1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mm/alignment.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Modifications for ARM processor (c) 1995-2001 Russell King
7 * Thumb alignment fault fixups (c) 2004 MontaVista Software, Inc.
8 * - Adapted from gdb/sim/arm/thumbemu.c -- Thumb instruction emulation.
9 * Copyright (C) 1996, Cygnus Software Technologies Ltd.
10 */
11 #include <linux/moduleparam.h>
12 #include <linux/compiler.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/debug.h>
15 #include <linux/errno.h>
16 #include <linux/string.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/init.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uaccess.h>
22 #include <linux/unaligned.h>
23
24 #include <asm/cp15.h>
25 #include <asm/system_info.h>
26 #include <asm/system_misc.h>
27 #include <asm/opcodes.h>
28
29 #include "fault.h"
30 #include "mm.h"
31
32 /*
33 * 32-bit misaligned trap handler (c) 1998 San Mehat (CCC) -July 1998
34 * /proc/sys/debug/alignment, modified and integrated into
35 * Linux 2.1 by Russell King
36 *
37 * Speed optimisations and better fault handling by Russell King.
38 *
39 * *** NOTE ***
40 * This code is not portable to processors with late data abort handling.
41 */
42 #define CODING_BITS(i) (i & 0x0e000000)
43 #define COND_BITS(i) (i & 0xf0000000)
44
45 #define LDST_I_BIT(i) (i & (1 << 26)) /* Immediate constant */
46 #define LDST_P_BIT(i) (i & (1 << 24)) /* Preindex */
47 #define LDST_U_BIT(i) (i & (1 << 23)) /* Add offset */
48 #define LDST_W_BIT(i) (i & (1 << 21)) /* Writeback */
49 #define LDST_L_BIT(i) (i & (1 << 20)) /* Load */
50
51 #define LDST_P_EQ_U(i) ((((i) ^ ((i) >> 1)) & (1 << 23)) == 0)
52
53 #define LDSTHD_I_BIT(i) (i & (1 << 22)) /* double/half-word immed */
54 #define LDM_S_BIT(i) (i & (1 << 22)) /* write CPSR from SPSR */
55
56 #define RN_BITS(i) ((i >> 16) & 15) /* Rn */
57 #define RD_BITS(i) ((i >> 12) & 15) /* Rd */
58 #define RM_BITS(i) (i & 15) /* Rm */
59
60 #define REGMASK_BITS(i) (i & 0xffff)
61 #define OFFSET_BITS(i) (i & 0x0fff)
62
63 #define IS_SHIFT(i) (i & 0x0ff0)
64 #define SHIFT_BITS(i) ((i >> 7) & 0x1f)
65 #define SHIFT_TYPE(i) (i & 0x60)
66 #define SHIFT_LSL 0x00
67 #define SHIFT_LSR 0x20
68 #define SHIFT_ASR 0x40
69 #define SHIFT_RORRRX 0x60
70
71 #define BAD_INSTR 0xdeadc0de
72
73 /* Thumb-2 32 bit format per ARMv7 DDI0406A A6.3, either f800h,e800h,f800h */
74 #define IS_T32(hi16) \
75 (((hi16) & 0xe000) == 0xe000 && ((hi16) & 0x1800))
76
77 static unsigned long ai_user;
78 static unsigned long ai_sys;
79 static void *ai_sys_last_pc;
80 static unsigned long ai_skipped;
81 static unsigned long ai_half;
82 static unsigned long ai_word;
83 static unsigned long ai_dword;
84 static unsigned long ai_multi;
85 static int ai_usermode;
86 static unsigned long cr_no_alignment;
87
88 core_param(alignment, ai_usermode, int, 0600);
89
90 #define UM_WARN (1 << 0)
91 #define UM_FIXUP (1 << 1)
92 #define UM_SIGNAL (1 << 2)
93
94 /* Return true if and only if the ARMv6 unaligned access model is in use. */
cpu_is_v6_unaligned(void)95 static bool cpu_is_v6_unaligned(void)
96 {
97 return cpu_architecture() >= CPU_ARCH_ARMv6 && get_cr() & CR_U;
98 }
99
safe_usermode(int new_usermode,bool warn)100 static int safe_usermode(int new_usermode, bool warn)
101 {
102 /*
103 * ARMv6 and later CPUs can perform unaligned accesses for
104 * most single load and store instructions up to word size.
105 * LDM, STM, LDRD and STRD still need to be handled.
106 *
107 * Ignoring the alignment fault is not an option on these
108 * CPUs since we spin re-faulting the instruction without
109 * making any progress.
110 */
111 if (cpu_is_v6_unaligned() && !(new_usermode & (UM_FIXUP | UM_SIGNAL))) {
112 new_usermode |= UM_FIXUP;
113
114 if (warn)
115 pr_warn("alignment: ignoring faults is unsafe on this CPU. Defaulting to fixup mode.\n");
116 }
117
118 return new_usermode;
119 }
120
121 #ifdef CONFIG_PROC_FS
122 static const char *usermode_action[] = {
123 "ignored",
124 "warn",
125 "fixup",
126 "fixup+warn",
127 "signal",
128 "signal+warn"
129 };
130
alignment_proc_show(struct seq_file * m,void * v)131 static int alignment_proc_show(struct seq_file *m, void *v)
132 {
133 seq_printf(m, "User:\t\t%lu\n", ai_user);
134 seq_printf(m, "System:\t\t%lu (%pS)\n", ai_sys, ai_sys_last_pc);
135 seq_printf(m, "Skipped:\t%lu\n", ai_skipped);
136 seq_printf(m, "Half:\t\t%lu\n", ai_half);
137 seq_printf(m, "Word:\t\t%lu\n", ai_word);
138 if (cpu_architecture() >= CPU_ARCH_ARMv5TE)
139 seq_printf(m, "DWord:\t\t%lu\n", ai_dword);
140 seq_printf(m, "Multi:\t\t%lu\n", ai_multi);
141 seq_printf(m, "User faults:\t%i (%s)\n", ai_usermode,
142 usermode_action[ai_usermode]);
143
144 return 0;
145 }
146
alignment_proc_open(struct inode * inode,struct file * file)147 static int alignment_proc_open(struct inode *inode, struct file *file)
148 {
149 return single_open(file, alignment_proc_show, NULL);
150 }
151
alignment_proc_write(struct file * file,const char __user * buffer,size_t count,loff_t * pos)152 static ssize_t alignment_proc_write(struct file *file, const char __user *buffer,
153 size_t count, loff_t *pos)
154 {
155 char mode;
156
157 if (count > 0) {
158 if (get_user(mode, buffer))
159 return -EFAULT;
160 if (mode >= '0' && mode <= '5')
161 ai_usermode = safe_usermode(mode - '0', true);
162 }
163 return count;
164 }
165
166 static const struct proc_ops alignment_proc_ops = {
167 .proc_open = alignment_proc_open,
168 .proc_read = seq_read,
169 .proc_lseek = seq_lseek,
170 .proc_release = single_release,
171 .proc_write = alignment_proc_write,
172 };
173 #endif /* CONFIG_PROC_FS */
174
175 union offset_union {
176 unsigned long un;
177 signed long sn;
178 };
179
180 #define TYPE_ERROR 0
181 #define TYPE_FAULT 1
182 #define TYPE_LDST 2
183 #define TYPE_DONE 3
184
185 #ifdef __ARMEB__
186 #define BE 1
187 #define FIRST_BYTE_16 "mov %1, %1, ror #8\n"
188 #define FIRST_BYTE_32 "mov %1, %1, ror #24\n"
189 #define NEXT_BYTE "ror #24"
190 #else
191 #define BE 0
192 #define FIRST_BYTE_16
193 #define FIRST_BYTE_32
194 #define NEXT_BYTE "lsr #8"
195 #endif
196
197 #define __get8_unaligned_check(ins,val,addr,err) \
198 __asm__( \
199 ARM( "1: "ins" %1, [%2], #1\n" ) \
200 THUMB( "1: "ins" %1, [%2]\n" ) \
201 THUMB( " add %2, %2, #1\n" ) \
202 "2:\n" \
203 " .pushsection .text.fixup,\"ax\"\n" \
204 " .align 2\n" \
205 "3: mov %0, #1\n" \
206 " b 2b\n" \
207 " .popsection\n" \
208 " .pushsection __ex_table,\"a\"\n" \
209 " .align 3\n" \
210 " .long 1b, 3b\n" \
211 " .popsection\n" \
212 : "=r" (err), "=&r" (val), "=r" (addr) \
213 : "0" (err), "2" (addr))
214
215 #define __get16_unaligned_check(ins,val,addr) \
216 do { \
217 unsigned int err = 0, v, a = addr; \
218 __get8_unaligned_check(ins,v,a,err); \
219 val = v << ((BE) ? 8 : 0); \
220 __get8_unaligned_check(ins,v,a,err); \
221 val |= v << ((BE) ? 0 : 8); \
222 if (err) \
223 goto fault; \
224 } while (0)
225
226 #define get16_unaligned_check(val,addr) \
227 __get16_unaligned_check("ldrb",val,addr)
228
229 #define get16t_unaligned_check(val,addr) \
230 __get16_unaligned_check("ldrbt",val,addr)
231
232 #define __get32_unaligned_check(ins,val,addr) \
233 do { \
234 unsigned int err = 0, v, a = addr; \
235 __get8_unaligned_check(ins,v,a,err); \
236 val = v << ((BE) ? 24 : 0); \
237 __get8_unaligned_check(ins,v,a,err); \
238 val |= v << ((BE) ? 16 : 8); \
239 __get8_unaligned_check(ins,v,a,err); \
240 val |= v << ((BE) ? 8 : 16); \
241 __get8_unaligned_check(ins,v,a,err); \
242 val |= v << ((BE) ? 0 : 24); \
243 if (err) \
244 goto fault; \
245 } while (0)
246
247 #define get32_unaligned_check(val,addr) \
248 __get32_unaligned_check("ldrb",val,addr)
249
250 #define get32t_unaligned_check(val,addr) \
251 __get32_unaligned_check("ldrbt",val,addr)
252
253 #define __put16_unaligned_check(ins,val,addr) \
254 do { \
255 unsigned int err = 0, v = val, a = addr; \
256 __asm__( FIRST_BYTE_16 \
257 ARM( "1: "ins" %1, [%2], #1\n" ) \
258 THUMB( "1: "ins" %1, [%2]\n" ) \
259 THUMB( " add %2, %2, #1\n" ) \
260 " mov %1, %1, "NEXT_BYTE"\n" \
261 "2: "ins" %1, [%2]\n" \
262 "3:\n" \
263 " .pushsection .text.fixup,\"ax\"\n" \
264 " .align 2\n" \
265 "4: mov %0, #1\n" \
266 " b 3b\n" \
267 " .popsection\n" \
268 " .pushsection __ex_table,\"a\"\n" \
269 " .align 3\n" \
270 " .long 1b, 4b\n" \
271 " .long 2b, 4b\n" \
272 " .popsection\n" \
273 : "=r" (err), "=&r" (v), "=&r" (a) \
274 : "0" (err), "1" (v), "2" (a)); \
275 if (err) \
276 goto fault; \
277 } while (0)
278
279 #define put16_unaligned_check(val,addr) \
280 __put16_unaligned_check("strb",val,addr)
281
282 #define put16t_unaligned_check(val,addr) \
283 __put16_unaligned_check("strbt",val,addr)
284
285 #define __put32_unaligned_check(ins,val,addr) \
286 do { \
287 unsigned int err = 0, v = val, a = addr; \
288 __asm__( FIRST_BYTE_32 \
289 ARM( "1: "ins" %1, [%2], #1\n" ) \
290 THUMB( "1: "ins" %1, [%2]\n" ) \
291 THUMB( " add %2, %2, #1\n" ) \
292 " mov %1, %1, "NEXT_BYTE"\n" \
293 ARM( "2: "ins" %1, [%2], #1\n" ) \
294 THUMB( "2: "ins" %1, [%2]\n" ) \
295 THUMB( " add %2, %2, #1\n" ) \
296 " mov %1, %1, "NEXT_BYTE"\n" \
297 ARM( "3: "ins" %1, [%2], #1\n" ) \
298 THUMB( "3: "ins" %1, [%2]\n" ) \
299 THUMB( " add %2, %2, #1\n" ) \
300 " mov %1, %1, "NEXT_BYTE"\n" \
301 "4: "ins" %1, [%2]\n" \
302 "5:\n" \
303 " .pushsection .text.fixup,\"ax\"\n" \
304 " .align 2\n" \
305 "6: mov %0, #1\n" \
306 " b 5b\n" \
307 " .popsection\n" \
308 " .pushsection __ex_table,\"a\"\n" \
309 " .align 3\n" \
310 " .long 1b, 6b\n" \
311 " .long 2b, 6b\n" \
312 " .long 3b, 6b\n" \
313 " .long 4b, 6b\n" \
314 " .popsection\n" \
315 : "=r" (err), "=&r" (v), "=&r" (a) \
316 : "0" (err), "1" (v), "2" (a)); \
317 if (err) \
318 goto fault; \
319 } while (0)
320
321 #define put32_unaligned_check(val,addr) \
322 __put32_unaligned_check("strb", val, addr)
323
324 #define put32t_unaligned_check(val,addr) \
325 __put32_unaligned_check("strbt", val, addr)
326
327 static void
do_alignment_finish_ldst(unsigned long addr,u32 instr,struct pt_regs * regs,union offset_union offset)328 do_alignment_finish_ldst(unsigned long addr, u32 instr, struct pt_regs *regs, union offset_union offset)
329 {
330 if (!LDST_U_BIT(instr))
331 offset.un = -offset.un;
332
333 if (!LDST_P_BIT(instr))
334 addr += offset.un;
335
336 if (!LDST_P_BIT(instr) || LDST_W_BIT(instr))
337 regs->uregs[RN_BITS(instr)] = addr;
338 }
339
340 static int
do_alignment_ldrhstrh(unsigned long addr,u32 instr,struct pt_regs * regs)341 do_alignment_ldrhstrh(unsigned long addr, u32 instr, struct pt_regs *regs)
342 {
343 unsigned int rd = RD_BITS(instr);
344
345 ai_half += 1;
346
347 if (user_mode(regs))
348 goto user;
349
350 if (LDST_L_BIT(instr)) {
351 unsigned long val;
352 get16_unaligned_check(val, addr);
353
354 /* signed half-word? */
355 if (instr & 0x40)
356 val = (signed long)((signed short) val);
357
358 regs->uregs[rd] = val;
359 } else
360 put16_unaligned_check(regs->uregs[rd], addr);
361
362 return TYPE_LDST;
363
364 user:
365 if (LDST_L_BIT(instr)) {
366 unsigned long val;
367 unsigned int __ua_flags = uaccess_save_and_enable();
368
369 get16t_unaligned_check(val, addr);
370 uaccess_restore(__ua_flags);
371
372 /* signed half-word? */
373 if (instr & 0x40)
374 val = (signed long)((signed short) val);
375
376 regs->uregs[rd] = val;
377 } else {
378 unsigned int __ua_flags = uaccess_save_and_enable();
379 put16t_unaligned_check(regs->uregs[rd], addr);
380 uaccess_restore(__ua_flags);
381 }
382
383 return TYPE_LDST;
384
385 fault:
386 return TYPE_FAULT;
387 }
388
389 static int
do_alignment_ldrdstrd(unsigned long addr,u32 instr,struct pt_regs * regs)390 do_alignment_ldrdstrd(unsigned long addr, u32 instr, struct pt_regs *regs)
391 {
392 unsigned int rd = RD_BITS(instr);
393 unsigned int rd2;
394 int load;
395
396 if ((instr & 0xfe000000) == 0xe8000000) {
397 /* ARMv7 Thumb-2 32-bit LDRD/STRD */
398 rd2 = (instr >> 8) & 0xf;
399 load = !!(LDST_L_BIT(instr));
400 } else if (((rd & 1) == 1) || (rd == 14))
401 goto bad;
402 else {
403 load = ((instr & 0xf0) == 0xd0);
404 rd2 = rd + 1;
405 }
406
407 ai_dword += 1;
408
409 if (user_mode(regs))
410 goto user;
411
412 if (load) {
413 unsigned long val;
414 get32_unaligned_check(val, addr);
415 regs->uregs[rd] = val;
416 get32_unaligned_check(val, addr + 4);
417 regs->uregs[rd2] = val;
418 } else {
419 put32_unaligned_check(regs->uregs[rd], addr);
420 put32_unaligned_check(regs->uregs[rd2], addr + 4);
421 }
422
423 return TYPE_LDST;
424
425 user:
426 if (load) {
427 unsigned long val, val2;
428 unsigned int __ua_flags = uaccess_save_and_enable();
429
430 get32t_unaligned_check(val, addr);
431 get32t_unaligned_check(val2, addr + 4);
432
433 uaccess_restore(__ua_flags);
434
435 regs->uregs[rd] = val;
436 regs->uregs[rd2] = val2;
437 } else {
438 unsigned int __ua_flags = uaccess_save_and_enable();
439 put32t_unaligned_check(regs->uregs[rd], addr);
440 put32t_unaligned_check(regs->uregs[rd2], addr + 4);
441 uaccess_restore(__ua_flags);
442 }
443
444 return TYPE_LDST;
445 bad:
446 return TYPE_ERROR;
447 fault:
448 return TYPE_FAULT;
449 }
450
451 static int
do_alignment_ldrstr(unsigned long addr,u32 instr,struct pt_regs * regs)452 do_alignment_ldrstr(unsigned long addr, u32 instr, struct pt_regs *regs)
453 {
454 unsigned int rd = RD_BITS(instr);
455
456 ai_word += 1;
457
458 if ((!LDST_P_BIT(instr) && LDST_W_BIT(instr)) || user_mode(regs))
459 goto trans;
460
461 if (LDST_L_BIT(instr)) {
462 unsigned int val;
463 get32_unaligned_check(val, addr);
464 regs->uregs[rd] = val;
465 } else
466 put32_unaligned_check(regs->uregs[rd], addr);
467 return TYPE_LDST;
468
469 trans:
470 if (LDST_L_BIT(instr)) {
471 unsigned int val;
472 unsigned int __ua_flags = uaccess_save_and_enable();
473 get32t_unaligned_check(val, addr);
474 uaccess_restore(__ua_flags);
475 regs->uregs[rd] = val;
476 } else {
477 unsigned int __ua_flags = uaccess_save_and_enable();
478 put32t_unaligned_check(regs->uregs[rd], addr);
479 uaccess_restore(__ua_flags);
480 }
481 return TYPE_LDST;
482
483 fault:
484 return TYPE_FAULT;
485 }
486
487 /*
488 * LDM/STM alignment handler.
489 *
490 * There are 4 variants of this instruction:
491 *
492 * B = rn pointer before instruction, A = rn pointer after instruction
493 * ------ increasing address ----->
494 * | | r0 | r1 | ... | rx | |
495 * PU = 01 B A
496 * PU = 11 B A
497 * PU = 00 A B
498 * PU = 10 A B
499 */
500 static int
do_alignment_ldmstm(unsigned long addr,u32 instr,struct pt_regs * regs)501 do_alignment_ldmstm(unsigned long addr, u32 instr, struct pt_regs *regs)
502 {
503 unsigned int rd, rn, correction, nr_regs, regbits;
504 unsigned long eaddr, newaddr;
505
506 if (LDM_S_BIT(instr))
507 goto bad;
508
509 correction = 4; /* processor implementation defined */
510 regs->ARM_pc += correction;
511
512 ai_multi += 1;
513
514 /* count the number of registers in the mask to be transferred */
515 nr_regs = hweight16(REGMASK_BITS(instr)) * 4;
516
517 rn = RN_BITS(instr);
518 newaddr = eaddr = regs->uregs[rn];
519
520 if (!LDST_U_BIT(instr))
521 nr_regs = -nr_regs;
522 newaddr += nr_regs;
523 if (!LDST_U_BIT(instr))
524 eaddr = newaddr;
525
526 if (LDST_P_EQ_U(instr)) /* U = P */
527 eaddr += 4;
528
529 /*
530 * For alignment faults on the ARM922T/ARM920T the MMU makes
531 * the FSR (and hence addr) equal to the updated base address
532 * of the multiple access rather than the restored value.
533 * Switch this message off if we've got a ARM92[02], otherwise
534 * [ls]dm alignment faults are noisy!
535 */
536 #if !(defined CONFIG_CPU_ARM922T) && !(defined CONFIG_CPU_ARM920T)
537 /*
538 * This is a "hint" - we already have eaddr worked out by the
539 * processor for us.
540 */
541 if (addr != eaddr) {
542 pr_err("LDMSTM: PC = %08lx, instr = %08x, "
543 "addr = %08lx, eaddr = %08lx\n",
544 instruction_pointer(regs), instr, addr, eaddr);
545 show_regs(regs);
546 }
547 #endif
548
549 if (user_mode(regs)) {
550 unsigned int __ua_flags = uaccess_save_and_enable();
551 for (regbits = REGMASK_BITS(instr), rd = 0; regbits;
552 regbits >>= 1, rd += 1)
553 if (regbits & 1) {
554 if (LDST_L_BIT(instr)) {
555 unsigned int val;
556 get32t_unaligned_check(val, eaddr);
557 regs->uregs[rd] = val;
558 } else
559 put32t_unaligned_check(regs->uregs[rd], eaddr);
560 eaddr += 4;
561 }
562 uaccess_restore(__ua_flags);
563 } else {
564 for (regbits = REGMASK_BITS(instr), rd = 0; regbits;
565 regbits >>= 1, rd += 1)
566 if (regbits & 1) {
567 if (LDST_L_BIT(instr)) {
568 unsigned int val;
569 get32_unaligned_check(val, eaddr);
570 regs->uregs[rd] = val;
571 } else
572 put32_unaligned_check(regs->uregs[rd], eaddr);
573 eaddr += 4;
574 }
575 }
576
577 if (LDST_W_BIT(instr))
578 regs->uregs[rn] = newaddr;
579 if (!LDST_L_BIT(instr) || !(REGMASK_BITS(instr) & (1 << 15)))
580 regs->ARM_pc -= correction;
581 return TYPE_DONE;
582
583 fault:
584 regs->ARM_pc -= correction;
585 return TYPE_FAULT;
586
587 bad:
588 pr_err("Alignment trap: not handling ldm with s-bit set\n");
589 return TYPE_ERROR;
590 }
591
592 /*
593 * Convert Thumb ld/st instruction forms to equivalent ARM instructions so
594 * we can reuse ARM userland alignment fault fixups for Thumb.
595 *
596 * This implementation was initially based on the algorithm found in
597 * gdb/sim/arm/thumbemu.c. It is basically just a code reduction of same
598 * to convert only Thumb ld/st instruction forms to equivalent ARM forms.
599 *
600 * NOTES:
601 * 1. Comments below refer to ARM ARM DDI0100E Thumb Instruction sections.
602 * 2. If for some reason we're passed an non-ld/st Thumb instruction to
603 * decode, we return 0xdeadc0de. This should never happen under normal
604 * circumstances but if it does, we've got other problems to deal with
605 * elsewhere and we obviously can't fix those problems here.
606 */
607
608 static unsigned long
thumb2arm(u16 tinstr)609 thumb2arm(u16 tinstr)
610 {
611 u32 L = (tinstr & (1<<11)) >> 11;
612
613 switch ((tinstr & 0xf800) >> 11) {
614 /* 6.5.1 Format 1: */
615 case 0x6000 >> 11: /* 7.1.52 STR(1) */
616 case 0x6800 >> 11: /* 7.1.26 LDR(1) */
617 case 0x7000 >> 11: /* 7.1.55 STRB(1) */
618 case 0x7800 >> 11: /* 7.1.30 LDRB(1) */
619 return 0xe5800000 |
620 ((tinstr & (1<<12)) << (22-12)) | /* fixup */
621 (L<<20) | /* L==1? */
622 ((tinstr & (7<<0)) << (12-0)) | /* Rd */
623 ((tinstr & (7<<3)) << (16-3)) | /* Rn */
624 ((tinstr & (31<<6)) >> /* immed_5 */
625 (6 - ((tinstr & (1<<12)) ? 0 : 2)));
626 case 0x8000 >> 11: /* 7.1.57 STRH(1) */
627 case 0x8800 >> 11: /* 7.1.32 LDRH(1) */
628 return 0xe1c000b0 |
629 (L<<20) | /* L==1? */
630 ((tinstr & (7<<0)) << (12-0)) | /* Rd */
631 ((tinstr & (7<<3)) << (16-3)) | /* Rn */
632 ((tinstr & (7<<6)) >> (6-1)) | /* immed_5[2:0] */
633 ((tinstr & (3<<9)) >> (9-8)); /* immed_5[4:3] */
634
635 /* 6.5.1 Format 2: */
636 case 0x5000 >> 11:
637 case 0x5800 >> 11:
638 {
639 static const u32 subset[8] = {
640 0xe7800000, /* 7.1.53 STR(2) */
641 0xe18000b0, /* 7.1.58 STRH(2) */
642 0xe7c00000, /* 7.1.56 STRB(2) */
643 0xe19000d0, /* 7.1.34 LDRSB */
644 0xe7900000, /* 7.1.27 LDR(2) */
645 0xe19000b0, /* 7.1.33 LDRH(2) */
646 0xe7d00000, /* 7.1.31 LDRB(2) */
647 0xe19000f0 /* 7.1.35 LDRSH */
648 };
649 return subset[(tinstr & (7<<9)) >> 9] |
650 ((tinstr & (7<<0)) << (12-0)) | /* Rd */
651 ((tinstr & (7<<3)) << (16-3)) | /* Rn */
652 ((tinstr & (7<<6)) >> (6-0)); /* Rm */
653 }
654
655 /* 6.5.1 Format 3: */
656 case 0x4800 >> 11: /* 7.1.28 LDR(3) */
657 /* NOTE: This case is not technically possible. We're
658 * loading 32-bit memory data via PC relative
659 * addressing mode. So we can and should eliminate
660 * this case. But I'll leave it here for now.
661 */
662 return 0xe59f0000 |
663 ((tinstr & (7<<8)) << (12-8)) | /* Rd */
664 ((tinstr & 255) << (2-0)); /* immed_8 */
665
666 /* 6.5.1 Format 4: */
667 case 0x9000 >> 11: /* 7.1.54 STR(3) */
668 case 0x9800 >> 11: /* 7.1.29 LDR(4) */
669 return 0xe58d0000 |
670 (L<<20) | /* L==1? */
671 ((tinstr & (7<<8)) << (12-8)) | /* Rd */
672 ((tinstr & 255) << 2); /* immed_8 */
673
674 /* 6.6.1 Format 1: */
675 case 0xc000 >> 11: /* 7.1.51 STMIA */
676 case 0xc800 >> 11: /* 7.1.25 LDMIA */
677 {
678 u32 Rn = (tinstr & (7<<8)) >> 8;
679 u32 W = ((L<<Rn) & (tinstr&255)) ? 0 : 1<<21;
680
681 return 0xe8800000 | W | (L<<20) | (Rn<<16) |
682 (tinstr&255);
683 }
684
685 /* 6.6.1 Format 2: */
686 case 0xb000 >> 11: /* 7.1.48 PUSH */
687 case 0xb800 >> 11: /* 7.1.47 POP */
688 if ((tinstr & (3 << 9)) == 0x0400) {
689 static const u32 subset[4] = {
690 0xe92d0000, /* STMDB sp!,{registers} */
691 0xe92d4000, /* STMDB sp!,{registers,lr} */
692 0xe8bd0000, /* LDMIA sp!,{registers} */
693 0xe8bd8000 /* LDMIA sp!,{registers,pc} */
694 };
695 return subset[(L<<1) | ((tinstr & (1<<8)) >> 8)] |
696 (tinstr & 255); /* register_list */
697 }
698 fallthrough; /* for illegal instruction case */
699
700 default:
701 return BAD_INSTR;
702 }
703 }
704
705 /*
706 * Convert Thumb-2 32 bit LDM, STM, LDRD, STRD to equivalent instruction
707 * handlable by ARM alignment handler, also find the corresponding handler,
708 * so that we can reuse ARM userland alignment fault fixups for Thumb.
709 *
710 * @pinstr: original Thumb-2 instruction; returns new handlable instruction
711 * @regs: register context.
712 * @poffset: return offset from faulted addr for later writeback
713 *
714 * NOTES:
715 * 1. Comments below refer to ARMv7 DDI0406A Thumb Instruction sections.
716 * 2. Register name Rt from ARMv7 is same as Rd from ARMv6 (Rd is Rt)
717 */
718 static void *
do_alignment_t32_to_handler(u32 * pinstr,struct pt_regs * regs,union offset_union * poffset)719 do_alignment_t32_to_handler(u32 *pinstr, struct pt_regs *regs,
720 union offset_union *poffset)
721 {
722 u32 instr = *pinstr;
723 u16 tinst1 = (instr >> 16) & 0xffff;
724 u16 tinst2 = instr & 0xffff;
725
726 switch (tinst1 & 0xffe0) {
727 /* A6.3.5 Load/Store multiple */
728 case 0xe880: /* STM/STMIA/STMEA,LDM/LDMIA, PUSH/POP T2 */
729 case 0xe8a0: /* ...above writeback version */
730 case 0xe900: /* STMDB/STMFD, LDMDB/LDMEA */
731 case 0xe920: /* ...above writeback version */
732 /* no need offset decision since handler calculates it */
733 return do_alignment_ldmstm;
734
735 case 0xf840: /* POP/PUSH T3 (single register) */
736 if (RN_BITS(instr) == 13 && (tinst2 & 0x09ff) == 0x0904) {
737 u32 L = !!(LDST_L_BIT(instr));
738 const u32 subset[2] = {
739 0xe92d0000, /* STMDB sp!,{registers} */
740 0xe8bd0000, /* LDMIA sp!,{registers} */
741 };
742 *pinstr = subset[L] | (1<<RD_BITS(instr));
743 return do_alignment_ldmstm;
744 }
745 /* Else fall through for illegal instruction case */
746 break;
747
748 /* A6.3.6 Load/store double, STRD/LDRD(immed, lit, reg) */
749 case 0xe860:
750 case 0xe960:
751 case 0xe8e0:
752 case 0xe9e0:
753 poffset->un = (tinst2 & 0xff) << 2;
754 fallthrough;
755
756 case 0xe940:
757 case 0xe9c0:
758 return do_alignment_ldrdstrd;
759
760 /*
761 * No need to handle load/store instructions up to word size
762 * since ARMv6 and later CPUs can perform unaligned accesses.
763 */
764 default:
765 break;
766 }
767 return NULL;
768 }
769
alignment_get_arm(struct pt_regs * regs,u32 * ip,u32 * inst)770 static int alignment_get_arm(struct pt_regs *regs, u32 *ip, u32 *inst)
771 {
772 u32 instr = 0;
773 int fault;
774
775 if (user_mode(regs))
776 fault = get_user(instr, ip);
777 else
778 fault = get_kernel_nofault(instr, ip);
779
780 *inst = __mem_to_opcode_arm(instr);
781
782 return fault;
783 }
784
alignment_get_thumb(struct pt_regs * regs,u16 * ip,u16 * inst)785 static int alignment_get_thumb(struct pt_regs *regs, u16 *ip, u16 *inst)
786 {
787 u16 instr = 0;
788 int fault;
789
790 if (user_mode(regs))
791 fault = get_user(instr, ip);
792 else
793 fault = get_kernel_nofault(instr, ip);
794
795 *inst = __mem_to_opcode_thumb16(instr);
796
797 return fault;
798 }
799
800 static int
do_alignment(unsigned long addr,unsigned int fsr,struct pt_regs * regs)801 do_alignment(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
802 {
803 union offset_union offset;
804 unsigned long instrptr;
805 int (*handler)(unsigned long addr, u32 instr, struct pt_regs *regs);
806 unsigned int type;
807 u32 instr = 0;
808 u16 tinstr = 0;
809 int isize = 4;
810 int thumb2_32b = 0;
811 int fault;
812
813 if (addr >= TASK_SIZE && user_mode(regs))
814 harden_branch_predictor();
815
816 if (interrupts_enabled(regs))
817 local_irq_enable();
818
819 instrptr = instruction_pointer(regs);
820
821 if (thumb_mode(regs)) {
822 u16 *ptr = (u16 *)(instrptr & ~1);
823
824 fault = alignment_get_thumb(regs, ptr, &tinstr);
825 if (!fault) {
826 if (cpu_architecture() >= CPU_ARCH_ARMv7 &&
827 IS_T32(tinstr)) {
828 /* Thumb-2 32-bit */
829 u16 tinst2;
830 fault = alignment_get_thumb(regs, ptr + 1, &tinst2);
831 instr = __opcode_thumb32_compose(tinstr, tinst2);
832 thumb2_32b = 1;
833 } else {
834 isize = 2;
835 instr = thumb2arm(tinstr);
836 }
837 }
838 } else {
839 fault = alignment_get_arm(regs, (void *)instrptr, &instr);
840 }
841
842 if (fault) {
843 type = TYPE_FAULT;
844 goto bad_or_fault;
845 }
846
847 if (user_mode(regs))
848 goto user;
849
850 ai_sys += 1;
851 ai_sys_last_pc = (void *)instruction_pointer(regs);
852
853 fixup:
854
855 regs->ARM_pc += isize;
856
857 switch (CODING_BITS(instr)) {
858 case 0x00000000: /* 3.13.4 load/store instruction extensions */
859 if (LDSTHD_I_BIT(instr))
860 offset.un = (instr & 0xf00) >> 4 | (instr & 15);
861 else
862 offset.un = regs->uregs[RM_BITS(instr)];
863
864 if ((instr & 0x000000f0) == 0x000000b0 || /* LDRH, STRH */
865 (instr & 0x001000f0) == 0x001000f0) /* LDRSH */
866 handler = do_alignment_ldrhstrh;
867 else if ((instr & 0x001000f0) == 0x000000d0 || /* LDRD */
868 (instr & 0x001000f0) == 0x000000f0) /* STRD */
869 handler = do_alignment_ldrdstrd;
870 else if ((instr & 0x01f00ff0) == 0x01000090) /* SWP */
871 goto swp;
872 else
873 goto bad;
874 break;
875
876 case 0x04000000: /* ldr or str immediate */
877 if (COND_BITS(instr) == 0xf0000000) /* NEON VLDn, VSTn */
878 goto bad;
879 offset.un = OFFSET_BITS(instr);
880 handler = do_alignment_ldrstr;
881 break;
882
883 case 0x06000000: /* ldr or str register */
884 offset.un = regs->uregs[RM_BITS(instr)];
885
886 if (IS_SHIFT(instr)) {
887 unsigned int shiftval = SHIFT_BITS(instr);
888
889 switch(SHIFT_TYPE(instr)) {
890 case SHIFT_LSL:
891 offset.un <<= shiftval;
892 break;
893
894 case SHIFT_LSR:
895 offset.un >>= shiftval;
896 break;
897
898 case SHIFT_ASR:
899 offset.sn >>= shiftval;
900 break;
901
902 case SHIFT_RORRRX:
903 if (shiftval == 0) {
904 offset.un >>= 1;
905 if (regs->ARM_cpsr & PSR_C_BIT)
906 offset.un |= 1 << 31;
907 } else
908 offset.un = offset.un >> shiftval |
909 offset.un << (32 - shiftval);
910 break;
911 }
912 }
913 handler = do_alignment_ldrstr;
914 break;
915
916 case 0x08000000: /* ldm or stm, or thumb-2 32bit instruction */
917 if (thumb2_32b) {
918 offset.un = 0;
919 handler = do_alignment_t32_to_handler(&instr, regs, &offset);
920 } else {
921 offset.un = 0;
922 handler = do_alignment_ldmstm;
923 }
924 break;
925
926 default:
927 goto bad;
928 }
929
930 if (!handler)
931 goto bad;
932 type = handler(addr, instr, regs);
933
934 if (type == TYPE_ERROR || type == TYPE_FAULT) {
935 regs->ARM_pc -= isize;
936 goto bad_or_fault;
937 }
938
939 if (type == TYPE_LDST)
940 do_alignment_finish_ldst(addr, instr, regs, offset);
941
942 if (thumb_mode(regs))
943 regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
944
945 return 0;
946
947 bad_or_fault:
948 if (type == TYPE_ERROR)
949 goto bad;
950 /*
951 * We got a fault - fix it up, or die.
952 */
953 do_bad_area(addr, fsr, regs);
954 return 0;
955
956 swp:
957 pr_err("Alignment trap: not handling swp instruction\n");
958
959 bad:
960 /*
961 * Oops, we didn't handle the instruction.
962 */
963 pr_err("Alignment trap: not handling instruction "
964 "%0*x at [<%08lx>]\n",
965 isize << 1,
966 isize == 2 ? tinstr : instr, instrptr);
967 ai_skipped += 1;
968 return 1;
969
970 user:
971 ai_user += 1;
972
973 if (ai_usermode & UM_WARN)
974 printk("Alignment trap: %s (%d) PC=0x%08lx Instr=0x%0*x "
975 "Address=0x%08lx FSR 0x%03x\n", current->comm,
976 task_pid_nr(current), instrptr,
977 isize << 1,
978 isize == 2 ? tinstr : instr,
979 addr, fsr);
980
981 if (ai_usermode & UM_FIXUP)
982 goto fixup;
983
984 if (ai_usermode & UM_SIGNAL) {
985 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)addr);
986 } else {
987 /*
988 * We're about to disable the alignment trap and return to
989 * user space. But if an interrupt occurs before actually
990 * reaching user space, then the IRQ vector entry code will
991 * notice that we were still in kernel space and therefore
992 * the alignment trap won't be re-enabled in that case as it
993 * is presumed to be always on from kernel space.
994 * Let's prevent that race by disabling interrupts here (they
995 * are disabled on the way back to user space anyway in
996 * entry-common.S) and disable the alignment trap only if
997 * there is no work pending for this thread.
998 */
999 raw_local_irq_disable();
1000 if (!(read_thread_flags() & _TIF_WORK_MASK))
1001 set_cr(cr_no_alignment);
1002 }
1003
1004 return 0;
1005 }
1006
noalign_setup(char * __unused)1007 static int __init noalign_setup(char *__unused)
1008 {
1009 set_cr(__clear_cr(CR_A));
1010 return 1;
1011 }
1012 __setup("noalign", noalign_setup);
1013
1014 /*
1015 * This needs to be done after sysctl_init_bases(), otherwise sys/ will be
1016 * overwritten. Actually, this shouldn't be in sys/ at all since
1017 * it isn't a sysctl, and it doesn't contain sysctl information.
1018 * We now locate it in /proc/cpu/alignment instead.
1019 */
alignment_init(void)1020 static int __init alignment_init(void)
1021 {
1022 #ifdef CONFIG_PROC_FS
1023 struct proc_dir_entry *res;
1024
1025 res = proc_create("cpu/alignment", S_IWUSR | S_IRUGO, NULL,
1026 &alignment_proc_ops);
1027 if (!res)
1028 return -ENOMEM;
1029 #endif
1030
1031 if (cpu_is_v6_unaligned()) {
1032 set_cr(__clear_cr(CR_A));
1033 ai_usermode = safe_usermode(ai_usermode, false);
1034 }
1035
1036 cr_no_alignment = get_cr() & ~CR_A;
1037
1038 hook_fault_code(FAULT_CODE_ALIGNMENT, do_alignment, SIGBUS, BUS_ADRALN,
1039 "alignment exception");
1040
1041 /*
1042 * ARMv6K and ARMv7 use fault status 3 (0b00011) as Access Flag section
1043 * fault, not as alignment error.
1044 *
1045 * TODO: handle ARMv6K properly. Runtime check for 'K' extension is
1046 * needed.
1047 */
1048 if (cpu_architecture() <= CPU_ARCH_ARMv6) {
1049 hook_fault_code(3, do_alignment, SIGBUS, BUS_ADRALN,
1050 "alignment exception");
1051 }
1052
1053 return 0;
1054 }
1055
1056 fs_initcall(alignment_init);
1057