xref: /linux/arch/arm64/include/asm/kvm_arm.h (revision 43db1111073049220381944af4a3b8a5400eda71)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_ARM_H__
8 #define __ARM64_KVM_ARM_H__
9 
10 #include <asm/esr.h>
11 #include <asm/memory.h>
12 #include <asm/sysreg.h>
13 #include <asm/types.h>
14 
15 /*
16  * Because I'm terribly lazy and that repainting the whole of the KVM
17  * code with the proper names is a pain, use a helper to map the names
18  * inherited from AArch32 with the new fancy nomenclature. One day...
19  */
20 #define	__HCR(x)	HCR_EL2_##x
21 
22 #define HCR_TID5	__HCR(TID5)
23 #define HCR_DCT		__HCR(DCT)
24 #define HCR_ATA_SHIFT	__HCR(ATA_SHIFT)
25 #define HCR_ATA		__HCR(ATA)
26 #define HCR_TTLBOS	__HCR(TTLBOS)
27 #define HCR_TTLBIS	__HCR(TTLBIS)
28 #define HCR_ENSCXT	__HCR(EnSCXT)
29 #define HCR_TOCU	__HCR(TOCU)
30 #define HCR_AMVOFFEN	__HCR(AMVOFFEN)
31 #define HCR_TICAB	__HCR(TICAB)
32 #define HCR_TID4	__HCR(TID4)
33 #define HCR_FIEN	__HCR(FIEN)
34 #define HCR_FWB		__HCR(FWB)
35 #define HCR_NV2		__HCR(NV2)
36 #define HCR_AT		__HCR(AT)
37 #define HCR_NV1		__HCR(NV1)
38 #define HCR_NV		__HCR(NV)
39 #define HCR_API		__HCR(API)
40 #define HCR_APK		__HCR(APK)
41 #define HCR_TEA		__HCR(TEA)
42 #define HCR_TERR	__HCR(TERR)
43 #define HCR_TLOR	__HCR(TLOR)
44 #define HCR_E2H		__HCR(E2H)
45 #define HCR_ID		__HCR(ID)
46 #define HCR_CD		__HCR(CD)
47 #define HCR_RW		__HCR(RW)
48 #define HCR_TRVM	__HCR(TRVM)
49 #define HCR_HCD		__HCR(HCD)
50 #define HCR_TDZ		__HCR(TDZ)
51 #define HCR_TGE		__HCR(TGE)
52 #define HCR_TVM		__HCR(TVM)
53 #define HCR_TTLB	__HCR(TTLB)
54 #define HCR_TPU		__HCR(TPU)
55 #define HCR_TPC		__HCR(TPCP)
56 #define HCR_TSW		__HCR(TSW)
57 #define HCR_TACR	__HCR(TACR)
58 #define HCR_TIDCP	__HCR(TIDCP)
59 #define HCR_TSC		__HCR(TSC)
60 #define HCR_TID3	__HCR(TID3)
61 #define HCR_TID2	__HCR(TID2)
62 #define HCR_TID1	__HCR(TID1)
63 #define HCR_TID0	__HCR(TID0)
64 #define HCR_TWE		__HCR(TWE)
65 #define HCR_TWI		__HCR(TWI)
66 #define HCR_DC		__HCR(DC)
67 #define HCR_BSU		__HCR(BSU)
68 #define HCR_BSU_IS	__HCR(BSU_IS)
69 #define HCR_FB		__HCR(FB)
70 #define HCR_VSE		__HCR(VSE)
71 #define HCR_VI		__HCR(VI)
72 #define HCR_VF		__HCR(VF)
73 #define HCR_AMO		__HCR(AMO)
74 #define HCR_IMO		__HCR(IMO)
75 #define HCR_FMO		__HCR(FMO)
76 #define HCR_PTW		__HCR(PTW)
77 #define HCR_SWIO	__HCR(SWIO)
78 #define HCR_VM		__HCR(VM)
79 
80 /*
81  * The bits we set in HCR:
82  * TLOR:	Trap LORegion register accesses
83  * RW:		64bit by default, can be overridden for 32bit VMs
84  * TACR:	Trap ACTLR
85  * TSC:		Trap SMC
86  * TSW:		Trap cache operations by set/way
87  * TWE:		Trap WFE
88  * TWI:		Trap WFI
89  * TIDCP:	Trap L2CTLR/L2ECTLR
90  * BSU_IS:	Upgrade barriers to the inner shareable domain
91  * FB:		Force broadcast of all maintenance operations
92  * AMO:		Override CPSR.A and enable signaling with VA
93  * IMO:		Override CPSR.I and enable signaling with VI
94  * FMO:		Override CPSR.F and enable signaling with VF
95  * SWIO:	Turn set/way invalidates into set/way clean+invalidate
96  * PTW:		Take a stage2 fault if a stage1 walk steps in device memory
97  * TID3:	Trap EL1 reads of group 3 ID registers
98  * TID1:	Trap REVIDR_EL1, AIDR_EL1, and SMIDR_EL1
99  */
100 #define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \
101 			 HCR_BSU_IS | HCR_FB | HCR_TACR | \
102 			 HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \
103 			 HCR_FMO | HCR_IMO | HCR_PTW | HCR_TID3 | HCR_TID1)
104 #define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK | HCR_ATA)
105 #define HCR_HOST_NVHE_PROTECTED_FLAGS (HCR_HOST_NVHE_FLAGS | HCR_TSC)
106 #define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H | HCR_AMO | HCR_IMO | HCR_FMO)
107 
108 #define MPAMHCR_HOST_FLAGS	0
109 
110 /* TCR_EL2 Registers bits */
111 #define TCR_EL2_DS		(1UL << 32)
112 #define TCR_EL2_RES1		((1U << 31) | (1 << 23))
113 #define TCR_EL2_HPD		(1 << 24)
114 #define TCR_EL2_TBI		(1 << 20)
115 #define TCR_EL2_PS_SHIFT	16
116 #define TCR_EL2_PS_MASK		(7 << TCR_EL2_PS_SHIFT)
117 #define TCR_EL2_PS_40B		(2 << TCR_EL2_PS_SHIFT)
118 #define TCR_EL2_TG0_MASK	TCR_TG0_MASK
119 #define TCR_EL2_SH0_MASK	TCR_SH0_MASK
120 #define TCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
121 #define TCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
122 #define TCR_EL2_T0SZ_MASK	0x3f
123 #define TCR_EL2_MASK	(TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \
124 			 TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK)
125 
126 /* VTCR_EL2 Registers bits */
127 #define VTCR_EL2_DS		TCR_EL2_DS
128 #define VTCR_EL2_RES1		(1U << 31)
129 #define VTCR_EL2_HD		(1 << 22)
130 #define VTCR_EL2_HA		(1 << 21)
131 #define VTCR_EL2_PS_SHIFT	TCR_EL2_PS_SHIFT
132 #define VTCR_EL2_PS_MASK	TCR_EL2_PS_MASK
133 #define VTCR_EL2_TG0_MASK	TCR_TG0_MASK
134 #define VTCR_EL2_TG0_4K		TCR_TG0_4K
135 #define VTCR_EL2_TG0_16K	TCR_TG0_16K
136 #define VTCR_EL2_TG0_64K	TCR_TG0_64K
137 #define VTCR_EL2_SH0_MASK	TCR_SH0_MASK
138 #define VTCR_EL2_SH0_INNER	TCR_SH0_INNER
139 #define VTCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
140 #define VTCR_EL2_ORGN0_WBWA	TCR_ORGN0_WBWA
141 #define VTCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
142 #define VTCR_EL2_IRGN0_WBWA	TCR_IRGN0_WBWA
143 #define VTCR_EL2_SL0_SHIFT	6
144 #define VTCR_EL2_SL0_MASK	(3 << VTCR_EL2_SL0_SHIFT)
145 #define VTCR_EL2_T0SZ_MASK	0x3f
146 #define VTCR_EL2_VS_SHIFT	19
147 #define VTCR_EL2_VS_8BIT	(0 << VTCR_EL2_VS_SHIFT)
148 #define VTCR_EL2_VS_16BIT	(1 << VTCR_EL2_VS_SHIFT)
149 
150 #define VTCR_EL2_T0SZ(x)	TCR_T0SZ(x)
151 
152 /*
153  * We configure the Stage-2 page tables to always restrict the IPA space to be
154  * 40 bits wide (T0SZ = 24).  Systems with a PARange smaller than 40 bits are
155  * not known to exist and will break with this configuration.
156  *
157  * The VTCR_EL2 is configured per VM and is initialised in kvm_init_stage2_mmu.
158  *
159  * Note that when using 4K pages, we concatenate two first level page tables
160  * together. With 16K pages, we concatenate 16 first level page tables.
161  *
162  */
163 
164 #define VTCR_EL2_COMMON_BITS	(VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
165 				 VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
166 
167 /*
168  * VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
169  * Interestingly, it depends on the page size.
170  * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
171  *
172  *	-----------------------------------------
173  *	| Entry level		|  4K  | 16K/64K |
174  *	------------------------------------------
175  *	| Level: 0		|  2   |   -     |
176  *	------------------------------------------
177  *	| Level: 1		|  1   |   2     |
178  *	------------------------------------------
179  *	| Level: 2		|  0   |   1     |
180  *	------------------------------------------
181  *	| Level: 3		|  -   |   0     |
182  *	------------------------------------------
183  *
184  * The table roughly translates to :
185  *
186  *	SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
187  *
188  * Where TGRAN_SL0_BASE is a magic number depending on the page size:
189  * 	TGRAN_SL0_BASE(4K) = 2
190  *	TGRAN_SL0_BASE(16K) = 3
191  *	TGRAN_SL0_BASE(64K) = 3
192  * provided we take care of ruling out the unsupported cases and
193  * Entry_Level = 4 - Number_of_levels.
194  *
195  */
196 #ifdef CONFIG_ARM64_64K_PAGES
197 
198 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_64K
199 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
200 
201 #elif defined(CONFIG_ARM64_16K_PAGES)
202 
203 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_16K
204 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
205 
206 #else	/* 4K */
207 
208 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_4K
209 #define VTCR_EL2_TGRAN_SL0_BASE		2UL
210 
211 #endif
212 
213 #define VTCR_EL2_LVLS_TO_SL0(levels)	\
214 	((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
215 #define VTCR_EL2_SL0_TO_LVLS(sl0)	\
216 	((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
217 #define VTCR_EL2_LVLS(vtcr)		\
218 	VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
219 
220 #define VTCR_EL2_FLAGS			(VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
221 #define VTCR_EL2_IPA(vtcr)		(64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
222 
223 /*
224  * ARM VMSAv8-64 defines an algorithm for finding the translation table
225  * descriptors in section D4.2.8 in ARM DDI 0487C.a.
226  *
227  * The algorithm defines the expectations on the translation table
228  * addresses for each level, based on PAGE_SIZE, entry level
229  * and the translation table size (T0SZ). The variable "x" in the
230  * algorithm determines the alignment of a table base address at a given
231  * level and thus determines the alignment of VTTBR:BADDR for stage2
232  * page table entry level.
233  * Since the number of bits resolved at the entry level could vary
234  * depending on the T0SZ, the value of "x" is defined based on a
235  * Magic constant for a given PAGE_SIZE and Entry Level. The
236  * intermediate levels must be always aligned to the PAGE_SIZE (i.e,
237  * x = PAGE_SHIFT).
238  *
239  * The value of "x" for entry level is calculated as :
240  *    x = Magic_N - T0SZ
241  *
242  * where Magic_N is an integer depending on the page size and the entry
243  * level of the page table as below:
244  *
245  *	--------------------------------------------
246  *	| Entry level		|  4K    16K   64K |
247  *	--------------------------------------------
248  *	| Level: 0 (4 levels)	| 28   |  -  |  -  |
249  *	--------------------------------------------
250  *	| Level: 1 (3 levels)	| 37   | 31  | 25  |
251  *	--------------------------------------------
252  *	| Level: 2 (2 levels)	| 46   | 42  | 38  |
253  *	--------------------------------------------
254  *	| Level: 3 (1 level)	| -    | 53  | 51  |
255  *	--------------------------------------------
256  *
257  * We have a magic formula for the Magic_N below:
258  *
259  *  Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
260  *
261  * where Number_of_levels = (4 - Level). We are only interested in the
262  * value for Entry_Level for the stage2 page table.
263  *
264  * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
265  *
266  *	x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
267  *	  = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
268  *
269  * Here is one way to explain the Magic Formula:
270  *
271  *  x = log2(Size_of_Entry_Level_Table)
272  *
273  * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
274  * PAGE_SHIFT bits in the PTE, we have :
275  *
276  *  Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
277  *		     = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
278  *  where n = number of levels, and since each pointer is 8bytes, we have:
279  *
280  *  x = Bits_Entry_Level + 3
281  *    = IPA_SHIFT - (PAGE_SHIFT - 3) * n
282  *
283  * The only constraint here is that, we have to find the number of page table
284  * levels for a given IPA size (which we do, see stage2_pt_levels())
285  */
286 #define ARM64_VTTBR_X(ipa, levels)	((ipa) - ((levels) * (PAGE_SHIFT - 3)))
287 
288 #define VTTBR_CNP_BIT     (UL(1))
289 #define VTTBR_VMID_SHIFT  (UL(48))
290 #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
291 
292 /* Hyp System Trap Register */
293 #define HSTR_EL2_T(x)	(1 << x)
294 
295 /* Hyp Coprocessor Trap Register Shifts */
296 #define CPTR_EL2_TFP_SHIFT 10
297 
298 /* Hyp Coprocessor Trap Register */
299 #define CPTR_EL2_TCPAC	(1U << 31)
300 #define CPTR_EL2_TAM	(1 << 30)
301 #define CPTR_EL2_TTA	(1 << 20)
302 #define CPTR_EL2_TSM	(1 << 12)
303 #define CPTR_EL2_TFP	(1 << CPTR_EL2_TFP_SHIFT)
304 #define CPTR_EL2_TZ	(1 << 8)
305 #define CPTR_NVHE_EL2_RES1	(BIT(13) | BIT(9) | GENMASK(7, 0))
306 #define CPTR_NVHE_EL2_RES0	(GENMASK(63, 32) |	\
307 				 GENMASK(29, 21) |	\
308 				 GENMASK(19, 14) |	\
309 				 BIT(11))
310 
311 #define CPTR_VHE_EL2_RES0	(GENMASK(63, 32) |	\
312 				 GENMASK(27, 26) |	\
313 				 GENMASK(23, 22) |	\
314 				 GENMASK(19, 18) |	\
315 				 GENMASK(15, 0))
316 
317 /*
318  * Polarity masks for HCRX_EL2, limited to the bits that we know about
319  * at this point in time. It doesn't mean that we actually *handle*
320  * them, but that at least those that are not advertised to a guest
321  * will be RES0 for that guest.
322  */
323 #define __HCRX_EL2_MASK		(BIT_ULL(6))
324 #define __HCRX_EL2_nMASK	(GENMASK_ULL(24, 14) | \
325 				 GENMASK_ULL(11, 7)  | \
326 				 GENMASK_ULL(5, 0))
327 #define __HCRX_EL2_RES0		~(__HCRX_EL2_nMASK | __HCRX_EL2_MASK)
328 #define __HCRX_EL2_RES1		~(__HCRX_EL2_nMASK | \
329 				  __HCRX_EL2_MASK  | \
330 				  __HCRX_EL2_RES0)
331 
332 /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
333 #define HPFAR_MASK	(~UL(0xf))
334 /*
335  * We have
336  *	PAR	[PA_Shift - 1	: 12] = PA	[PA_Shift - 1 : 12]
337  *	HPFAR	[PA_Shift - 9	: 4]  = FIPA	[PA_Shift - 1 : 12]
338  *
339  * Always assume 52 bit PA since at this point, we don't know how many PA bits
340  * the page table has been set up for. This should be safe since unused address
341  * bits in PAR are res0.
342  */
343 #define PAR_TO_HPFAR(par)		\
344 	(((par) & GENMASK_ULL(52 - 1, 12)) >> 8)
345 
346 #define ECN(x) { ESR_ELx_EC_##x, #x }
347 
348 #define kvm_arm_exception_class \
349 	ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \
350 	ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(PAC), ECN(CP14_64), \
351 	ECN(SVC64), ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(SVE), \
352 	ECN(IMP_DEF), ECN(IABT_LOW), ECN(IABT_CUR), \
353 	ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \
354 	ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \
355 	ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \
356 	ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \
357 	ECN(BKPT32), ECN(VECTOR32), ECN(BRK64), ECN(ERET)
358 
359 #define kvm_mode_names				\
360 	{ PSR_MODE_EL0t,	"EL0t" },	\
361 	{ PSR_MODE_EL1t,	"EL1t" },	\
362 	{ PSR_MODE_EL1h,	"EL1h" },	\
363 	{ PSR_MODE_EL2t,	"EL2t" },	\
364 	{ PSR_MODE_EL2h,	"EL2h" },	\
365 	{ PSR_MODE_EL3t,	"EL3t" },	\
366 	{ PSR_MODE_EL3h,	"EL3h" },	\
367 	{ PSR_AA32_MODE_USR,	"32-bit USR" },	\
368 	{ PSR_AA32_MODE_FIQ,	"32-bit FIQ" },	\
369 	{ PSR_AA32_MODE_IRQ,	"32-bit IRQ" },	\
370 	{ PSR_AA32_MODE_SVC,	"32-bit SVC" },	\
371 	{ PSR_AA32_MODE_ABT,	"32-bit ABT" },	\
372 	{ PSR_AA32_MODE_HYP,	"32-bit HYP" },	\
373 	{ PSR_AA32_MODE_UND,	"32-bit UND" },	\
374 	{ PSR_AA32_MODE_SYS,	"32-bit SYS" }
375 
376 #endif /* __ARM64_KVM_ARM_H__ */
377