xref: /linux/arch/x86/kvm/cpuid.c (revision 81576a9a27dfee37acc2f8a71c7326f233bbbeba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kvm_host.h>
14 #include "linux/lockdep.h"
15 #include <linux/export.h>
16 #include <linux/vmalloc.h>
17 #include <linux/uaccess.h>
18 #include <linux/sched/stat.h>
19 
20 #include <asm/processor.h>
21 #include <asm/user.h>
22 #include <asm/fpu/xstate.h>
23 #include <asm/sgx.h>
24 #include <asm/cpuid.h>
25 #include "cpuid.h"
26 #include "lapic.h"
27 #include "mmu.h"
28 #include "trace.h"
29 #include "pmu.h"
30 #include "xen.h"
31 
32 /*
33  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35  */
36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38 
39 struct cpuid_xstate_sizes {
40 	u32 eax;
41 	u32 ebx;
42 	u32 ecx;
43 };
44 
45 static struct cpuid_xstate_sizes xstate_sizes[XFEATURE_MAX] __ro_after_init;
46 
kvm_init_xstate_sizes(void)47 void __init kvm_init_xstate_sizes(void)
48 {
49 	u32 ign;
50 	int i;
51 
52 	for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes); i++) {
53 		struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
54 
55 		cpuid_count(0xD, i, &xs->eax, &xs->ebx, &xs->ecx, &ign);
56 	}
57 }
58 
xstate_required_size(u64 xstate_bv,bool compacted)59 u32 xstate_required_size(u64 xstate_bv, bool compacted)
60 {
61 	int feature_bit = 0;
62 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
63 
64 	xstate_bv &= XFEATURE_MASK_EXTEND;
65 	while (xstate_bv) {
66 		if (xstate_bv & 0x1) {
67 			struct cpuid_xstate_sizes *xs = &xstate_sizes[feature_bit];
68 			u32 offset;
69 
70 			/* ECX[1]: 64B alignment in compacted form */
71 			if (compacted)
72 				offset = (xs->ecx & 0x2) ? ALIGN(ret, 64) : ret;
73 			else
74 				offset = xs->ebx;
75 			ret = max(ret, offset + xs->eax);
76 		}
77 
78 		xstate_bv >>= 1;
79 		feature_bit++;
80 	}
81 
82 	return ret;
83 }
84 
85 #define F feature_bit
86 
87 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
88 #define SF(name)						\
89 ({								\
90 	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
91 	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
92 })
93 
94 /*
95  * Magic value used by KVM when querying userspace-provided CPUID entries and
96  * doesn't care about the CPIUD index because the index of the function in
97  * question is not significant.  Note, this magic value must have at least one
98  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
99  * to avoid false positives when processing guest CPUID input.
100  */
101 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
102 
cpuid_entry2_find(struct kvm_cpuid_entry2 * entries,int nent,u32 function,u64 index)103 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
104 	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
105 {
106 	struct kvm_cpuid_entry2 *e;
107 	int i;
108 
109 	/*
110 	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
111 	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
112 	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
113 	 * typically disabled in KVM only when KVM is in a performance critical
114 	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
115 	 * if this rule is violated, this assertion is purely to flag potential
116 	 * performance issues.  If this fires, consider moving the lookup out
117 	 * of the hotpath, e.g. by caching information during CPUID updates.
118 	 */
119 	lockdep_assert_irqs_enabled();
120 
121 	for (i = 0; i < nent; i++) {
122 		e = &entries[i];
123 
124 		if (e->function != function)
125 			continue;
126 
127 		/*
128 		 * If the index isn't significant, use the first entry with a
129 		 * matching function.  It's userspace's responsibility to not
130 		 * provide "duplicate" entries in all cases.
131 		 */
132 		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
133 			return e;
134 
135 
136 		/*
137 		 * Similarly, use the first matching entry if KVM is doing a
138 		 * lookup (as opposed to emulating CPUID) for a function that's
139 		 * architecturally defined as not having a significant index.
140 		 */
141 		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
142 			/*
143 			 * Direct lookups from KVM should not diverge from what
144 			 * KVM defines internally (the architectural behavior).
145 			 */
146 			WARN_ON_ONCE(cpuid_function_is_indexed(function));
147 			return e;
148 		}
149 	}
150 
151 	return NULL;
152 }
153 
kvm_check_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * entries,int nent)154 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
155 			   struct kvm_cpuid_entry2 *entries,
156 			   int nent)
157 {
158 	struct kvm_cpuid_entry2 *best;
159 	u64 xfeatures;
160 
161 	/*
162 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
163 	 * canonical address checks; exit if it is ever changed.
164 	 */
165 	best = cpuid_entry2_find(entries, nent, 0x80000008,
166 				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
167 	if (best) {
168 		int vaddr_bits = (best->eax & 0xff00) >> 8;
169 
170 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
171 			return -EINVAL;
172 	}
173 
174 	/*
175 	 * Exposing dynamic xfeatures to the guest requires additional
176 	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
177 	 */
178 	best = cpuid_entry2_find(entries, nent, 0xd, 0);
179 	if (!best)
180 		return 0;
181 
182 	xfeatures = best->eax | ((u64)best->edx << 32);
183 	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
184 	if (!xfeatures)
185 		return 0;
186 
187 	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
188 }
189 
190 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
kvm_cpuid_check_equal(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * e2,int nent)191 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
192 				 int nent)
193 {
194 	struct kvm_cpuid_entry2 *orig;
195 	int i;
196 
197 	if (nent != vcpu->arch.cpuid_nent)
198 		return -EINVAL;
199 
200 	for (i = 0; i < nent; i++) {
201 		orig = &vcpu->arch.cpuid_entries[i];
202 		if (e2[i].function != orig->function ||
203 		    e2[i].index != orig->index ||
204 		    e2[i].flags != orig->flags ||
205 		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
206 		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
207 			return -EINVAL;
208 	}
209 
210 	return 0;
211 }
212 
__kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 * entries,int nent,const char * sig)213 static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries,
214 							      int nent, const char *sig)
215 {
216 	struct kvm_hypervisor_cpuid cpuid = {};
217 	struct kvm_cpuid_entry2 *entry;
218 	u32 base;
219 
220 	for_each_possible_hypervisor_cpuid_base(base) {
221 		entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
222 
223 		if (entry) {
224 			u32 signature[3];
225 
226 			signature[0] = entry->ebx;
227 			signature[1] = entry->ecx;
228 			signature[2] = entry->edx;
229 
230 			if (!memcmp(signature, sig, sizeof(signature))) {
231 				cpuid.base = base;
232 				cpuid.limit = entry->eax;
233 				break;
234 			}
235 		}
236 	}
237 
238 	return cpuid;
239 }
240 
kvm_get_hypervisor_cpuid(struct kvm_vcpu * vcpu,const char * sig)241 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
242 							    const char *sig)
243 {
244 	return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries,
245 					  vcpu->arch.cpuid_nent, sig);
246 }
247 
__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 * entries,int nent,u32 kvm_cpuid_base)248 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries,
249 							      int nent, u32 kvm_cpuid_base)
250 {
251 	return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES,
252 				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
253 }
254 
kvm_find_kvm_cpuid_features(struct kvm_vcpu * vcpu)255 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
256 {
257 	u32 base = vcpu->arch.kvm_cpuid.base;
258 
259 	if (!base)
260 		return NULL;
261 
262 	return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries,
263 					     vcpu->arch.cpuid_nent, base);
264 }
265 
kvm_update_pv_runtime(struct kvm_vcpu * vcpu)266 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
267 {
268 	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
269 
270 	/*
271 	 * save the feature bitmap to avoid cpuid lookup for every PV
272 	 * operation
273 	 */
274 	if (best)
275 		vcpu->arch.pv_cpuid.features = best->eax;
276 }
277 
278 /*
279  * Calculate guest's supported XCR0 taking into account guest CPUID data and
280  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
281  */
cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 * entries,int nent)282 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
283 {
284 	struct kvm_cpuid_entry2 *best;
285 
286 	best = cpuid_entry2_find(entries, nent, 0xd, 0);
287 	if (!best)
288 		return 0;
289 
290 	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
291 }
292 
__kvm_update_cpuid_runtime(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * entries,int nent)293 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
294 				       int nent)
295 {
296 	struct kvm_cpuid_entry2 *best;
297 	struct kvm_hypervisor_cpuid kvm_cpuid;
298 
299 	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
300 	if (best) {
301 		/* Update OSXSAVE bit */
302 		if (boot_cpu_has(X86_FEATURE_XSAVE))
303 			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
304 					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
305 
306 		cpuid_entry_change(best, X86_FEATURE_APIC,
307 			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
308 	}
309 
310 	best = cpuid_entry2_find(entries, nent, 7, 0);
311 	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
312 		cpuid_entry_change(best, X86_FEATURE_OSPKE,
313 				   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
314 
315 	best = cpuid_entry2_find(entries, nent, 0xD, 0);
316 	if (best)
317 		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
318 
319 	best = cpuid_entry2_find(entries, nent, 0xD, 1);
320 	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
321 		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
322 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
323 
324 	kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE);
325 	if (kvm_cpuid.base) {
326 		best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base);
327 		if (kvm_hlt_in_guest(vcpu->kvm) && best)
328 			best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
329 	}
330 
331 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
332 		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
333 		if (best)
334 			cpuid_entry_change(best, X86_FEATURE_MWAIT,
335 					   vcpu->arch.ia32_misc_enable_msr &
336 					   MSR_IA32_MISC_ENABLE_MWAIT);
337 	}
338 }
339 
kvm_update_cpuid_runtime(struct kvm_vcpu * vcpu)340 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
341 {
342 	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
343 }
344 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
345 
kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 * entries,int nent)346 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
347 {
348 #ifdef CONFIG_KVM_HYPERV
349 	struct kvm_cpuid_entry2 *entry;
350 
351 	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
352 				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
353 	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
354 #else
355 	return false;
356 #endif
357 }
358 
guest_cpuid_is_amd_or_hygon(struct kvm_vcpu * vcpu)359 static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
360 {
361 	struct kvm_cpuid_entry2 *entry;
362 
363 	entry = kvm_find_cpuid_entry(vcpu, 0);
364 	if (!entry)
365 		return false;
366 
367 	return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
368 	       is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
369 }
370 
kvm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)371 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
372 {
373 	struct kvm_lapic *apic = vcpu->arch.apic;
374 	struct kvm_cpuid_entry2 *best;
375 	bool allow_gbpages;
376 
377 	BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
378 	bitmap_zero(vcpu->arch.governed_features.enabled,
379 		    KVM_MAX_NR_GOVERNED_FEATURES);
380 
381 	/*
382 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
383 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
384 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
385 	 * walk for performance and complexity reasons.  Not to mention KVM
386 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
387 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
388 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
389 	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
390 	 * and can install smaller shadow pages if the host lacks 1GiB support.
391 	 */
392 	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
393 				      guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
394 	if (allow_gbpages)
395 		kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
396 
397 	best = kvm_find_cpuid_entry(vcpu, 1);
398 	if (best && apic) {
399 		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
400 			apic->lapic_timer.timer_mode_mask = 3 << 17;
401 		else
402 			apic->lapic_timer.timer_mode_mask = 1 << 17;
403 
404 		kvm_apic_set_version(vcpu);
405 	}
406 
407 	vcpu->arch.guest_supported_xcr0 =
408 		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
409 
410 	kvm_update_pv_runtime(vcpu);
411 
412 	vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
413 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
414 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
415 
416 	kvm_pmu_refresh(vcpu);
417 	vcpu->arch.cr4_guest_rsvd_bits =
418 	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
419 
420 	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
421 						    vcpu->arch.cpuid_nent));
422 
423 	/* Invoke the vendor callback only after the above state is updated. */
424 	kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
425 
426 	/*
427 	 * Except for the MMU, which needs to do its thing any vendor specific
428 	 * adjustments to the reserved GPA bits.
429 	 */
430 	kvm_mmu_after_set_cpuid(vcpu);
431 }
432 
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)433 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
434 {
435 	struct kvm_cpuid_entry2 *best;
436 
437 	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
438 	if (!best || best->eax < 0x80000008)
439 		goto not_found;
440 	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
441 	if (best)
442 		return best->eax & 0xff;
443 not_found:
444 	return 36;
445 }
446 
447 /*
448  * This "raw" version returns the reserved GPA bits without any adjustments for
449  * encryption technologies that usurp bits.  The raw mask should be used if and
450  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
451  */
kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu * vcpu)452 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
453 {
454 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
455 }
456 
kvm_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * e2,int nent)457 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
458                         int nent)
459 {
460 	int r;
461 
462 	__kvm_update_cpuid_runtime(vcpu, e2, nent);
463 
464 	/*
465 	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
466 	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
467 	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
468 	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
469 	 * the core vCPU model on the fly. It would've been better to forbid any
470 	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
471 	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
472 	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
473 	 * whether the supplied CPUID data is equal to what's already set.
474 	 */
475 	if (kvm_vcpu_has_run(vcpu)) {
476 		r = kvm_cpuid_check_equal(vcpu, e2, nent);
477 		if (r)
478 			return r;
479 
480 		kvfree(e2);
481 		return 0;
482 	}
483 
484 #ifdef CONFIG_KVM_HYPERV
485 	if (kvm_cpuid_has_hyperv(e2, nent)) {
486 		r = kvm_hv_vcpu_init(vcpu);
487 		if (r)
488 			return r;
489 	}
490 #endif
491 
492 	r = kvm_check_cpuid(vcpu, e2, nent);
493 	if (r)
494 		return r;
495 
496 	kvfree(vcpu->arch.cpuid_entries);
497 	vcpu->arch.cpuid_entries = e2;
498 	vcpu->arch.cpuid_nent = nent;
499 
500 	vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
501 #ifdef CONFIG_KVM_XEN
502 	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
503 #endif
504 	kvm_vcpu_after_set_cpuid(vcpu);
505 
506 	return 0;
507 }
508 
509 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)510 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
511 			     struct kvm_cpuid *cpuid,
512 			     struct kvm_cpuid_entry __user *entries)
513 {
514 	int r, i;
515 	struct kvm_cpuid_entry *e = NULL;
516 	struct kvm_cpuid_entry2 *e2 = NULL;
517 
518 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
519 		return -E2BIG;
520 
521 	if (cpuid->nent) {
522 		e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
523 		if (IS_ERR(e))
524 			return PTR_ERR(e);
525 
526 		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
527 		if (!e2) {
528 			r = -ENOMEM;
529 			goto out_free_cpuid;
530 		}
531 	}
532 	for (i = 0; i < cpuid->nent; i++) {
533 		e2[i].function = e[i].function;
534 		e2[i].eax = e[i].eax;
535 		e2[i].ebx = e[i].ebx;
536 		e2[i].ecx = e[i].ecx;
537 		e2[i].edx = e[i].edx;
538 		e2[i].index = 0;
539 		e2[i].flags = 0;
540 		e2[i].padding[0] = 0;
541 		e2[i].padding[1] = 0;
542 		e2[i].padding[2] = 0;
543 	}
544 
545 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
546 	if (r)
547 		kvfree(e2);
548 
549 out_free_cpuid:
550 	kvfree(e);
551 
552 	return r;
553 }
554 
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)555 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
556 			      struct kvm_cpuid2 *cpuid,
557 			      struct kvm_cpuid_entry2 __user *entries)
558 {
559 	struct kvm_cpuid_entry2 *e2 = NULL;
560 	int r;
561 
562 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
563 		return -E2BIG;
564 
565 	if (cpuid->nent) {
566 		e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
567 		if (IS_ERR(e2))
568 			return PTR_ERR(e2);
569 	}
570 
571 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
572 	if (r)
573 		kvfree(e2);
574 
575 	return r;
576 }
577 
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)578 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
579 			      struct kvm_cpuid2 *cpuid,
580 			      struct kvm_cpuid_entry2 __user *entries)
581 {
582 	if (cpuid->nent < vcpu->arch.cpuid_nent)
583 		return -E2BIG;
584 
585 	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
586 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
587 		return -EFAULT;
588 
589 	cpuid->nent = vcpu->arch.cpuid_nent;
590 	return 0;
591 }
592 
593 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
__kvm_cpu_cap_mask(unsigned int leaf)594 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
595 {
596 	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
597 	struct kvm_cpuid_entry2 entry;
598 
599 	reverse_cpuid_check(leaf);
600 
601 	cpuid_count(cpuid.function, cpuid.index,
602 		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
603 
604 	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
605 }
606 
607 static __always_inline
kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf,u32 mask)608 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
609 {
610 	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
611 	BUILD_BUG_ON(leaf < NCAPINTS);
612 
613 	kvm_cpu_caps[leaf] = mask;
614 
615 	__kvm_cpu_cap_mask(leaf);
616 }
617 
kvm_cpu_cap_mask(enum cpuid_leafs leaf,u32 mask)618 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
619 {
620 	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
621 	BUILD_BUG_ON(leaf >= NCAPINTS);
622 
623 	kvm_cpu_caps[leaf] &= mask;
624 
625 	__kvm_cpu_cap_mask(leaf);
626 }
627 
kvm_set_cpu_caps(void)628 void kvm_set_cpu_caps(void)
629 {
630 #ifdef CONFIG_X86_64
631 	unsigned int f_gbpages = F(GBPAGES);
632 	unsigned int f_lm = F(LM);
633 	unsigned int f_xfd = F(XFD);
634 #else
635 	unsigned int f_gbpages = 0;
636 	unsigned int f_lm = 0;
637 	unsigned int f_xfd = 0;
638 #endif
639 	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
640 
641 	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
642 		     sizeof(boot_cpu_data.x86_capability));
643 
644 	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
645 	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
646 
647 	kvm_cpu_cap_mask(CPUID_1_ECX,
648 		/*
649 		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
650 		 * advertised to guests via CPUID!
651 		 */
652 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
653 		0 /* DS-CPL, VMX, SMX, EST */ |
654 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
655 		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
656 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
657 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
658 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
659 		F(F16C) | F(RDRAND)
660 	);
661 	/* KVM emulates x2apic in software irrespective of host support. */
662 	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
663 
664 	kvm_cpu_cap_mask(CPUID_1_EDX,
665 		F(FPU) | F(VME) | F(DE) | F(PSE) |
666 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
667 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
668 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
669 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
670 		0 /* Reserved, DS, ACPI */ | F(MMX) |
671 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
672 		0 /* HTT, TM, Reserved, PBE */
673 	);
674 
675 	kvm_cpu_cap_mask(CPUID_7_0_EBX,
676 		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
677 		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
678 		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
679 		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
680 		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
681 		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
682 		F(AVX512VL));
683 
684 	kvm_cpu_cap_mask(CPUID_7_ECX,
685 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
686 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
687 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
688 		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
689 		F(SGX_LC) | F(BUS_LOCK_DETECT)
690 	);
691 	/* Set LA57 based on hardware capability. */
692 	if (cpuid_ecx(7) & F(LA57))
693 		kvm_cpu_cap_set(X86_FEATURE_LA57);
694 
695 	/*
696 	 * PKU not yet implemented for shadow paging and requires OSPKE
697 	 * to be set on the host. Clear it if that is not the case
698 	 */
699 	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
700 		kvm_cpu_cap_clear(X86_FEATURE_PKU);
701 
702 	kvm_cpu_cap_mask(CPUID_7_EDX,
703 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
704 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
705 		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
706 		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
707 		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
708 	);
709 
710 	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
711 	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
712 	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
713 
714 	if (boot_cpu_has(X86_FEATURE_AMD_IBPB_RET) &&
715 	    boot_cpu_has(X86_FEATURE_AMD_IBPB) &&
716 	    boot_cpu_has(X86_FEATURE_AMD_IBRS))
717 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
718 	if (boot_cpu_has(X86_FEATURE_STIBP))
719 		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
720 	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
721 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
722 
723 	kvm_cpu_cap_mask(CPUID_7_1_EAX,
724 		F(SHA512) | F(SM3) | F(SM4) | F(AVX_VNNI) | F(AVX512_BF16) |
725 		F(CMPCCXADD) | F(FZRM) | F(FSRS) | F(FSRC) | F(AMX_FP16) |
726 		F(AVX_IFMA) | F(LAM)
727 	);
728 
729 	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
730 		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(AMX_COMPLEX) |
731 		F(AVX_VNNI_INT16) | F(PREFETCHITI) | F(AVX10)
732 	);
733 
734 	kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
735 		F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
736 		F(BHI_CTRL) | F(MCDT_NO)
737 	);
738 
739 	kvm_cpu_cap_mask(CPUID_D_1_EAX,
740 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
741 	);
742 
743 	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
744 		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
745 	);
746 
747 	kvm_cpu_cap_init_kvm_defined(CPUID_24_0_EBX,
748 		F(AVX10_128) | F(AVX10_256) | F(AVX10_512)
749 	);
750 
751 	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
752 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
753 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
754 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
755 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
756 		F(TOPOEXT) | 0 /* PERFCTR_CORE */
757 	);
758 
759 	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
760 		F(FPU) | F(VME) | F(DE) | F(PSE) |
761 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
762 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
763 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
764 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
765 		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
766 		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
767 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
768 	);
769 
770 	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
771 		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
772 
773 	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
774 		SF(CONSTANT_TSC)
775 	);
776 
777 	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
778 		F(CLZERO) | F(XSAVEERPTR) |
779 		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
780 		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
781 		F(AMD_PSFD) | F(AMD_IBPB_RET)
782 	);
783 
784 	/*
785 	 * AMD has separate bits for each SPEC_CTRL bit.
786 	 * arch/x86/kernel/cpu/bugs.c is kind enough to
787 	 * record that in cpufeatures so use them.
788 	 */
789 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
790 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
791 		if (boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
792 		    !boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB))
793 			kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB_RET);
794 	}
795 	if (boot_cpu_has(X86_FEATURE_IBRS))
796 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
797 	if (boot_cpu_has(X86_FEATURE_STIBP))
798 		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
799 	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
800 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
801 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
802 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
803 	/*
804 	 * The preference is to use SPEC CTRL MSR instead of the
805 	 * VIRT_SPEC MSR.
806 	 */
807 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
808 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
809 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
810 
811 	/*
812 	 * Hide all SVM features by default, SVM will set the cap bits for
813 	 * features it emulates and/or exposes for L1.
814 	 */
815 	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
816 
817 	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
818 		0 /* SME */ | 0 /* SEV */ | 0 /* VM_PAGE_FLUSH */ | 0 /* SEV_ES */ |
819 		F(SME_COHERENT));
820 
821 	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
822 		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
823 		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
824 		F(WRMSR_XX_BASE_NS)
825 	);
826 
827 	kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
828 	kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
829 	kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
830 
831 	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
832 		F(PERFMON_V2)
833 	);
834 
835 	/*
836 	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
837 	 * KVM's supported CPUID if the feature is reported as supported by the
838 	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
839 	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
840 	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
841 	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
842 	 * the mask with the raw host CPUID, and reporting support in AMD's
843 	 * leaf can make it easier for userspace to detect the feature.
844 	 */
845 	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
846 		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
847 	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
848 		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
849 	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
850 
851 	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
852 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
853 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
854 		F(PMM) | F(PMM_EN)
855 	);
856 
857 	/*
858 	 * Hide RDTSCP and RDPID if either feature is reported as supported but
859 	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
860 	 * should never happen, but the guest will likely crash if RDTSCP or
861 	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
862 	 * the past.  For example, the sanity check may fire if this instance of
863 	 * KVM is running as L1 on top of an older, broken KVM.
864 	 */
865 	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
866 		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
867 		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
868 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
869 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
870 	}
871 }
872 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
873 
874 struct kvm_cpuid_array {
875 	struct kvm_cpuid_entry2 *entries;
876 	int maxnent;
877 	int nent;
878 };
879 
get_next_cpuid(struct kvm_cpuid_array * array)880 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
881 {
882 	if (array->nent >= array->maxnent)
883 		return NULL;
884 
885 	return &array->entries[array->nent++];
886 }
887 
do_host_cpuid(struct kvm_cpuid_array * array,u32 function,u32 index)888 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
889 					      u32 function, u32 index)
890 {
891 	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
892 
893 	if (!entry)
894 		return NULL;
895 
896 	memset(entry, 0, sizeof(*entry));
897 	entry->function = function;
898 	entry->index = index;
899 	switch (function & 0xC0000000) {
900 	case 0x40000000:
901 		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
902 		return entry;
903 
904 	case 0x80000000:
905 		/*
906 		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
907 		 * would result in out-of-bounds calls to do_host_cpuid.
908 		 */
909 		{
910 			static int max_cpuid_80000000;
911 			if (!READ_ONCE(max_cpuid_80000000))
912 				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
913 			if (function > READ_ONCE(max_cpuid_80000000))
914 				return entry;
915 		}
916 		break;
917 
918 	default:
919 		break;
920 	}
921 
922 	cpuid_count(entry->function, entry->index,
923 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
924 
925 	if (cpuid_function_is_indexed(function))
926 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
927 
928 	return entry;
929 }
930 
__do_cpuid_func_emulated(struct kvm_cpuid_array * array,u32 func)931 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
932 {
933 	struct kvm_cpuid_entry2 *entry;
934 
935 	if (array->nent >= array->maxnent)
936 		return -E2BIG;
937 
938 	entry = &array->entries[array->nent];
939 	entry->function = func;
940 	entry->index = 0;
941 	entry->flags = 0;
942 
943 	switch (func) {
944 	case 0:
945 		entry->eax = 7;
946 		++array->nent;
947 		break;
948 	case 1:
949 		entry->ecx = F(MOVBE);
950 		++array->nent;
951 		break;
952 	case 7:
953 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
954 		entry->eax = 0;
955 		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
956 			entry->ecx = F(RDPID);
957 		++array->nent;
958 		break;
959 	default:
960 		break;
961 	}
962 
963 	return 0;
964 }
965 
__do_cpuid_func(struct kvm_cpuid_array * array,u32 function)966 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
967 {
968 	struct kvm_cpuid_entry2 *entry;
969 	int r, i, max_idx;
970 
971 	/* all calls to cpuid_count() should be made on the same cpu */
972 	get_cpu();
973 
974 	r = -E2BIG;
975 
976 	entry = do_host_cpuid(array, function, 0);
977 	if (!entry)
978 		goto out;
979 
980 	switch (function) {
981 	case 0:
982 		/* Limited to the highest leaf implemented in KVM. */
983 		entry->eax = min(entry->eax, 0x24U);
984 		break;
985 	case 1:
986 		cpuid_entry_override(entry, CPUID_1_EDX);
987 		cpuid_entry_override(entry, CPUID_1_ECX);
988 		break;
989 	case 2:
990 		/*
991 		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
992 		 * CPUID(function=2, index=0) may return different results each
993 		 * time, with the least-significant byte in EAX enumerating the
994 		 * number of times software should do CPUID(2, 0).
995 		 *
996 		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
997 		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
998 		 * return 01H. Software should ignore this value and not
999 		 * interpret it as an informational descriptor", while AMD's
1000 		 * APM states that CPUID(2) is reserved.
1001 		 *
1002 		 * WARN if a frankenstein CPU that supports virtualization and
1003 		 * a stateful CPUID.0x2 is encountered.
1004 		 */
1005 		WARN_ON_ONCE((entry->eax & 0xff) > 1);
1006 		break;
1007 	/* functions 4 and 0x8000001d have additional index. */
1008 	case 4:
1009 	case 0x8000001d:
1010 		/*
1011 		 * Read entries until the cache type in the previous entry is
1012 		 * zero, i.e. indicates an invalid entry.
1013 		 */
1014 		for (i = 1; entry->eax & 0x1f; ++i) {
1015 			entry = do_host_cpuid(array, function, i);
1016 			if (!entry)
1017 				goto out;
1018 		}
1019 		break;
1020 	case 6: /* Thermal management */
1021 		entry->eax = 0x4; /* allow ARAT */
1022 		entry->ebx = 0;
1023 		entry->ecx = 0;
1024 		entry->edx = 0;
1025 		break;
1026 	/* function 7 has additional index. */
1027 	case 7:
1028 		max_idx = entry->eax = min(entry->eax, 2u);
1029 		cpuid_entry_override(entry, CPUID_7_0_EBX);
1030 		cpuid_entry_override(entry, CPUID_7_ECX);
1031 		cpuid_entry_override(entry, CPUID_7_EDX);
1032 
1033 		/* KVM only supports up to 0x7.2, capped above via min(). */
1034 		if (max_idx >= 1) {
1035 			entry = do_host_cpuid(array, function, 1);
1036 			if (!entry)
1037 				goto out;
1038 
1039 			cpuid_entry_override(entry, CPUID_7_1_EAX);
1040 			cpuid_entry_override(entry, CPUID_7_1_EDX);
1041 			entry->ebx = 0;
1042 			entry->ecx = 0;
1043 		}
1044 		if (max_idx >= 2) {
1045 			entry = do_host_cpuid(array, function, 2);
1046 			if (!entry)
1047 				goto out;
1048 
1049 			cpuid_entry_override(entry, CPUID_7_2_EDX);
1050 			entry->ecx = 0;
1051 			entry->ebx = 0;
1052 			entry->eax = 0;
1053 		}
1054 		break;
1055 	case 0xa: { /* Architectural Performance Monitoring */
1056 		union cpuid10_eax eax;
1057 		union cpuid10_edx edx;
1058 
1059 		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1060 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1061 			break;
1062 		}
1063 
1064 		eax.split.version_id = kvm_pmu_cap.version;
1065 		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1066 		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1067 		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1068 		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1069 		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1070 
1071 		if (kvm_pmu_cap.version)
1072 			edx.split.anythread_deprecated = 1;
1073 		edx.split.reserved1 = 0;
1074 		edx.split.reserved2 = 0;
1075 
1076 		entry->eax = eax.full;
1077 		entry->ebx = kvm_pmu_cap.events_mask;
1078 		entry->ecx = 0;
1079 		entry->edx = edx.full;
1080 		break;
1081 	}
1082 	case 0x1f:
1083 	case 0xb:
1084 		/*
1085 		 * No topology; a valid topology is indicated by the presence
1086 		 * of subleaf 1.
1087 		 */
1088 		entry->eax = entry->ebx = entry->ecx = 0;
1089 		break;
1090 	case 0xd: {
1091 		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1092 		u64 permitted_xss = kvm_caps.supported_xss;
1093 
1094 		entry->eax &= permitted_xcr0;
1095 		entry->ebx = xstate_required_size(permitted_xcr0, false);
1096 		entry->ecx = entry->ebx;
1097 		entry->edx &= permitted_xcr0 >> 32;
1098 		if (!permitted_xcr0)
1099 			break;
1100 
1101 		entry = do_host_cpuid(array, function, 1);
1102 		if (!entry)
1103 			goto out;
1104 
1105 		cpuid_entry_override(entry, CPUID_D_1_EAX);
1106 		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1107 			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1108 							  true);
1109 		else {
1110 			WARN_ON_ONCE(permitted_xss != 0);
1111 			entry->ebx = 0;
1112 		}
1113 		entry->ecx &= permitted_xss;
1114 		entry->edx &= permitted_xss >> 32;
1115 
1116 		for (i = 2; i < 64; ++i) {
1117 			bool s_state;
1118 			if (permitted_xcr0 & BIT_ULL(i))
1119 				s_state = false;
1120 			else if (permitted_xss & BIT_ULL(i))
1121 				s_state = true;
1122 			else
1123 				continue;
1124 
1125 			entry = do_host_cpuid(array, function, i);
1126 			if (!entry)
1127 				goto out;
1128 
1129 			/*
1130 			 * The supported check above should have filtered out
1131 			 * invalid sub-leafs.  Only valid sub-leafs should
1132 			 * reach this point, and they should have a non-zero
1133 			 * save state size.  Furthermore, check whether the
1134 			 * processor agrees with permitted_xcr0/permitted_xss
1135 			 * on whether this is an XCR0- or IA32_XSS-managed area.
1136 			 */
1137 			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1138 				--array->nent;
1139 				continue;
1140 			}
1141 
1142 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1143 				entry->ecx &= ~BIT_ULL(2);
1144 			entry->edx = 0;
1145 		}
1146 		break;
1147 	}
1148 	case 0x12:
1149 		/* Intel SGX */
1150 		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1151 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1152 			break;
1153 		}
1154 
1155 		/*
1156 		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1157 		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1158 		 * are restricted by kernel and KVM capabilities (like most
1159 		 * feature flags), while enclave size is unrestricted.
1160 		 */
1161 		cpuid_entry_override(entry, CPUID_12_EAX);
1162 		entry->ebx &= SGX_MISC_EXINFO;
1163 
1164 		entry = do_host_cpuid(array, function, 1);
1165 		if (!entry)
1166 			goto out;
1167 
1168 		/*
1169 		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1170 		 * feature flags.  Advertise all supported flags, including
1171 		 * privileged attributes that require explicit opt-in from
1172 		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1173 		 * expected to derive it from supported XCR0.
1174 		 */
1175 		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1176 		entry->ebx &= 0;
1177 		break;
1178 	/* Intel PT */
1179 	case 0x14:
1180 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1181 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1182 			break;
1183 		}
1184 
1185 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1186 			if (!do_host_cpuid(array, function, i))
1187 				goto out;
1188 		}
1189 		break;
1190 	/* Intel AMX TILE */
1191 	case 0x1d:
1192 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1193 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1194 			break;
1195 		}
1196 
1197 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1198 			if (!do_host_cpuid(array, function, i))
1199 				goto out;
1200 		}
1201 		break;
1202 	case 0x1e: /* TMUL information */
1203 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1204 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1205 			break;
1206 		}
1207 		break;
1208 	case 0x24: {
1209 		u8 avx10_version;
1210 
1211 		if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
1212 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1213 			break;
1214 		}
1215 
1216 		/*
1217 		 * The AVX10 version is encoded in EBX[7:0].  Note, the version
1218 		 * is guaranteed to be >=1 if AVX10 is supported.  Note #2, the
1219 		 * version needs to be captured before overriding EBX features!
1220 		 */
1221 		avx10_version = min_t(u8, entry->ebx & 0xff, 1);
1222 		cpuid_entry_override(entry, CPUID_24_0_EBX);
1223 		entry->ebx |= avx10_version;
1224 
1225 		entry->eax = 0;
1226 		entry->ecx = 0;
1227 		entry->edx = 0;
1228 		break;
1229 	}
1230 	case KVM_CPUID_SIGNATURE: {
1231 		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1232 		entry->eax = KVM_CPUID_FEATURES;
1233 		entry->ebx = sigptr[0];
1234 		entry->ecx = sigptr[1];
1235 		entry->edx = sigptr[2];
1236 		break;
1237 	}
1238 	case KVM_CPUID_FEATURES:
1239 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1240 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1241 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1242 			     (1 << KVM_FEATURE_ASYNC_PF) |
1243 			     (1 << KVM_FEATURE_PV_EOI) |
1244 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1245 			     (1 << KVM_FEATURE_PV_UNHALT) |
1246 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1247 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1248 			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1249 			     (1 << KVM_FEATURE_POLL_CONTROL) |
1250 			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1251 			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1252 
1253 		if (sched_info_on())
1254 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1255 
1256 		entry->ebx = 0;
1257 		entry->ecx = 0;
1258 		entry->edx = 0;
1259 		break;
1260 	case 0x80000000:
1261 		entry->eax = min(entry->eax, 0x80000022);
1262 		/*
1263 		 * Serializing LFENCE is reported in a multitude of ways, and
1264 		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1265 		 * userspace by providing the CPUID leaf ourselves.
1266 		 *
1267 		 * However, only do it if the host has CPUID leaf 0x8000001d.
1268 		 * QEMU thinks that it can query the host blindly for that
1269 		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1270 		 * above.  The processor merrily returns values from the
1271 		 * highest Intel leaf which QEMU tries to use as the guest's
1272 		 * 0x8000001d.  Even worse, this can result in an infinite
1273 		 * loop if said highest leaf has no subleaves indexed by ECX.
1274 		 */
1275 		if (entry->eax >= 0x8000001d &&
1276 		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1277 		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1278 			entry->eax = max(entry->eax, 0x80000021);
1279 		break;
1280 	case 0x80000001:
1281 		entry->ebx &= ~GENMASK(27, 16);
1282 		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1283 		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1284 		break;
1285 	case 0x80000005:
1286 		/*  Pass host L1 cache and TLB info. */
1287 		break;
1288 	case 0x80000006:
1289 		/* Drop reserved bits, pass host L2 cache and TLB info. */
1290 		entry->edx &= ~GENMASK(17, 16);
1291 		break;
1292 	case 0x80000007: /* Advanced power management */
1293 		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1294 
1295 		/* mask against host */
1296 		entry->edx &= boot_cpu_data.x86_power;
1297 		entry->eax = entry->ebx = entry->ecx = 0;
1298 		break;
1299 	case 0x80000008: {
1300 		/*
1301 		 * GuestPhysAddrSize (EAX[23:16]) is intended for software
1302 		 * use.
1303 		 *
1304 		 * KVM's ABI is to report the effective MAXPHYADDR for the
1305 		 * guest in PhysAddrSize (phys_as), and the maximum
1306 		 * *addressable* GPA in GuestPhysAddrSize (g_phys_as).
1307 		 *
1308 		 * GuestPhysAddrSize is valid if and only if TDP is enabled,
1309 		 * in which case the max GPA that can be addressed by KVM may
1310 		 * be less than the max GPA that can be legally generated by
1311 		 * the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
1312 		 * support 5-level TDP.
1313 		 */
1314 		unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1315 		unsigned int phys_as, g_phys_as;
1316 
1317 		/*
1318 		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1319 		 * the guest operates in the same PA space as the host, i.e.
1320 		 * reductions in MAXPHYADDR for memory encryption affect shadow
1321 		 * paging, too.
1322 		 *
1323 		 * If TDP is enabled, use the raw bare metal MAXPHYADDR as
1324 		 * reductions to the HPAs do not affect GPAs.  The max
1325 		 * addressable GPA is the same as the max effective GPA, except
1326 		 * that it's capped at 48 bits if 5-level TDP isn't supported
1327 		 * (hardware processes bits 51:48 only when walking the fifth
1328 		 * level page table).
1329 		 */
1330 		if (!tdp_enabled) {
1331 			phys_as = boot_cpu_data.x86_phys_bits;
1332 			g_phys_as = 0;
1333 		} else {
1334 			phys_as = entry->eax & 0xff;
1335 			g_phys_as = phys_as;
1336 			if (kvm_mmu_get_max_tdp_level() < 5)
1337 				g_phys_as = min(g_phys_as, 48);
1338 		}
1339 
1340 		entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
1341 		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1342 		entry->edx = 0;
1343 		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1344 		break;
1345 	}
1346 	case 0x8000000A:
1347 		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1348 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1349 			break;
1350 		}
1351 		entry->eax = 1; /* SVM revision 1 */
1352 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1353 				   ASID emulation to nested SVM */
1354 		entry->ecx = 0; /* Reserved */
1355 		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1356 		break;
1357 	case 0x80000019:
1358 		entry->ecx = entry->edx = 0;
1359 		break;
1360 	case 0x8000001a:
1361 		entry->eax &= GENMASK(2, 0);
1362 		entry->ebx = entry->ecx = entry->edx = 0;
1363 		break;
1364 	case 0x8000001e:
1365 		/* Do not return host topology information.  */
1366 		entry->eax = entry->ebx = entry->ecx = 0;
1367 		entry->edx = 0; /* reserved */
1368 		break;
1369 	case 0x8000001F:
1370 		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1371 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1372 		} else {
1373 			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1374 			/* Clear NumVMPL since KVM does not support VMPL.  */
1375 			entry->ebx &= ~GENMASK(31, 12);
1376 			/*
1377 			 * Enumerate '0' for "PA bits reduction", the adjusted
1378 			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1379 			 */
1380 			entry->ebx &= ~GENMASK(11, 6);
1381 		}
1382 		break;
1383 	case 0x80000020:
1384 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1385 		break;
1386 	case 0x80000021:
1387 		entry->ebx = entry->ecx = entry->edx = 0;
1388 		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1389 		break;
1390 	/* AMD Extended Performance Monitoring and Debug */
1391 	case 0x80000022: {
1392 		union cpuid_0x80000022_ebx ebx;
1393 
1394 		entry->ecx = entry->edx = 0;
1395 		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1396 			entry->eax = entry->ebx;
1397 			break;
1398 		}
1399 
1400 		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1401 
1402 		if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1403 			ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1404 		else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1405 			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1406 		else
1407 			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1408 
1409 		entry->ebx = ebx.full;
1410 		break;
1411 	}
1412 	/*Add support for Centaur's CPUID instruction*/
1413 	case 0xC0000000:
1414 		/*Just support up to 0xC0000004 now*/
1415 		entry->eax = min(entry->eax, 0xC0000004);
1416 		break;
1417 	case 0xC0000001:
1418 		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1419 		break;
1420 	case 3: /* Processor serial number */
1421 	case 5: /* MONITOR/MWAIT */
1422 	case 0xC0000002:
1423 	case 0xC0000003:
1424 	case 0xC0000004:
1425 	default:
1426 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1427 		break;
1428 	}
1429 
1430 	r = 0;
1431 
1432 out:
1433 	put_cpu();
1434 
1435 	return r;
1436 }
1437 
do_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1438 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1439 			 unsigned int type)
1440 {
1441 	if (type == KVM_GET_EMULATED_CPUID)
1442 		return __do_cpuid_func_emulated(array, func);
1443 
1444 	return __do_cpuid_func(array, func);
1445 }
1446 
1447 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1448 
get_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1449 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1450 			  unsigned int type)
1451 {
1452 	u32 limit;
1453 	int r;
1454 
1455 	if (func == CENTAUR_CPUID_SIGNATURE &&
1456 	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1457 		return 0;
1458 
1459 	r = do_cpuid_func(array, func, type);
1460 	if (r)
1461 		return r;
1462 
1463 	limit = array->entries[array->nent - 1].eax;
1464 	for (func = func + 1; func <= limit; ++func) {
1465 		r = do_cpuid_func(array, func, type);
1466 		if (r)
1467 			break;
1468 	}
1469 
1470 	return r;
1471 }
1472 
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)1473 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1474 				 __u32 num_entries, unsigned int ioctl_type)
1475 {
1476 	int i;
1477 	__u32 pad[3];
1478 
1479 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1480 		return false;
1481 
1482 	/*
1483 	 * We want to make sure that ->padding is being passed clean from
1484 	 * userspace in case we want to use it for something in the future.
1485 	 *
1486 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1487 	 * have to give ourselves satisfied only with the emulated side. /me
1488 	 * sheds a tear.
1489 	 */
1490 	for (i = 0; i < num_entries; i++) {
1491 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1492 			return true;
1493 
1494 		if (pad[0] || pad[1] || pad[2])
1495 			return true;
1496 	}
1497 	return false;
1498 }
1499 
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)1500 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1501 			    struct kvm_cpuid_entry2 __user *entries,
1502 			    unsigned int type)
1503 {
1504 	static const u32 funcs[] = {
1505 		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1506 	};
1507 
1508 	struct kvm_cpuid_array array = {
1509 		.nent = 0,
1510 	};
1511 	int r, i;
1512 
1513 	if (cpuid->nent < 1)
1514 		return -E2BIG;
1515 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1516 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1517 
1518 	if (sanity_check_entries(entries, cpuid->nent, type))
1519 		return -EINVAL;
1520 
1521 	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1522 	if (!array.entries)
1523 		return -ENOMEM;
1524 
1525 	array.maxnent = cpuid->nent;
1526 
1527 	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1528 		r = get_cpuid_func(&array, funcs[i], type);
1529 		if (r)
1530 			goto out_free;
1531 	}
1532 	cpuid->nent = array.nent;
1533 
1534 	if (copy_to_user(entries, array.entries,
1535 			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1536 		r = -EFAULT;
1537 
1538 out_free:
1539 	kvfree(array.entries);
1540 	return r;
1541 }
1542 
kvm_find_cpuid_entry_index(struct kvm_vcpu * vcpu,u32 function,u32 index)1543 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1544 						    u32 function, u32 index)
1545 {
1546 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1547 				 function, index);
1548 }
1549 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1550 
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function)1551 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1552 					      u32 function)
1553 {
1554 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1555 				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1556 }
1557 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1558 
1559 /*
1560  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1561  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1562  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1563  * range.  Centaur/VIA follows Intel semantics.
1564  *
1565  * A leaf is considered out-of-range if its function is higher than the maximum
1566  * supported leaf of its associated class or if its associated class does not
1567  * exist.
1568  *
1569  * There are three primary classes to be considered, with their respective
1570  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1571  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1572  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1573  *
1574  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1575  *  - Hypervisor: 0x40000000 - 0x4fffffff
1576  *  - Extended:   0x80000000 - 0xbfffffff
1577  *  - Centaur:    0xc0000000 - 0xcfffffff
1578  *
1579  * The Hypervisor class is further subdivided into sub-classes that each act as
1580  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1581  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1582  * CPUID sub-classes are:
1583  *
1584  *  - HyperV:     0x40000000 - 0x400000ff
1585  *  - KVM:        0x40000100 - 0x400001ff
1586  */
1587 static struct kvm_cpuid_entry2 *
get_out_of_range_cpuid_entry(struct kvm_vcpu * vcpu,u32 * fn_ptr,u32 index)1588 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1589 {
1590 	struct kvm_cpuid_entry2 *basic, *class;
1591 	u32 function = *fn_ptr;
1592 
1593 	basic = kvm_find_cpuid_entry(vcpu, 0);
1594 	if (!basic)
1595 		return NULL;
1596 
1597 	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1598 	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1599 		return NULL;
1600 
1601 	if (function >= 0x40000000 && function <= 0x4fffffff)
1602 		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1603 	else if (function >= 0xc0000000)
1604 		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1605 	else
1606 		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1607 
1608 	if (class && function <= class->eax)
1609 		return NULL;
1610 
1611 	/*
1612 	 * Leaf specific adjustments are also applied when redirecting to the
1613 	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1614 	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1615 	 * needs to be pulled from CPUID.0xb.1.
1616 	 */
1617 	*fn_ptr = basic->eax;
1618 
1619 	/*
1620 	 * The class does not exist or the requested function is out of range;
1621 	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1622 	 * the original requested leaf is observed!
1623 	 */
1624 	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1625 }
1626 
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)1627 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1628 	       u32 *ecx, u32 *edx, bool exact_only)
1629 {
1630 	u32 orig_function = *eax, function = *eax, index = *ecx;
1631 	struct kvm_cpuid_entry2 *entry;
1632 	bool exact, used_max_basic = false;
1633 
1634 	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1635 	exact = !!entry;
1636 
1637 	if (!entry && !exact_only) {
1638 		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1639 		used_max_basic = !!entry;
1640 	}
1641 
1642 	if (entry) {
1643 		*eax = entry->eax;
1644 		*ebx = entry->ebx;
1645 		*ecx = entry->ecx;
1646 		*edx = entry->edx;
1647 		if (function == 7 && index == 0) {
1648 			u64 data;
1649 		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1650 			    (data & TSX_CTRL_CPUID_CLEAR))
1651 				*ebx &= ~(F(RTM) | F(HLE));
1652 		} else if (function == 0x80000007) {
1653 			if (kvm_hv_invtsc_suppressed(vcpu))
1654 				*edx &= ~SF(CONSTANT_TSC);
1655 		}
1656 	} else {
1657 		*eax = *ebx = *ecx = *edx = 0;
1658 		/*
1659 		 * When leaf 0BH or 1FH is defined, CL is pass-through
1660 		 * and EDX is always the x2APIC ID, even for undefined
1661 		 * subleaves. Index 1 will exist iff the leaf is
1662 		 * implemented, so we pass through CL iff leaf 1
1663 		 * exists. EDX can be copied from any existing index.
1664 		 */
1665 		if (function == 0xb || function == 0x1f) {
1666 			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1667 			if (entry) {
1668 				*ecx = index & 0xff;
1669 				*edx = entry->edx;
1670 			}
1671 		}
1672 	}
1673 	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1674 			used_max_basic);
1675 	return exact;
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_cpuid);
1678 
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)1679 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1680 {
1681 	u32 eax, ebx, ecx, edx;
1682 
1683 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1684 		return 1;
1685 
1686 	eax = kvm_rax_read(vcpu);
1687 	ecx = kvm_rcx_read(vcpu);
1688 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1689 	kvm_rax_write(vcpu, eax);
1690 	kvm_rbx_write(vcpu, ebx);
1691 	kvm_rcx_write(vcpu, ecx);
1692 	kvm_rdx_write(vcpu, edx);
1693 	return kvm_skip_emulated_instruction(vcpu);
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1696