1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5 *
6 * KVM Xen emulation
7 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include "x86.h"
11 #include "xen.h"
12 #include "hyperv.h"
13 #include "irq.h"
14
15 #include <linux/eventfd.h>
16 #include <linux/kvm_host.h>
17 #include <linux/sched/stat.h>
18
19 #include <trace/events/kvm.h>
20 #include <xen/interface/xen.h>
21 #include <xen/interface/vcpu.h>
22 #include <xen/interface/version.h>
23 #include <xen/interface/event_channel.h>
24 #include <xen/interface/sched.h>
25
26 #include <asm/xen/cpuid.h>
27 #include <asm/pvclock.h>
28
29 #include "cpuid.h"
30 #include "trace.h"
31
32 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
33 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
34 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
35
36 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
37
kvm_xen_shared_info_init(struct kvm * kvm)38 static int kvm_xen_shared_info_init(struct kvm *kvm)
39 {
40 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
41 struct pvclock_wall_clock *wc;
42 u32 *wc_sec_hi;
43 u32 wc_version;
44 u64 wall_nsec;
45 int ret = 0;
46 int idx = srcu_read_lock(&kvm->srcu);
47
48 read_lock_irq(&gpc->lock);
49 while (!kvm_gpc_check(gpc, PAGE_SIZE)) {
50 read_unlock_irq(&gpc->lock);
51
52 ret = kvm_gpc_refresh(gpc, PAGE_SIZE);
53 if (ret)
54 goto out;
55
56 read_lock_irq(&gpc->lock);
57 }
58
59 /*
60 * This code mirrors kvm_write_wall_clock() except that it writes
61 * directly through the pfn cache and doesn't mark the page dirty.
62 */
63 wall_nsec = kvm_get_wall_clock_epoch(kvm);
64
65 /* Paranoia checks on the 32-bit struct layout */
66 BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
67 BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
68 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
69
70 #ifdef CONFIG_X86_64
71 /* Paranoia checks on the 64-bit struct layout */
72 BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
73 BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
74
75 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
76 struct shared_info *shinfo = gpc->khva;
77
78 wc_sec_hi = &shinfo->wc_sec_hi;
79 wc = &shinfo->wc;
80 } else
81 #endif
82 {
83 struct compat_shared_info *shinfo = gpc->khva;
84
85 wc_sec_hi = &shinfo->arch.wc_sec_hi;
86 wc = &shinfo->wc;
87 }
88
89 /* Increment and ensure an odd value */
90 wc_version = wc->version = (wc->version + 1) | 1;
91 smp_wmb();
92
93 wc->nsec = do_div(wall_nsec, NSEC_PER_SEC);
94 wc->sec = (u32)wall_nsec;
95 *wc_sec_hi = wall_nsec >> 32;
96 smp_wmb();
97
98 wc->version = wc_version + 1;
99 read_unlock_irq(&gpc->lock);
100
101 kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
102
103 out:
104 srcu_read_unlock(&kvm->srcu, idx);
105 return ret;
106 }
107
kvm_xen_inject_timer_irqs(struct kvm_vcpu * vcpu)108 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
109 {
110 if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) {
111 struct kvm_xen_evtchn e;
112
113 e.vcpu_id = vcpu->vcpu_id;
114 e.vcpu_idx = vcpu->vcpu_idx;
115 e.port = vcpu->arch.xen.timer_virq;
116 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
117
118 kvm_xen_set_evtchn(&e, vcpu->kvm);
119
120 vcpu->arch.xen.timer_expires = 0;
121 atomic_set(&vcpu->arch.xen.timer_pending, 0);
122 }
123 }
124
xen_timer_callback(struct hrtimer * timer)125 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
126 {
127 struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
128 arch.xen.timer);
129 struct kvm_xen_evtchn e;
130 int rc;
131
132 if (atomic_read(&vcpu->arch.xen.timer_pending))
133 return HRTIMER_NORESTART;
134
135 e.vcpu_id = vcpu->vcpu_id;
136 e.vcpu_idx = vcpu->vcpu_idx;
137 e.port = vcpu->arch.xen.timer_virq;
138 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
139
140 rc = kvm_xen_set_evtchn_fast(&e, vcpu->kvm);
141 if (rc != -EWOULDBLOCK) {
142 vcpu->arch.xen.timer_expires = 0;
143 return HRTIMER_NORESTART;
144 }
145
146 atomic_inc(&vcpu->arch.xen.timer_pending);
147 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
148 kvm_vcpu_kick(vcpu);
149
150 return HRTIMER_NORESTART;
151 }
152
xen_get_guest_pvclock(struct kvm_vcpu * vcpu,struct pvclock_vcpu_time_info * hv_clock,struct gfn_to_pfn_cache * gpc,unsigned int offset)153 static int xen_get_guest_pvclock(struct kvm_vcpu *vcpu,
154 struct pvclock_vcpu_time_info *hv_clock,
155 struct gfn_to_pfn_cache *gpc,
156 unsigned int offset)
157 {
158 unsigned long flags;
159 int r;
160
161 read_lock_irqsave(&gpc->lock, flags);
162 while (!kvm_gpc_check(gpc, offset + sizeof(*hv_clock))) {
163 read_unlock_irqrestore(&gpc->lock, flags);
164
165 r = kvm_gpc_refresh(gpc, offset + sizeof(*hv_clock));
166 if (r)
167 return r;
168
169 read_lock_irqsave(&gpc->lock, flags);
170 }
171
172 memcpy(hv_clock, gpc->khva + offset, sizeof(*hv_clock));
173 read_unlock_irqrestore(&gpc->lock, flags);
174
175 /*
176 * Sanity check TSC shift+multiplier to verify the guest's view of time
177 * is more or less consistent.
178 */
179 if (hv_clock->tsc_shift != vcpu->arch.pvclock_tsc_shift ||
180 hv_clock->tsc_to_system_mul != vcpu->arch.pvclock_tsc_mul)
181 return -EINVAL;
182
183 return 0;
184 }
185
kvm_xen_start_timer(struct kvm_vcpu * vcpu,u64 guest_abs,bool linux_wa)186 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs,
187 bool linux_wa)
188 {
189 struct kvm_vcpu_xen *xen = &vcpu->arch.xen;
190 int64_t kernel_now, delta;
191 uint64_t guest_now;
192 int r = -EOPNOTSUPP;
193
194 /*
195 * The guest provides the requested timeout in absolute nanoseconds
196 * of the KVM clock — as *it* sees it, based on the scaled TSC and
197 * the pvclock information provided by KVM.
198 *
199 * The kernel doesn't support hrtimers based on CLOCK_MONOTONIC_RAW
200 * so use CLOCK_MONOTONIC. In the timescales covered by timers, the
201 * difference won't matter much as there is no cumulative effect.
202 *
203 * Calculate the time for some arbitrary point in time around "now"
204 * in terms of both kvmclock and CLOCK_MONOTONIC. Calculate the
205 * delta between the kvmclock "now" value and the guest's requested
206 * timeout, apply the "Linux workaround" described below, and add
207 * the resulting delta to the CLOCK_MONOTONIC "now" value, to get
208 * the absolute CLOCK_MONOTONIC time at which the timer should
209 * fire.
210 */
211 do {
212 struct pvclock_vcpu_time_info hv_clock;
213 uint64_t host_tsc, guest_tsc;
214
215 if (!static_cpu_has(X86_FEATURE_CONSTANT_TSC) ||
216 !vcpu->kvm->arch.use_master_clock)
217 break;
218
219 /*
220 * If both Xen PV clocks are active, arbitrarily try to use the
221 * compat clock first, but also try to use the non-compat clock
222 * if the compat clock is unusable. The two PV clocks hold the
223 * same information, but it's possible one (or both) is stale
224 * and/or currently unreachable.
225 */
226 if (xen->vcpu_info_cache.active)
227 r = xen_get_guest_pvclock(vcpu, &hv_clock, &xen->vcpu_info_cache,
228 offsetof(struct compat_vcpu_info, time));
229 if (r && xen->vcpu_time_info_cache.active)
230 r = xen_get_guest_pvclock(vcpu, &hv_clock, &xen->vcpu_time_info_cache, 0);
231 if (r)
232 break;
233
234 if (!IS_ENABLED(CONFIG_64BIT) ||
235 !kvm_get_monotonic_and_clockread(&kernel_now, &host_tsc)) {
236 /*
237 * Don't fall back to get_kvmclock_ns() because it's
238 * broken; it has a systemic error in its results
239 * because it scales directly from host TSC to
240 * nanoseconds, and doesn't scale first to guest TSC
241 * and *then* to nanoseconds as the guest does.
242 *
243 * There is a small error introduced here because time
244 * continues to elapse between the ktime_get() and the
245 * subsequent rdtsc(). But not the systemic drift due
246 * to get_kvmclock_ns().
247 */
248 kernel_now = ktime_get(); /* This is CLOCK_MONOTONIC */
249 host_tsc = rdtsc();
250 }
251
252 /* Calculate the guest kvmclock as the guest would do it. */
253 guest_tsc = kvm_read_l1_tsc(vcpu, host_tsc);
254 guest_now = __pvclock_read_cycles(&hv_clock, guest_tsc);
255 } while (0);
256
257 if (r) {
258 /*
259 * Without CONSTANT_TSC, get_kvmclock_ns() is the only option.
260 *
261 * Also if the guest PV clock hasn't been set up yet, as is
262 * likely to be the case during migration when the vCPU has
263 * not been run yet. It would be possible to calculate the
264 * scaling factors properly in that case but there's not much
265 * point in doing so. The get_kvmclock_ns() drift accumulates
266 * over time, so it's OK to use it at startup. Besides, on
267 * migration there's going to be a little bit of skew in the
268 * precise moment at which timers fire anyway. Often they'll
269 * be in the "past" by the time the VM is running again after
270 * migration.
271 */
272 guest_now = get_kvmclock_ns(vcpu->kvm);
273 kernel_now = ktime_get();
274 }
275
276 delta = guest_abs - guest_now;
277
278 /*
279 * Xen has a 'Linux workaround' in do_set_timer_op() which checks for
280 * negative absolute timeout values (caused by integer overflow), and
281 * for values about 13 days in the future (2^50ns) which would be
282 * caused by jiffies overflow. For those cases, Xen sets the timeout
283 * 100ms in the future (not *too* soon, since if a guest really did
284 * set a long timeout on purpose we don't want to keep churning CPU
285 * time by waking it up). Emulate Xen's workaround when starting the
286 * timer in response to __HYPERVISOR_set_timer_op.
287 */
288 if (linux_wa &&
289 unlikely((int64_t)guest_abs < 0 ||
290 (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
291 delta = 100 * NSEC_PER_MSEC;
292 guest_abs = guest_now + delta;
293 }
294
295 /*
296 * Avoid races with the old timer firing. Checking timer_expires
297 * to avoid calling hrtimer_cancel() will only have false positives
298 * so is fine.
299 */
300 if (vcpu->arch.xen.timer_expires)
301 hrtimer_cancel(&vcpu->arch.xen.timer);
302
303 atomic_set(&vcpu->arch.xen.timer_pending, 0);
304 vcpu->arch.xen.timer_expires = guest_abs;
305
306 if (delta <= 0)
307 xen_timer_callback(&vcpu->arch.xen.timer);
308 else
309 hrtimer_start(&vcpu->arch.xen.timer,
310 ktime_add_ns(kernel_now, delta),
311 HRTIMER_MODE_ABS_HARD);
312 }
313
kvm_xen_stop_timer(struct kvm_vcpu * vcpu)314 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
315 {
316 hrtimer_cancel(&vcpu->arch.xen.timer);
317 vcpu->arch.xen.timer_expires = 0;
318 atomic_set(&vcpu->arch.xen.timer_pending, 0);
319 }
320
kvm_xen_update_runstate_guest(struct kvm_vcpu * v,bool atomic)321 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic)
322 {
323 struct kvm_vcpu_xen *vx = &v->arch.xen;
324 struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache;
325 struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache;
326 size_t user_len, user_len1, user_len2;
327 struct vcpu_runstate_info rs;
328 unsigned long flags;
329 size_t times_ofs;
330 uint8_t *update_bit = NULL;
331 uint64_t entry_time;
332 uint64_t *rs_times;
333 int *rs_state;
334
335 /*
336 * The only difference between 32-bit and 64-bit versions of the
337 * runstate struct is the alignment of uint64_t in 32-bit, which
338 * means that the 64-bit version has an additional 4 bytes of
339 * padding after the first field 'state'. Let's be really really
340 * paranoid about that, and matching it with our internal data
341 * structures that we memcpy into it...
342 */
343 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
344 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
345 BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
346 #ifdef CONFIG_X86_64
347 /*
348 * The 64-bit structure has 4 bytes of padding before 'state_entry_time'
349 * so each subsequent field is shifted by 4, and it's 4 bytes longer.
350 */
351 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
352 offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
353 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
354 offsetof(struct compat_vcpu_runstate_info, time) + 4);
355 BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4);
356 #endif
357 /*
358 * The state field is in the same place at the start of both structs,
359 * and is the same size (int) as vx->current_runstate.
360 */
361 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
362 offsetof(struct compat_vcpu_runstate_info, state));
363 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
364 sizeof(vx->current_runstate));
365 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
366 sizeof(vx->current_runstate));
367
368 /*
369 * The state_entry_time field is 64 bits in both versions, and the
370 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86
371 * is little-endian means that it's in the last *byte* of the word.
372 * That detail is important later.
373 */
374 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
375 sizeof(uint64_t));
376 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
377 sizeof(uint64_t));
378 BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80);
379
380 /*
381 * The time array is four 64-bit quantities in both versions, matching
382 * the vx->runstate_times and immediately following state_entry_time.
383 */
384 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
385 offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t));
386 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
387 offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t));
388 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
389 sizeof_field(struct compat_vcpu_runstate_info, time));
390 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
391 sizeof(vx->runstate_times));
392
393 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
394 user_len = sizeof(struct vcpu_runstate_info);
395 times_ofs = offsetof(struct vcpu_runstate_info,
396 state_entry_time);
397 } else {
398 user_len = sizeof(struct compat_vcpu_runstate_info);
399 times_ofs = offsetof(struct compat_vcpu_runstate_info,
400 state_entry_time);
401 }
402
403 /*
404 * There are basically no alignment constraints. The guest can set it
405 * up so it crosses from one page to the next, and at arbitrary byte
406 * alignment (and the 32-bit ABI doesn't align the 64-bit integers
407 * anyway, even if the overall struct had been 64-bit aligned).
408 */
409 if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) {
410 user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK);
411 user_len2 = user_len - user_len1;
412 } else {
413 user_len1 = user_len;
414 user_len2 = 0;
415 }
416 BUG_ON(user_len1 + user_len2 != user_len);
417
418 retry:
419 /*
420 * Attempt to obtain the GPC lock on *both* (if there are two)
421 * gfn_to_pfn caches that cover the region.
422 */
423 if (atomic) {
424 local_irq_save(flags);
425 if (!read_trylock(&gpc1->lock)) {
426 local_irq_restore(flags);
427 return;
428 }
429 } else {
430 read_lock_irqsave(&gpc1->lock, flags);
431 }
432 while (!kvm_gpc_check(gpc1, user_len1)) {
433 read_unlock_irqrestore(&gpc1->lock, flags);
434
435 /* When invoked from kvm_sched_out() we cannot sleep */
436 if (atomic)
437 return;
438
439 if (kvm_gpc_refresh(gpc1, user_len1))
440 return;
441
442 read_lock_irqsave(&gpc1->lock, flags);
443 }
444
445 if (likely(!user_len2)) {
446 /*
447 * Set up three pointers directly to the runstate_info
448 * struct in the guest (via the GPC).
449 *
450 * • @rs_state → state field
451 * • @rs_times → state_entry_time field.
452 * • @update_bit → last byte of state_entry_time, which
453 * contains the XEN_RUNSTATE_UPDATE bit.
454 */
455 rs_state = gpc1->khva;
456 rs_times = gpc1->khva + times_ofs;
457 if (v->kvm->arch.xen.runstate_update_flag)
458 update_bit = ((void *)(&rs_times[1])) - 1;
459 } else {
460 /*
461 * The guest's runstate_info is split across two pages and we
462 * need to hold and validate both GPCs simultaneously. We can
463 * declare a lock ordering GPC1 > GPC2 because nothing else
464 * takes them more than one at a time. Set a subclass on the
465 * gpc1 lock to make lockdep shut up about it.
466 */
467 lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_);
468 if (atomic) {
469 if (!read_trylock(&gpc2->lock)) {
470 read_unlock_irqrestore(&gpc1->lock, flags);
471 return;
472 }
473 } else {
474 read_lock(&gpc2->lock);
475 }
476
477 if (!kvm_gpc_check(gpc2, user_len2)) {
478 read_unlock(&gpc2->lock);
479 read_unlock_irqrestore(&gpc1->lock, flags);
480
481 /* When invoked from kvm_sched_out() we cannot sleep */
482 if (atomic)
483 return;
484
485 /*
486 * Use kvm_gpc_activate() here because if the runstate
487 * area was configured in 32-bit mode and only extends
488 * to the second page now because the guest changed to
489 * 64-bit mode, the second GPC won't have been set up.
490 */
491 if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1,
492 user_len2))
493 return;
494
495 /*
496 * We dropped the lock on GPC1 so we have to go all the
497 * way back and revalidate that too.
498 */
499 goto retry;
500 }
501
502 /*
503 * In this case, the runstate_info struct will be assembled on
504 * the kernel stack (compat or not as appropriate) and will
505 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three
506 * rs pointers accordingly.
507 */
508 rs_times = &rs.state_entry_time;
509
510 /*
511 * The rs_state pointer points to the start of what we'll
512 * copy to the guest, which in the case of a compat guest
513 * is the 32-bit field that the compiler thinks is padding.
514 */
515 rs_state = ((void *)rs_times) - times_ofs;
516
517 /*
518 * The update_bit is still directly in the guest memory,
519 * via one GPC or the other.
520 */
521 if (v->kvm->arch.xen.runstate_update_flag) {
522 if (user_len1 >= times_ofs + sizeof(uint64_t))
523 update_bit = gpc1->khva + times_ofs +
524 sizeof(uint64_t) - 1;
525 else
526 update_bit = gpc2->khva + times_ofs +
527 sizeof(uint64_t) - 1 - user_len1;
528 }
529
530 #ifdef CONFIG_X86_64
531 /*
532 * Don't leak kernel memory through the padding in the 64-bit
533 * version of the struct.
534 */
535 memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time));
536 #endif
537 }
538
539 /*
540 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the
541 * state_entry_time field, directly in the guest. We need to set
542 * that (and write-barrier) before writing to the rest of the
543 * structure, and clear it last. Just as Xen does, we address the
544 * single *byte* in which it resides because it might be in a
545 * different cache line to the rest of the 64-bit word, due to
546 * the (lack of) alignment constraints.
547 */
548 entry_time = vx->runstate_entry_time;
549 if (update_bit) {
550 entry_time |= XEN_RUNSTATE_UPDATE;
551 *update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56;
552 smp_wmb();
553 }
554
555 /*
556 * Now assemble the actual structure, either on our kernel stack
557 * or directly in the guest according to how the rs_state and
558 * rs_times pointers were set up above.
559 */
560 *rs_state = vx->current_runstate;
561 rs_times[0] = entry_time;
562 memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
563
564 /* For the split case, we have to then copy it to the guest. */
565 if (user_len2) {
566 memcpy(gpc1->khva, rs_state, user_len1);
567 memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2);
568 }
569 smp_wmb();
570
571 /* Finally, clear the XEN_RUNSTATE_UPDATE bit. */
572 if (update_bit) {
573 entry_time &= ~XEN_RUNSTATE_UPDATE;
574 *update_bit = entry_time >> 56;
575 smp_wmb();
576 }
577
578 if (user_len2) {
579 kvm_gpc_mark_dirty_in_slot(gpc2);
580 read_unlock(&gpc2->lock);
581 }
582
583 kvm_gpc_mark_dirty_in_slot(gpc1);
584 read_unlock_irqrestore(&gpc1->lock, flags);
585 }
586
kvm_xen_update_runstate(struct kvm_vcpu * v,int state)587 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
588 {
589 struct kvm_vcpu_xen *vx = &v->arch.xen;
590 u64 now = get_kvmclock_ns(v->kvm);
591 u64 delta_ns = now - vx->runstate_entry_time;
592 u64 run_delay = current->sched_info.run_delay;
593
594 if (unlikely(!vx->runstate_entry_time))
595 vx->current_runstate = RUNSTATE_offline;
596
597 /*
598 * Time waiting for the scheduler isn't "stolen" if the
599 * vCPU wasn't running anyway.
600 */
601 if (vx->current_runstate == RUNSTATE_running) {
602 u64 steal_ns = run_delay - vx->last_steal;
603
604 delta_ns -= steal_ns;
605
606 vx->runstate_times[RUNSTATE_runnable] += steal_ns;
607 }
608 vx->last_steal = run_delay;
609
610 vx->runstate_times[vx->current_runstate] += delta_ns;
611 vx->current_runstate = state;
612 vx->runstate_entry_time = now;
613
614 if (vx->runstate_cache.active)
615 kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable);
616 }
617
kvm_xen_inject_vcpu_vector(struct kvm_vcpu * v)618 void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
619 {
620 struct kvm_lapic_irq irq = { };
621
622 irq.dest_id = v->vcpu_id;
623 irq.vector = v->arch.xen.upcall_vector;
624 irq.dest_mode = APIC_DEST_PHYSICAL;
625 irq.shorthand = APIC_DEST_NOSHORT;
626 irq.delivery_mode = APIC_DM_FIXED;
627 irq.level = 1;
628
629 kvm_irq_delivery_to_apic(v->kvm, NULL, &irq, NULL);
630 }
631
632 /*
633 * On event channel delivery, the vcpu_info may not have been accessible.
634 * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
635 * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
636 * Do so now that we can sleep in the context of the vCPU to bring the
637 * page in, and refresh the pfn cache for it.
638 */
kvm_xen_inject_pending_events(struct kvm_vcpu * v)639 void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
640 {
641 unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
642 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
643 unsigned long flags;
644
645 if (!evtchn_pending_sel)
646 return;
647
648 /*
649 * Yes, this is an open-coded loop. But that's just what put_user()
650 * does anyway. Page it in and retry the instruction. We're just a
651 * little more honest about it.
652 */
653 read_lock_irqsave(&gpc->lock, flags);
654 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
655 read_unlock_irqrestore(&gpc->lock, flags);
656
657 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info)))
658 return;
659
660 read_lock_irqsave(&gpc->lock, flags);
661 }
662
663 /* Now gpc->khva is a valid kernel address for the vcpu_info */
664 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
665 struct vcpu_info *vi = gpc->khva;
666
667 asm volatile(LOCK_PREFIX "orq %0, %1\n"
668 "notq %0\n"
669 LOCK_PREFIX "andq %0, %2\n"
670 : "=r" (evtchn_pending_sel),
671 "+m" (vi->evtchn_pending_sel),
672 "+m" (v->arch.xen.evtchn_pending_sel)
673 : "0" (evtchn_pending_sel));
674 WRITE_ONCE(vi->evtchn_upcall_pending, 1);
675 } else {
676 u32 evtchn_pending_sel32 = evtchn_pending_sel;
677 struct compat_vcpu_info *vi = gpc->khva;
678
679 asm volatile(LOCK_PREFIX "orl %0, %1\n"
680 "notl %0\n"
681 LOCK_PREFIX "andl %0, %2\n"
682 : "=r" (evtchn_pending_sel32),
683 "+m" (vi->evtchn_pending_sel),
684 "+m" (v->arch.xen.evtchn_pending_sel)
685 : "0" (evtchn_pending_sel32));
686 WRITE_ONCE(vi->evtchn_upcall_pending, 1);
687 }
688
689 kvm_gpc_mark_dirty_in_slot(gpc);
690 read_unlock_irqrestore(&gpc->lock, flags);
691
692 /* For the per-vCPU lapic vector, deliver it as MSI. */
693 if (v->arch.xen.upcall_vector)
694 kvm_xen_inject_vcpu_vector(v);
695 }
696
__kvm_xen_has_interrupt(struct kvm_vcpu * v)697 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
698 {
699 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
700 unsigned long flags;
701 u8 rc = 0;
702
703 /*
704 * If the global upcall vector (HVMIRQ_callback_vector) is set and
705 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
706 */
707
708 /* No need for compat handling here */
709 BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
710 offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
711 BUILD_BUG_ON(sizeof(rc) !=
712 sizeof_field(struct vcpu_info, evtchn_upcall_pending));
713 BUILD_BUG_ON(sizeof(rc) !=
714 sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
715
716 read_lock_irqsave(&gpc->lock, flags);
717 while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
718 read_unlock_irqrestore(&gpc->lock, flags);
719
720 /*
721 * This function gets called from kvm_vcpu_block() after setting the
722 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
723 * from a HLT. So we really mustn't sleep. If the page ended up absent
724 * at that point, just return 1 in order to trigger an immediate wake,
725 * and we'll end up getting called again from a context where we *can*
726 * fault in the page and wait for it.
727 */
728 if (in_atomic() || !task_is_running(current))
729 return 1;
730
731 if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) {
732 /*
733 * If this failed, userspace has screwed up the
734 * vcpu_info mapping. No interrupts for you.
735 */
736 return 0;
737 }
738 read_lock_irqsave(&gpc->lock, flags);
739 }
740
741 rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
742 read_unlock_irqrestore(&gpc->lock, flags);
743 return rc;
744 }
745
kvm_xen_hvm_set_attr(struct kvm * kvm,struct kvm_xen_hvm_attr * data)746 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
747 {
748 int r = -ENOENT;
749
750
751 switch (data->type) {
752 case KVM_XEN_ATTR_TYPE_LONG_MODE:
753 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
754 r = -EINVAL;
755 } else {
756 mutex_lock(&kvm->arch.xen.xen_lock);
757 kvm->arch.xen.long_mode = !!data->u.long_mode;
758
759 /*
760 * Re-initialize shared_info to put the wallclock in the
761 * correct place. Whilst it's not necessary to do this
762 * unless the mode is actually changed, it does no harm
763 * to make the call anyway.
764 */
765 r = kvm->arch.xen.shinfo_cache.active ?
766 kvm_xen_shared_info_init(kvm) : 0;
767 mutex_unlock(&kvm->arch.xen.xen_lock);
768 }
769 break;
770
771 case KVM_XEN_ATTR_TYPE_SHARED_INFO:
772 case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA: {
773 int idx;
774
775 mutex_lock(&kvm->arch.xen.xen_lock);
776
777 idx = srcu_read_lock(&kvm->srcu);
778
779 if (data->type == KVM_XEN_ATTR_TYPE_SHARED_INFO) {
780 gfn_t gfn = data->u.shared_info.gfn;
781
782 if (gfn == KVM_XEN_INVALID_GFN) {
783 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
784 r = 0;
785 } else {
786 r = kvm_gpc_activate(&kvm->arch.xen.shinfo_cache,
787 gfn_to_gpa(gfn), PAGE_SIZE);
788 }
789 } else {
790 void __user * hva = u64_to_user_ptr(data->u.shared_info.hva);
791
792 if (!PAGE_ALIGNED(hva)) {
793 r = -EINVAL;
794 } else if (!hva) {
795 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
796 r = 0;
797 } else {
798 r = kvm_gpc_activate_hva(&kvm->arch.xen.shinfo_cache,
799 (unsigned long)hva, PAGE_SIZE);
800 }
801 }
802
803 srcu_read_unlock(&kvm->srcu, idx);
804
805 if (!r && kvm->arch.xen.shinfo_cache.active)
806 r = kvm_xen_shared_info_init(kvm);
807
808 mutex_unlock(&kvm->arch.xen.xen_lock);
809 break;
810 }
811 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
812 if (data->u.vector && data->u.vector < 0x10)
813 r = -EINVAL;
814 else {
815 mutex_lock(&kvm->arch.xen.xen_lock);
816 kvm->arch.xen.upcall_vector = data->u.vector;
817 mutex_unlock(&kvm->arch.xen.xen_lock);
818 r = 0;
819 }
820 break;
821
822 case KVM_XEN_ATTR_TYPE_EVTCHN:
823 r = kvm_xen_setattr_evtchn(kvm, data);
824 break;
825
826 case KVM_XEN_ATTR_TYPE_XEN_VERSION:
827 mutex_lock(&kvm->arch.xen.xen_lock);
828 kvm->arch.xen.xen_version = data->u.xen_version;
829 mutex_unlock(&kvm->arch.xen.xen_lock);
830 r = 0;
831 break;
832
833 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
834 if (!sched_info_on()) {
835 r = -EOPNOTSUPP;
836 break;
837 }
838 mutex_lock(&kvm->arch.xen.xen_lock);
839 kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag;
840 mutex_unlock(&kvm->arch.xen.xen_lock);
841 r = 0;
842 break;
843
844 default:
845 break;
846 }
847
848 return r;
849 }
850
kvm_xen_hvm_get_attr(struct kvm * kvm,struct kvm_xen_hvm_attr * data)851 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
852 {
853 int r = -ENOENT;
854
855 mutex_lock(&kvm->arch.xen.xen_lock);
856
857 switch (data->type) {
858 case KVM_XEN_ATTR_TYPE_LONG_MODE:
859 data->u.long_mode = kvm->arch.xen.long_mode;
860 r = 0;
861 break;
862
863 case KVM_XEN_ATTR_TYPE_SHARED_INFO:
864 if (kvm_gpc_is_gpa_active(&kvm->arch.xen.shinfo_cache))
865 data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
866 else
867 data->u.shared_info.gfn = KVM_XEN_INVALID_GFN;
868 r = 0;
869 break;
870
871 case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA:
872 if (kvm_gpc_is_hva_active(&kvm->arch.xen.shinfo_cache))
873 data->u.shared_info.hva = kvm->arch.xen.shinfo_cache.uhva;
874 else
875 data->u.shared_info.hva = 0;
876 r = 0;
877 break;
878
879 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
880 data->u.vector = kvm->arch.xen.upcall_vector;
881 r = 0;
882 break;
883
884 case KVM_XEN_ATTR_TYPE_XEN_VERSION:
885 data->u.xen_version = kvm->arch.xen.xen_version;
886 r = 0;
887 break;
888
889 case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
890 if (!sched_info_on()) {
891 r = -EOPNOTSUPP;
892 break;
893 }
894 data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag;
895 r = 0;
896 break;
897
898 default:
899 break;
900 }
901
902 mutex_unlock(&kvm->arch.xen.xen_lock);
903 return r;
904 }
905
kvm_xen_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_xen_vcpu_attr * data)906 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
907 {
908 int idx, r = -ENOENT;
909
910 mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
911 idx = srcu_read_lock(&vcpu->kvm->srcu);
912
913 switch (data->type) {
914 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
915 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA:
916 /* No compat necessary here. */
917 BUILD_BUG_ON(sizeof(struct vcpu_info) !=
918 sizeof(struct compat_vcpu_info));
919 BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
920 offsetof(struct compat_vcpu_info, time));
921
922 if (data->type == KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO) {
923 if (data->u.gpa == KVM_XEN_INVALID_GPA) {
924 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
925 r = 0;
926 break;
927 }
928
929 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache,
930 data->u.gpa, sizeof(struct vcpu_info));
931 } else {
932 if (data->u.hva == 0) {
933 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
934 r = 0;
935 break;
936 }
937
938 r = kvm_gpc_activate_hva(&vcpu->arch.xen.vcpu_info_cache,
939 data->u.hva, sizeof(struct vcpu_info));
940 }
941
942 if (!r)
943 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
944
945 break;
946
947 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
948 if (data->u.gpa == KVM_XEN_INVALID_GPA) {
949 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
950 r = 0;
951 break;
952 }
953
954 r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache,
955 data->u.gpa,
956 sizeof(struct pvclock_vcpu_time_info));
957 if (!r)
958 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
959 break;
960
961 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: {
962 size_t sz, sz1, sz2;
963
964 if (!sched_info_on()) {
965 r = -EOPNOTSUPP;
966 break;
967 }
968 if (data->u.gpa == KVM_XEN_INVALID_GPA) {
969 r = 0;
970 deactivate_out:
971 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
972 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
973 break;
974 }
975
976 /*
977 * If the guest switches to 64-bit mode after setting the runstate
978 * address, that's actually OK. kvm_xen_update_runstate_guest()
979 * will cope.
980 */
981 if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode)
982 sz = sizeof(struct vcpu_runstate_info);
983 else
984 sz = sizeof(struct compat_vcpu_runstate_info);
985
986 /* How much fits in the (first) page? */
987 sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK);
988 r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache,
989 data->u.gpa, sz1);
990 if (r)
991 goto deactivate_out;
992
993 /* Either map the second page, or deactivate the second GPC */
994 if (sz1 >= sz) {
995 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
996 } else {
997 sz2 = sz - sz1;
998 BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK);
999 r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache,
1000 data->u.gpa + sz1, sz2);
1001 if (r)
1002 goto deactivate_out;
1003 }
1004
1005 kvm_xen_update_runstate_guest(vcpu, false);
1006 break;
1007 }
1008 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
1009 if (!sched_info_on()) {
1010 r = -EOPNOTSUPP;
1011 break;
1012 }
1013 if (data->u.runstate.state > RUNSTATE_offline) {
1014 r = -EINVAL;
1015 break;
1016 }
1017
1018 kvm_xen_update_runstate(vcpu, data->u.runstate.state);
1019 r = 0;
1020 break;
1021
1022 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
1023 if (!sched_info_on()) {
1024 r = -EOPNOTSUPP;
1025 break;
1026 }
1027 if (data->u.runstate.state > RUNSTATE_offline) {
1028 r = -EINVAL;
1029 break;
1030 }
1031 if (data->u.runstate.state_entry_time !=
1032 (data->u.runstate.time_running +
1033 data->u.runstate.time_runnable +
1034 data->u.runstate.time_blocked +
1035 data->u.runstate.time_offline)) {
1036 r = -EINVAL;
1037 break;
1038 }
1039 if (get_kvmclock_ns(vcpu->kvm) <
1040 data->u.runstate.state_entry_time) {
1041 r = -EINVAL;
1042 break;
1043 }
1044
1045 vcpu->arch.xen.current_runstate = data->u.runstate.state;
1046 vcpu->arch.xen.runstate_entry_time =
1047 data->u.runstate.state_entry_time;
1048 vcpu->arch.xen.runstate_times[RUNSTATE_running] =
1049 data->u.runstate.time_running;
1050 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
1051 data->u.runstate.time_runnable;
1052 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
1053 data->u.runstate.time_blocked;
1054 vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
1055 data->u.runstate.time_offline;
1056 vcpu->arch.xen.last_steal = current->sched_info.run_delay;
1057 r = 0;
1058 break;
1059
1060 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1061 if (!sched_info_on()) {
1062 r = -EOPNOTSUPP;
1063 break;
1064 }
1065 if (data->u.runstate.state > RUNSTATE_offline &&
1066 data->u.runstate.state != (u64)-1) {
1067 r = -EINVAL;
1068 break;
1069 }
1070 /* The adjustment must add up */
1071 if (data->u.runstate.state_entry_time !=
1072 (data->u.runstate.time_running +
1073 data->u.runstate.time_runnable +
1074 data->u.runstate.time_blocked +
1075 data->u.runstate.time_offline)) {
1076 r = -EINVAL;
1077 break;
1078 }
1079
1080 if (get_kvmclock_ns(vcpu->kvm) <
1081 (vcpu->arch.xen.runstate_entry_time +
1082 data->u.runstate.state_entry_time)) {
1083 r = -EINVAL;
1084 break;
1085 }
1086
1087 vcpu->arch.xen.runstate_entry_time +=
1088 data->u.runstate.state_entry_time;
1089 vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
1090 data->u.runstate.time_running;
1091 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
1092 data->u.runstate.time_runnable;
1093 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
1094 data->u.runstate.time_blocked;
1095 vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
1096 data->u.runstate.time_offline;
1097
1098 if (data->u.runstate.state <= RUNSTATE_offline)
1099 kvm_xen_update_runstate(vcpu, data->u.runstate.state);
1100 else if (vcpu->arch.xen.runstate_cache.active)
1101 kvm_xen_update_runstate_guest(vcpu, false);
1102 r = 0;
1103 break;
1104
1105 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1106 if (data->u.vcpu_id >= KVM_MAX_VCPUS)
1107 r = -EINVAL;
1108 else {
1109 vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
1110 r = 0;
1111 }
1112 break;
1113
1114 case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1115 if (data->u.timer.port &&
1116 data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
1117 r = -EINVAL;
1118 break;
1119 }
1120
1121 /* Stop the timer (if it's running) before changing the vector */
1122 kvm_xen_stop_timer(vcpu);
1123 vcpu->arch.xen.timer_virq = data->u.timer.port;
1124
1125 /* Start the timer if the new value has a valid vector+expiry. */
1126 if (data->u.timer.port && data->u.timer.expires_ns)
1127 kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, false);
1128
1129 r = 0;
1130 break;
1131
1132 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1133 if (data->u.vector && data->u.vector < 0x10)
1134 r = -EINVAL;
1135 else {
1136 vcpu->arch.xen.upcall_vector = data->u.vector;
1137 r = 0;
1138 }
1139 break;
1140
1141 default:
1142 break;
1143 }
1144
1145 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1146 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1147 return r;
1148 }
1149
kvm_xen_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_xen_vcpu_attr * data)1150 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
1151 {
1152 int r = -ENOENT;
1153
1154 mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
1155
1156 switch (data->type) {
1157 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
1158 if (kvm_gpc_is_gpa_active(&vcpu->arch.xen.vcpu_info_cache))
1159 data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
1160 else
1161 data->u.gpa = KVM_XEN_INVALID_GPA;
1162 r = 0;
1163 break;
1164
1165 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA:
1166 if (kvm_gpc_is_hva_active(&vcpu->arch.xen.vcpu_info_cache))
1167 data->u.hva = vcpu->arch.xen.vcpu_info_cache.uhva;
1168 else
1169 data->u.hva = 0;
1170 r = 0;
1171 break;
1172
1173 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
1174 if (vcpu->arch.xen.vcpu_time_info_cache.active)
1175 data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
1176 else
1177 data->u.gpa = KVM_XEN_INVALID_GPA;
1178 r = 0;
1179 break;
1180
1181 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
1182 if (!sched_info_on()) {
1183 r = -EOPNOTSUPP;
1184 break;
1185 }
1186 if (vcpu->arch.xen.runstate_cache.active) {
1187 data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
1188 r = 0;
1189 }
1190 break;
1191
1192 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
1193 if (!sched_info_on()) {
1194 r = -EOPNOTSUPP;
1195 break;
1196 }
1197 data->u.runstate.state = vcpu->arch.xen.current_runstate;
1198 r = 0;
1199 break;
1200
1201 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
1202 if (!sched_info_on()) {
1203 r = -EOPNOTSUPP;
1204 break;
1205 }
1206 data->u.runstate.state = vcpu->arch.xen.current_runstate;
1207 data->u.runstate.state_entry_time =
1208 vcpu->arch.xen.runstate_entry_time;
1209 data->u.runstate.time_running =
1210 vcpu->arch.xen.runstate_times[RUNSTATE_running];
1211 data->u.runstate.time_runnable =
1212 vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
1213 data->u.runstate.time_blocked =
1214 vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
1215 data->u.runstate.time_offline =
1216 vcpu->arch.xen.runstate_times[RUNSTATE_offline];
1217 r = 0;
1218 break;
1219
1220 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1221 r = -EINVAL;
1222 break;
1223
1224 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1225 data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
1226 r = 0;
1227 break;
1228
1229 case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1230 /*
1231 * Ensure a consistent snapshot of state is captured, with a
1232 * timer either being pending, or the event channel delivered
1233 * to the corresponding bit in the shared_info. Not still
1234 * lurking in the timer_pending flag for deferred delivery.
1235 * Purely as an optimisation, if the timer_expires field is
1236 * zero, that means the timer isn't active (or even in the
1237 * timer_pending flag) and there is no need to cancel it.
1238 */
1239 if (vcpu->arch.xen.timer_expires) {
1240 hrtimer_cancel(&vcpu->arch.xen.timer);
1241 kvm_xen_inject_timer_irqs(vcpu);
1242 }
1243
1244 data->u.timer.port = vcpu->arch.xen.timer_virq;
1245 data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
1246 data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
1247
1248 /*
1249 * The hrtimer may trigger and raise the IRQ immediately,
1250 * while the returned state causes it to be set up and
1251 * raised again on the destination system after migration.
1252 * That's fine, as the guest won't even have had a chance
1253 * to run and handle the interrupt. Asserting an already
1254 * pending event channel is idempotent.
1255 */
1256 if (vcpu->arch.xen.timer_expires)
1257 hrtimer_start_expires(&vcpu->arch.xen.timer,
1258 HRTIMER_MODE_ABS_HARD);
1259
1260 r = 0;
1261 break;
1262
1263 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1264 data->u.vector = vcpu->arch.xen.upcall_vector;
1265 r = 0;
1266 break;
1267
1268 default:
1269 break;
1270 }
1271
1272 mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1273 return r;
1274 }
1275
kvm_xen_write_hypercall_page(struct kvm_vcpu * vcpu,u64 data)1276 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
1277 {
1278 struct kvm *kvm = vcpu->kvm;
1279 u32 page_num = data & ~PAGE_MASK;
1280 u64 page_addr = data & PAGE_MASK;
1281 bool lm = is_long_mode(vcpu);
1282 int r = 0;
1283
1284 mutex_lock(&kvm->arch.xen.xen_lock);
1285 if (kvm->arch.xen.long_mode != lm) {
1286 kvm->arch.xen.long_mode = lm;
1287
1288 /*
1289 * Re-initialize shared_info to put the wallclock in the
1290 * correct place.
1291 */
1292 if (kvm->arch.xen.shinfo_cache.active &&
1293 kvm_xen_shared_info_init(kvm))
1294 r = 1;
1295 }
1296 mutex_unlock(&kvm->arch.xen.xen_lock);
1297
1298 if (r)
1299 return r;
1300
1301 /*
1302 * If Xen hypercall intercept is enabled, fill the hypercall
1303 * page with VMCALL/VMMCALL instructions since that's what
1304 * we catch. Else the VMM has provided the hypercall pages
1305 * with instructions of its own choosing, so use those.
1306 */
1307 if (kvm_xen_hypercall_enabled(kvm)) {
1308 u8 instructions[32];
1309 int i;
1310
1311 if (page_num)
1312 return 1;
1313
1314 /* mov imm32, %eax */
1315 instructions[0] = 0xb8;
1316
1317 /* vmcall / vmmcall */
1318 kvm_x86_call(patch_hypercall)(vcpu, instructions + 5);
1319
1320 /* ret */
1321 instructions[8] = 0xc3;
1322
1323 /* int3 to pad */
1324 memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
1325
1326 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
1327 *(u32 *)&instructions[1] = i;
1328 if (kvm_vcpu_write_guest(vcpu,
1329 page_addr + (i * sizeof(instructions)),
1330 instructions, sizeof(instructions)))
1331 return 1;
1332 }
1333 } else {
1334 /*
1335 * Note, truncation is a non-issue as 'lm' is guaranteed to be
1336 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
1337 */
1338 hva_t blob_addr = lm ? kvm->arch.xen.hvm_config.blob_addr_64
1339 : kvm->arch.xen.hvm_config.blob_addr_32;
1340 u8 blob_size = lm ? kvm->arch.xen.hvm_config.blob_size_64
1341 : kvm->arch.xen.hvm_config.blob_size_32;
1342 u8 *page;
1343 int ret;
1344
1345 if (page_num >= blob_size)
1346 return 1;
1347
1348 blob_addr += page_num * PAGE_SIZE;
1349
1350 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
1351 if (IS_ERR(page))
1352 return PTR_ERR(page);
1353
1354 ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE);
1355 kfree(page);
1356 if (ret)
1357 return 1;
1358 }
1359 return 0;
1360 }
1361
kvm_xen_hvm_config(struct kvm * kvm,struct kvm_xen_hvm_config * xhc)1362 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
1363 {
1364 /* Only some feature flags need to be *enabled* by userspace */
1365 u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
1366 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
1367 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
1368 u32 old_flags;
1369
1370 if (xhc->flags & ~permitted_flags)
1371 return -EINVAL;
1372
1373 /*
1374 * With hypercall interception the kernel generates its own
1375 * hypercall page so it must not be provided.
1376 */
1377 if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
1378 (xhc->blob_addr_32 || xhc->blob_addr_64 ||
1379 xhc->blob_size_32 || xhc->blob_size_64))
1380 return -EINVAL;
1381
1382 /*
1383 * Restrict the MSR to the range that is unofficially reserved for
1384 * synthetic, virtualization-defined MSRs, e.g. to prevent confusing
1385 * KVM by colliding with a real MSR that requires special handling.
1386 */
1387 if (xhc->msr &&
1388 (xhc->msr < KVM_XEN_MSR_MIN_INDEX || xhc->msr > KVM_XEN_MSR_MAX_INDEX))
1389 return -EINVAL;
1390
1391 mutex_lock(&kvm->arch.xen.xen_lock);
1392
1393 if (xhc->msr && !kvm->arch.xen.hvm_config.msr)
1394 static_branch_inc(&kvm_xen_enabled.key);
1395 else if (!xhc->msr && kvm->arch.xen.hvm_config.msr)
1396 static_branch_slow_dec_deferred(&kvm_xen_enabled);
1397
1398 old_flags = kvm->arch.xen.hvm_config.flags;
1399 memcpy(&kvm->arch.xen.hvm_config, xhc, sizeof(*xhc));
1400
1401 mutex_unlock(&kvm->arch.xen.xen_lock);
1402
1403 if ((old_flags ^ xhc->flags) & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
1404 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
1405
1406 return 0;
1407 }
1408
kvm_xen_hypercall_set_result(struct kvm_vcpu * vcpu,u64 result)1409 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1410 {
1411 kvm_rax_write(vcpu, result);
1412 return kvm_skip_emulated_instruction(vcpu);
1413 }
1414
kvm_xen_hypercall_complete_userspace(struct kvm_vcpu * vcpu)1415 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1416 {
1417 struct kvm_run *run = vcpu->run;
1418
1419 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
1420 return 1;
1421
1422 return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
1423 }
1424
max_evtchn_port(struct kvm * kvm)1425 static inline int max_evtchn_port(struct kvm *kvm)
1426 {
1427 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1428 return EVTCHN_2L_NR_CHANNELS;
1429 else
1430 return COMPAT_EVTCHN_2L_NR_CHANNELS;
1431 }
1432
wait_pending_event(struct kvm_vcpu * vcpu,int nr_ports,evtchn_port_t * ports)1433 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
1434 evtchn_port_t *ports)
1435 {
1436 struct kvm *kvm = vcpu->kvm;
1437 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1438 unsigned long *pending_bits;
1439 unsigned long flags;
1440 bool ret = true;
1441 int idx, i;
1442
1443 idx = srcu_read_lock(&kvm->srcu);
1444 read_lock_irqsave(&gpc->lock, flags);
1445 if (!kvm_gpc_check(gpc, PAGE_SIZE))
1446 goto out_rcu;
1447
1448 ret = false;
1449 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1450 struct shared_info *shinfo = gpc->khva;
1451 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1452 } else {
1453 struct compat_shared_info *shinfo = gpc->khva;
1454 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1455 }
1456
1457 for (i = 0; i < nr_ports; i++) {
1458 if (test_bit(ports[i], pending_bits)) {
1459 ret = true;
1460 break;
1461 }
1462 }
1463
1464 out_rcu:
1465 read_unlock_irqrestore(&gpc->lock, flags);
1466 srcu_read_unlock(&kvm->srcu, idx);
1467
1468 return ret;
1469 }
1470
kvm_xen_schedop_poll(struct kvm_vcpu * vcpu,bool longmode,u64 param,u64 * r)1471 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
1472 u64 param, u64 *r)
1473 {
1474 struct sched_poll sched_poll;
1475 evtchn_port_t port, *ports;
1476 struct x86_exception e;
1477 int i;
1478
1479 if (!lapic_in_kernel(vcpu) ||
1480 !(vcpu->kvm->arch.xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1481 return false;
1482
1483 if (IS_ENABLED(CONFIG_64BIT) && !longmode) {
1484 struct compat_sched_poll sp32;
1485
1486 /* Sanity check that the compat struct definition is correct */
1487 BUILD_BUG_ON(sizeof(sp32) != 16);
1488
1489 if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) {
1490 *r = -EFAULT;
1491 return true;
1492 }
1493
1494 /*
1495 * This is a 32-bit pointer to an array of evtchn_port_t which
1496 * are uint32_t, so once it's converted no further compat
1497 * handling is needed.
1498 */
1499 sched_poll.ports = (void *)(unsigned long)(sp32.ports);
1500 sched_poll.nr_ports = sp32.nr_ports;
1501 sched_poll.timeout = sp32.timeout;
1502 } else {
1503 if (kvm_read_guest_virt(vcpu, param, &sched_poll,
1504 sizeof(sched_poll), &e)) {
1505 *r = -EFAULT;
1506 return true;
1507 }
1508 }
1509
1510 if (unlikely(sched_poll.nr_ports > 1)) {
1511 /* Xen (unofficially) limits number of pollers to 128 */
1512 if (sched_poll.nr_ports > 128) {
1513 *r = -EINVAL;
1514 return true;
1515 }
1516
1517 ports = kmalloc_array(sched_poll.nr_ports,
1518 sizeof(*ports), GFP_KERNEL);
1519 if (!ports) {
1520 *r = -ENOMEM;
1521 return true;
1522 }
1523 } else
1524 ports = &port;
1525
1526 if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports,
1527 sched_poll.nr_ports * sizeof(*ports), &e)) {
1528 *r = -EFAULT;
1529 return true;
1530 }
1531
1532 for (i = 0; i < sched_poll.nr_ports; i++) {
1533 if (ports[i] >= max_evtchn_port(vcpu->kvm)) {
1534 *r = -EINVAL;
1535 goto out;
1536 }
1537 }
1538
1539 if (sched_poll.nr_ports == 1)
1540 vcpu->arch.xen.poll_evtchn = port;
1541 else
1542 vcpu->arch.xen.poll_evtchn = -1;
1543
1544 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1545
1546 if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) {
1547 kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED);
1548
1549 if (sched_poll.timeout)
1550 mod_timer(&vcpu->arch.xen.poll_timer,
1551 jiffies + nsecs_to_jiffies(sched_poll.timeout));
1552
1553 kvm_vcpu_halt(vcpu);
1554
1555 if (sched_poll.timeout)
1556 timer_delete(&vcpu->arch.xen.poll_timer);
1557
1558 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
1559 }
1560
1561 vcpu->arch.xen.poll_evtchn = 0;
1562 *r = 0;
1563 out:
1564 /* Really, this is only needed in case of timeout */
1565 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1566
1567 if (unlikely(sched_poll.nr_ports > 1))
1568 kfree(ports);
1569 return true;
1570 }
1571
cancel_evtchn_poll(struct timer_list * t)1572 static void cancel_evtchn_poll(struct timer_list *t)
1573 {
1574 struct kvm_vcpu *vcpu = timer_container_of(vcpu, t,
1575 arch.xen.poll_timer);
1576
1577 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1578 kvm_vcpu_kick(vcpu);
1579 }
1580
kvm_xen_hcall_sched_op(struct kvm_vcpu * vcpu,bool longmode,int cmd,u64 param,u64 * r)1581 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1582 int cmd, u64 param, u64 *r)
1583 {
1584 switch (cmd) {
1585 case SCHEDOP_poll:
1586 if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1587 return true;
1588 fallthrough;
1589 case SCHEDOP_yield:
1590 kvm_vcpu_on_spin(vcpu, true);
1591 *r = 0;
1592 return true;
1593 default:
1594 break;
1595 }
1596
1597 return false;
1598 }
1599
1600 struct compat_vcpu_set_singleshot_timer {
1601 uint64_t timeout_abs_ns;
1602 uint32_t flags;
1603 } __attribute__((packed));
1604
kvm_xen_hcall_vcpu_op(struct kvm_vcpu * vcpu,bool longmode,int cmd,int vcpu_id,u64 param,u64 * r)1605 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1606 int vcpu_id, u64 param, u64 *r)
1607 {
1608 struct vcpu_set_singleshot_timer oneshot;
1609 struct x86_exception e;
1610
1611 if (!kvm_xen_timer_enabled(vcpu))
1612 return false;
1613
1614 switch (cmd) {
1615 case VCPUOP_set_singleshot_timer:
1616 if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1617 *r = -EINVAL;
1618 return true;
1619 }
1620
1621 /*
1622 * The only difference for 32-bit compat is the 4 bytes of
1623 * padding after the interesting part of the structure. So
1624 * for a faithful emulation of Xen we have to *try* to copy
1625 * the padding and return -EFAULT if we can't. Otherwise we
1626 * might as well just have copied the 12-byte 32-bit struct.
1627 */
1628 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1629 offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1630 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1631 sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1632 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1633 offsetof(struct vcpu_set_singleshot_timer, flags));
1634 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1635 sizeof_field(struct vcpu_set_singleshot_timer, flags));
1636
1637 if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) :
1638 sizeof(struct compat_vcpu_set_singleshot_timer), &e)) {
1639 *r = -EFAULT;
1640 return true;
1641 }
1642
1643 kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, false);
1644 *r = 0;
1645 return true;
1646
1647 case VCPUOP_stop_singleshot_timer:
1648 if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1649 *r = -EINVAL;
1650 return true;
1651 }
1652 kvm_xen_stop_timer(vcpu);
1653 *r = 0;
1654 return true;
1655 }
1656
1657 return false;
1658 }
1659
kvm_xen_hcall_set_timer_op(struct kvm_vcpu * vcpu,uint64_t timeout,u64 * r)1660 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1661 u64 *r)
1662 {
1663 if (!kvm_xen_timer_enabled(vcpu))
1664 return false;
1665
1666 if (timeout)
1667 kvm_xen_start_timer(vcpu, timeout, true);
1668 else
1669 kvm_xen_stop_timer(vcpu);
1670
1671 *r = 0;
1672 return true;
1673 }
1674
kvm_xen_hypercall(struct kvm_vcpu * vcpu)1675 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1676 {
1677 bool longmode;
1678 u64 input, params[6], r = -ENOSYS;
1679 bool handled = false;
1680 u8 cpl;
1681
1682 input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
1683
1684 /* Hyper-V hypercalls get bit 31 set in EAX */
1685 if ((input & 0x80000000) &&
1686 kvm_hv_hypercall_enabled(vcpu))
1687 return kvm_hv_hypercall(vcpu);
1688
1689 longmode = is_64_bit_hypercall(vcpu);
1690 if (!longmode) {
1691 params[0] = (u32)kvm_rbx_read(vcpu);
1692 params[1] = (u32)kvm_rcx_read(vcpu);
1693 params[2] = (u32)kvm_rdx_read(vcpu);
1694 params[3] = (u32)kvm_rsi_read(vcpu);
1695 params[4] = (u32)kvm_rdi_read(vcpu);
1696 params[5] = (u32)kvm_rbp_read(vcpu);
1697 }
1698 #ifdef CONFIG_X86_64
1699 else {
1700 params[0] = (u64)kvm_rdi_read(vcpu);
1701 params[1] = (u64)kvm_rsi_read(vcpu);
1702 params[2] = (u64)kvm_rdx_read(vcpu);
1703 params[3] = (u64)kvm_r10_read(vcpu);
1704 params[4] = (u64)kvm_r8_read(vcpu);
1705 params[5] = (u64)kvm_r9_read(vcpu);
1706 }
1707 #endif
1708 cpl = kvm_x86_call(get_cpl)(vcpu);
1709 trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2],
1710 params[3], params[4], params[5]);
1711
1712 /*
1713 * Only allow hypercall acceleration for CPL0. The rare hypercalls that
1714 * are permitted in guest userspace can be handled by the VMM.
1715 */
1716 if (unlikely(cpl > 0))
1717 goto handle_in_userspace;
1718
1719 switch (input) {
1720 case __HYPERVISOR_xen_version:
1721 if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1722 r = vcpu->kvm->arch.xen.xen_version;
1723 handled = true;
1724 }
1725 break;
1726 case __HYPERVISOR_event_channel_op:
1727 if (params[0] == EVTCHNOP_send)
1728 handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r);
1729 break;
1730 case __HYPERVISOR_sched_op:
1731 handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0],
1732 params[1], &r);
1733 break;
1734 case __HYPERVISOR_vcpu_op:
1735 handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1],
1736 params[2], &r);
1737 break;
1738 case __HYPERVISOR_set_timer_op: {
1739 u64 timeout = params[0];
1740 /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1741 if (!longmode)
1742 timeout |= params[1] << 32;
1743 handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r);
1744 break;
1745 }
1746 default:
1747 break;
1748 }
1749
1750 if (handled)
1751 return kvm_xen_hypercall_set_result(vcpu, r);
1752
1753 handle_in_userspace:
1754 vcpu->run->exit_reason = KVM_EXIT_XEN;
1755 vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1756 vcpu->run->xen.u.hcall.longmode = longmode;
1757 vcpu->run->xen.u.hcall.cpl = cpl;
1758 vcpu->run->xen.u.hcall.input = input;
1759 vcpu->run->xen.u.hcall.params[0] = params[0];
1760 vcpu->run->xen.u.hcall.params[1] = params[1];
1761 vcpu->run->xen.u.hcall.params[2] = params[2];
1762 vcpu->run->xen.u.hcall.params[3] = params[3];
1763 vcpu->run->xen.u.hcall.params[4] = params[4];
1764 vcpu->run->xen.u.hcall.params[5] = params[5];
1765 vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1766 vcpu->arch.complete_userspace_io =
1767 kvm_xen_hypercall_complete_userspace;
1768
1769 return 0;
1770 }
1771
kvm_xen_check_poller(struct kvm_vcpu * vcpu,int port)1772 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1773 {
1774 int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1775
1776 if ((poll_evtchn == port || poll_evtchn == -1) &&
1777 test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) {
1778 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1779 kvm_vcpu_kick(vcpu);
1780 }
1781 }
1782
1783 /*
1784 * The return value from this function is propagated to kvm_set_irq() API,
1785 * so it returns:
1786 * < 0 Interrupt was ignored (masked or not delivered for other reasons)
1787 * = 0 Interrupt was coalesced (previous irq is still pending)
1788 * > 0 Number of CPUs interrupt was delivered to
1789 *
1790 * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1791 * only check on its return value is a comparison with -EWOULDBLOCK'.
1792 */
kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn * xe,struct kvm * kvm)1793 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1794 {
1795 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1796 struct kvm_vcpu *vcpu;
1797 unsigned long *pending_bits, *mask_bits;
1798 unsigned long flags;
1799 int port_word_bit;
1800 bool kick_vcpu = false;
1801 int vcpu_idx, idx, rc;
1802
1803 vcpu_idx = READ_ONCE(xe->vcpu_idx);
1804 if (vcpu_idx >= 0)
1805 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1806 else {
1807 vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id);
1808 if (!vcpu)
1809 return -EINVAL;
1810 WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1811 }
1812
1813 if (xe->port >= max_evtchn_port(kvm))
1814 return -EINVAL;
1815
1816 rc = -EWOULDBLOCK;
1817
1818 idx = srcu_read_lock(&kvm->srcu);
1819
1820 read_lock_irqsave(&gpc->lock, flags);
1821 if (!kvm_gpc_check(gpc, PAGE_SIZE))
1822 goto out_rcu;
1823
1824 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1825 struct shared_info *shinfo = gpc->khva;
1826 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1827 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1828 port_word_bit = xe->port / 64;
1829 } else {
1830 struct compat_shared_info *shinfo = gpc->khva;
1831 pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1832 mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1833 port_word_bit = xe->port / 32;
1834 }
1835
1836 /*
1837 * If this port wasn't already set, and if it isn't masked, then
1838 * we try to set the corresponding bit in the in-kernel shadow of
1839 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1840 * already set, then we kick the vCPU in question to write to the
1841 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1842 */
1843 if (test_and_set_bit(xe->port, pending_bits)) {
1844 rc = 0; /* It was already raised */
1845 } else if (test_bit(xe->port, mask_bits)) {
1846 rc = -ENOTCONN; /* Masked */
1847 kvm_xen_check_poller(vcpu, xe->port);
1848 } else {
1849 rc = 1; /* Delivered to the bitmap in shared_info. */
1850 /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1851 read_unlock_irqrestore(&gpc->lock, flags);
1852 gpc = &vcpu->arch.xen.vcpu_info_cache;
1853
1854 read_lock_irqsave(&gpc->lock, flags);
1855 if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
1856 /*
1857 * Could not access the vcpu_info. Set the bit in-kernel
1858 * and prod the vCPU to deliver it for itself.
1859 */
1860 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
1861 kick_vcpu = true;
1862 goto out_rcu;
1863 }
1864
1865 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1866 struct vcpu_info *vcpu_info = gpc->khva;
1867 if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
1868 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1869 kick_vcpu = true;
1870 }
1871 } else {
1872 struct compat_vcpu_info *vcpu_info = gpc->khva;
1873 if (!test_and_set_bit(port_word_bit,
1874 (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1875 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1876 kick_vcpu = true;
1877 }
1878 }
1879
1880 /* For the per-vCPU lapic vector, deliver it as MSI. */
1881 if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1882 kvm_xen_inject_vcpu_vector(vcpu);
1883 kick_vcpu = false;
1884 }
1885 }
1886
1887 out_rcu:
1888 read_unlock_irqrestore(&gpc->lock, flags);
1889 srcu_read_unlock(&kvm->srcu, idx);
1890
1891 if (kick_vcpu) {
1892 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1893 kvm_vcpu_kick(vcpu);
1894 }
1895
1896 return rc;
1897 }
1898
kvm_xen_set_evtchn(struct kvm_xen_evtchn * xe,struct kvm * kvm)1899 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1900 {
1901 bool mm_borrowed = false;
1902 int rc;
1903
1904 rc = kvm_xen_set_evtchn_fast(xe, kvm);
1905 if (rc != -EWOULDBLOCK)
1906 return rc;
1907
1908 if (current->mm != kvm->mm) {
1909 /*
1910 * If not on a thread which already belongs to this KVM,
1911 * we'd better be in the irqfd workqueue.
1912 */
1913 if (WARN_ON_ONCE(current->mm))
1914 return -EINVAL;
1915
1916 kthread_use_mm(kvm->mm);
1917 mm_borrowed = true;
1918 }
1919
1920 /*
1921 * It is theoretically possible for the page to be unmapped
1922 * and the MMU notifier to invalidate the shared_info before
1923 * we even get to use it. In that case, this looks like an
1924 * infinite loop. It was tempting to do it via the userspace
1925 * HVA instead... but that just *hides* the fact that it's
1926 * an infinite loop, because if a fault occurs and it waits
1927 * for the page to come back, it can *still* immediately
1928 * fault and have to wait again, repeatedly.
1929 *
1930 * Conversely, the page could also have been reinstated by
1931 * another thread before we even obtain the mutex above, so
1932 * check again *first* before remapping it.
1933 */
1934 do {
1935 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1936 int idx;
1937
1938 rc = kvm_xen_set_evtchn_fast(xe, kvm);
1939 if (rc != -EWOULDBLOCK)
1940 break;
1941
1942 idx = srcu_read_lock(&kvm->srcu);
1943 rc = kvm_gpc_refresh(gpc, PAGE_SIZE);
1944 srcu_read_unlock(&kvm->srcu, idx);
1945 } while(!rc);
1946
1947 if (mm_borrowed)
1948 kthread_unuse_mm(kvm->mm);
1949
1950 return rc;
1951 }
1952
1953 /* This is the version called from kvm_set_irq() as the .set function */
evtchn_set_fn(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)1954 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1955 int irq_source_id, int level, bool line_status)
1956 {
1957 if (!level)
1958 return -EINVAL;
1959
1960 return kvm_xen_set_evtchn(&e->xen_evtchn, kvm);
1961 }
1962
1963 /*
1964 * Set up an event channel interrupt from the KVM IRQ routing table.
1965 * Used for e.g. PIRQ from passed through physical devices.
1966 */
kvm_xen_setup_evtchn(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,const struct kvm_irq_routing_entry * ue)1967 int kvm_xen_setup_evtchn(struct kvm *kvm,
1968 struct kvm_kernel_irq_routing_entry *e,
1969 const struct kvm_irq_routing_entry *ue)
1970
1971 {
1972 struct kvm_vcpu *vcpu;
1973
1974 if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1975 return -EINVAL;
1976
1977 /* We only support 2 level event channels for now */
1978 if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1979 return -EINVAL;
1980
1981 /*
1982 * Xen gives us interesting mappings from vCPU index to APIC ID,
1983 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1984 * to find it. Do that once at setup time, instead of every time.
1985 * But beware that on live update / live migration, the routing
1986 * table might be reinstated before the vCPU threads have finished
1987 * recreating their vCPUs.
1988 */
1989 vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu);
1990 if (vcpu)
1991 e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1992 else
1993 e->xen_evtchn.vcpu_idx = -1;
1994
1995 e->xen_evtchn.port = ue->u.xen_evtchn.port;
1996 e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1997 e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1998 e->set = evtchn_set_fn;
1999
2000 return 0;
2001 }
2002
2003 /*
2004 * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
2005 */
kvm_xen_hvm_evtchn_send(struct kvm * kvm,struct kvm_irq_routing_xen_evtchn * uxe)2006 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
2007 {
2008 struct kvm_xen_evtchn e;
2009 int ret;
2010
2011 if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
2012 return -EINVAL;
2013
2014 /* We only support 2 level event channels for now */
2015 if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
2016 return -EINVAL;
2017
2018 e.port = uxe->port;
2019 e.vcpu_id = uxe->vcpu;
2020 e.vcpu_idx = -1;
2021 e.priority = uxe->priority;
2022
2023 ret = kvm_xen_set_evtchn(&e, kvm);
2024
2025 /*
2026 * None of that 'return 1 if it actually got delivered' nonsense.
2027 * We don't care if it was masked (-ENOTCONN) either.
2028 */
2029 if (ret > 0 || ret == -ENOTCONN)
2030 ret = 0;
2031
2032 return ret;
2033 }
2034
2035 /*
2036 * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
2037 */
2038 struct evtchnfd {
2039 u32 send_port;
2040 u32 type;
2041 union {
2042 struct kvm_xen_evtchn port;
2043 struct {
2044 u32 port; /* zero */
2045 struct eventfd_ctx *ctx;
2046 } eventfd;
2047 } deliver;
2048 };
2049
2050 /*
2051 * Update target vCPU or priority for a registered sending channel.
2052 */
kvm_xen_eventfd_update(struct kvm * kvm,struct kvm_xen_hvm_attr * data)2053 static int kvm_xen_eventfd_update(struct kvm *kvm,
2054 struct kvm_xen_hvm_attr *data)
2055 {
2056 u32 port = data->u.evtchn.send_port;
2057 struct evtchnfd *evtchnfd;
2058 int ret;
2059
2060 /* Protect writes to evtchnfd as well as the idr lookup. */
2061 mutex_lock(&kvm->arch.xen.xen_lock);
2062 evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port);
2063
2064 ret = -ENOENT;
2065 if (!evtchnfd)
2066 goto out_unlock;
2067
2068 /* For an UPDATE, nothing may change except the priority/vcpu */
2069 ret = -EINVAL;
2070 if (evtchnfd->type != data->u.evtchn.type)
2071 goto out_unlock;
2072
2073 /*
2074 * Port cannot change, and if it's zero that was an eventfd
2075 * which can't be changed either.
2076 */
2077 if (!evtchnfd->deliver.port.port ||
2078 evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
2079 goto out_unlock;
2080
2081 /* We only support 2 level event channels for now */
2082 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
2083 goto out_unlock;
2084
2085 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
2086 if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
2087 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
2088 evtchnfd->deliver.port.vcpu_idx = -1;
2089 }
2090 ret = 0;
2091 out_unlock:
2092 mutex_unlock(&kvm->arch.xen.xen_lock);
2093 return ret;
2094 }
2095
2096 /*
2097 * Configure the target (eventfd or local port delivery) for sending on
2098 * a given event channel.
2099 */
kvm_xen_eventfd_assign(struct kvm * kvm,struct kvm_xen_hvm_attr * data)2100 static int kvm_xen_eventfd_assign(struct kvm *kvm,
2101 struct kvm_xen_hvm_attr *data)
2102 {
2103 u32 port = data->u.evtchn.send_port;
2104 struct eventfd_ctx *eventfd = NULL;
2105 struct evtchnfd *evtchnfd;
2106 int ret = -EINVAL;
2107
2108 evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL);
2109 if (!evtchnfd)
2110 return -ENOMEM;
2111
2112 switch(data->u.evtchn.type) {
2113 case EVTCHNSTAT_ipi:
2114 /* IPI must map back to the same port# */
2115 if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
2116 goto out_noeventfd; /* -EINVAL */
2117 break;
2118
2119 case EVTCHNSTAT_interdomain:
2120 if (data->u.evtchn.deliver.port.port) {
2121 if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
2122 goto out_noeventfd; /* -EINVAL */
2123 } else {
2124 eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd);
2125 if (IS_ERR(eventfd)) {
2126 ret = PTR_ERR(eventfd);
2127 goto out_noeventfd;
2128 }
2129 }
2130 break;
2131
2132 case EVTCHNSTAT_virq:
2133 case EVTCHNSTAT_closed:
2134 case EVTCHNSTAT_unbound:
2135 case EVTCHNSTAT_pirq:
2136 default: /* Unknown event channel type */
2137 goto out; /* -EINVAL */
2138 }
2139
2140 evtchnfd->send_port = data->u.evtchn.send_port;
2141 evtchnfd->type = data->u.evtchn.type;
2142 if (eventfd) {
2143 evtchnfd->deliver.eventfd.ctx = eventfd;
2144 } else {
2145 /* We only support 2 level event channels for now */
2146 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
2147 goto out; /* -EINVAL; */
2148
2149 evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
2150 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
2151 evtchnfd->deliver.port.vcpu_idx = -1;
2152 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
2153 }
2154
2155 mutex_lock(&kvm->arch.xen.xen_lock);
2156 ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1,
2157 GFP_KERNEL);
2158 mutex_unlock(&kvm->arch.xen.xen_lock);
2159 if (ret >= 0)
2160 return 0;
2161
2162 if (ret == -ENOSPC)
2163 ret = -EEXIST;
2164 out:
2165 if (eventfd)
2166 eventfd_ctx_put(eventfd);
2167 out_noeventfd:
2168 kfree(evtchnfd);
2169 return ret;
2170 }
2171
kvm_xen_eventfd_deassign(struct kvm * kvm,u32 port)2172 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
2173 {
2174 struct evtchnfd *evtchnfd;
2175
2176 mutex_lock(&kvm->arch.xen.xen_lock);
2177 evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port);
2178 mutex_unlock(&kvm->arch.xen.xen_lock);
2179
2180 if (!evtchnfd)
2181 return -ENOENT;
2182
2183 synchronize_srcu(&kvm->srcu);
2184 if (!evtchnfd->deliver.port.port)
2185 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2186 kfree(evtchnfd);
2187 return 0;
2188 }
2189
kvm_xen_eventfd_reset(struct kvm * kvm)2190 static int kvm_xen_eventfd_reset(struct kvm *kvm)
2191 {
2192 struct evtchnfd *evtchnfd, **all_evtchnfds;
2193 int i;
2194 int n = 0;
2195
2196 mutex_lock(&kvm->arch.xen.xen_lock);
2197
2198 /*
2199 * Because synchronize_srcu() cannot be called inside the
2200 * critical section, first collect all the evtchnfd objects
2201 * in an array as they are removed from evtchn_ports.
2202 */
2203 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i)
2204 n++;
2205
2206 all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL);
2207 if (!all_evtchnfds) {
2208 mutex_unlock(&kvm->arch.xen.xen_lock);
2209 return -ENOMEM;
2210 }
2211
2212 n = 0;
2213 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2214 all_evtchnfds[n++] = evtchnfd;
2215 idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port);
2216 }
2217 mutex_unlock(&kvm->arch.xen.xen_lock);
2218
2219 synchronize_srcu(&kvm->srcu);
2220
2221 while (n--) {
2222 evtchnfd = all_evtchnfds[n];
2223 if (!evtchnfd->deliver.port.port)
2224 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2225 kfree(evtchnfd);
2226 }
2227 kfree(all_evtchnfds);
2228
2229 return 0;
2230 }
2231
kvm_xen_setattr_evtchn(struct kvm * kvm,struct kvm_xen_hvm_attr * data)2232 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
2233 {
2234 u32 port = data->u.evtchn.send_port;
2235
2236 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
2237 return kvm_xen_eventfd_reset(kvm);
2238
2239 if (!port || port >= max_evtchn_port(kvm))
2240 return -EINVAL;
2241
2242 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
2243 return kvm_xen_eventfd_deassign(kvm, port);
2244 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
2245 return kvm_xen_eventfd_update(kvm, data);
2246 if (data->u.evtchn.flags)
2247 return -EINVAL;
2248
2249 return kvm_xen_eventfd_assign(kvm, data);
2250 }
2251
kvm_xen_hcall_evtchn_send(struct kvm_vcpu * vcpu,u64 param,u64 * r)2252 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
2253 {
2254 struct evtchnfd *evtchnfd;
2255 struct evtchn_send send;
2256 struct x86_exception e;
2257
2258 /* Sanity check: this structure is the same for 32-bit and 64-bit */
2259 BUILD_BUG_ON(sizeof(send) != 4);
2260 if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) {
2261 *r = -EFAULT;
2262 return true;
2263 }
2264
2265 /*
2266 * evtchnfd is protected by kvm->srcu; the idr lookup instead
2267 * is protected by RCU.
2268 */
2269 rcu_read_lock();
2270 evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port);
2271 rcu_read_unlock();
2272 if (!evtchnfd)
2273 return false;
2274
2275 if (evtchnfd->deliver.port.port) {
2276 int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm);
2277 if (ret < 0 && ret != -ENOTCONN)
2278 return false;
2279 } else {
2280 eventfd_signal(evtchnfd->deliver.eventfd.ctx);
2281 }
2282
2283 *r = 0;
2284 return true;
2285 }
2286
kvm_xen_init_vcpu(struct kvm_vcpu * vcpu)2287 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
2288 {
2289 vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
2290 vcpu->arch.xen.poll_evtchn = 0;
2291
2292 timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
2293 hrtimer_setup(&vcpu->arch.xen.timer, xen_timer_callback, CLOCK_MONOTONIC,
2294 HRTIMER_MODE_ABS_HARD);
2295
2296 kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm);
2297 kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm);
2298 kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm);
2299 kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm);
2300 }
2301
kvm_xen_destroy_vcpu(struct kvm_vcpu * vcpu)2302 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
2303 {
2304 if (kvm_xen_timer_enabled(vcpu))
2305 kvm_xen_stop_timer(vcpu);
2306
2307 kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
2308 kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
2309 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
2310 kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
2311
2312 timer_delete_sync(&vcpu->arch.xen.poll_timer);
2313 }
2314
kvm_xen_init_vm(struct kvm * kvm)2315 void kvm_xen_init_vm(struct kvm *kvm)
2316 {
2317 mutex_init(&kvm->arch.xen.xen_lock);
2318 idr_init(&kvm->arch.xen.evtchn_ports);
2319 kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm);
2320 }
2321
kvm_xen_destroy_vm(struct kvm * kvm)2322 void kvm_xen_destroy_vm(struct kvm *kvm)
2323 {
2324 struct evtchnfd *evtchnfd;
2325 int i;
2326
2327 kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
2328
2329 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2330 if (!evtchnfd->deliver.port.port)
2331 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2332 kfree(evtchnfd);
2333 }
2334 idr_destroy(&kvm->arch.xen.evtchn_ports);
2335
2336 if (kvm->arch.xen.hvm_config.msr)
2337 static_branch_slow_dec_deferred(&kvm_xen_enabled);
2338 }
2339