1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/cpufeature.h>
18 #include <linux/page-flags.h>
19 #include <linux/radix-tree.h>
20 #include <linux/atomic.h>
21 #include <asm/ctlreg.h>
22 #include <asm/bug.h>
23 #include <asm/page.h>
24 #include <asm/uv.h>
25
26 extern pgd_t swapper_pg_dir[];
27 extern pgd_t invalid_pg_dir[];
28 extern void paging_init(void);
29 extern struct ctlreg s390_invalid_asce;
30
31 enum {
32 PG_DIRECT_MAP_4K = 0,
33 PG_DIRECT_MAP_1M,
34 PG_DIRECT_MAP_2G,
35 PG_DIRECT_MAP_MAX
36 };
37
38 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
39
update_page_count(int level,long count)40 static inline void update_page_count(int level, long count)
41 {
42 if (IS_ENABLED(CONFIG_PROC_FS))
43 atomic_long_add(count, &direct_pages_count[level]);
44 }
45
46 /*
47 * The S390 doesn't have any external MMU info: the kernel page
48 * tables contain all the necessary information.
49 */
50 #define update_mmu_cache(vma, address, ptep) do { } while (0)
51 #define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53
54 /*
55 * ZERO_PAGE is a global shared page that is always zero; used
56 * for zero-mapped memory areas etc..
57 */
58
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61
62 #define ZERO_PAGE(vaddr) \
63 (virt_to_page((void *)(empty_zero_page + \
64 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68
69 #define pte_ERROR(e) \
70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79
80 /*
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. 512GB are reserved for vmalloc by default.
83 * At the top of the vmalloc area a 2GB area is reserved where modules
84 * will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a
86 * 2GB frame is branch prediction unit friendly.
87 */
88 extern unsigned long VMALLOC_START;
89 extern unsigned long VMALLOC_END;
90 #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
91 extern struct page *vmemmap;
92 extern unsigned long vmemmap_size;
93
94 extern unsigned long MODULES_VADDR;
95 extern unsigned long MODULES_END;
96 #define MODULES_VADDR MODULES_VADDR
97 #define MODULES_END MODULES_END
98 #define MODULES_LEN (1UL << 31)
99
is_module_addr(void * addr)100 static inline int is_module_addr(void *addr)
101 {
102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 if (addr < (void *)MODULES_VADDR)
104 return 0;
105 if (addr > (void *)MODULES_END)
106 return 0;
107 return 1;
108 }
109
110 #ifdef CONFIG_KMSAN
111 #define KMSAN_VMALLOC_SIZE (VMALLOC_END - VMALLOC_START)
112 #define KMSAN_VMALLOC_SHADOW_START VMALLOC_END
113 #define KMSAN_VMALLOC_SHADOW_END (KMSAN_VMALLOC_SHADOW_START + KMSAN_VMALLOC_SIZE)
114 #define KMSAN_VMALLOC_ORIGIN_START KMSAN_VMALLOC_SHADOW_END
115 #define KMSAN_VMALLOC_ORIGIN_END (KMSAN_VMALLOC_ORIGIN_START + KMSAN_VMALLOC_SIZE)
116 #define KMSAN_MODULES_SHADOW_START KMSAN_VMALLOC_ORIGIN_END
117 #define KMSAN_MODULES_SHADOW_END (KMSAN_MODULES_SHADOW_START + MODULES_LEN)
118 #define KMSAN_MODULES_ORIGIN_START KMSAN_MODULES_SHADOW_END
119 #define KMSAN_MODULES_ORIGIN_END (KMSAN_MODULES_ORIGIN_START + MODULES_LEN)
120 #endif
121
122 #ifdef CONFIG_RANDOMIZE_BASE
123 #define KASLR_LEN (1UL << 31)
124 #else
125 #define KASLR_LEN 0UL
126 #endif
127
128 void setup_protection_map(void);
129
130 /*
131 * A 64 bit pagetable entry of S390 has following format:
132 * | PFRA |0IPC| OS |
133 * 0000000000111111111122222222223333333333444444444455555555556666
134 * 0123456789012345678901234567890123456789012345678901234567890123
135 *
136 * I Page-Invalid Bit: Page is not available for address-translation
137 * P Page-Protection Bit: Store access not possible for page
138 * C Change-bit override: HW is not required to set change bit
139 *
140 * A 64 bit segmenttable entry of S390 has following format:
141 * | P-table origin | TT
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * I Segment-Invalid Bit: Segment is not available for address-translation
146 * C Common-Segment Bit: Segment is not private (PoP 3-30)
147 * P Page-Protection Bit: Store access not possible for page
148 * TT Type 00
149 *
150 * A 64 bit region table entry of S390 has following format:
151 * | S-table origin | TF TTTL
152 * 0000000000111111111122222222223333333333444444444455555555556666
153 * 0123456789012345678901234567890123456789012345678901234567890123
154 *
155 * I Segment-Invalid Bit: Segment is not available for address-translation
156 * TT Type 01
157 * TF
158 * TL Table length
159 *
160 * The 64 bit regiontable origin of S390 has following format:
161 * | region table origon | DTTL
162 * 0000000000111111111122222222223333333333444444444455555555556666
163 * 0123456789012345678901234567890123456789012345678901234567890123
164 *
165 * X Space-Switch event:
166 * G Segment-Invalid Bit:
167 * P Private-Space Bit:
168 * S Storage-Alteration:
169 * R Real space
170 * TL Table-Length:
171 *
172 * A storage key has the following format:
173 * | ACC |F|R|C|0|
174 * 0 3 4 5 6 7
175 * ACC: access key
176 * F : fetch protection bit
177 * R : referenced bit
178 * C : changed bit
179 */
180
181 /* Hardware bits in the page table entry */
182 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
183 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
184 #define _PAGE_INVALID 0x400 /* HW invalid bit */
185 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
186
187 /* Software bits in the page table entry */
188 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
189 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
190 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
191 #define _PAGE_READ 0x010 /* SW pte read bit */
192 #define _PAGE_WRITE 0x020 /* SW pte write bit */
193 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
194 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
195
196 #ifdef CONFIG_MEM_SOFT_DIRTY
197 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
198 #else
199 #define _PAGE_SOFT_DIRTY 0x000
200 #endif
201
202 #define _PAGE_SW_BITS 0xffUL /* All SW bits */
203
204 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */
205
206 /* Set of bits not changed in pte_modify */
207 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
208 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
209
210 /*
211 * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
212 * HW bit and all SW bits.
213 */
214 #define _PAGE_RDP_MASK ~(_PAGE_PROTECT | _PAGE_SW_BITS)
215
216 /*
217 * handle_pte_fault uses pte_present and pte_none to find out the pte type
218 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
219 * distinguish present from not-present ptes. It is changed only with the page
220 * table lock held.
221 *
222 * The following table gives the different possible bit combinations for
223 * the pte hardware and software bits in the last 12 bits of a pte
224 * (. unassigned bit, x don't care, t swap type):
225 *
226 * 842100000000
227 * 000084210000
228 * 000000008421
229 * .IR.uswrdy.p
230 * empty .10.00000000
231 * swap .11..ttttt.0
232 * prot-none, clean, old .11.xx0000.1
233 * prot-none, clean, young .11.xx0001.1
234 * prot-none, dirty, old .11.xx0010.1
235 * prot-none, dirty, young .11.xx0011.1
236 * read-only, clean, old .11.xx0100.1
237 * read-only, clean, young .01.xx0101.1
238 * read-only, dirty, old .11.xx0110.1
239 * read-only, dirty, young .01.xx0111.1
240 * read-write, clean, old .11.xx1100.1
241 * read-write, clean, young .01.xx1101.1
242 * read-write, dirty, old .10.xx1110.1
243 * read-write, dirty, young .00.xx1111.1
244 * HW-bits: R read-only, I invalid
245 * SW-bits: p present, y young, d dirty, r read, w write, s special,
246 * u unused, l large
247 *
248 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
249 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
250 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
251 */
252
253 /* Bits in the segment/region table address-space-control-element */
254 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
255 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
256 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
257 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
258 #define _ASCE_REAL_SPACE 0x20 /* real space control */
259 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
260 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
261 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
262 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
263 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
264 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
265
266 /* Bits in the region table entry */
267 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
268 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
269 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
270 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
271 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
272 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
273 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
274 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
275 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
276 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
277
278 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
279 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
280 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
281 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
282 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH | \
283 _REGION3_ENTRY_PRESENT)
284 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
285
286 #define _REGION3_ENTRY_HARDWARE_BITS 0xfffffffffffff6ffUL
287 #define _REGION3_ENTRY_HARDWARE_BITS_LARGE 0xffffffff8001073cUL
288 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
289 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
290 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
291 #define _REGION3_ENTRY_COMM 0x0010 /* Common-Region, marks swap entry */
292 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
293 #define _REGION3_ENTRY_WRITE 0x8000 /* SW region write bit */
294 #define _REGION3_ENTRY_READ 0x4000 /* SW region read bit */
295
296 #ifdef CONFIG_MEM_SOFT_DIRTY
297 #define _REGION3_ENTRY_SOFT_DIRTY 0x0002 /* SW region soft dirty bit */
298 #else
299 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
300 #endif
301
302 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
303
304 /*
305 * SW region present bit. For non-leaf region-third-table entries, bits 62-63
306 * indicate the TABLE LENGTH and both must be set to 1. But such entries
307 * would always be considered as present, so it is safe to use bit 63 as
308 * PRESENT bit for PUD.
309 */
310 #define _REGION3_ENTRY_PRESENT 0x0001
311
312 /* Bits in the segment table entry */
313 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe3fUL
314 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe3cUL
315 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff1073cUL
316 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
317 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
318 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
319 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
320 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
321 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
322
323 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PRESENT)
324 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
325
326 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
327 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
328
329 #define _SEGMENT_ENTRY_COMM 0x0010 /* Common-Segment, marks swap entry */
330 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
331 #define _SEGMENT_ENTRY_WRITE 0x8000 /* SW segment write bit */
332 #define _SEGMENT_ENTRY_READ 0x4000 /* SW segment read bit */
333
334 #ifdef CONFIG_MEM_SOFT_DIRTY
335 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0002 /* SW segment soft dirty bit */
336 #else
337 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
338 #endif
339
340 #define _SEGMENT_ENTRY_PRESENT 0x0001 /* SW segment present bit */
341
342 /* Common bits in region and segment table entries, for swap entries */
343 #define _RST_ENTRY_COMM 0x0010 /* Common-Region/Segment, marks swap entry */
344 #define _RST_ENTRY_INVALID 0x0020 /* invalid region/segment table entry */
345
346 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
347 #define _PAGE_ENTRIES 256 /* number of page table entries */
348
349 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
350 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
351
352 #define _REGION1_SHIFT 53
353 #define _REGION2_SHIFT 42
354 #define _REGION3_SHIFT 31
355 #define _SEGMENT_SHIFT 20
356
357 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
358 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
359 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
360 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
361 #define _PAGE_INDEX (0xffUL << PAGE_SHIFT)
362
363 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
364 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
365 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
366 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
367
368 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
369 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
370 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
371 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
372
373 #define PMD_SHIFT _SEGMENT_SHIFT
374 #define PUD_SHIFT _REGION3_SHIFT
375 #define P4D_SHIFT _REGION2_SHIFT
376 #define PGDIR_SHIFT _REGION1_SHIFT
377
378 #define PMD_SIZE _SEGMENT_SIZE
379 #define PUD_SIZE _REGION3_SIZE
380 #define P4D_SIZE _REGION2_SIZE
381 #define PGDIR_SIZE _REGION1_SIZE
382
383 #define PMD_MASK _SEGMENT_MASK
384 #define PUD_MASK _REGION3_MASK
385 #define P4D_MASK _REGION2_MASK
386 #define PGDIR_MASK _REGION1_MASK
387
388 #define PTRS_PER_PTE _PAGE_ENTRIES
389 #define PTRS_PER_PMD _CRST_ENTRIES
390 #define PTRS_PER_PUD _CRST_ENTRIES
391 #define PTRS_PER_P4D _CRST_ENTRIES
392 #define PTRS_PER_PGD _CRST_ENTRIES
393
394 /*
395 * Segment table and region3 table entry encoding
396 * (R = read-only, I = invalid, y = young bit):
397 * dy..R...I...wr
398 * prot-none, clean, old 00..1...1...00
399 * prot-none, clean, young 01..1...1...00
400 * prot-none, dirty, old 10..1...1...00
401 * prot-none, dirty, young 11..1...1...00
402 * read-only, clean, old 00..1...1...01
403 * read-only, clean, young 01..1...0...01
404 * read-only, dirty, old 10..1...1...01
405 * read-only, dirty, young 11..1...0...01
406 * read-write, clean, old 00..1...1...11
407 * read-write, clean, young 01..1...0...11
408 * read-write, dirty, old 10..0...1...11
409 * read-write, dirty, young 11..0...0...11
410 * The segment table origin is used to distinguish empty (origin==0) from
411 * read-write, old segment table entries (origin!=0)
412 * HW-bits: R read-only, I invalid
413 * SW-bits: y young, d dirty, r read, w write
414 */
415
416 /* Page status table bits for virtualization */
417 #define PGSTE_ACC_BITS 0xf000000000000000UL
418 #define PGSTE_FP_BIT 0x0800000000000000UL
419 #define PGSTE_PCL_BIT 0x0080000000000000UL
420 #define PGSTE_HR_BIT 0x0040000000000000UL
421 #define PGSTE_HC_BIT 0x0020000000000000UL
422 #define PGSTE_GR_BIT 0x0004000000000000UL
423 #define PGSTE_GC_BIT 0x0002000000000000UL
424 #define PGSTE_ST2_MASK 0x0000ffff00000000UL
425 #define PGSTE_UC_BIT 0x0000000000008000UL /* user dirty (migration) */
426 #define PGSTE_IN_BIT 0x0000000000004000UL /* IPTE notify bit */
427 #define PGSTE_VSIE_BIT 0x0000000000002000UL /* ref'd in a shadow table */
428
429 /* Guest Page State used for virtualization */
430 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
431 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
432 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
433 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
434 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
435 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
436 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
437
438 /*
439 * A user page table pointer has the space-switch-event bit, the
440 * private-space-control bit and the storage-alteration-event-control
441 * bit set. A kernel page table pointer doesn't need them.
442 */
443 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
444 _ASCE_ALT_EVENT)
445
446 /*
447 * Page protection definitions.
448 */
449 #define __PAGE_NONE (_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
450 #define __PAGE_RO (_PAGE_PRESENT | _PAGE_READ | \
451 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
452 #define __PAGE_RX (_PAGE_PRESENT | _PAGE_READ | \
453 _PAGE_INVALID | _PAGE_PROTECT)
454 #define __PAGE_RW (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
455 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
456 #define __PAGE_RWX (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
457 _PAGE_INVALID | _PAGE_PROTECT)
458 #define __PAGE_SHARED (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
459 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
460 #define __PAGE_KERNEL (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
461 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
462 #define __PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
463 _PAGE_PROTECT | _PAGE_NOEXEC)
464
465 extern unsigned long page_noexec_mask;
466
467 #define __pgprot_page_mask(x) __pgprot((x) & page_noexec_mask)
468
469 #define PAGE_NONE __pgprot_page_mask(__PAGE_NONE)
470 #define PAGE_RO __pgprot_page_mask(__PAGE_RO)
471 #define PAGE_RX __pgprot_page_mask(__PAGE_RX)
472 #define PAGE_RW __pgprot_page_mask(__PAGE_RW)
473 #define PAGE_RWX __pgprot_page_mask(__PAGE_RWX)
474 #define PAGE_SHARED __pgprot_page_mask(__PAGE_SHARED)
475 #define PAGE_KERNEL __pgprot_page_mask(__PAGE_KERNEL)
476 #define PAGE_KERNEL_RO __pgprot_page_mask(__PAGE_KERNEL_RO)
477
478 /*
479 * Segment entry (large page) protection definitions.
480 */
481 #define __SEGMENT_NONE (_SEGMENT_ENTRY_PRESENT | \
482 _SEGMENT_ENTRY_INVALID | \
483 _SEGMENT_ENTRY_PROTECT)
484 #define __SEGMENT_RO (_SEGMENT_ENTRY_PRESENT | \
485 _SEGMENT_ENTRY_PROTECT | \
486 _SEGMENT_ENTRY_READ | \
487 _SEGMENT_ENTRY_NOEXEC)
488 #define __SEGMENT_RX (_SEGMENT_ENTRY_PRESENT | \
489 _SEGMENT_ENTRY_PROTECT | \
490 _SEGMENT_ENTRY_READ)
491 #define __SEGMENT_RW (_SEGMENT_ENTRY_PRESENT | \
492 _SEGMENT_ENTRY_READ | \
493 _SEGMENT_ENTRY_WRITE | \
494 _SEGMENT_ENTRY_NOEXEC)
495 #define __SEGMENT_RWX (_SEGMENT_ENTRY_PRESENT | \
496 _SEGMENT_ENTRY_READ | \
497 _SEGMENT_ENTRY_WRITE)
498 #define __SEGMENT_KERNEL (_SEGMENT_ENTRY | \
499 _SEGMENT_ENTRY_LARGE | \
500 _SEGMENT_ENTRY_READ | \
501 _SEGMENT_ENTRY_WRITE | \
502 _SEGMENT_ENTRY_YOUNG | \
503 _SEGMENT_ENTRY_DIRTY | \
504 _SEGMENT_ENTRY_NOEXEC)
505 #define __SEGMENT_KERNEL_RO (_SEGMENT_ENTRY | \
506 _SEGMENT_ENTRY_LARGE | \
507 _SEGMENT_ENTRY_READ | \
508 _SEGMENT_ENTRY_YOUNG | \
509 _SEGMENT_ENTRY_PROTECT | \
510 _SEGMENT_ENTRY_NOEXEC)
511
512 extern unsigned long segment_noexec_mask;
513
514 #define __pgprot_segment_mask(x) __pgprot((x) & segment_noexec_mask)
515
516 #define SEGMENT_NONE __pgprot_segment_mask(__SEGMENT_NONE)
517 #define SEGMENT_RO __pgprot_segment_mask(__SEGMENT_RO)
518 #define SEGMENT_RX __pgprot_segment_mask(__SEGMENT_RX)
519 #define SEGMENT_RW __pgprot_segment_mask(__SEGMENT_RW)
520 #define SEGMENT_RWX __pgprot_segment_mask(__SEGMENT_RWX)
521 #define SEGMENT_KERNEL __pgprot_segment_mask(__SEGMENT_KERNEL)
522 #define SEGMENT_KERNEL_RO __pgprot_segment_mask(__SEGMENT_KERNEL_RO)
523
524 /*
525 * Region3 entry (large page) protection definitions.
526 */
527
528 #define __REGION3_KERNEL (_REGION_ENTRY_TYPE_R3 | \
529 _REGION3_ENTRY_PRESENT | \
530 _REGION3_ENTRY_LARGE | \
531 _REGION3_ENTRY_READ | \
532 _REGION3_ENTRY_WRITE | \
533 _REGION3_ENTRY_YOUNG | \
534 _REGION3_ENTRY_DIRTY | \
535 _REGION_ENTRY_NOEXEC)
536 #define __REGION3_KERNEL_RO (_REGION_ENTRY_TYPE_R3 | \
537 _REGION3_ENTRY_PRESENT | \
538 _REGION3_ENTRY_LARGE | \
539 _REGION3_ENTRY_READ | \
540 _REGION3_ENTRY_YOUNG | \
541 _REGION_ENTRY_PROTECT | \
542 _REGION_ENTRY_NOEXEC)
543
544 extern unsigned long region_noexec_mask;
545
546 #define __pgprot_region_mask(x) __pgprot((x) & region_noexec_mask)
547
548 #define REGION3_KERNEL __pgprot_region_mask(__REGION3_KERNEL)
549 #define REGION3_KERNEL_RO __pgprot_region_mask(__REGION3_KERNEL_RO)
550
mm_p4d_folded(struct mm_struct * mm)551 static inline bool mm_p4d_folded(struct mm_struct *mm)
552 {
553 return mm->context.asce_limit <= _REGION1_SIZE;
554 }
555 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
556
mm_pud_folded(struct mm_struct * mm)557 static inline bool mm_pud_folded(struct mm_struct *mm)
558 {
559 return mm->context.asce_limit <= _REGION2_SIZE;
560 }
561 #define mm_pud_folded(mm) mm_pud_folded(mm)
562
mm_pmd_folded(struct mm_struct * mm)563 static inline bool mm_pmd_folded(struct mm_struct *mm)
564 {
565 return mm->context.asce_limit <= _REGION3_SIZE;
566 }
567 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
568
mm_has_pgste(struct mm_struct * mm)569 static inline int mm_has_pgste(struct mm_struct *mm)
570 {
571 #ifdef CONFIG_PGSTE
572 if (unlikely(mm->context.has_pgste))
573 return 1;
574 #endif
575 return 0;
576 }
577
mm_is_protected(struct mm_struct * mm)578 static inline int mm_is_protected(struct mm_struct *mm)
579 {
580 #ifdef CONFIG_PGSTE
581 if (unlikely(atomic_read(&mm->context.protected_count)))
582 return 1;
583 #endif
584 return 0;
585 }
586
clear_pgste_bit(pgste_t pgste,unsigned long mask)587 static inline pgste_t clear_pgste_bit(pgste_t pgste, unsigned long mask)
588 {
589 return __pgste(pgste_val(pgste) & ~mask);
590 }
591
set_pgste_bit(pgste_t pgste,unsigned long mask)592 static inline pgste_t set_pgste_bit(pgste_t pgste, unsigned long mask)
593 {
594 return __pgste(pgste_val(pgste) | mask);
595 }
596
clear_pte_bit(pte_t pte,pgprot_t prot)597 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
598 {
599 return __pte(pte_val(pte) & ~pgprot_val(prot));
600 }
601
set_pte_bit(pte_t pte,pgprot_t prot)602 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
603 {
604 return __pte(pte_val(pte) | pgprot_val(prot));
605 }
606
clear_pmd_bit(pmd_t pmd,pgprot_t prot)607 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
608 {
609 return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
610 }
611
set_pmd_bit(pmd_t pmd,pgprot_t prot)612 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
613 {
614 return __pmd(pmd_val(pmd) | pgprot_val(prot));
615 }
616
clear_pud_bit(pud_t pud,pgprot_t prot)617 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
618 {
619 return __pud(pud_val(pud) & ~pgprot_val(prot));
620 }
621
set_pud_bit(pud_t pud,pgprot_t prot)622 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
623 {
624 return __pud(pud_val(pud) | pgprot_val(prot));
625 }
626
627 /*
628 * As soon as the guest uses storage keys or enables PV, we deduplicate all
629 * mapped shared zeropages and prevent new shared zeropages from getting
630 * mapped.
631 */
632 #define mm_forbids_zeropage mm_forbids_zeropage
mm_forbids_zeropage(struct mm_struct * mm)633 static inline int mm_forbids_zeropage(struct mm_struct *mm)
634 {
635 #ifdef CONFIG_PGSTE
636 if (!mm->context.allow_cow_sharing)
637 return 1;
638 #endif
639 return 0;
640 }
641
mm_uses_skeys(struct mm_struct * mm)642 static inline int mm_uses_skeys(struct mm_struct *mm)
643 {
644 #ifdef CONFIG_PGSTE
645 if (mm->context.uses_skeys)
646 return 1;
647 #endif
648 return 0;
649 }
650
csp(unsigned int * ptr,unsigned int old,unsigned int new)651 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
652 {
653 union register_pair r1 = { .even = old, .odd = new, };
654 unsigned long address = (unsigned long)ptr | 1;
655
656 asm volatile(
657 " csp %[r1],%[address]"
658 : [r1] "+&d" (r1.pair), "+m" (*ptr)
659 : [address] "d" (address)
660 : "cc");
661 }
662
663 /**
664 * cspg() - Compare and Swap and Purge (CSPG)
665 * @ptr: Pointer to the value to be exchanged
666 * @old: The expected old value
667 * @new: The new value
668 *
669 * Return: True if compare and swap was successful, otherwise false.
670 */
cspg(unsigned long * ptr,unsigned long old,unsigned long new)671 static inline bool cspg(unsigned long *ptr, unsigned long old, unsigned long new)
672 {
673 union register_pair r1 = { .even = old, .odd = new, };
674 unsigned long address = (unsigned long)ptr | 1;
675
676 asm volatile(
677 " cspg %[r1],%[address]"
678 : [r1] "+&d" (r1.pair), "+m" (*ptr)
679 : [address] "d" (address)
680 : "cc");
681 return old == r1.even;
682 }
683
684 #define CRDTE_DTT_PAGE 0x00UL
685 #define CRDTE_DTT_SEGMENT 0x10UL
686 #define CRDTE_DTT_REGION3 0x14UL
687 #define CRDTE_DTT_REGION2 0x18UL
688 #define CRDTE_DTT_REGION1 0x1cUL
689
690 /**
691 * crdte() - Compare and Replace DAT Table Entry
692 * @old: The expected old value
693 * @new: The new value
694 * @table: Pointer to the value to be exchanged
695 * @dtt: Table type of the table to be exchanged
696 * @address: The address mapped by the entry to be replaced
697 * @asce: The ASCE of this entry
698 *
699 * Return: True if compare and replace was successful, otherwise false.
700 */
crdte(unsigned long old,unsigned long new,unsigned long * table,unsigned long dtt,unsigned long address,unsigned long asce)701 static inline bool crdte(unsigned long old, unsigned long new,
702 unsigned long *table, unsigned long dtt,
703 unsigned long address, unsigned long asce)
704 {
705 union register_pair r1 = { .even = old, .odd = new, };
706 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
707
708 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
709 : [r1] "+&d" (r1.pair)
710 : [r2] "d" (r2.pair), [asce] "a" (asce)
711 : "memory", "cc");
712 return old == r1.even;
713 }
714
715 /*
716 * pgd/p4d/pud/pmd/pte query functions
717 */
pgd_folded(pgd_t pgd)718 static inline int pgd_folded(pgd_t pgd)
719 {
720 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
721 }
722
pgd_present(pgd_t pgd)723 static inline int pgd_present(pgd_t pgd)
724 {
725 if (pgd_folded(pgd))
726 return 1;
727 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
728 }
729
pgd_none(pgd_t pgd)730 static inline int pgd_none(pgd_t pgd)
731 {
732 if (pgd_folded(pgd))
733 return 0;
734 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
735 }
736
pgd_bad(pgd_t pgd)737 static inline int pgd_bad(pgd_t pgd)
738 {
739 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
740 return 0;
741 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
742 }
743
pgd_pfn(pgd_t pgd)744 static inline unsigned long pgd_pfn(pgd_t pgd)
745 {
746 unsigned long origin_mask;
747
748 origin_mask = _REGION_ENTRY_ORIGIN;
749 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
750 }
751
p4d_folded(p4d_t p4d)752 static inline int p4d_folded(p4d_t p4d)
753 {
754 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
755 }
756
p4d_present(p4d_t p4d)757 static inline int p4d_present(p4d_t p4d)
758 {
759 if (p4d_folded(p4d))
760 return 1;
761 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
762 }
763
p4d_none(p4d_t p4d)764 static inline int p4d_none(p4d_t p4d)
765 {
766 if (p4d_folded(p4d))
767 return 0;
768 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
769 }
770
p4d_pfn(p4d_t p4d)771 static inline unsigned long p4d_pfn(p4d_t p4d)
772 {
773 unsigned long origin_mask;
774
775 origin_mask = _REGION_ENTRY_ORIGIN;
776 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
777 }
778
pud_folded(pud_t pud)779 static inline int pud_folded(pud_t pud)
780 {
781 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
782 }
783
pud_present(pud_t pud)784 static inline int pud_present(pud_t pud)
785 {
786 if (pud_folded(pud))
787 return 1;
788 return (pud_val(pud) & _REGION3_ENTRY_PRESENT) != 0;
789 }
790
pud_none(pud_t pud)791 static inline int pud_none(pud_t pud)
792 {
793 if (pud_folded(pud))
794 return 0;
795 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
796 }
797
798 #define pud_leaf pud_leaf
pud_leaf(pud_t pud)799 static inline bool pud_leaf(pud_t pud)
800 {
801 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
802 return 0;
803 return (pud_present(pud) && (pud_val(pud) & _REGION3_ENTRY_LARGE) != 0);
804 }
805
pmd_present(pmd_t pmd)806 static inline int pmd_present(pmd_t pmd)
807 {
808 return (pmd_val(pmd) & _SEGMENT_ENTRY_PRESENT) != 0;
809 }
810
811 #define pmd_leaf pmd_leaf
pmd_leaf(pmd_t pmd)812 static inline bool pmd_leaf(pmd_t pmd)
813 {
814 return (pmd_present(pmd) && (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0);
815 }
816
pmd_bad(pmd_t pmd)817 static inline int pmd_bad(pmd_t pmd)
818 {
819 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_leaf(pmd))
820 return 1;
821 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
822 }
823
pud_bad(pud_t pud)824 static inline int pud_bad(pud_t pud)
825 {
826 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
827
828 if (type > _REGION_ENTRY_TYPE_R3 || pud_leaf(pud))
829 return 1;
830 if (type < _REGION_ENTRY_TYPE_R3)
831 return 0;
832 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
833 }
834
p4d_bad(p4d_t p4d)835 static inline int p4d_bad(p4d_t p4d)
836 {
837 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
838
839 if (type > _REGION_ENTRY_TYPE_R2)
840 return 1;
841 if (type < _REGION_ENTRY_TYPE_R2)
842 return 0;
843 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
844 }
845
pmd_none(pmd_t pmd)846 static inline int pmd_none(pmd_t pmd)
847 {
848 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
849 }
850
851 #define pmd_write pmd_write
pmd_write(pmd_t pmd)852 static inline int pmd_write(pmd_t pmd)
853 {
854 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
855 }
856
857 #define pud_write pud_write
pud_write(pud_t pud)858 static inline int pud_write(pud_t pud)
859 {
860 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
861 }
862
863 #define pmd_dirty pmd_dirty
pmd_dirty(pmd_t pmd)864 static inline int pmd_dirty(pmd_t pmd)
865 {
866 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
867 }
868
869 #define pmd_young pmd_young
pmd_young(pmd_t pmd)870 static inline int pmd_young(pmd_t pmd)
871 {
872 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
873 }
874
pte_present(pte_t pte)875 static inline int pte_present(pte_t pte)
876 {
877 /* Bit pattern: (pte & 0x001) == 0x001 */
878 return (pte_val(pte) & _PAGE_PRESENT) != 0;
879 }
880
pte_none(pte_t pte)881 static inline int pte_none(pte_t pte)
882 {
883 /* Bit pattern: pte == 0x400 */
884 return pte_val(pte) == _PAGE_INVALID;
885 }
886
pte_swap(pte_t pte)887 static inline int pte_swap(pte_t pte)
888 {
889 /* Bit pattern: (pte & 0x201) == 0x200 */
890 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
891 == _PAGE_PROTECT;
892 }
893
pte_special(pte_t pte)894 static inline int pte_special(pte_t pte)
895 {
896 return (pte_val(pte) & _PAGE_SPECIAL);
897 }
898
899 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)900 static inline int pte_same(pte_t a, pte_t b)
901 {
902 return pte_val(a) == pte_val(b);
903 }
904
905 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)906 static inline int pte_protnone(pte_t pte)
907 {
908 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
909 }
910
pmd_protnone(pmd_t pmd)911 static inline int pmd_protnone(pmd_t pmd)
912 {
913 /* pmd_leaf(pmd) implies pmd_present(pmd) */
914 return pmd_leaf(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
915 }
916 #endif
917
pte_swp_exclusive(pte_t pte)918 static inline bool pte_swp_exclusive(pte_t pte)
919 {
920 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
921 }
922
pte_swp_mkexclusive(pte_t pte)923 static inline pte_t pte_swp_mkexclusive(pte_t pte)
924 {
925 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
926 }
927
pte_swp_clear_exclusive(pte_t pte)928 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
929 {
930 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
931 }
932
pte_soft_dirty(pte_t pte)933 static inline int pte_soft_dirty(pte_t pte)
934 {
935 return pte_val(pte) & _PAGE_SOFT_DIRTY;
936 }
937 #define pte_swp_soft_dirty pte_soft_dirty
938
pte_mksoft_dirty(pte_t pte)939 static inline pte_t pte_mksoft_dirty(pte_t pte)
940 {
941 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
942 }
943 #define pte_swp_mksoft_dirty pte_mksoft_dirty
944
pte_clear_soft_dirty(pte_t pte)945 static inline pte_t pte_clear_soft_dirty(pte_t pte)
946 {
947 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
948 }
949 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
950
pmd_soft_dirty(pmd_t pmd)951 static inline int pmd_soft_dirty(pmd_t pmd)
952 {
953 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
954 }
955
pmd_mksoft_dirty(pmd_t pmd)956 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
957 {
958 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
959 }
960
pmd_clear_soft_dirty(pmd_t pmd)961 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
962 {
963 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
964 }
965
966 /*
967 * query functions pte_write/pte_dirty/pte_young only work if
968 * pte_present() is true. Undefined behaviour if not..
969 */
pte_write(pte_t pte)970 static inline int pte_write(pte_t pte)
971 {
972 return (pte_val(pte) & _PAGE_WRITE) != 0;
973 }
974
pte_dirty(pte_t pte)975 static inline int pte_dirty(pte_t pte)
976 {
977 return (pte_val(pte) & _PAGE_DIRTY) != 0;
978 }
979
pte_young(pte_t pte)980 static inline int pte_young(pte_t pte)
981 {
982 return (pte_val(pte) & _PAGE_YOUNG) != 0;
983 }
984
985 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)986 static inline int pte_unused(pte_t pte)
987 {
988 return pte_val(pte) & _PAGE_UNUSED;
989 }
990
991 /*
992 * Extract the pgprot value from the given pte while at the same time making it
993 * usable for kernel address space mappings where fault driven dirty and
994 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
995 * must not be set.
996 */
997 #define pte_pgprot pte_pgprot
pte_pgprot(pte_t pte)998 static inline pgprot_t pte_pgprot(pte_t pte)
999 {
1000 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
1001
1002 if (pte_write(pte))
1003 pte_flags |= pgprot_val(PAGE_KERNEL);
1004 else
1005 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
1006 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
1007
1008 return __pgprot(pte_flags);
1009 }
1010
1011 /*
1012 * pgd/pmd/pte modification functions
1013 */
1014
set_pgd(pgd_t * pgdp,pgd_t pgd)1015 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1016 {
1017 WRITE_ONCE(*pgdp, pgd);
1018 }
1019
set_p4d(p4d_t * p4dp,p4d_t p4d)1020 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
1021 {
1022 WRITE_ONCE(*p4dp, p4d);
1023 }
1024
set_pud(pud_t * pudp,pud_t pud)1025 static inline void set_pud(pud_t *pudp, pud_t pud)
1026 {
1027 WRITE_ONCE(*pudp, pud);
1028 }
1029
set_pmd(pmd_t * pmdp,pmd_t pmd)1030 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
1031 {
1032 WRITE_ONCE(*pmdp, pmd);
1033 }
1034
set_pte(pte_t * ptep,pte_t pte)1035 static inline void set_pte(pte_t *ptep, pte_t pte)
1036 {
1037 WRITE_ONCE(*ptep, pte);
1038 }
1039
pgd_clear(pgd_t * pgd)1040 static inline void pgd_clear(pgd_t *pgd)
1041 {
1042 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1043 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
1044 }
1045
p4d_clear(p4d_t * p4d)1046 static inline void p4d_clear(p4d_t *p4d)
1047 {
1048 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1049 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
1050 }
1051
pud_clear(pud_t * pud)1052 static inline void pud_clear(pud_t *pud)
1053 {
1054 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1055 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
1056 }
1057
pmd_clear(pmd_t * pmdp)1058 static inline void pmd_clear(pmd_t *pmdp)
1059 {
1060 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1061 }
1062
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1063 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1064 {
1065 set_pte(ptep, __pte(_PAGE_INVALID));
1066 }
1067
1068 /*
1069 * The following pte modification functions only work if
1070 * pte_present() is true. Undefined behaviour if not..
1071 */
pte_modify(pte_t pte,pgprot_t newprot)1072 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1073 {
1074 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
1075 pte = set_pte_bit(pte, newprot);
1076 /*
1077 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
1078 * has the invalid bit set, clear it again for readable, young pages
1079 */
1080 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
1081 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1082 /*
1083 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
1084 * protection bit set, clear it again for writable, dirty pages
1085 */
1086 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
1087 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1088 return pte;
1089 }
1090
pte_wrprotect(pte_t pte)1091 static inline pte_t pte_wrprotect(pte_t pte)
1092 {
1093 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1094 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1095 }
1096
pte_mkwrite_novma(pte_t pte)1097 static inline pte_t pte_mkwrite_novma(pte_t pte)
1098 {
1099 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1100 if (pte_val(pte) & _PAGE_DIRTY)
1101 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1102 return pte;
1103 }
1104
pte_mkclean(pte_t pte)1105 static inline pte_t pte_mkclean(pte_t pte)
1106 {
1107 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1108 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1109 }
1110
pte_mkdirty(pte_t pte)1111 static inline pte_t pte_mkdirty(pte_t pte)
1112 {
1113 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1114 if (pte_val(pte) & _PAGE_WRITE)
1115 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1116 return pte;
1117 }
1118
pte_mkold(pte_t pte)1119 static inline pte_t pte_mkold(pte_t pte)
1120 {
1121 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1122 return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1123 }
1124
pte_mkyoung(pte_t pte)1125 static inline pte_t pte_mkyoung(pte_t pte)
1126 {
1127 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1128 if (pte_val(pte) & _PAGE_READ)
1129 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1130 return pte;
1131 }
1132
pte_mkspecial(pte_t pte)1133 static inline pte_t pte_mkspecial(pte_t pte)
1134 {
1135 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1136 }
1137
1138 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)1139 static inline pte_t pte_mkhuge(pte_t pte)
1140 {
1141 return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1142 }
1143 #endif
1144
1145 #define IPTE_GLOBAL 0
1146 #define IPTE_LOCAL 1
1147
1148 #define IPTE_NODAT 0x400
1149 #define IPTE_GUEST_ASCE 0x800
1150
__ptep_rdp(unsigned long addr,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1151 static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1152 unsigned long opt, unsigned long asce,
1153 int local)
1154 {
1155 unsigned long pto;
1156
1157 pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1158 asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1159 : "+m" (*ptep)
1160 : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1161 [asce] "a" (asce), [m4] "i" (local));
1162 }
1163
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1164 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1165 unsigned long opt, unsigned long asce,
1166 int local)
1167 {
1168 unsigned long pto = __pa(ptep);
1169
1170 if (__builtin_constant_p(opt) && opt == 0) {
1171 /* Invalidation + TLB flush for the pte */
1172 asm volatile(
1173 " ipte %[r1],%[r2],0,%[m4]"
1174 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1175 [m4] "i" (local));
1176 return;
1177 }
1178
1179 /* Invalidate ptes with options + TLB flush of the ptes */
1180 opt = opt | (asce & _ASCE_ORIGIN);
1181 asm volatile(
1182 " ipte %[r1],%[r2],%[r3],%[m4]"
1183 : [r2] "+a" (address), [r3] "+a" (opt)
1184 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1185 }
1186
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)1187 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1188 pte_t *ptep, int local)
1189 {
1190 unsigned long pto = __pa(ptep);
1191
1192 /* Invalidate a range of ptes + TLB flush of the ptes */
1193 do {
1194 asm volatile(
1195 " ipte %[r1],%[r2],%[r3],%[m4]"
1196 : [r2] "+a" (address), [r3] "+a" (nr)
1197 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1198 } while (nr != 255);
1199 }
1200
1201 /*
1202 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1203 * both clear the TLB for the unmapped pte. The reason is that
1204 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1205 * to modify an active pte. The sequence is
1206 * 1) ptep_get_and_clear
1207 * 2) set_pte_at
1208 * 3) flush_tlb_range
1209 * On s390 the tlb needs to get flushed with the modification of the pte
1210 * if the pte is active. The only way how this can be implemented is to
1211 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1212 * is a nop.
1213 */
1214 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1215 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1216
1217 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1218 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1219 unsigned long addr, pte_t *ptep)
1220 {
1221 pte_t pte = *ptep;
1222
1223 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1224 return pte_young(pte);
1225 }
1226
1227 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1228 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1229 unsigned long address, pte_t *ptep)
1230 {
1231 return ptep_test_and_clear_young(vma, address, ptep);
1232 }
1233
1234 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1235 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1236 unsigned long addr, pte_t *ptep)
1237 {
1238 pte_t res;
1239
1240 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1241 /* At this point the reference through the mapping is still present */
1242 if (mm_is_protected(mm) && pte_present(res))
1243 uv_convert_from_secure_pte(res);
1244 return res;
1245 }
1246
1247 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1248 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1249 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1250 pte_t *, pte_t, pte_t);
1251
1252 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1253 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1254 unsigned long addr, pte_t *ptep)
1255 {
1256 pte_t res;
1257
1258 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1259 /* At this point the reference through the mapping is still present */
1260 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1261 uv_convert_from_secure_pte(res);
1262 return res;
1263 }
1264
1265 /*
1266 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1267 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1268 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1269 * cannot be accessed while the batched unmap is running. In this case
1270 * full==1 and a simple pte_clear is enough. See tlb.h.
1271 */
1272 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1273 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1274 unsigned long addr,
1275 pte_t *ptep, int full)
1276 {
1277 pte_t res;
1278
1279 if (full) {
1280 res = *ptep;
1281 set_pte(ptep, __pte(_PAGE_INVALID));
1282 } else {
1283 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1284 }
1285 /* Nothing to do */
1286 if (!mm_is_protected(mm) || !pte_present(res))
1287 return res;
1288 /*
1289 * At this point the reference through the mapping is still present.
1290 * The notifier should have destroyed all protected vCPUs at this
1291 * point, so the destroy should be successful.
1292 */
1293 if (full && !uv_destroy_pte(res))
1294 return res;
1295 /*
1296 * If something went wrong and the page could not be destroyed, or
1297 * if this is not a mm teardown, the slower export is used as
1298 * fallback instead.
1299 */
1300 uv_convert_from_secure_pte(res);
1301 return res;
1302 }
1303
1304 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1305 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1306 unsigned long addr, pte_t *ptep)
1307 {
1308 pte_t pte = *ptep;
1309
1310 if (pte_write(pte))
1311 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1312 }
1313
1314 /*
1315 * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1316 * bits in the comparison. Those might change e.g. because of dirty and young
1317 * tracking.
1318 */
pte_allow_rdp(pte_t old,pte_t new)1319 static inline int pte_allow_rdp(pte_t old, pte_t new)
1320 {
1321 /*
1322 * Only allow changes from RO to RW
1323 */
1324 if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1325 return 0;
1326
1327 return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1328 }
1329
flush_tlb_fix_spurious_fault(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1330 static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1331 unsigned long address,
1332 pte_t *ptep)
1333 {
1334 /*
1335 * RDP might not have propagated the PTE protection reset to all CPUs,
1336 * so there could be spurious TLB protection faults.
1337 * NOTE: This will also be called when a racing pagetable update on
1338 * another thread already installed the correct PTE. Both cases cannot
1339 * really be distinguished.
1340 * Therefore, only do the local TLB flush when RDP can be used, and the
1341 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1342 * A local RDP can be used to do the flush.
1343 */
1344 if (cpu_has_rdp() && !(pte_val(*ptep) & _PAGE_PROTECT))
1345 __ptep_rdp(address, ptep, 0, 0, 1);
1346 }
1347 #define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1348
1349 void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1350 pte_t new);
1351
1352 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1353 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1354 unsigned long addr, pte_t *ptep,
1355 pte_t entry, int dirty)
1356 {
1357 if (pte_same(*ptep, entry))
1358 return 0;
1359 if (cpu_has_rdp() && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1360 ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1361 else
1362 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1363 return 1;
1364 }
1365
1366 /*
1367 * Additional functions to handle KVM guest page tables
1368 */
1369 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1370 pte_t *ptep, pte_t entry);
1371 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1372 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1373 pte_t *ptep, unsigned long bits);
1374 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1375 pte_t *ptep, int prot, unsigned long bit);
1376 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1377 pte_t *ptep , int reset);
1378 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1379 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1380 pte_t *sptep, pte_t *tptep, pte_t pte);
1381 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1382
1383 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1384 pte_t *ptep);
1385 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1386 unsigned char key, bool nq);
1387 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1388 unsigned char key, unsigned char *oldkey,
1389 bool nq, bool mr, bool mc);
1390 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1391 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1392 unsigned char *key);
1393
1394 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1395 unsigned long bits, unsigned long value);
1396 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1397 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1398 unsigned long *oldpte, unsigned long *oldpgste);
1399 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1400 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1401 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1402 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1403
1404 #define pgprot_writecombine pgprot_writecombine
1405 pgprot_t pgprot_writecombine(pgprot_t prot);
1406
1407 #define PFN_PTE_SHIFT PAGE_SHIFT
1408
1409 /*
1410 * Set multiple PTEs to consecutive pages with a single call. All PTEs
1411 * are within the same folio, PMD and VMA.
1412 */
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry,unsigned int nr)1413 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1414 pte_t *ptep, pte_t entry, unsigned int nr)
1415 {
1416 if (pte_present(entry))
1417 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1418 if (mm_has_pgste(mm)) {
1419 for (;;) {
1420 ptep_set_pte_at(mm, addr, ptep, entry);
1421 if (--nr == 0)
1422 break;
1423 ptep++;
1424 entry = __pte(pte_val(entry) + PAGE_SIZE);
1425 addr += PAGE_SIZE;
1426 }
1427 } else {
1428 for (;;) {
1429 set_pte(ptep, entry);
1430 if (--nr == 0)
1431 break;
1432 ptep++;
1433 entry = __pte(pte_val(entry) + PAGE_SIZE);
1434 }
1435 }
1436 }
1437 #define set_ptes set_ptes
1438
1439 /*
1440 * Conversion functions: convert a page and protection to a page entry,
1441 * and a page entry and page directory to the page they refer to.
1442 */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1443 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1444 {
1445 pte_t __pte;
1446
1447 __pte = __pte(physpage | pgprot_val(pgprot));
1448 return pte_mkyoung(__pte);
1449 }
1450
1451 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1452 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1453 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1454 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1455
1456 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1457 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1458
pmd_deref(pmd_t pmd)1459 static inline unsigned long pmd_deref(pmd_t pmd)
1460 {
1461 unsigned long origin_mask;
1462
1463 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1464 if (pmd_leaf(pmd))
1465 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1466 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1467 }
1468
pmd_pfn(pmd_t pmd)1469 static inline unsigned long pmd_pfn(pmd_t pmd)
1470 {
1471 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1472 }
1473
pud_deref(pud_t pud)1474 static inline unsigned long pud_deref(pud_t pud)
1475 {
1476 unsigned long origin_mask;
1477
1478 origin_mask = _REGION_ENTRY_ORIGIN;
1479 if (pud_leaf(pud))
1480 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1481 return (unsigned long)__va(pud_val(pud) & origin_mask);
1482 }
1483
1484 #define pud_pfn pud_pfn
pud_pfn(pud_t pud)1485 static inline unsigned long pud_pfn(pud_t pud)
1486 {
1487 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1488 }
1489
1490 /*
1491 * The pgd_offset function *always* adds the index for the top-level
1492 * region/segment table. This is done to get a sequence like the
1493 * following to work:
1494 * pgdp = pgd_offset(current->mm, addr);
1495 * pgd = READ_ONCE(*pgdp);
1496 * p4dp = p4d_offset(&pgd, addr);
1497 * ...
1498 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1499 * only add an index if they dereferenced the pointer.
1500 */
pgd_offset_raw(pgd_t * pgd,unsigned long address)1501 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1502 {
1503 unsigned long rste;
1504 unsigned int shift;
1505
1506 /* Get the first entry of the top level table */
1507 rste = pgd_val(*pgd);
1508 /* Pick up the shift from the table type of the first entry */
1509 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1510 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1511 }
1512
1513 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1514
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long address)1515 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1516 {
1517 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1518 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1519 return (p4d_t *) pgdp;
1520 }
1521 #define p4d_offset_lockless p4d_offset_lockless
1522
p4d_offset(pgd_t * pgdp,unsigned long address)1523 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1524 {
1525 return p4d_offset_lockless(pgdp, *pgdp, address);
1526 }
1527
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long address)1528 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1529 {
1530 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1531 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1532 return (pud_t *) p4dp;
1533 }
1534 #define pud_offset_lockless pud_offset_lockless
1535
pud_offset(p4d_t * p4dp,unsigned long address)1536 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1537 {
1538 return pud_offset_lockless(p4dp, *p4dp, address);
1539 }
1540 #define pud_offset pud_offset
1541
pmd_offset_lockless(pud_t * pudp,pud_t pud,unsigned long address)1542 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1543 {
1544 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1545 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1546 return (pmd_t *) pudp;
1547 }
1548 #define pmd_offset_lockless pmd_offset_lockless
1549
pmd_offset(pud_t * pudp,unsigned long address)1550 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1551 {
1552 return pmd_offset_lockless(pudp, *pudp, address);
1553 }
1554 #define pmd_offset pmd_offset
1555
pmd_page_vaddr(pmd_t pmd)1556 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1557 {
1558 return (unsigned long) pmd_deref(pmd);
1559 }
1560
gup_fast_permitted(unsigned long start,unsigned long end)1561 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1562 {
1563 return end <= current->mm->context.asce_limit;
1564 }
1565 #define gup_fast_permitted gup_fast_permitted
1566
1567 #define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1568 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1569 #define pte_page(x) pfn_to_page(pte_pfn(x))
1570
1571 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1572 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1573 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1574 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1575
pmd_wrprotect(pmd_t pmd)1576 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1577 {
1578 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1579 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1580 }
1581
pmd_mkwrite_novma(pmd_t pmd)1582 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
1583 {
1584 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1585 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1586 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1587 return pmd;
1588 }
1589
pmd_mkclean(pmd_t pmd)1590 static inline pmd_t pmd_mkclean(pmd_t pmd)
1591 {
1592 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1593 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1594 }
1595
pmd_mkdirty(pmd_t pmd)1596 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1597 {
1598 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1599 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1600 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1601 return pmd;
1602 }
1603
pud_wrprotect(pud_t pud)1604 static inline pud_t pud_wrprotect(pud_t pud)
1605 {
1606 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1607 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1608 }
1609
pud_mkwrite(pud_t pud)1610 static inline pud_t pud_mkwrite(pud_t pud)
1611 {
1612 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1613 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1614 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1615 return pud;
1616 }
1617
pud_mkclean(pud_t pud)1618 static inline pud_t pud_mkclean(pud_t pud)
1619 {
1620 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1621 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1622 }
1623
pud_mkdirty(pud_t pud)1624 static inline pud_t pud_mkdirty(pud_t pud)
1625 {
1626 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1627 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1628 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1629 return pud;
1630 }
1631
1632 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1633 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1634 {
1635 /*
1636 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1637 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1638 */
1639 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1640 return pgprot_val(SEGMENT_NONE);
1641 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1642 return pgprot_val(SEGMENT_RO);
1643 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1644 return pgprot_val(SEGMENT_RX);
1645 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1646 return pgprot_val(SEGMENT_RW);
1647 return pgprot_val(SEGMENT_RWX);
1648 }
1649
pmd_mkyoung(pmd_t pmd)1650 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1651 {
1652 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1653 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1654 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1655 return pmd;
1656 }
1657
pmd_mkold(pmd_t pmd)1658 static inline pmd_t pmd_mkold(pmd_t pmd)
1659 {
1660 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1661 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1662 }
1663
pmd_modify(pmd_t pmd,pgprot_t newprot)1664 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1665 {
1666 unsigned long mask;
1667
1668 mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1669 mask |= _SEGMENT_ENTRY_DIRTY;
1670 mask |= _SEGMENT_ENTRY_YOUNG;
1671 mask |= _SEGMENT_ENTRY_LARGE;
1672 mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1673 pmd = __pmd(pmd_val(pmd) & mask);
1674 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1675 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1676 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1677 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1678 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1679 return pmd;
1680 }
1681
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1682 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1683 {
1684 return __pmd(physpage + massage_pgprot_pmd(pgprot));
1685 }
1686
1687 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1688
__pmdp_csp(pmd_t * pmdp)1689 static inline void __pmdp_csp(pmd_t *pmdp)
1690 {
1691 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1692 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1693 }
1694
1695 #define IDTE_GLOBAL 0
1696 #define IDTE_LOCAL 1
1697
1698 #define IDTE_PTOA 0x0800
1699 #define IDTE_NODAT 0x1000
1700 #define IDTE_GUEST_ASCE 0x2000
1701
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1702 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1703 unsigned long opt, unsigned long asce,
1704 int local)
1705 {
1706 unsigned long sto;
1707
1708 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1709 if (__builtin_constant_p(opt) && opt == 0) {
1710 /* flush without guest asce */
1711 asm volatile(
1712 " idte %[r1],0,%[r2],%[m4]"
1713 : "+m" (*pmdp)
1714 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1715 [m4] "i" (local)
1716 : "cc" );
1717 } else {
1718 /* flush with guest asce */
1719 asm volatile(
1720 " idte %[r1],%[r3],%[r2],%[m4]"
1721 : "+m" (*pmdp)
1722 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1723 [r3] "a" (asce), [m4] "i" (local)
1724 : "cc" );
1725 }
1726 }
1727
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1728 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1729 unsigned long opt, unsigned long asce,
1730 int local)
1731 {
1732 unsigned long r3o;
1733
1734 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1735 r3o |= _ASCE_TYPE_REGION3;
1736 if (__builtin_constant_p(opt) && opt == 0) {
1737 /* flush without guest asce */
1738 asm volatile(
1739 " idte %[r1],0,%[r2],%[m4]"
1740 : "+m" (*pudp)
1741 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1742 [m4] "i" (local)
1743 : "cc");
1744 } else {
1745 /* flush with guest asce */
1746 asm volatile(
1747 " idte %[r1],%[r3],%[r2],%[m4]"
1748 : "+m" (*pudp)
1749 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1750 [r3] "a" (asce), [m4] "i" (local)
1751 : "cc" );
1752 }
1753 }
1754
1755 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1756 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1757 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1758
1759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1760
1761 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1762 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1763 pgtable_t pgtable);
1764
1765 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1766 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1767
1768 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1769 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1770 unsigned long addr, pmd_t *pmdp,
1771 pmd_t entry, int dirty)
1772 {
1773 VM_BUG_ON(addr & ~HPAGE_MASK);
1774
1775 entry = pmd_mkyoung(entry);
1776 if (dirty)
1777 entry = pmd_mkdirty(entry);
1778 if (pmd_val(*pmdp) == pmd_val(entry))
1779 return 0;
1780 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1781 return 1;
1782 }
1783
1784 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1785 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1786 unsigned long addr, pmd_t *pmdp)
1787 {
1788 pmd_t pmd = *pmdp;
1789
1790 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1791 return pmd_young(pmd);
1792 }
1793
1794 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1795 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1796 unsigned long addr, pmd_t *pmdp)
1797 {
1798 VM_BUG_ON(addr & ~HPAGE_MASK);
1799 return pmdp_test_and_clear_young(vma, addr, pmdp);
1800 }
1801
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1802 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1803 pmd_t *pmdp, pmd_t entry)
1804 {
1805 set_pmd(pmdp, entry);
1806 }
1807
pmd_mkhuge(pmd_t pmd)1808 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1809 {
1810 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1811 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1812 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1813 }
1814
1815 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1816 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1817 unsigned long addr, pmd_t *pmdp)
1818 {
1819 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1820 }
1821
1822 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)1823 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1824 unsigned long addr,
1825 pmd_t *pmdp, int full)
1826 {
1827 if (full) {
1828 pmd_t pmd = *pmdp;
1829 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1830 return pmd;
1831 }
1832 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1833 }
1834
1835 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1836 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1837 unsigned long addr, pmd_t *pmdp)
1838 {
1839 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1840 }
1841
1842 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1843 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1844 unsigned long addr, pmd_t *pmdp)
1845 {
1846 pmd_t pmd;
1847
1848 VM_WARN_ON_ONCE(!pmd_present(*pmdp));
1849 pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1850 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1851 }
1852
1853 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1854 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1855 unsigned long addr, pmd_t *pmdp)
1856 {
1857 pmd_t pmd = *pmdp;
1858
1859 if (pmd_write(pmd))
1860 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1861 }
1862
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1863 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1864 unsigned long address,
1865 pmd_t *pmdp)
1866 {
1867 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1868 }
1869 #define pmdp_collapse_flush pmdp_collapse_flush
1870
1871 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1872
pmd_trans_huge(pmd_t pmd)1873 static inline int pmd_trans_huge(pmd_t pmd)
1874 {
1875 return pmd_leaf(pmd);
1876 }
1877
1878 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1879 static inline int has_transparent_hugepage(void)
1880 {
1881 return cpu_has_edat1() ? 1 : 0;
1882 }
1883 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1884
1885 /*
1886 * 64 bit swap entry format:
1887 * A page-table entry has some bits we have to treat in a special way.
1888 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1889 * as invalid.
1890 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1891 * | offset |E11XX|type |S0|
1892 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1893 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1894 *
1895 * Bits 0-51 store the offset.
1896 * Bit 52 (E) is used to remember PG_anon_exclusive.
1897 * Bits 57-61 store the type.
1898 * Bit 62 (S) is used for softdirty tracking.
1899 * Bits 55 and 56 (X) are unused.
1900 */
1901
1902 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1903 #define __SWP_OFFSET_SHIFT 12
1904 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1905 #define __SWP_TYPE_SHIFT 2
1906
mk_swap_pte(unsigned long type,unsigned long offset)1907 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1908 {
1909 unsigned long pteval;
1910
1911 pteval = _PAGE_INVALID | _PAGE_PROTECT;
1912 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1913 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1914 return __pte(pteval);
1915 }
1916
__swp_type(swp_entry_t entry)1917 static inline unsigned long __swp_type(swp_entry_t entry)
1918 {
1919 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1920 }
1921
__swp_offset(swp_entry_t entry)1922 static inline unsigned long __swp_offset(swp_entry_t entry)
1923 {
1924 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1925 }
1926
__swp_entry(unsigned long type,unsigned long offset)1927 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1928 {
1929 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1930 }
1931
1932 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1933 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1934
1935 /*
1936 * 64 bit swap entry format for REGION3 and SEGMENT table entries (RSTE)
1937 * Bits 59 and 63 are used to indicate the swap entry. Bit 58 marks the rste
1938 * as invalid.
1939 * A swap entry is indicated by bit pattern (rste & 0x011) == 0x010
1940 * | offset |Xtype |11TT|S0|
1941 * |0000000000111111111122222222223333333333444444444455|555555|5566|66|
1942 * |0123456789012345678901234567890123456789012345678901|234567|8901|23|
1943 *
1944 * Bits 0-51 store the offset.
1945 * Bits 53-57 store the type.
1946 * Bit 62 (S) is used for softdirty tracking.
1947 * Bits 60-61 (TT) indicate the table type: 0x01 for REGION3 and 0x00 for SEGMENT.
1948 * Bit 52 (X) is unused.
1949 */
1950
1951 #define __SWP_OFFSET_MASK_RSTE ((1UL << 52) - 1)
1952 #define __SWP_OFFSET_SHIFT_RSTE 12
1953 #define __SWP_TYPE_MASK_RSTE ((1UL << 5) - 1)
1954 #define __SWP_TYPE_SHIFT_RSTE 6
1955
1956 /*
1957 * TT bits set to 0x00 == SEGMENT. For REGION3 entries, caller must add R3
1958 * bits 0x01. See also __set_huge_pte_at().
1959 */
mk_swap_rste(unsigned long type,unsigned long offset)1960 static inline unsigned long mk_swap_rste(unsigned long type, unsigned long offset)
1961 {
1962 unsigned long rste;
1963
1964 rste = _RST_ENTRY_INVALID | _RST_ENTRY_COMM;
1965 rste |= (offset & __SWP_OFFSET_MASK_RSTE) << __SWP_OFFSET_SHIFT_RSTE;
1966 rste |= (type & __SWP_TYPE_MASK_RSTE) << __SWP_TYPE_SHIFT_RSTE;
1967 return rste;
1968 }
1969
__swp_type_rste(swp_entry_t entry)1970 static inline unsigned long __swp_type_rste(swp_entry_t entry)
1971 {
1972 return (entry.val >> __SWP_TYPE_SHIFT_RSTE) & __SWP_TYPE_MASK_RSTE;
1973 }
1974
__swp_offset_rste(swp_entry_t entry)1975 static inline unsigned long __swp_offset_rste(swp_entry_t entry)
1976 {
1977 return (entry.val >> __SWP_OFFSET_SHIFT_RSTE) & __SWP_OFFSET_MASK_RSTE;
1978 }
1979
1980 #define __rste_to_swp_entry(rste) ((swp_entry_t) { rste })
1981
1982 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1983 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1984 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1985 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1986 extern void vmem_unmap_4k_page(unsigned long addr);
1987 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1988 extern int s390_enable_sie(void);
1989 extern int s390_enable_skey(void);
1990 extern void s390_reset_cmma(struct mm_struct *mm);
1991
1992 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1993 #define HAVE_ARCH_UNMAPPED_AREA
1994 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1995
1996 #define pmd_pgtable(pmd) \
1997 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1998
gmap_pgste_get_pgt_addr(unsigned long * pgt)1999 static inline unsigned long gmap_pgste_get_pgt_addr(unsigned long *pgt)
2000 {
2001 unsigned long *pgstes, res;
2002
2003 pgstes = pgt + _PAGE_ENTRIES;
2004
2005 res = (pgstes[0] & PGSTE_ST2_MASK) << 16;
2006 res |= pgstes[1] & PGSTE_ST2_MASK;
2007 res |= (pgstes[2] & PGSTE_ST2_MASK) >> 16;
2008 res |= (pgstes[3] & PGSTE_ST2_MASK) >> 32;
2009
2010 return res;
2011 }
2012
2013 #endif /* _S390_PAGE_H */
2014