834 	bio->bi_write_stream = bio_src->bi_write_stream;
835 	bio->bi_iter = bio_src->bi_iter;
836 
837 	if (bio->bi_bdev) {
838 		if (bio->bi_bdev == bio_src->bi_bdev &&
839 		    bio_flagged(bio_src, BIO_REMAPPED))
840 			bio_set_flag(bio, BIO_REMAPPED);
841 		bio_clone_blkg_association(bio, bio_src);
842 	}
843 
844 	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
845 		return -ENOMEM;
846 	if (bio_integrity(bio_src) &&
847 	    bio_integrity_clone(bio, bio_src, gfp) < 0)
848 		return -ENOMEM;
849 	return 0;
850 }
851 
852 /**
853  * bio_alloc_clone - clone a bio that shares the original bio's biovec
854  * @bdev: block_device to clone onto
855  * @bio_src: bio to clone from
856  * @gfp: allocation priority
857  * @bs: bio_set to allocate from
858  *
859  * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
860  * bio, but not the actual data it points to.
861  *
862  * The caller must ensure that the return bio is not freed before @bio_src.
863  */
bio_alloc_clone(struct block_device * bdev,struct bio * bio_src,gfp_t gfp,struct bio_set * bs)864 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
865 		gfp_t gfp, struct bio_set *bs)
866 {
867 	struct bio *bio;
868 
869 	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
870 	if (!bio)
871 		return NULL;
872 
873 	if (__bio_clone(bio, bio_src, gfp) < 0) {
874 		bio_put(bio);
875 		return NULL;
876 	}
877 	bio->bi_io_vec = bio_src->bi_io_vec;
878 
879 	return bio;
880 }
881 EXPORT_SYMBOL(bio_alloc_clone);
882 
883 /**
884  * bio_init_clone - clone a bio that shares the original bio's biovec
885  * @bdev: block_device to clone onto
886  * @bio: bio to clone into
887  * @bio_src: bio to clone from
888  * @gfp: allocation priority
889  *
890  * Initialize a new bio in caller provided memory that is a clone of @bio_src.
891  * The caller owns the returned bio, but not the actual data it points to.
892  *
893  * The caller must ensure that @bio_src is not freed before @bio.
894  */
bio_init_clone(struct block_device * bdev,struct bio * bio,struct bio * bio_src,gfp_t gfp)895 int bio_init_clone(struct block_device *bdev, struct bio *bio,
896 		struct bio *bio_src, gfp_t gfp)
897 {
898 	int ret;
899 
900 	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
901 	ret = __bio_clone(bio, bio_src, gfp);
902 	if (ret)
903 		bio_uninit(bio);
904 	return ret;
905 }
906 EXPORT_SYMBOL(bio_init_clone);
907 
908 /**
909  * bio_full - check if the bio is full
910  * @bio:	bio to check
911  * @len:	length of one segment to be added
912  *
913  * Return true if @bio is full and one segment with @len bytes can't be
914  * added to the bio, otherwise return false
915  */
bio_full(struct bio * bio,unsigned len)916 static inline bool bio_full(struct bio *bio, unsigned len)
917 {
918 	if (bio->bi_vcnt >= bio->bi_max_vecs)
919 		return true;
920 	if (bio->bi_iter.bi_size > UINT_MAX - len)
921 		return true;
922 	return false;
923 }
924 
bvec_try_merge_page(struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off)925 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
926 		unsigned int len, unsigned int off)
927 {
928 	size_t bv_end = bv->bv_offset + bv->bv_len;
929 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
930 	phys_addr_t page_addr = page_to_phys(page);
931 
932 	if (vec_end_addr + 1 != page_addr + off)
933 		return false;
934 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
935 		return false;
936 
937 	if ((vec_end_addr & PAGE_MASK) != ((page_addr + off) & PAGE_MASK)) {
938 		if (IS_ENABLED(CONFIG_KMSAN))
939 			return false;
940 		if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
941 			return false;
942 	}
943 
944 	bv->bv_len += len;
945 	return true;
946 }
947 
948 /*
949  * Try to merge a page into a segment, while obeying the hardware segment
950  * size limit.
951  *
952  * This is kept around for the integrity metadata, which is still tries
953  * to build the initial bio to the hardware limit and doesn't have proper
954  * helpers to split.  Hopefully this will go away soon.
955  */
bvec_try_merge_hw_page(struct request_queue * q,struct bio_vec * bv,struct page * page,unsigned len,unsigned offset)956 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
957 		struct page *page, unsigned len, unsigned offset)
958 {
959 	unsigned long mask = queue_segment_boundary(q);
960 	phys_addr_t addr1 = bvec_phys(bv);
961 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
962 
963 	if ((addr1 | mask) != (addr2 | mask))
964 		return false;
965 	if (len > queue_max_segment_size(q) - bv->bv_len)
966 		return false;
967 	return bvec_try_merge_page(bv, page, len, offset);
968 }
969 
970 /**
971  * __bio_add_page - add page(s) to a bio in a new segment
972  * @bio: destination bio
973  * @page: start page to add
974  * @len: length of the data to add, may cross pages
975  * @off: offset of the data relative to @page, may cross pages
976  *
977  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
978  * that @bio has space for another bvec.
979  */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)980 void __bio_add_page(struct bio *bio, struct page *page,
981 		unsigned int len, unsigned int off)
982 {
983 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
984 	WARN_ON_ONCE(bio_full(bio, len));
985 
986 	if (is_pci_p2pdma_page(page))
987 		bio->bi_opf |= REQ_NOMERGE;
988 
989 	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
990 	bio->bi_iter.bi_size += len;
991 	bio->bi_vcnt++;
992 }
993 EXPORT_SYMBOL_GPL(__bio_add_page);
994 
995 /**
996  * bio_add_virt_nofail - add data in the direct kernel mapping to a bio
997  * @bio: destination bio
998  * @vaddr: data to add
999  * @len: length of the data to add, may cross pages
1000  *
1001  * Add the data at @vaddr to @bio.  The caller must have ensure a segment
1002  * is available for the added data.  No merging into an existing segment
1003  * will be performed.
1004  */
bio_add_virt_nofail(struct bio * bio,void * vaddr,unsigned len)1005 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len)
1006 {
1007 	__bio_add_page(bio, virt_to_page(vaddr), len, offset_in_page(vaddr));
1008 }
1009 EXPORT_SYMBOL_GPL(bio_add_virt_nofail);
1010 
1011 /**
1012  *	bio_add_page	-	attempt to add page(s) to bio
1013  *	@bio: destination bio
1014  *	@page: start page to add
1015  *	@len: vec entry length, may cross pages
1016  *	@offset: vec entry offset relative to @page, may cross pages
1017  *
1018  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1019  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1020  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1021 int bio_add_page(struct bio *bio, struct page *page,
1022 		 unsigned int len, unsigned int offset)
1023 {
1024 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1025 		return 0;
1026 	if (bio->bi_iter.bi_size > UINT_MAX - len)
1027 		return 0;
1028 
1029 	if (bio->bi_vcnt > 0) {
1030 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1031 
1032 		if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
1033 			return 0;
1034 
1035 		if (bvec_try_merge_page(bv, page, len, offset)) {
1036 			bio->bi_iter.bi_size += len;
1037 			return len;
1038 		}
1039 	}
1040 
1041 	if (bio->bi_vcnt >= bio->bi_max_vecs)
1042 		return 0;
1043 	__bio_add_page(bio, page, len, offset);
1044 	return len;
1045 }
1046 EXPORT_SYMBOL(bio_add_page);
1047 
bio_add_folio_nofail(struct bio * bio,struct folio * folio,size_t len,size_t off)1048 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1049 			  size_t off)
1050 {
1051 	unsigned long nr = off / PAGE_SIZE;
1052 
1053 	WARN_ON_ONCE(len > UINT_MAX);
1054 	__bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE);
1055 }
1056 EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1057 
1058 /**
1059  * bio_add_folio - Attempt to add part of a folio to a bio.
1060  * @bio: BIO to add to.
1061  * @folio: Folio to add.
1062  * @len: How many bytes from the folio to add.
1063  * @off: First byte in this folio to add.
1064  *
1065  * Filesystems that use folios can call this function instead of calling
1066  * bio_add_page() for each page in the folio.  If @off is bigger than
1067  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1068  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1069  *
1070  * Return: Whether the addition was successful.
1071  */
bio_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t off)1072 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1073 		   size_t off)
1074 {
1075 	unsigned long nr = off / PAGE_SIZE;
1076 
1077 	if (len > UINT_MAX)
1078 		return false;
1079 	return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0;
1080 }
1081 EXPORT_SYMBOL(bio_add_folio);
1082 
1083 /**
1084  * bio_add_vmalloc_chunk - add a vmalloc chunk to a bio
1085  * @bio: destination bio
1086  * @vaddr: vmalloc address to add
1087  * @len: total length in bytes of the data to add
1088  *
1089  * Add data starting at @vaddr to @bio and return how many bytes were added.
1090  * This may be less than the amount originally asked.  Returns 0 if no data
1091  * could be added to @bio.
1092  *
1093  * This helper calls flush_kernel_vmap_range() for the range added.  For reads
1094  * the caller still needs to manually call invalidate_kernel_vmap_range() in
1095  * the completion handler.
1096  */
bio_add_vmalloc_chunk(struct bio * bio,void * vaddr,unsigned len)1097 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len)
1098 {
1099 	unsigned int offset = offset_in_page(vaddr);
1100 
1101 	len = min(len, PAGE_SIZE - offset);
1102 	if (bio_add_page(bio, vmalloc_to_page(vaddr), len, offset) < len)
1103 		return 0;
1104 	if (op_is_write(bio_op(bio)))
1105 		flush_kernel_vmap_range(vaddr, len);
1106 	return len;
1107 }
1108 EXPORT_SYMBOL_GPL(bio_add_vmalloc_chunk);
1109 
1110 /**
1111  * bio_add_vmalloc - add a vmalloc region to a bio
1112  * @bio: destination bio
1113  * @vaddr: vmalloc address to add
1114  * @len: total length in bytes of the data to add
1115  *
1116  * Add data starting at @vaddr to @bio.  Return %true on success or %false if
1117  * @bio does not have enough space for the payload.
1118  *
1119  * This helper calls flush_kernel_vmap_range() for the range added.  For reads
1120  * the caller still needs to manually call invalidate_kernel_vmap_range() in
1121  * the completion handler.
1122  */
bio_add_vmalloc(struct bio * bio,void * vaddr,unsigned int len)1123 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len)
1124 {
1125 	do {
1126 		unsigned int added = bio_add_vmalloc_chunk(bio, vaddr, len);
1127 
1128 		if (!added)
1129 			return false;
1130 		vaddr += added;
1131 		len -= added;
1132 	} while (len);
1133 
1134 	return true;
1135 }
1136 EXPORT_SYMBOL_GPL(bio_add_vmalloc);
1137 
__bio_release_pages(struct bio * bio,bool mark_dirty)1138 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1139 {
1140 	struct folio_iter fi;
1141 
1142 	bio_for_each_folio_all(fi, bio) {
1143 		size_t nr_pages;
1144 
1145 		if (mark_dirty) {
1146 			folio_lock(fi.folio);
1147 			folio_mark_dirty(fi.folio);
1148 			folio_unlock(fi.folio);
1149 		}
1150 		nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1151 			   fi.offset / PAGE_SIZE + 1;
1152 		unpin_user_folio(fi.folio, nr_pages);
1153 	}
1154 }
1155 EXPORT_SYMBOL_GPL(__bio_release_pages);
1156 
bio_iov_bvec_set(struct bio * bio,const struct iov_iter * iter)1157 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter)
1158 {
1159 	WARN_ON_ONCE(bio->bi_max_vecs);
1160 
1161 	bio->bi_vcnt = iter->nr_segs;
1162 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1163 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1164 	bio->bi_iter.bi_size = iov_iter_count(iter);
1165 	bio_set_flag(bio, BIO_CLONED);
1166 }
1167 
get_contig_folio_len(unsigned int * num_pages,struct page ** pages,unsigned int i,struct folio * folio,size_t left,size_t offset)1168 static unsigned int get_contig_folio_len(unsigned int *num_pages,
1169 					 struct page **pages, unsigned int i,
1170 					 struct folio *folio, size_t left,
1171 					 size_t offset)
1172 {
1173 	size_t bytes = left;
1174 	size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1175 	unsigned int j;
1176 
1177 	/*
1178 	 * We might COW a single page in the middle of
1179 	 * a large folio, so we have to check that all
1180 	 * pages belong to the same folio.
1181 	 */
1182 	bytes -= contig_sz;
1183 	for (j = i + 1; j < i + *num_pages; j++) {
1184 		size_t next = min_t(size_t, PAGE_SIZE, bytes);
1185 
1186 		if (page_folio(pages[j]) != folio ||
1187 		    pages[j] != pages[j - 1] + 1) {
1188 			break;
1189 		}
1190 		contig_sz += next;
1191 		bytes -= next;
1192 	}
1193 	*num_pages = j - i;
1194 
1195 	return contig_sz;
1196 }
1197 
1198 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1199 
1200 /**
1201  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1202  * @bio: bio to add pages to
1203  * @iter: iov iterator describing the region to be mapped
1204  *
1205  * Extracts pages from *iter and appends them to @bio's bvec array.  The pages
1206  * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1207  * For a multi-segment *iter, this function only adds pages from the next
1208  * non-empty segment of the iov iterator.
1209  */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1210 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1211 {
1212 	iov_iter_extraction_t extraction_flags = 0;
1213 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1214 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1215 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1216 	struct page **pages = (struct page **)bv;
1217 	ssize_t size;
1218 	unsigned int num_pages, i = 0;
1219 	size_t offset, folio_offset, left, len;
1220 	int ret = 0;
1221 
1222 	/*
1223 	 * Move page array up in the allocated memory for the bio vecs as far as
1224 	 * possible so that we can start filling biovecs from the beginning
1225 	 * without overwriting the temporary page array.
1226 	 */
1227 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1228 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1229 
1230 	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1231 		extraction_flags |= ITER_ALLOW_P2PDMA;
1232 
1233 	size = iov_iter_extract_pages(iter, &pages,
1234 				      UINT_MAX - bio->bi_iter.bi_size,
1235 				      nr_pages, extraction_flags, &offset);
1236 	if (unlikely(size <= 0))
1237 		return size ? size : -EFAULT;
1238 
1239 	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1240 	for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
1241 		struct page *page = pages[i];
1242 		struct folio *folio = page_folio(page);
1243 		unsigned int old_vcnt = bio->bi_vcnt;
1244 
1245 		folio_offset = ((size_t)folio_page_idx(folio, page) <<
1246 			       PAGE_SHIFT) + offset;
1247 
1248 		len = min(folio_size(folio) - folio_offset, left);
1249 
1250 		num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1251 
1252 		if (num_pages > 1)
1253 			len = get_contig_folio_len(&num_pages, pages, i,
1254 						   folio, left, offset);
1255 
1256 		if (!bio_add_folio(bio, folio, len, folio_offset)) {
1257 			WARN_ON_ONCE(1);
1258 			ret = -EINVAL;
1259 			goto out;
1260 		}
1261 
1262 		if (bio_flagged(bio, BIO_PAGE_PINNED)) {
1263 			/*
1264 			 * We're adding another fragment of a page that already
1265 			 * was part of the last segment.  Undo our pin as the
1266 			 * page was pinned when an earlier fragment of it was
1267 			 * added to the bio and __bio_release_pages expects a
1268 			 * single pin per page.
1269 			 */
1270 			if (offset && bio->bi_vcnt == old_vcnt)
1271 				unpin_user_folio(folio, 1);
1272 		}
1273 		offset = 0;
1274 	}
1275 
1276 	iov_iter_revert(iter, left);
1277 out:
1278 	while (i < nr_pages)
1279 		bio_release_page(bio, pages[i++]);
1280 
1281 	return ret;
1282 }
1283 
1284 /*
1285  * Aligns the bio size to the len_align_mask, releasing excessive bio vecs that
1286  * __bio_iov_iter_get_pages may have inserted, and reverts the trimmed length
1287  * for the next iteration.
1288  */
bio_iov_iter_align_down(struct bio * bio,struct iov_iter * iter,unsigned len_align_mask)1289 static int bio_iov_iter_align_down(struct bio *bio, struct iov_iter *iter,
1290 			    unsigned len_align_mask)
1291 {
1292 	size_t nbytes = bio->bi_iter.bi_size & len_align_mask;
1293 
1294 	if (!nbytes)
1295 		return 0;
1296 
1297 	iov_iter_revert(iter, nbytes);
1298 	bio->bi_iter.bi_size -= nbytes;
1299 	do {
1300 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1301 
1302 		if (nbytes < bv->bv_len) {
1303 			bv->bv_len -= nbytes;
1304 			break;
1305 		}
1306 
1307 		bio_release_page(bio, bv->bv_page);
1308 		bio->bi_vcnt--;
1309 		nbytes -= bv->bv_len;
1310 	} while (nbytes);
1311 
1312 	if (!bio->bi_vcnt)
1313 		return -EFAULT;
1314 	return 0;
1315 }
1316 
1317 /**
1318  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1319  * @bio: bio to add pages to
1320  * @iter: iov iterator describing the region to be added
1321  * @len_align_mask: the mask to align the total size to, 0 for any length
1322  *
1323  * This takes either an iterator pointing to user memory, or one pointing to
1324  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1325  * map them into the kernel. On IO completion, the caller should put those
1326  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1327  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1328  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1329  * completed by a call to ->ki_complete() or returns with an error other than
1330  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1331  * on IO completion. If it isn't, then pages should be released.
1332  *
1333  * The function tries, but does not guarantee, to pin as many pages as
1334  * fit into the bio, or are requested in @iter, whatever is smaller. If
1335  * MM encounters an error pinning the requested pages, it stops. Error
1336  * is returned only if 0 pages could be pinned.
1337  */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter,unsigned len_align_mask)1338 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter,
1339 			   unsigned len_align_mask)
1340 {
1341 	int ret = 0;
1342 
1343 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1344 		return -EIO;
1345 
1346 	if (iov_iter_is_bvec(iter)) {
1347 		bio_iov_bvec_set(bio, iter);
1348 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1349 		return 0;
1350 	}
1351 
1352 	if (iov_iter_extract_will_pin(iter))
1353 		bio_set_flag(bio, BIO_PAGE_PINNED);
1354 	do {
1355 		ret = __bio_iov_iter_get_pages(bio, iter);
1356 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1357 
1358 	if (bio->bi_vcnt)
1359 		return bio_iov_iter_align_down(bio, iter, len_align_mask);
1360 	return ret;
1361 }
1362 
submit_bio_wait_endio(struct bio * bio)1363 static void submit_bio_wait_endio(struct bio *bio)
1364 {
1365 	complete(bio->bi_private);
1366 }
1367 
1368 /**
1369  * submit_bio_wait - submit a bio, and wait until it completes
1370  * @bio: The &struct bio which describes the I/O
1371  *
1372  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1373  * bio_endio() on failure.
1374  *
1375  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1376  * result in bio reference to be consumed. The caller must drop the reference
1377  * on his own.
1378  */
submit_bio_wait(struct bio * bio)1379 int submit_bio_wait(struct bio *bio)
1380 {
1381 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1382 			bio->bi_bdev->bd_disk->lockdep_map);
1383 
1384 	bio->bi_private = &done;
1385 	bio->bi_end_io = submit_bio_wait_endio;
1386 	bio->bi_opf |= REQ_SYNC;
1387 	submit_bio(bio);
1388 	blk_wait_io(&done);
1389 
1390 	return blk_status_to_errno(bio->bi_status);
1391 }
1392 EXPORT_SYMBOL(submit_bio_wait);
1393 
1394 /**
1395  * bdev_rw_virt - synchronously read into / write from kernel mapping
1396  * @bdev:	block device to access
1397  * @sector:	sector to access
1398  * @data:	data to read/write
1399  * @len:	length in byte to read/write
1400  * @op:		operation (e.g. REQ_OP_READ/REQ_OP_WRITE)
1401  *
1402  * Performs synchronous I/O to @bdev for @data/@len.  @data must be in
1403  * the kernel direct mapping and not a vmalloc address.
1404  */
bdev_rw_virt(struct block_device * bdev,sector_t sector,void * data,size_t len,enum req_op op)1405 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
1406 		size_t len, enum req_op op)
1407 {
1408 	struct bio_vec bv;
1409 	struct bio bio;
1410 	int error;
1411 
1412 	if (WARN_ON_ONCE(is_vmalloc_addr(data)))
1413 		return -EIO;
1414 
1415 	bio_init(&bio, bdev, &bv, 1, op);
1416 	bio.bi_iter.bi_sector = sector;
1417 	bio_add_virt_nofail(&bio, data, len);
1418 	error = submit_bio_wait(&bio);
1419 	bio_uninit(&bio);
1420 	return error;
1421 }
1422 EXPORT_SYMBOL_GPL(bdev_rw_virt);
1423 
bio_wait_end_io(struct bio * bio)1424 static void bio_wait_end_io(struct bio *bio)
1425 {
1426 	complete(bio->bi_private);
1427 	bio_put(bio);
1428 }
1429 
1430 /*
1431  * bio_await_chain - ends @bio and waits for every chained bio to complete
1432  */
bio_await_chain(struct bio * bio)1433 void bio_await_chain(struct bio *bio)
1434 {
1435 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1436 			bio->bi_bdev->bd_disk->lockdep_map);
1437 
1438 	bio->bi_private = &done;
1439 	bio->bi_end_io = bio_wait_end_io;
1440 	bio_endio(bio);
1441 	blk_wait_io(&done);
1442 }
1443 
__bio_advance(struct bio * bio,unsigned bytes)1444 void __bio_advance(struct bio *bio, unsigned bytes)
1445 {
1446 	if (bio_integrity(bio))
1447 		bio_integrity_advance(bio, bytes);
1448 
1449 	bio_crypt_advance(bio, bytes);
1450 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1451 }
1452 EXPORT_SYMBOL(__bio_advance);
1453 
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1454 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1455 			struct bio *src, struct bvec_iter *src_iter)
1456 {
1457 	while (src_iter->bi_size && dst_iter->bi_size) {
1458 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1459 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1460 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1461 		void *src_buf = bvec_kmap_local(&src_bv);
1462 		void *dst_buf = bvec_kmap_local(&dst_bv);
1463 
1464 		memcpy(dst_buf, src_buf, bytes);
1465 
1466 		kunmap_local(dst_buf);
1467 		kunmap_local(src_buf);
1468 
1469 		bio_advance_iter_single(src, src_iter, bytes);
1470 		bio_advance_iter_single(dst, dst_iter, bytes);
1471 	}
1472 }
1473 EXPORT_SYMBOL(bio_copy_data_iter);
1474 
1475 /**
1476  * bio_copy_data - copy contents of data buffers from one bio to another
1477  * @src: source bio
1478  * @dst: destination bio
1479  *
1480  * Stops when it reaches the end of either @src or @dst - that is, copies
1481  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1482  */
bio_copy_data(struct bio * dst,struct bio * src)1483 void bio_copy_data(struct bio *dst, struct bio *src)
1484 {
1485 	struct bvec_iter src_iter = src->bi_iter;
1486 	struct bvec_iter dst_iter = dst->bi_iter;
1487 
1488 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1489 }
1490 EXPORT_SYMBOL(bio_copy_data);
1491 
bio_free_pages(struct bio * bio)1492 void bio_free_pages(struct bio *bio)
1493 {
1494 	struct bio_vec *bvec;
1495 	struct bvec_iter_all iter_all;
1496 
1497 	bio_for_each_segment_all(bvec, bio, iter_all)
1498 		__free_page(bvec->bv_page);
1499 }
1500 EXPORT_SYMBOL(bio_free_pages);
1501 
1502 /*
1503  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1504  * for performing direct-IO in BIOs.
1505  *
1506  * The problem is that we cannot run folio_mark_dirty() from interrupt context
1507  * because the required locks are not interrupt-safe.  So what we can do is to
1508  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1509  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1510  * in process context.
1511  *
1512  * Note that this code is very hard to test under normal circumstances because
1513  * direct-io pins the pages with get_user_pages().  This makes
1514  * is_page_cache_freeable return false, and the VM will not clean the pages.
1515  * But other code (eg, flusher threads) could clean the pages if they are mapped
1516  * pagecache.
1517  *
1518  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1519  * deferred bio dirtying paths.
1520  */
1521 
1522 /*
1523  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1524  */
bio_set_pages_dirty(struct bio * bio)1525 void bio_set_pages_dirty(struct bio *bio)
1526 {
1527 	struct folio_iter fi;
1528 
1529 	bio_for_each_folio_all(fi, bio) {
1530 		folio_lock(fi.folio);
1531 		folio_mark_dirty(fi.folio);
1532 		folio_unlock(fi.folio);
1533 	}
1534 }
1535 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1536 
1537 /*
1538  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1539  * If they are, then fine.  If, however, some pages are clean then they must
1540  * have been written out during the direct-IO read.  So we take another ref on
1541  * the BIO and re-dirty the pages in process context.
1542  *
1543  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1544  * here on.  It will unpin each page and will run one bio_put() against the
1545  * BIO.
1546  */
1547 
1548 static void bio_dirty_fn(struct work_struct *work);
1549 
1550 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1551 static DEFINE_SPINLOCK(bio_dirty_lock);
1552 static struct bio *bio_dirty_list;
1553 
1554 /*
1555  * This runs in process context
1556  */
bio_dirty_fn(struct work_struct * work)1557 static void bio_dirty_fn(struct work_struct *work)
1558 {
1559 	struct bio *bio, *next;
1560 
1561 	spin_lock_irq(&bio_dirty_lock);
1562 	next = bio_dirty_list;
1563 	bio_dirty_list = NULL;
1564 	spin_unlock_irq(&bio_dirty_lock);
1565 
1566 	while ((bio = next) != NULL) {
1567 		next = bio->bi_private;
1568 
1569 		bio_release_pages(bio, true);
1570 		bio_put(bio);
1571 	}
1572 }
1573 
bio_check_pages_dirty(struct bio * bio)1574 void bio_check_pages_dirty(struct bio *bio)
1575 {
1576 	struct folio_iter fi;
1577 	unsigned long flags;
1578 
1579 	bio_for_each_folio_all(fi, bio) {
1580 		if (!folio_test_dirty(fi.folio))
1581 			goto defer;
1582 	}
1583 
1584 	bio_release_pages(bio, false);
1585 	bio_put(bio);
1586 	return;
1587 defer:
1588 	spin_lock_irqsave(&bio_dirty_lock, flags);
1589 	bio->bi_private = bio_dirty_list;
1590 	bio_dirty_list = bio;
1591 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1592 	schedule_work(&bio_dirty_work);
1593 }
1594 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1595 
bio_remaining_done(struct bio * bio)1596 static inline bool bio_remaining_done(struct bio *bio)
1597 {
1598 	/*
1599 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1600 	 * we always end io on the first invocation.
1601 	 */
1602 	if (!bio_flagged(bio, BIO_CHAIN))
1603 		return true;
1604 
1605 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1606 
1607 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1608 		bio_clear_flag(bio, BIO_CHAIN);
1609 		return true;
1610 	}
1611 
1612 	return false;
1613 }
1614 
1615 /**
1616  * bio_endio - end I/O on a bio
1617  * @bio:	bio
1618  *
1619  * Description:
1620  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1621  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1622  *   bio unless they own it and thus know that it has an end_io function.
1623  *
1624  *   bio_endio() can be called several times on a bio that has been chained
1625  *   using bio_chain().  The ->bi_end_io() function will only be called the
1626  *   last time.
1627  **/
bio_endio(struct bio * bio)1628 void bio_endio(struct bio *bio)
1629 {
1630 again:
1631 	if (!bio_remaining_done(bio))
1632 		return;
1633 	if (!bio_integrity_endio(bio))
1634 		return;
1635 
1636 	blk_zone_bio_endio(bio);
1637 
1638 	rq_qos_done_bio(bio);
1639 
1640 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1641 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1642 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1643 	}
1644 
1645 	/*
1646 	 * Need to have a real endio function for chained bios, otherwise
1647 	 * various corner cases will break (like stacking block devices that
1648 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1649 	 * recursion and blowing the stack. Tail call optimization would
1650 	 * handle this, but compiling with frame pointers also disables
1651 	 * gcc's sibling call optimization.
1652 	 */
1653 	if (bio->bi_end_io == bio_chain_endio) {
1654 		bio = __bio_chain_endio(bio);
1655 		goto again;
1656 	}
1657 
1658 #ifdef CONFIG_BLK_CGROUP
1659 	/*
1660 	 * Release cgroup info.  We shouldn't have to do this here, but quite
1661 	 * a few callers of bio_init fail to call bio_uninit, so we cover up
1662 	 * for that here at least for now.
1663 	 */
1664 	if (bio->bi_blkg) {
1665 		blkg_put(bio->bi_blkg);
1666 		bio->bi_blkg = NULL;
1667 	}
1668 #endif
1669 
1670 	if (bio->bi_end_io)
1671 		bio->bi_end_io(bio);
1672 }
1673 EXPORT_SYMBOL(bio_endio);
1674 
1675 /**
1676  * bio_split - split a bio
1677  * @bio:	bio to split
1678  * @sectors:	number of sectors to split from the front of @bio
1679  * @gfp:	gfp mask
1680  * @bs:		bio set to allocate from
1681  *
1682  * Allocates and returns a new bio which represents @sectors from the start of
1683  * @bio, and updates @bio to represent the remaining sectors.
1684  *
1685  * Unless this is a discard request the newly allocated bio will point
1686  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1687  * neither @bio nor @bs are freed before the split bio.
1688  */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1689 struct bio *bio_split(struct bio *bio, int sectors,
1690 		      gfp_t gfp, struct bio_set *bs)
1691 {
1692 	struct bio *split;
1693 
1694 	if (WARN_ON_ONCE(sectors <= 0))
1695 		return ERR_PTR(-EINVAL);
1696 	if (WARN_ON_ONCE(sectors >= bio_sectors(bio)))
1697 		return ERR_PTR(-EINVAL);
1698 
1699 	/* Zone append commands cannot be split */
1700 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1701 		return ERR_PTR(-EINVAL);
1702 
1703 	/* atomic writes cannot be split */
1704 	if (bio->bi_opf & REQ_ATOMIC)
1705 		return ERR_PTR(-EINVAL);
1706 
1707 	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1708 	if (!split)
1709 		return ERR_PTR(-ENOMEM);
1710 
1711 	split->bi_iter.bi_size = sectors << 9;
1712 
1713 	if (bio_integrity(split))
1714 		bio_integrity_trim(split);
1715 
1716 	bio_advance(bio, split->bi_iter.bi_size);
1717 
1718 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1719 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1720 
1721 	return split;
1722 }
1723 EXPORT_SYMBOL(bio_split);
1724 
1725 /**
1726  * bio_trim - trim a bio
1727  * @bio:	bio to trim
1728  * @offset:	number of sectors to trim from the front of @bio
1729  * @size:	size we want to trim @bio to, in sectors
1730  *
1731  * This function is typically used for bios that are cloned and submitted
1732  * to the underlying device in parts.
1733  */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1734 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1735 {
1736 	/* We should never trim an atomic write */
1737 	if (WARN_ON_ONCE(bio->bi_opf & REQ_ATOMIC && size))
1738 		return;
1739 
1740 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1741 			 offset + size > bio_sectors(bio)))
1742 		return;
1743 
1744 	size <<= 9;
1745 	if (offset == 0 && size == bio->bi_iter.bi_size)
1746 		return;
1747 
1748 	bio_advance(bio, offset << 9);
1749 	bio->bi_iter.bi_size = size;
1750 
1751 	if (bio_integrity(bio))
1752 		bio_integrity_trim(bio);
1753 }
1754 EXPORT_SYMBOL_GPL(bio_trim);
1755 
1756 /*
1757  * create memory pools for biovec's in a bio_set.
1758  * use the global biovec slabs created for general use.
1759  */
biovec_init_pool(mempool_t * pool,int pool_entries)1760 int biovec_init_pool(mempool_t *pool, int pool_entries)
1761 {
1762 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1763 
1764 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1765 }
1766 
1767 /*
1768  * bioset_exit - exit a bioset initialized with bioset_init()
1769  *
1770  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1771  * kzalloc()).
1772  */
bioset_exit(struct bio_set * bs)1773 void bioset_exit(struct bio_set *bs)
1774 {
1775 	bio_alloc_cache_destroy(bs);
1776 	if (bs->rescue_workqueue)
1777 		destroy_workqueue(bs->rescue_workqueue);
1778 	bs->rescue_workqueue = NULL;
1779 
1780 	mempool_exit(&bs->bio_pool);
1781 	mempool_exit(&bs->bvec_pool);
1782 
1783 	if (bs->bio_slab)
1784 		bio_put_slab(bs);
1785 	bs->bio_slab = NULL;
1786 }
1787 EXPORT_SYMBOL(bioset_exit);
1788 
1789 /**
1790  * bioset_init - Initialize a bio_set
1791  * @bs:		pool to initialize
1792  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1793  * @front_pad:	Number of bytes to allocate in front of the returned bio
1794  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1795  *              and %BIOSET_NEED_RESCUER
1796  *
1797  * Description:
1798  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1799  *    to ask for a number of bytes to be allocated in front of the bio.
1800  *    Front pad allocation is useful for embedding the bio inside
1801  *    another structure, to avoid allocating extra data to go with the bio.
1802  *    Note that the bio must be embedded at the END of that structure always,
1803  *    or things will break badly.
1804  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1805  *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1806  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1807  *    to dispatch queued requests when the mempool runs out of space.
1808  *
1809  */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1810 int bioset_init(struct bio_set *bs,
1811 		unsigned int pool_size,
1812 		unsigned int front_pad,
1813 		int flags)
1814 {
1815 	bs->front_pad = front_pad;
1816 	if (flags & BIOSET_NEED_BVECS)
1817 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1818 	else
1819 		bs->back_pad = 0;
1820 
1821 	spin_lock_init(&bs->rescue_lock);
1822 	bio_list_init(&bs->rescue_list);
1823 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1824 
1825 	bs->bio_slab = bio_find_or_create_slab(bs);
1826 	if (!bs->bio_slab)
1827 		return -ENOMEM;
1828 
1829 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1830 		goto bad;
1831 
1832 	if ((flags & BIOSET_NEED_BVECS) &&
1833 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1834 		goto bad;
1835 
1836 	if (flags & BIOSET_NEED_RESCUER) {
1837 		bs->rescue_workqueue = alloc_workqueue("bioset",
1838 							WQ_MEM_RECLAIM, 0);
1839 		if (!bs->rescue_workqueue)
1840 			goto bad;
1841 	}
1842 	if (flags & BIOSET_PERCPU_CACHE) {
1843 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1844 		if (!bs->cache)
1845 			goto bad;
1846 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1847 	}
1848 
1849 	return 0;
1850 bad:
1851 	bioset_exit(bs);
1852 	return -ENOMEM;
1853 }
1854 EXPORT_SYMBOL(bioset_init);
1855 
init_bio(void)1856 static int __init init_bio(void)
1857 {
1858 	int i;
1859 
1860 	BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1861 
1862 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1863 		struct biovec_slab *bvs = bvec_slabs + i;
1864 
1865 		bvs->slab = kmem_cache_create(bvs->name,
1866 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1867 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1868 	}
1869 
1870 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1871 					bio_cpu_dead);
1872 
1873 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1874 			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1875 		panic("bio: can't allocate bios\n");
1876 
1877 	return 0;
1878 }
1879 subsys_initcall(init_bio);
1880