1 // SPDX-License-Identifier: GPL-2.0
2 /* BPF JIT compiler for RV64G
3 *
4 * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
5 *
6 */
7
8 #include <linux/bitfield.h>
9 #include <linux/bpf.h>
10 #include <linux/filter.h>
11 #include <linux/memory.h>
12 #include <linux/stop_machine.h>
13 #include <asm/text-patching.h>
14 #include <asm/cfi.h>
15 #include <asm/percpu.h>
16 #include "bpf_jit.h"
17
18 #define RV_MAX_REG_ARGS 8
19 #define RV_FENTRY_NINSNS 2
20 #define RV_FENTRY_NBYTES (RV_FENTRY_NINSNS * 4)
21 #define RV_KCFI_NINSNS (IS_ENABLED(CONFIG_CFI) ? 1 : 0)
22 /* imm that allows emit_imm to emit max count insns */
23 #define RV_MAX_COUNT_IMM 0x7FFF7FF7FF7FF7FF
24
25 #define RV_REG_TCC RV_REG_A6
26 #define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
27 #define RV_REG_ARENA RV_REG_S7 /* For storing arena_vm_start */
28
29 static const int regmap[] = {
30 [BPF_REG_0] = RV_REG_A5,
31 [BPF_REG_1] = RV_REG_A0,
32 [BPF_REG_2] = RV_REG_A1,
33 [BPF_REG_3] = RV_REG_A2,
34 [BPF_REG_4] = RV_REG_A3,
35 [BPF_REG_5] = RV_REG_A4,
36 [BPF_REG_6] = RV_REG_S1,
37 [BPF_REG_7] = RV_REG_S2,
38 [BPF_REG_8] = RV_REG_S3,
39 [BPF_REG_9] = RV_REG_S4,
40 [BPF_REG_FP] = RV_REG_S5,
41 [BPF_REG_AX] = RV_REG_T0,
42 };
43
44 static const int pt_regmap[] = {
45 [RV_REG_A0] = offsetof(struct pt_regs, a0),
46 [RV_REG_A1] = offsetof(struct pt_regs, a1),
47 [RV_REG_A2] = offsetof(struct pt_regs, a2),
48 [RV_REG_A3] = offsetof(struct pt_regs, a3),
49 [RV_REG_A4] = offsetof(struct pt_regs, a4),
50 [RV_REG_A5] = offsetof(struct pt_regs, a5),
51 [RV_REG_S1] = offsetof(struct pt_regs, s1),
52 [RV_REG_S2] = offsetof(struct pt_regs, s2),
53 [RV_REG_S3] = offsetof(struct pt_regs, s3),
54 [RV_REG_S4] = offsetof(struct pt_regs, s4),
55 [RV_REG_S5] = offsetof(struct pt_regs, s5),
56 [RV_REG_T0] = offsetof(struct pt_regs, t0),
57 };
58
59 enum {
60 RV_CTX_F_SEEN_TAIL_CALL = 0,
61 RV_CTX_F_SEEN_CALL = RV_REG_RA,
62 RV_CTX_F_SEEN_S1 = RV_REG_S1,
63 RV_CTX_F_SEEN_S2 = RV_REG_S2,
64 RV_CTX_F_SEEN_S3 = RV_REG_S3,
65 RV_CTX_F_SEEN_S4 = RV_REG_S4,
66 RV_CTX_F_SEEN_S5 = RV_REG_S5,
67 RV_CTX_F_SEEN_S6 = RV_REG_S6,
68 };
69
bpf_to_rv_reg(int bpf_reg,struct rv_jit_context * ctx)70 static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
71 {
72 u8 reg = regmap[bpf_reg];
73
74 switch (reg) {
75 case RV_CTX_F_SEEN_S1:
76 case RV_CTX_F_SEEN_S2:
77 case RV_CTX_F_SEEN_S3:
78 case RV_CTX_F_SEEN_S4:
79 case RV_CTX_F_SEEN_S5:
80 case RV_CTX_F_SEEN_S6:
81 __set_bit(reg, &ctx->flags);
82 }
83 return reg;
84 };
85
seen_reg(int reg,struct rv_jit_context * ctx)86 static bool seen_reg(int reg, struct rv_jit_context *ctx)
87 {
88 switch (reg) {
89 case RV_CTX_F_SEEN_CALL:
90 case RV_CTX_F_SEEN_S1:
91 case RV_CTX_F_SEEN_S2:
92 case RV_CTX_F_SEEN_S3:
93 case RV_CTX_F_SEEN_S4:
94 case RV_CTX_F_SEEN_S5:
95 case RV_CTX_F_SEEN_S6:
96 return test_bit(reg, &ctx->flags);
97 }
98 return false;
99 }
100
mark_fp(struct rv_jit_context * ctx)101 static void mark_fp(struct rv_jit_context *ctx)
102 {
103 __set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
104 }
105
mark_call(struct rv_jit_context * ctx)106 static void mark_call(struct rv_jit_context *ctx)
107 {
108 __set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
109 }
110
seen_call(struct rv_jit_context * ctx)111 static bool seen_call(struct rv_jit_context *ctx)
112 {
113 return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
114 }
115
mark_tail_call(struct rv_jit_context * ctx)116 static void mark_tail_call(struct rv_jit_context *ctx)
117 {
118 __set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
119 }
120
seen_tail_call(struct rv_jit_context * ctx)121 static bool seen_tail_call(struct rv_jit_context *ctx)
122 {
123 return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
124 }
125
rv_tail_call_reg(struct rv_jit_context * ctx)126 static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
127 {
128 mark_tail_call(ctx);
129
130 if (seen_call(ctx)) {
131 __set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
132 return RV_REG_S6;
133 }
134 return RV_REG_A6;
135 }
136
is_32b_int(s64 val)137 static bool is_32b_int(s64 val)
138 {
139 return -(1L << 31) <= val && val < (1L << 31);
140 }
141
in_auipc_jalr_range(s64 val)142 static bool in_auipc_jalr_range(s64 val)
143 {
144 /*
145 * auipc+jalr can reach any signed PC-relative offset in the range
146 * [-2^31 - 2^11, 2^31 - 2^11).
147 */
148 return (-(1L << 31) - (1L << 11)) <= val &&
149 val < ((1L << 31) - (1L << 11));
150 }
151
152 /* Modify rd pointer to alternate reg to avoid corrupting original reg */
emit_sextw_alt(u8 * rd,u8 ra,struct rv_jit_context * ctx)153 static void emit_sextw_alt(u8 *rd, u8 ra, struct rv_jit_context *ctx)
154 {
155 emit_sextw(ra, *rd, ctx);
156 *rd = ra;
157 }
158
emit_zextw_alt(u8 * rd,u8 ra,struct rv_jit_context * ctx)159 static void emit_zextw_alt(u8 *rd, u8 ra, struct rv_jit_context *ctx)
160 {
161 emit_zextw(ra, *rd, ctx);
162 *rd = ra;
163 }
164
165 /* Emit fixed-length instructions for address */
emit_addr(u8 rd,u64 addr,bool extra_pass,struct rv_jit_context * ctx)166 static int emit_addr(u8 rd, u64 addr, bool extra_pass, struct rv_jit_context *ctx)
167 {
168 /*
169 * Use the ro_insns(RX) to calculate the offset as the BPF program will
170 * finally run from this memory region.
171 */
172 u64 ip = (u64)(ctx->ro_insns + ctx->ninsns);
173 s64 off = addr - ip;
174 s64 upper = (off + (1 << 11)) >> 12;
175 s64 lower = off & 0xfff;
176
177 if (extra_pass && !in_auipc_jalr_range(off)) {
178 pr_err("bpf-jit: target offset 0x%llx is out of range\n", off);
179 return -ERANGE;
180 }
181
182 emit(rv_auipc(rd, upper), ctx);
183 emit(rv_addi(rd, rd, lower), ctx);
184 return 0;
185 }
186
187 /* Emit variable-length instructions for 32-bit and 64-bit imm */
emit_imm(u8 rd,s64 val,struct rv_jit_context * ctx)188 static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
189 {
190 /* Note that the immediate from the add is sign-extended,
191 * which means that we need to compensate this by adding 2^12,
192 * when the 12th bit is set. A simpler way of doing this, and
193 * getting rid of the check, is to just add 2**11 before the
194 * shift. The "Loading a 32-Bit constant" example from the
195 * "Computer Organization and Design, RISC-V edition" book by
196 * Patterson/Hennessy highlights this fact.
197 *
198 * This also means that we need to process LSB to MSB.
199 */
200 s64 upper = (val + (1 << 11)) >> 12;
201 /* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw,
202 * and addi are signed and RVC checks will perform signed comparisons.
203 */
204 s64 lower = ((val & 0xfff) << 52) >> 52;
205 int shift;
206
207 if (is_32b_int(val)) {
208 if (upper)
209 emit_lui(rd, upper, ctx);
210
211 if (!upper) {
212 emit_li(rd, lower, ctx);
213 return;
214 }
215
216 emit_addiw(rd, rd, lower, ctx);
217 return;
218 }
219
220 shift = __ffs(upper);
221 upper >>= shift;
222 shift += 12;
223
224 emit_imm(rd, upper, ctx);
225
226 emit_slli(rd, rd, shift, ctx);
227 if (lower)
228 emit_addi(rd, rd, lower, ctx);
229 }
230
__build_epilogue(bool is_tail_call,struct rv_jit_context * ctx)231 static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
232 {
233 int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
234
235 if (seen_reg(RV_REG_RA, ctx)) {
236 emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx);
237 store_offset -= 8;
238 }
239 emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx);
240 store_offset -= 8;
241 if (seen_reg(RV_REG_S1, ctx)) {
242 emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx);
243 store_offset -= 8;
244 }
245 if (seen_reg(RV_REG_S2, ctx)) {
246 emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx);
247 store_offset -= 8;
248 }
249 if (seen_reg(RV_REG_S3, ctx)) {
250 emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx);
251 store_offset -= 8;
252 }
253 if (seen_reg(RV_REG_S4, ctx)) {
254 emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx);
255 store_offset -= 8;
256 }
257 if (seen_reg(RV_REG_S5, ctx)) {
258 emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx);
259 store_offset -= 8;
260 }
261 if (seen_reg(RV_REG_S6, ctx)) {
262 emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx);
263 store_offset -= 8;
264 }
265 if (ctx->arena_vm_start) {
266 emit_ld(RV_REG_ARENA, store_offset, RV_REG_SP, ctx);
267 store_offset -= 8;
268 }
269
270 emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx);
271 /* Set return value. */
272 if (!is_tail_call)
273 emit_addiw(RV_REG_A0, RV_REG_A5, 0, ctx);
274 emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
275 /* kcfi, fentry and TCC init insns will be skipped on tailcall */
276 is_tail_call ? (RV_KCFI_NINSNS + RV_FENTRY_NINSNS + 1) * 4 : 0,
277 ctx);
278 }
279
emit_bcc(u8 cond,u8 rd,u8 rs,int rvoff,struct rv_jit_context * ctx)280 static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
281 struct rv_jit_context *ctx)
282 {
283 switch (cond) {
284 case BPF_JEQ:
285 emit(rv_beq(rd, rs, rvoff >> 1), ctx);
286 return;
287 case BPF_JGT:
288 emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
289 return;
290 case BPF_JLT:
291 emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
292 return;
293 case BPF_JGE:
294 emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
295 return;
296 case BPF_JLE:
297 emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
298 return;
299 case BPF_JNE:
300 emit(rv_bne(rd, rs, rvoff >> 1), ctx);
301 return;
302 case BPF_JSGT:
303 emit(rv_blt(rs, rd, rvoff >> 1), ctx);
304 return;
305 case BPF_JSLT:
306 emit(rv_blt(rd, rs, rvoff >> 1), ctx);
307 return;
308 case BPF_JSGE:
309 emit(rv_bge(rd, rs, rvoff >> 1), ctx);
310 return;
311 case BPF_JSLE:
312 emit(rv_bge(rs, rd, rvoff >> 1), ctx);
313 }
314 }
315
emit_branch(u8 cond,u8 rd,u8 rs,int rvoff,struct rv_jit_context * ctx)316 static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
317 struct rv_jit_context *ctx)
318 {
319 s64 upper, lower;
320
321 if (is_13b_int(rvoff)) {
322 emit_bcc(cond, rd, rs, rvoff, ctx);
323 return;
324 }
325
326 /* Adjust for jal */
327 rvoff -= 4;
328
329 /* Transform, e.g.:
330 * bne rd,rs,foo
331 * to
332 * beq rd,rs,<.L1>
333 * (auipc foo)
334 * jal(r) foo
335 * .L1
336 */
337 cond = invert_bpf_cond(cond);
338 if (is_21b_int(rvoff)) {
339 emit_bcc(cond, rd, rs, 8, ctx);
340 emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
341 return;
342 }
343
344 /* 32b No need for an additional rvoff adjustment, since we
345 * get that from the auipc at PC', where PC = PC' + 4.
346 */
347 upper = (rvoff + (1 << 11)) >> 12;
348 lower = rvoff & 0xfff;
349
350 emit_bcc(cond, rd, rs, 12, ctx);
351 emit(rv_auipc(RV_REG_T1, upper), ctx);
352 emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
353 }
354
emit_bpf_tail_call(int insn,struct rv_jit_context * ctx)355 static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
356 {
357 int tc_ninsn, off, start_insn = ctx->ninsns;
358 u8 tcc = rv_tail_call_reg(ctx);
359
360 /* a0: &ctx
361 * a1: &array
362 * a2: index
363 *
364 * if (index >= array->map.max_entries)
365 * goto out;
366 */
367 tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
368 ctx->offset[0];
369 emit_zextw(RV_REG_A2, RV_REG_A2, ctx);
370
371 off = offsetof(struct bpf_array, map.max_entries);
372 if (is_12b_check(off, insn))
373 return -1;
374 emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
375 off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
376 emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
377
378 /* if (--TCC < 0)
379 * goto out;
380 */
381 emit_addi(RV_REG_TCC, tcc, -1, ctx);
382 off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
383 emit_branch(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx);
384
385 /* prog = array->ptrs[index];
386 * if (!prog)
387 * goto out;
388 */
389 emit_sh3add(RV_REG_T2, RV_REG_A2, RV_REG_A1, ctx);
390 off = offsetof(struct bpf_array, ptrs);
391 if (is_12b_check(off, insn))
392 return -1;
393 emit_ld(RV_REG_T2, off, RV_REG_T2, ctx);
394 off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
395 emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
396
397 /* goto *(prog->bpf_func + 4); */
398 off = offsetof(struct bpf_prog, bpf_func);
399 if (is_12b_check(off, insn))
400 return -1;
401 emit_ld(RV_REG_T3, off, RV_REG_T2, ctx);
402 __build_epilogue(true, ctx);
403 return 0;
404 }
405
init_regs(u8 * rd,u8 * rs,const struct bpf_insn * insn,struct rv_jit_context * ctx)406 static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
407 struct rv_jit_context *ctx)
408 {
409 u8 code = insn->code;
410
411 switch (code) {
412 case BPF_JMP | BPF_JA:
413 case BPF_JMP | BPF_CALL:
414 case BPF_JMP | BPF_EXIT:
415 case BPF_JMP | BPF_TAIL_CALL:
416 break;
417 default:
418 *rd = bpf_to_rv_reg(insn->dst_reg, ctx);
419 }
420
421 if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
422 code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
423 code & BPF_LDX || code & BPF_STX)
424 *rs = bpf_to_rv_reg(insn->src_reg, ctx);
425 }
426
emit_jump_and_link(u8 rd,s64 rvoff,bool fixed_addr,struct rv_jit_context * ctx)427 static int emit_jump_and_link(u8 rd, s64 rvoff, bool fixed_addr,
428 struct rv_jit_context *ctx)
429 {
430 s64 upper, lower;
431
432 if (rvoff && fixed_addr && is_21b_int(rvoff)) {
433 emit(rv_jal(rd, rvoff >> 1), ctx);
434 return 0;
435 } else if (in_auipc_jalr_range(rvoff)) {
436 upper = (rvoff + (1 << 11)) >> 12;
437 lower = rvoff & 0xfff;
438 emit(rv_auipc(RV_REG_T1, upper), ctx);
439 emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
440 return 0;
441 }
442
443 pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff);
444 return -ERANGE;
445 }
446
is_signed_bpf_cond(u8 cond)447 static bool is_signed_bpf_cond(u8 cond)
448 {
449 return cond == BPF_JSGT || cond == BPF_JSLT ||
450 cond == BPF_JSGE || cond == BPF_JSLE;
451 }
452
emit_call(u64 addr,bool fixed_addr,struct rv_jit_context * ctx)453 static int emit_call(u64 addr, bool fixed_addr, struct rv_jit_context *ctx)
454 {
455 s64 off = 0;
456 u64 ip;
457
458 if (addr && ctx->insns && ctx->ro_insns) {
459 /*
460 * Use the ro_insns(RX) to calculate the offset as the BPF
461 * program will finally run from this memory region.
462 */
463 ip = (u64)(long)(ctx->ro_insns + ctx->ninsns);
464 off = addr - ip;
465 }
466
467 return emit_jump_and_link(RV_REG_RA, off, fixed_addr, ctx);
468 }
469
emit_kcfi(u32 hash,struct rv_jit_context * ctx)470 static inline void emit_kcfi(u32 hash, struct rv_jit_context *ctx)
471 {
472 if (IS_ENABLED(CONFIG_CFI))
473 emit(hash, ctx);
474 }
475
emit_ldx_insn(u8 rd,s16 off,u8 rs,u8 size,bool sign_ext,struct rv_jit_context * ctx)476 static void emit_ldx_insn(u8 rd, s16 off, u8 rs, u8 size, bool sign_ext,
477 struct rv_jit_context *ctx)
478 {
479 switch (size) {
480 case BPF_B:
481 emit(sign_ext ? rv_lb(rd, off, rs) : rv_lbu(rd, off, rs), ctx);
482 break;
483 case BPF_H:
484 emit(sign_ext ? rv_lh(rd, off, rs) : rv_lhu(rd, off, rs), ctx);
485 break;
486 case BPF_W:
487 emit(sign_ext ? rv_lw(rd, off, rs) : rv_lwu(rd, off, rs), ctx);
488 break;
489 case BPF_DW:
490 emit_ld(rd, off, rs, ctx);
491 break;
492 }
493
494 }
495
emit_stx_insn(u8 rd,s16 off,u8 rs,u8 size,struct rv_jit_context * ctx)496 static void emit_stx_insn(u8 rd, s16 off, u8 rs, u8 size, struct rv_jit_context *ctx)
497 {
498 switch (size) {
499 case BPF_B:
500 emit(rv_sb(rd, off, rs), ctx);
501 break;
502 case BPF_H:
503 emit(rv_sh(rd, off, rs), ctx);
504 break;
505 case BPF_W:
506 emit_sw(rd, off, rs, ctx);
507 break;
508 case BPF_DW:
509 emit_sd(rd, off, rs, ctx);
510 break;
511 }
512 }
513
emit_ldx(u8 rd,s16 off,u8 rs,u8 size,bool sign_ext,struct rv_jit_context * ctx)514 static void emit_ldx(u8 rd, s16 off, u8 rs, u8 size, bool sign_ext,
515 struct rv_jit_context *ctx)
516 {
517 if (is_12b_int(off)) {
518 ctx->ex_insn_off = ctx->ninsns;
519 emit_ldx_insn(rd, off, rs, size, sign_ext, ctx);
520 ctx->ex_jmp_off = ctx->ninsns;
521 return;
522 }
523
524 emit_imm(RV_REG_T1, off, ctx);
525 emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
526 ctx->ex_insn_off = ctx->ninsns;
527 emit_ldx_insn(rd, 0, RV_REG_T1, size, sign_ext, ctx);
528 ctx->ex_jmp_off = ctx->ninsns;
529 }
530
emit_st(u8 rd,s16 off,s32 imm,u8 size,struct rv_jit_context * ctx)531 static void emit_st(u8 rd, s16 off, s32 imm, u8 size, struct rv_jit_context *ctx)
532 {
533 emit_imm(RV_REG_T1, imm, ctx);
534 if (is_12b_int(off)) {
535 ctx->ex_insn_off = ctx->ninsns;
536 emit_stx_insn(rd, off, RV_REG_T1, size, ctx);
537 ctx->ex_jmp_off = ctx->ninsns;
538 return;
539 }
540
541 emit_imm(RV_REG_T2, off, ctx);
542 emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
543 ctx->ex_insn_off = ctx->ninsns;
544 emit_stx_insn(RV_REG_T2, 0, RV_REG_T1, size, ctx);
545 ctx->ex_jmp_off = ctx->ninsns;
546 }
547
emit_stx(u8 rd,s16 off,u8 rs,u8 size,struct rv_jit_context * ctx)548 static void emit_stx(u8 rd, s16 off, u8 rs, u8 size, struct rv_jit_context *ctx)
549 {
550 if (is_12b_int(off)) {
551 ctx->ex_insn_off = ctx->ninsns;
552 emit_stx_insn(rd, off, rs, size, ctx);
553 ctx->ex_jmp_off = ctx->ninsns;
554 return;
555 }
556
557 emit_imm(RV_REG_T1, off, ctx);
558 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
559 ctx->ex_insn_off = ctx->ninsns;
560 emit_stx_insn(RV_REG_T1, 0, rs, size, ctx);
561 ctx->ex_jmp_off = ctx->ninsns;
562 }
563
emit_atomic_ld_st(u8 rd,u8 rs,const struct bpf_insn * insn,struct rv_jit_context * ctx)564 static int emit_atomic_ld_st(u8 rd, u8 rs, const struct bpf_insn *insn,
565 struct rv_jit_context *ctx)
566 {
567 u8 code = insn->code;
568 s32 imm = insn->imm;
569 s16 off = insn->off;
570
571 switch (imm) {
572 /* dst_reg = load_acquire(src_reg + off16) */
573 case BPF_LOAD_ACQ:
574 if (BPF_MODE(code) == BPF_PROBE_ATOMIC) {
575 emit_add(RV_REG_T2, rs, RV_REG_ARENA, ctx);
576 rs = RV_REG_T2;
577 }
578
579 emit_ldx(rd, off, rs, BPF_SIZE(code), false, ctx);
580 emit_fence_r_rw(ctx);
581
582 /* If our next insn is a redundant zext, return 1 to tell
583 * build_body() to skip it.
584 */
585 if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
586 return 1;
587 break;
588 /* store_release(dst_reg + off16, src_reg) */
589 case BPF_STORE_REL:
590 if (BPF_MODE(code) == BPF_PROBE_ATOMIC) {
591 emit_add(RV_REG_T2, rd, RV_REG_ARENA, ctx);
592 rd = RV_REG_T2;
593 }
594
595 emit_fence_rw_w(ctx);
596 emit_stx(rd, off, rs, BPF_SIZE(code), ctx);
597 break;
598 default:
599 pr_err_once("bpf-jit: invalid atomic load/store opcode %02x\n", imm);
600 return -EINVAL;
601 }
602
603 return 0;
604 }
605
emit_atomic_rmw(u8 rd,u8 rs,const struct bpf_insn * insn,struct rv_jit_context * ctx)606 static int emit_atomic_rmw(u8 rd, u8 rs, const struct bpf_insn *insn,
607 struct rv_jit_context *ctx)
608 {
609 u8 code = insn->code;
610 s16 off = insn->off;
611 s32 imm = insn->imm;
612 bool is64 = BPF_SIZE(code) == BPF_DW;
613
614 if (BPF_SIZE(code) != BPF_W && BPF_SIZE(code) != BPF_DW) {
615 pr_err_once("bpf-jit: 1- and 2-byte RMW atomics are not supported\n");
616 return -EINVAL;
617 }
618
619 if (off) {
620 if (is_12b_int(off)) {
621 emit_addi(RV_REG_T1, rd, off, ctx);
622 } else {
623 emit_imm(RV_REG_T1, off, ctx);
624 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
625 }
626 rd = RV_REG_T1;
627 }
628
629 if (BPF_MODE(code) == BPF_PROBE_ATOMIC) {
630 emit_add(RV_REG_T1, rd, RV_REG_ARENA, ctx);
631 rd = RV_REG_T1;
632 }
633
634 switch (imm) {
635 /* lock *(u32/u64 *)(dst_reg + off16) <op>= src_reg */
636 case BPF_ADD:
637 ctx->ex_insn_off = ctx->ninsns;
638 emit(is64 ? rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0) :
639 rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
640 ctx->ex_jmp_off = ctx->ninsns;
641 break;
642 case BPF_AND:
643 ctx->ex_insn_off = ctx->ninsns;
644 emit(is64 ? rv_amoand_d(RV_REG_ZERO, rs, rd, 0, 0) :
645 rv_amoand_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
646 ctx->ex_jmp_off = ctx->ninsns;
647 break;
648 case BPF_OR:
649 ctx->ex_insn_off = ctx->ninsns;
650 emit(is64 ? rv_amoor_d(RV_REG_ZERO, rs, rd, 0, 0) :
651 rv_amoor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
652 ctx->ex_jmp_off = ctx->ninsns;
653 break;
654 case BPF_XOR:
655 ctx->ex_insn_off = ctx->ninsns;
656 emit(is64 ? rv_amoxor_d(RV_REG_ZERO, rs, rd, 0, 0) :
657 rv_amoxor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
658 ctx->ex_jmp_off = ctx->ninsns;
659 break;
660 /* src_reg = atomic_fetch_<op>(dst_reg + off16, src_reg) */
661 case BPF_ADD | BPF_FETCH:
662 ctx->ex_insn_off = ctx->ninsns;
663 emit(is64 ? rv_amoadd_d(rs, rs, rd, 1, 1) :
664 rv_amoadd_w(rs, rs, rd, 1, 1), ctx);
665 ctx->ex_jmp_off = ctx->ninsns;
666 if (!is64)
667 emit_zextw(rs, rs, ctx);
668 break;
669 case BPF_AND | BPF_FETCH:
670 ctx->ex_insn_off = ctx->ninsns;
671 emit(is64 ? rv_amoand_d(rs, rs, rd, 1, 1) :
672 rv_amoand_w(rs, rs, rd, 1, 1), ctx);
673 ctx->ex_jmp_off = ctx->ninsns;
674 if (!is64)
675 emit_zextw(rs, rs, ctx);
676 break;
677 case BPF_OR | BPF_FETCH:
678 ctx->ex_insn_off = ctx->ninsns;
679 emit(is64 ? rv_amoor_d(rs, rs, rd, 1, 1) :
680 rv_amoor_w(rs, rs, rd, 1, 1), ctx);
681 ctx->ex_jmp_off = ctx->ninsns;
682 if (!is64)
683 emit_zextw(rs, rs, ctx);
684 break;
685 case BPF_XOR | BPF_FETCH:
686 ctx->ex_insn_off = ctx->ninsns;
687 emit(is64 ? rv_amoxor_d(rs, rs, rd, 1, 1) :
688 rv_amoxor_w(rs, rs, rd, 1, 1), ctx);
689 ctx->ex_jmp_off = ctx->ninsns;
690 if (!is64)
691 emit_zextw(rs, rs, ctx);
692 break;
693 /* src_reg = atomic_xchg(dst_reg + off16, src_reg); */
694 case BPF_XCHG:
695 ctx->ex_insn_off = ctx->ninsns;
696 emit(is64 ? rv_amoswap_d(rs, rs, rd, 1, 1) :
697 rv_amoswap_w(rs, rs, rd, 1, 1), ctx);
698 ctx->ex_jmp_off = ctx->ninsns;
699 if (!is64)
700 emit_zextw(rs, rs, ctx);
701 break;
702 /* r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg); */
703 case BPF_CMPXCHG:
704 emit_cmpxchg(rd, rs, regmap[BPF_REG_0], is64, ctx);
705 break;
706 default:
707 pr_err_once("bpf-jit: invalid atomic RMW opcode %02x\n", imm);
708 return -EINVAL;
709 }
710
711 return 0;
712 }
713
714 /*
715 * Sign-extend the register if necessary
716 */
sign_extend(u8 rd,u8 rs,u8 sz,bool sign,struct rv_jit_context * ctx)717 static int sign_extend(u8 rd, u8 rs, u8 sz, bool sign, struct rv_jit_context *ctx)
718 {
719 if (!sign && (sz == 1 || sz == 2)) {
720 if (rd != rs)
721 emit_mv(rd, rs, ctx);
722 return 0;
723 }
724
725 switch (sz) {
726 case 1:
727 emit_sextb(rd, rs, ctx);
728 break;
729 case 2:
730 emit_sexth(rd, rs, ctx);
731 break;
732 case 4:
733 emit_sextw(rd, rs, ctx);
734 break;
735 case 8:
736 if (rd != rs)
737 emit_mv(rd, rs, ctx);
738 break;
739 default:
740 pr_err("bpf-jit: invalid size %d for sign_extend\n", sz);
741 return -EINVAL;
742 }
743
744 return 0;
745 }
746
747 #define BPF_FIXUP_OFFSET_MASK GENMASK(26, 0)
748 #define BPF_FIXUP_REG_MASK GENMASK(31, 27)
749 #define REG_DONT_CLEAR_MARKER 0 /* RV_REG_ZERO unused in pt_regmap */
750
ex_handler_bpf(const struct exception_table_entry * ex,struct pt_regs * regs)751 bool ex_handler_bpf(const struct exception_table_entry *ex,
752 struct pt_regs *regs)
753 {
754 off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
755 int regs_offset = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
756
757 if (regs_offset != REG_DONT_CLEAR_MARKER)
758 *(unsigned long *)((void *)regs + pt_regmap[regs_offset]) = 0;
759 regs->epc = (unsigned long)&ex->fixup - offset;
760
761 return true;
762 }
763
764 /* For accesses to BTF pointers, add an entry to the exception table */
add_exception_handler(const struct bpf_insn * insn,int dst_reg,struct rv_jit_context * ctx)765 static int add_exception_handler(const struct bpf_insn *insn, int dst_reg,
766 struct rv_jit_context *ctx)
767 {
768 struct exception_table_entry *ex;
769 unsigned long pc;
770 off_t ins_offset;
771 off_t fixup_offset;
772
773 if (!ctx->insns || !ctx->ro_insns || !ctx->prog->aux->extable ||
774 ctx->ex_insn_off <= 0 || ctx->ex_jmp_off <= 0)
775 return 0;
776
777 if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
778 BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
779 BPF_MODE(insn->code) != BPF_PROBE_MEM32 &&
780 BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
781 return 0;
782
783 if (WARN_ON_ONCE(ctx->nexentries >= ctx->prog->aux->num_exentries))
784 return -EINVAL;
785
786 if (WARN_ON_ONCE(ctx->ex_insn_off > ctx->ninsns || ctx->ex_jmp_off > ctx->ninsns))
787 return -EINVAL;
788
789 ex = &ctx->prog->aux->extable[ctx->nexentries];
790 pc = (unsigned long)&ctx->ro_insns[ctx->ex_insn_off];
791
792 /*
793 * This is the relative offset of the instruction that may fault from
794 * the exception table itself. This will be written to the exception
795 * table and if this instruction faults, the destination register will
796 * be set to '0' and the execution will jump to the next instruction.
797 */
798 ins_offset = pc - (long)&ex->insn;
799 if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
800 return -ERANGE;
801
802 /*
803 * Since the extable follows the program, the fixup offset is always
804 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
805 * to keep things simple, and put the destination register in the upper
806 * bits. We don't need to worry about buildtime or runtime sort
807 * modifying the upper bits because the table is already sorted, and
808 * isn't part of the main exception table.
809 *
810 * The fixup_offset is set to the next instruction from the instruction
811 * that may fault. The execution will jump to this after handling the
812 * fault.
813 */
814 fixup_offset = (long)&ex->fixup - (long)&ctx->ro_insns[ctx->ex_jmp_off];
815 if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
816 return -ERANGE;
817
818 /*
819 * The offsets above have been calculated using the RO buffer but we
820 * need to use the R/W buffer for writes.
821 * switch ex to rw buffer for writing.
822 */
823 ex = (void *)ctx->insns + ((void *)ex - (void *)ctx->ro_insns);
824
825 ex->insn = ins_offset;
826
827 ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
828 FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
829 ex->type = EX_TYPE_BPF;
830
831 ctx->ex_insn_off = 0;
832 ctx->ex_jmp_off = 0;
833 ctx->nexentries++;
834 return 0;
835 }
836
gen_jump_or_nops(void * target,void * ip,u32 * insns,bool is_call)837 static int gen_jump_or_nops(void *target, void *ip, u32 *insns, bool is_call)
838 {
839 s64 rvoff;
840 struct rv_jit_context ctx;
841
842 ctx.ninsns = 0;
843 ctx.insns = (u16 *)insns;
844
845 if (!target) {
846 emit(rv_nop(), &ctx);
847 emit(rv_nop(), &ctx);
848 return 0;
849 }
850
851 rvoff = (s64)(target - ip);
852 return emit_jump_and_link(is_call ? RV_REG_T0 : RV_REG_ZERO, rvoff, false, &ctx);
853 }
854
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type poke_type,void * old_addr,void * new_addr)855 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
856 void *old_addr, void *new_addr)
857 {
858 u32 old_insns[RV_FENTRY_NINSNS], new_insns[RV_FENTRY_NINSNS];
859 bool is_call = poke_type == BPF_MOD_CALL;
860 int ret;
861
862 if (!is_kernel_text((unsigned long)ip) &&
863 !is_bpf_text_address((unsigned long)ip))
864 return -ENOTSUPP;
865
866 ret = gen_jump_or_nops(old_addr, ip, old_insns, is_call);
867 if (ret)
868 return ret;
869
870 if (memcmp(ip, old_insns, RV_FENTRY_NBYTES))
871 return -EFAULT;
872
873 ret = gen_jump_or_nops(new_addr, ip, new_insns, is_call);
874 if (ret)
875 return ret;
876
877 cpus_read_lock();
878 mutex_lock(&text_mutex);
879 if (memcmp(ip, new_insns, RV_FENTRY_NBYTES))
880 ret = patch_text(ip, new_insns, RV_FENTRY_NBYTES);
881 mutex_unlock(&text_mutex);
882 cpus_read_unlock();
883
884 return ret;
885 }
886
store_args(int nr_arg_slots,int args_off,struct rv_jit_context * ctx)887 static void store_args(int nr_arg_slots, int args_off, struct rv_jit_context *ctx)
888 {
889 int i;
890
891 for (i = 0; i < nr_arg_slots; i++) {
892 if (i < RV_MAX_REG_ARGS) {
893 emit_sd(RV_REG_FP, -args_off, RV_REG_A0 + i, ctx);
894 } else {
895 /* skip slots for T0 and FP of traced function */
896 emit_ld(RV_REG_T1, 16 + (i - RV_MAX_REG_ARGS) * 8, RV_REG_FP, ctx);
897 emit_sd(RV_REG_FP, -args_off, RV_REG_T1, ctx);
898 }
899 args_off -= 8;
900 }
901 }
902
restore_args(int nr_reg_args,int args_off,struct rv_jit_context * ctx)903 static void restore_args(int nr_reg_args, int args_off, struct rv_jit_context *ctx)
904 {
905 int i;
906
907 for (i = 0; i < nr_reg_args; i++) {
908 emit_ld(RV_REG_A0 + i, -args_off, RV_REG_FP, ctx);
909 args_off -= 8;
910 }
911 }
912
restore_stack_args(int nr_stack_args,int args_off,int stk_arg_off,struct rv_jit_context * ctx)913 static void restore_stack_args(int nr_stack_args, int args_off, int stk_arg_off,
914 struct rv_jit_context *ctx)
915 {
916 int i;
917
918 for (i = 0; i < nr_stack_args; i++) {
919 emit_ld(RV_REG_T1, -(args_off - RV_MAX_REG_ARGS * 8), RV_REG_FP, ctx);
920 emit_sd(RV_REG_FP, -stk_arg_off, RV_REG_T1, ctx);
921 args_off -= 8;
922 stk_arg_off -= 8;
923 }
924 }
925
invoke_bpf_prog(struct bpf_tramp_link * l,int args_off,int retval_off,int run_ctx_off,bool save_ret,struct rv_jit_context * ctx)926 static int invoke_bpf_prog(struct bpf_tramp_link *l, int args_off, int retval_off,
927 int run_ctx_off, bool save_ret, struct rv_jit_context *ctx)
928 {
929 int ret, branch_off;
930 struct bpf_prog *p = l->link.prog;
931 int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
932
933 if (l->cookie) {
934 emit_imm(RV_REG_T1, l->cookie, ctx);
935 emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_T1, ctx);
936 } else {
937 emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_ZERO, ctx);
938 }
939
940 /* arg1: prog */
941 emit_imm(RV_REG_A0, (const s64)p, ctx);
942 /* arg2: &run_ctx */
943 emit_addi(RV_REG_A1, RV_REG_FP, -run_ctx_off, ctx);
944 ret = emit_call((const u64)bpf_trampoline_enter(p), true, ctx);
945 if (ret)
946 return ret;
947
948 /* store prog start time */
949 emit_mv(RV_REG_S1, RV_REG_A0, ctx);
950
951 /* if (__bpf_prog_enter(prog) == 0)
952 * goto skip_exec_of_prog;
953 */
954 branch_off = ctx->ninsns;
955 /* nop reserved for conditional jump */
956 emit(rv_nop(), ctx);
957
958 /* arg1: &args_off */
959 emit_addi(RV_REG_A0, RV_REG_FP, -args_off, ctx);
960 if (!p->jited)
961 /* arg2: progs[i]->insnsi for interpreter */
962 emit_imm(RV_REG_A1, (const s64)p->insnsi, ctx);
963 ret = emit_call((const u64)p->bpf_func, true, ctx);
964 if (ret)
965 return ret;
966
967 if (save_ret) {
968 emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
969 emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
970 }
971
972 /* update branch with beqz */
973 if (ctx->insns) {
974 int offset = ninsns_rvoff(ctx->ninsns - branch_off);
975 u32 insn = rv_beq(RV_REG_A0, RV_REG_ZERO, offset >> 1);
976 *(u32 *)(ctx->insns + branch_off) = insn;
977 }
978
979 /* arg1: prog */
980 emit_imm(RV_REG_A0, (const s64)p, ctx);
981 /* arg2: prog start time */
982 emit_mv(RV_REG_A1, RV_REG_S1, ctx);
983 /* arg3: &run_ctx */
984 emit_addi(RV_REG_A2, RV_REG_FP, -run_ctx_off, ctx);
985 ret = emit_call((const u64)bpf_trampoline_exit(p), true, ctx);
986
987 return ret;
988 }
989
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,const struct btf_func_model * m,struct bpf_tramp_links * tlinks,void * func_addr,u32 flags,struct rv_jit_context * ctx)990 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
991 const struct btf_func_model *m,
992 struct bpf_tramp_links *tlinks,
993 void *func_addr, u32 flags,
994 struct rv_jit_context *ctx)
995 {
996 int i, ret, offset;
997 int *branches_off = NULL;
998 int stack_size = 0, nr_arg_slots = 0;
999 int retval_off, args_off, nregs_off, ip_off, run_ctx_off, sreg_off, stk_arg_off;
1000 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
1001 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
1002 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
1003 bool is_struct_ops = flags & BPF_TRAMP_F_INDIRECT;
1004 void *orig_call = func_addr;
1005 bool save_ret;
1006 u32 insn;
1007
1008 /* Two types of generated trampoline stack layout:
1009 *
1010 * 1. trampoline called from function entry
1011 * --------------------------------------
1012 * FP + 8 [ RA to parent func ] return address to parent
1013 * function
1014 * FP + 0 [ FP of parent func ] frame pointer of parent
1015 * function
1016 * FP - 8 [ T0 to traced func ] return address of traced
1017 * function
1018 * FP - 16 [ FP of traced func ] frame pointer of traced
1019 * function
1020 * --------------------------------------
1021 *
1022 * 2. trampoline called directly
1023 * --------------------------------------
1024 * FP - 8 [ RA to caller func ] return address to caller
1025 * function
1026 * FP - 16 [ FP of caller func ] frame pointer of caller
1027 * function
1028 * --------------------------------------
1029 *
1030 * FP - retval_off [ return value ] BPF_TRAMP_F_CALL_ORIG or
1031 * BPF_TRAMP_F_RET_FENTRY_RET
1032 * [ argN ]
1033 * [ ... ]
1034 * FP - args_off [ arg1 ]
1035 *
1036 * FP - nregs_off [ regs count ]
1037 *
1038 * FP - ip_off [ traced func ] BPF_TRAMP_F_IP_ARG
1039 *
1040 * FP - run_ctx_off [ bpf_tramp_run_ctx ]
1041 *
1042 * FP - sreg_off [ callee saved reg ]
1043 *
1044 * [ pads ] pads for 16 bytes alignment
1045 *
1046 * [ stack_argN ]
1047 * [ ... ]
1048 * FP - stk_arg_off [ stack_arg1 ] BPF_TRAMP_F_CALL_ORIG
1049 */
1050
1051 if (flags & (BPF_TRAMP_F_ORIG_STACK | BPF_TRAMP_F_SHARE_IPMODIFY))
1052 return -ENOTSUPP;
1053
1054 if (m->nr_args > MAX_BPF_FUNC_ARGS)
1055 return -ENOTSUPP;
1056
1057 for (i = 0; i < m->nr_args; i++)
1058 nr_arg_slots += round_up(m->arg_size[i], 8) / 8;
1059
1060 /* room of trampoline frame to store return address and frame pointer */
1061 stack_size += 16;
1062
1063 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
1064 if (save_ret)
1065 stack_size += 16; /* Save both A5 (BPF R0) and A0 */
1066 retval_off = stack_size;
1067
1068 stack_size += nr_arg_slots * 8;
1069 args_off = stack_size;
1070
1071 stack_size += 8;
1072 nregs_off = stack_size;
1073
1074 if (flags & BPF_TRAMP_F_IP_ARG) {
1075 stack_size += 8;
1076 ip_off = stack_size;
1077 }
1078
1079 stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
1080 run_ctx_off = stack_size;
1081
1082 stack_size += 8;
1083 sreg_off = stack_size;
1084
1085 if ((flags & BPF_TRAMP_F_CALL_ORIG) && (nr_arg_slots - RV_MAX_REG_ARGS > 0))
1086 stack_size += (nr_arg_slots - RV_MAX_REG_ARGS) * 8;
1087
1088 stack_size = round_up(stack_size, STACK_ALIGN);
1089
1090 /* room for args on stack must be at the top of stack */
1091 stk_arg_off = stack_size;
1092
1093 if (!is_struct_ops) {
1094 /* For the trampoline called from function entry,
1095 * the frame of traced function and the frame of
1096 * trampoline need to be considered.
1097 */
1098 emit_addi(RV_REG_SP, RV_REG_SP, -16, ctx);
1099 emit_sd(RV_REG_SP, 8, RV_REG_RA, ctx);
1100 emit_sd(RV_REG_SP, 0, RV_REG_FP, ctx);
1101 emit_addi(RV_REG_FP, RV_REG_SP, 16, ctx);
1102
1103 emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
1104 emit_sd(RV_REG_SP, stack_size - 8, RV_REG_T0, ctx);
1105 emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
1106 emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
1107 } else {
1108 /* emit kcfi hash */
1109 emit_kcfi(cfi_get_func_hash(func_addr), ctx);
1110 /* For the trampoline called directly, just handle
1111 * the frame of trampoline.
1112 */
1113 emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
1114 emit_sd(RV_REG_SP, stack_size - 8, RV_REG_RA, ctx);
1115 emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
1116 emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
1117 }
1118
1119 /* callee saved register S1 to pass start time */
1120 emit_sd(RV_REG_FP, -sreg_off, RV_REG_S1, ctx);
1121
1122 /* store ip address of the traced function */
1123 if (flags & BPF_TRAMP_F_IP_ARG) {
1124 emit_imm(RV_REG_T1, (const s64)func_addr, ctx);
1125 emit_sd(RV_REG_FP, -ip_off, RV_REG_T1, ctx);
1126 }
1127
1128 emit_li(RV_REG_T1, nr_arg_slots, ctx);
1129 emit_sd(RV_REG_FP, -nregs_off, RV_REG_T1, ctx);
1130
1131 store_args(nr_arg_slots, args_off, ctx);
1132
1133 /* skip to actual body of traced function */
1134 if (flags & BPF_TRAMP_F_SKIP_FRAME)
1135 orig_call += RV_FENTRY_NINSNS * 4;
1136
1137 if (flags & BPF_TRAMP_F_CALL_ORIG) {
1138 emit_imm(RV_REG_A0, ctx->insns ? (const s64)im : RV_MAX_COUNT_IMM, ctx);
1139 ret = emit_call((const u64)__bpf_tramp_enter, true, ctx);
1140 if (ret)
1141 return ret;
1142 }
1143
1144 for (i = 0; i < fentry->nr_links; i++) {
1145 ret = invoke_bpf_prog(fentry->links[i], args_off, retval_off, run_ctx_off,
1146 flags & BPF_TRAMP_F_RET_FENTRY_RET, ctx);
1147 if (ret)
1148 return ret;
1149 }
1150
1151 if (fmod_ret->nr_links) {
1152 branches_off = kcalloc(fmod_ret->nr_links, sizeof(int), GFP_KERNEL);
1153 if (!branches_off)
1154 return -ENOMEM;
1155
1156 /* cleanup to avoid garbage return value confusion */
1157 emit_sd(RV_REG_FP, -retval_off, RV_REG_ZERO, ctx);
1158 for (i = 0; i < fmod_ret->nr_links; i++) {
1159 ret = invoke_bpf_prog(fmod_ret->links[i], args_off, retval_off,
1160 run_ctx_off, true, ctx);
1161 if (ret)
1162 goto out;
1163 emit_ld(RV_REG_T1, -retval_off, RV_REG_FP, ctx);
1164 branches_off[i] = ctx->ninsns;
1165 /* nop reserved for conditional jump */
1166 emit(rv_nop(), ctx);
1167 }
1168 }
1169
1170 if (flags & BPF_TRAMP_F_CALL_ORIG) {
1171 restore_args(min_t(int, nr_arg_slots, RV_MAX_REG_ARGS), args_off, ctx);
1172 restore_stack_args(nr_arg_slots - RV_MAX_REG_ARGS, args_off, stk_arg_off, ctx);
1173 ret = emit_call((const u64)orig_call, true, ctx);
1174 if (ret)
1175 goto out;
1176 emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
1177 emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
1178 im->ip_after_call = ctx->ro_insns + ctx->ninsns;
1179 /* 2 nops reserved for auipc+jalr pair */
1180 emit(rv_nop(), ctx);
1181 emit(rv_nop(), ctx);
1182 }
1183
1184 /* update branches saved in invoke_bpf_mod_ret with bnez */
1185 for (i = 0; ctx->insns && i < fmod_ret->nr_links; i++) {
1186 offset = ninsns_rvoff(ctx->ninsns - branches_off[i]);
1187 insn = rv_bne(RV_REG_T1, RV_REG_ZERO, offset >> 1);
1188 *(u32 *)(ctx->insns + branches_off[i]) = insn;
1189 }
1190
1191 for (i = 0; i < fexit->nr_links; i++) {
1192 ret = invoke_bpf_prog(fexit->links[i], args_off, retval_off,
1193 run_ctx_off, false, ctx);
1194 if (ret)
1195 goto out;
1196 }
1197
1198 if (flags & BPF_TRAMP_F_CALL_ORIG) {
1199 im->ip_epilogue = ctx->ro_insns + ctx->ninsns;
1200 emit_imm(RV_REG_A0, ctx->insns ? (const s64)im : RV_MAX_COUNT_IMM, ctx);
1201 ret = emit_call((const u64)__bpf_tramp_exit, true, ctx);
1202 if (ret)
1203 goto out;
1204 }
1205
1206 if (flags & BPF_TRAMP_F_RESTORE_REGS)
1207 restore_args(min_t(int, nr_arg_slots, RV_MAX_REG_ARGS), args_off, ctx);
1208
1209 if (save_ret) {
1210 emit_ld(regmap[BPF_REG_0], -(retval_off - 8), RV_REG_FP, ctx);
1211 if (is_struct_ops) {
1212 ret = sign_extend(RV_REG_A0, regmap[BPF_REG_0], m->ret_size,
1213 m->ret_flags & BTF_FMODEL_SIGNED_ARG, ctx);
1214 if (ret)
1215 goto out;
1216 } else {
1217 emit_ld(RV_REG_A0, -retval_off, RV_REG_FP, ctx);
1218 }
1219 }
1220
1221 emit_ld(RV_REG_S1, -sreg_off, RV_REG_FP, ctx);
1222
1223 if (!is_struct_ops) {
1224 /* trampoline called from function entry */
1225 emit_ld(RV_REG_T0, stack_size - 8, RV_REG_SP, ctx);
1226 emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1227 emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1228
1229 emit_ld(RV_REG_RA, 8, RV_REG_SP, ctx);
1230 emit_ld(RV_REG_FP, 0, RV_REG_SP, ctx);
1231 emit_addi(RV_REG_SP, RV_REG_SP, 16, ctx);
1232
1233 if (flags & BPF_TRAMP_F_SKIP_FRAME)
1234 /* return to parent function */
1235 emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1236 else
1237 /* return to traced function */
1238 emit_jalr(RV_REG_ZERO, RV_REG_T0, 0, ctx);
1239 } else {
1240 /* trampoline called directly */
1241 emit_ld(RV_REG_RA, stack_size - 8, RV_REG_SP, ctx);
1242 emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1243 emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1244
1245 emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1246 }
1247
1248 ret = ctx->ninsns;
1249 out:
1250 kfree(branches_off);
1251 return ret;
1252 }
1253
arch_bpf_trampoline_size(const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)1254 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1255 struct bpf_tramp_links *tlinks, void *func_addr)
1256 {
1257 struct bpf_tramp_image im;
1258 struct rv_jit_context ctx;
1259 int ret;
1260
1261 ctx.ninsns = 0;
1262 ctx.insns = NULL;
1263 ctx.ro_insns = NULL;
1264 ret = __arch_prepare_bpf_trampoline(&im, m, tlinks, func_addr, flags, &ctx);
1265
1266 return ret < 0 ? ret : ninsns_rvoff(ctx.ninsns);
1267 }
1268
arch_alloc_bpf_trampoline(unsigned int size)1269 void *arch_alloc_bpf_trampoline(unsigned int size)
1270 {
1271 return bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1272 }
1273
arch_free_bpf_trampoline(void * image,unsigned int size)1274 void arch_free_bpf_trampoline(void *image, unsigned int size)
1275 {
1276 bpf_prog_pack_free(image, size);
1277 }
1278
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * ro_image,void * ro_image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)1279 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *ro_image,
1280 void *ro_image_end, const struct btf_func_model *m,
1281 u32 flags, struct bpf_tramp_links *tlinks,
1282 void *func_addr)
1283 {
1284 int ret;
1285 void *image, *res;
1286 struct rv_jit_context ctx;
1287 u32 size = ro_image_end - ro_image;
1288
1289 image = kvmalloc(size, GFP_KERNEL);
1290 if (!image)
1291 return -ENOMEM;
1292
1293 ctx.ninsns = 0;
1294 ctx.insns = image;
1295 ctx.ro_insns = ro_image;
1296 ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1297 if (ret < 0)
1298 goto out;
1299
1300 if (WARN_ON(size < ninsns_rvoff(ctx.ninsns))) {
1301 ret = -E2BIG;
1302 goto out;
1303 }
1304
1305 res = bpf_arch_text_copy(ro_image, image, size);
1306 if (IS_ERR(res)) {
1307 ret = PTR_ERR(res);
1308 goto out;
1309 }
1310
1311 out:
1312 kvfree(image);
1313 return ret < 0 ? ret : size;
1314 }
1315
bpf_jit_emit_insn(const struct bpf_insn * insn,struct rv_jit_context * ctx,bool extra_pass)1316 int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
1317 bool extra_pass)
1318 {
1319 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
1320 BPF_CLASS(insn->code) == BPF_JMP;
1321 int s, e, rvoff, ret, i = insn - ctx->prog->insnsi;
1322 struct bpf_prog_aux *aux = ctx->prog->aux;
1323 u8 rd = -1, rs = -1, code = insn->code;
1324 s16 off = insn->off;
1325 s32 imm = insn->imm;
1326
1327 init_regs(&rd, &rs, insn, ctx);
1328
1329 switch (code) {
1330 /* dst = src */
1331 case BPF_ALU | BPF_MOV | BPF_X:
1332 case BPF_ALU64 | BPF_MOV | BPF_X:
1333 if (insn_is_cast_user(insn)) {
1334 emit_mv(RV_REG_T1, rs, ctx);
1335 emit_zextw(RV_REG_T1, RV_REG_T1, ctx);
1336 emit_imm(rd, (ctx->user_vm_start >> 32) << 32, ctx);
1337 emit(rv_beq(RV_REG_T1, RV_REG_ZERO, 4), ctx);
1338 emit_or(RV_REG_T1, rd, RV_REG_T1, ctx);
1339 emit_mv(rd, RV_REG_T1, ctx);
1340 break;
1341 } else if (insn_is_mov_percpu_addr(insn)) {
1342 if (rd != rs)
1343 emit_mv(rd, rs, ctx);
1344 #ifdef CONFIG_SMP
1345 /* Load current CPU number in T1 */
1346 emit_lw(RV_REG_T1, offsetof(struct thread_info, cpu),
1347 RV_REG_TP, ctx);
1348 /* Load address of __per_cpu_offset array in T2 */
1349 emit_addr(RV_REG_T2, (u64)&__per_cpu_offset, extra_pass, ctx);
1350 /* Get address of __per_cpu_offset[cpu] in T1 */
1351 emit_sh3add(RV_REG_T1, RV_REG_T1, RV_REG_T2, ctx);
1352 /* Load __per_cpu_offset[cpu] in T1 */
1353 emit_ld(RV_REG_T1, 0, RV_REG_T1, ctx);
1354 /* Add the offset to Rd */
1355 emit_add(rd, rd, RV_REG_T1, ctx);
1356 #endif
1357 }
1358 if (imm == 1) {
1359 /* Special mov32 for zext */
1360 emit_zextw(rd, rd, ctx);
1361 break;
1362 }
1363 switch (insn->off) {
1364 case 0:
1365 emit_mv(rd, rs, ctx);
1366 break;
1367 case 8:
1368 emit_sextb(rd, rs, ctx);
1369 break;
1370 case 16:
1371 emit_sexth(rd, rs, ctx);
1372 break;
1373 case 32:
1374 emit_sextw(rd, rs, ctx);
1375 break;
1376 }
1377 if (!is64 && !aux->verifier_zext)
1378 emit_zextw(rd, rd, ctx);
1379 break;
1380
1381 /* dst = dst OP src */
1382 case BPF_ALU | BPF_ADD | BPF_X:
1383 case BPF_ALU64 | BPF_ADD | BPF_X:
1384 emit_add(rd, rd, rs, ctx);
1385 if (!is64 && !aux->verifier_zext)
1386 emit_zextw(rd, rd, ctx);
1387 break;
1388 case BPF_ALU | BPF_SUB | BPF_X:
1389 case BPF_ALU64 | BPF_SUB | BPF_X:
1390 if (is64)
1391 emit_sub(rd, rd, rs, ctx);
1392 else
1393 emit_subw(rd, rd, rs, ctx);
1394
1395 if (!is64 && !aux->verifier_zext)
1396 emit_zextw(rd, rd, ctx);
1397 break;
1398 case BPF_ALU | BPF_AND | BPF_X:
1399 case BPF_ALU64 | BPF_AND | BPF_X:
1400 emit_and(rd, rd, rs, ctx);
1401 if (!is64 && !aux->verifier_zext)
1402 emit_zextw(rd, rd, ctx);
1403 break;
1404 case BPF_ALU | BPF_OR | BPF_X:
1405 case BPF_ALU64 | BPF_OR | BPF_X:
1406 emit_or(rd, rd, rs, ctx);
1407 if (!is64 && !aux->verifier_zext)
1408 emit_zextw(rd, rd, ctx);
1409 break;
1410 case BPF_ALU | BPF_XOR | BPF_X:
1411 case BPF_ALU64 | BPF_XOR | BPF_X:
1412 emit_xor(rd, rd, rs, ctx);
1413 if (!is64 && !aux->verifier_zext)
1414 emit_zextw(rd, rd, ctx);
1415 break;
1416 case BPF_ALU | BPF_MUL | BPF_X:
1417 case BPF_ALU64 | BPF_MUL | BPF_X:
1418 emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
1419 if (!is64 && !aux->verifier_zext)
1420 emit_zextw(rd, rd, ctx);
1421 break;
1422 case BPF_ALU | BPF_DIV | BPF_X:
1423 case BPF_ALU64 | BPF_DIV | BPF_X:
1424 if (off)
1425 emit(is64 ? rv_div(rd, rd, rs) : rv_divw(rd, rd, rs), ctx);
1426 else
1427 emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
1428 if (!is64 && !aux->verifier_zext)
1429 emit_zextw(rd, rd, ctx);
1430 break;
1431 case BPF_ALU | BPF_MOD | BPF_X:
1432 case BPF_ALU64 | BPF_MOD | BPF_X:
1433 if (off)
1434 emit(is64 ? rv_rem(rd, rd, rs) : rv_remw(rd, rd, rs), ctx);
1435 else
1436 emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
1437 if (!is64 && !aux->verifier_zext)
1438 emit_zextw(rd, rd, ctx);
1439 break;
1440 case BPF_ALU | BPF_LSH | BPF_X:
1441 case BPF_ALU64 | BPF_LSH | BPF_X:
1442 emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
1443 if (!is64 && !aux->verifier_zext)
1444 emit_zextw(rd, rd, ctx);
1445 break;
1446 case BPF_ALU | BPF_RSH | BPF_X:
1447 case BPF_ALU64 | BPF_RSH | BPF_X:
1448 emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
1449 if (!is64 && !aux->verifier_zext)
1450 emit_zextw(rd, rd, ctx);
1451 break;
1452 case BPF_ALU | BPF_ARSH | BPF_X:
1453 case BPF_ALU64 | BPF_ARSH | BPF_X:
1454 emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
1455 if (!is64 && !aux->verifier_zext)
1456 emit_zextw(rd, rd, ctx);
1457 break;
1458
1459 /* dst = -dst */
1460 case BPF_ALU | BPF_NEG:
1461 case BPF_ALU64 | BPF_NEG:
1462 emit_sub(rd, RV_REG_ZERO, rd, ctx);
1463 if (!is64 && !aux->verifier_zext)
1464 emit_zextw(rd, rd, ctx);
1465 break;
1466
1467 /* dst = BSWAP##imm(dst) */
1468 case BPF_ALU | BPF_END | BPF_FROM_LE:
1469 switch (imm) {
1470 case 16:
1471 emit_zexth(rd, rd, ctx);
1472 break;
1473 case 32:
1474 if (!aux->verifier_zext)
1475 emit_zextw(rd, rd, ctx);
1476 break;
1477 case 64:
1478 /* Do nothing */
1479 break;
1480 }
1481 break;
1482 case BPF_ALU | BPF_END | BPF_FROM_BE:
1483 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1484 emit_bswap(rd, imm, ctx);
1485 break;
1486
1487 /* dst = imm */
1488 case BPF_ALU | BPF_MOV | BPF_K:
1489 case BPF_ALU64 | BPF_MOV | BPF_K:
1490 emit_imm(rd, imm, ctx);
1491 if (!is64 && !aux->verifier_zext)
1492 emit_zextw(rd, rd, ctx);
1493 break;
1494
1495 /* dst = dst OP imm */
1496 case BPF_ALU | BPF_ADD | BPF_K:
1497 case BPF_ALU64 | BPF_ADD | BPF_K:
1498 if (is_12b_int(imm)) {
1499 emit_addi(rd, rd, imm, ctx);
1500 } else {
1501 emit_imm(RV_REG_T1, imm, ctx);
1502 emit_add(rd, rd, RV_REG_T1, ctx);
1503 }
1504 if (!is64 && !aux->verifier_zext)
1505 emit_zextw(rd, rd, ctx);
1506 break;
1507 case BPF_ALU | BPF_SUB | BPF_K:
1508 case BPF_ALU64 | BPF_SUB | BPF_K:
1509 if (is_12b_int(-imm)) {
1510 emit_addi(rd, rd, -imm, ctx);
1511 } else {
1512 emit_imm(RV_REG_T1, imm, ctx);
1513 emit_sub(rd, rd, RV_REG_T1, ctx);
1514 }
1515 if (!is64 && !aux->verifier_zext)
1516 emit_zextw(rd, rd, ctx);
1517 break;
1518 case BPF_ALU | BPF_AND | BPF_K:
1519 case BPF_ALU64 | BPF_AND | BPF_K:
1520 if (is_12b_int(imm)) {
1521 emit_andi(rd, rd, imm, ctx);
1522 } else {
1523 emit_imm(RV_REG_T1, imm, ctx);
1524 emit_and(rd, rd, RV_REG_T1, ctx);
1525 }
1526 if (!is64 && !aux->verifier_zext)
1527 emit_zextw(rd, rd, ctx);
1528 break;
1529 case BPF_ALU | BPF_OR | BPF_K:
1530 case BPF_ALU64 | BPF_OR | BPF_K:
1531 if (is_12b_int(imm)) {
1532 emit(rv_ori(rd, rd, imm), ctx);
1533 } else {
1534 emit_imm(RV_REG_T1, imm, ctx);
1535 emit_or(rd, rd, RV_REG_T1, ctx);
1536 }
1537 if (!is64 && !aux->verifier_zext)
1538 emit_zextw(rd, rd, ctx);
1539 break;
1540 case BPF_ALU | BPF_XOR | BPF_K:
1541 case BPF_ALU64 | BPF_XOR | BPF_K:
1542 if (is_12b_int(imm)) {
1543 emit(rv_xori(rd, rd, imm), ctx);
1544 } else {
1545 emit_imm(RV_REG_T1, imm, ctx);
1546 emit_xor(rd, rd, RV_REG_T1, ctx);
1547 }
1548 if (!is64 && !aux->verifier_zext)
1549 emit_zextw(rd, rd, ctx);
1550 break;
1551 case BPF_ALU | BPF_MUL | BPF_K:
1552 case BPF_ALU64 | BPF_MUL | BPF_K:
1553 emit_imm(RV_REG_T1, imm, ctx);
1554 emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
1555 rv_mulw(rd, rd, RV_REG_T1), ctx);
1556 if (!is64 && !aux->verifier_zext)
1557 emit_zextw(rd, rd, ctx);
1558 break;
1559 case BPF_ALU | BPF_DIV | BPF_K:
1560 case BPF_ALU64 | BPF_DIV | BPF_K:
1561 emit_imm(RV_REG_T1, imm, ctx);
1562 if (off)
1563 emit(is64 ? rv_div(rd, rd, RV_REG_T1) :
1564 rv_divw(rd, rd, RV_REG_T1), ctx);
1565 else
1566 emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
1567 rv_divuw(rd, rd, RV_REG_T1), ctx);
1568 if (!is64 && !aux->verifier_zext)
1569 emit_zextw(rd, rd, ctx);
1570 break;
1571 case BPF_ALU | BPF_MOD | BPF_K:
1572 case BPF_ALU64 | BPF_MOD | BPF_K:
1573 emit_imm(RV_REG_T1, imm, ctx);
1574 if (off)
1575 emit(is64 ? rv_rem(rd, rd, RV_REG_T1) :
1576 rv_remw(rd, rd, RV_REG_T1), ctx);
1577 else
1578 emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
1579 rv_remuw(rd, rd, RV_REG_T1), ctx);
1580 if (!is64 && !aux->verifier_zext)
1581 emit_zextw(rd, rd, ctx);
1582 break;
1583 case BPF_ALU | BPF_LSH | BPF_K:
1584 case BPF_ALU64 | BPF_LSH | BPF_K:
1585 emit_slli(rd, rd, imm, ctx);
1586
1587 if (!is64 && !aux->verifier_zext)
1588 emit_zextw(rd, rd, ctx);
1589 break;
1590 case BPF_ALU | BPF_RSH | BPF_K:
1591 case BPF_ALU64 | BPF_RSH | BPF_K:
1592 if (is64)
1593 emit_srli(rd, rd, imm, ctx);
1594 else
1595 emit(rv_srliw(rd, rd, imm), ctx);
1596
1597 if (!is64 && !aux->verifier_zext)
1598 emit_zextw(rd, rd, ctx);
1599 break;
1600 case BPF_ALU | BPF_ARSH | BPF_K:
1601 case BPF_ALU64 | BPF_ARSH | BPF_K:
1602 if (is64)
1603 emit_srai(rd, rd, imm, ctx);
1604 else
1605 emit(rv_sraiw(rd, rd, imm), ctx);
1606
1607 if (!is64 && !aux->verifier_zext)
1608 emit_zextw(rd, rd, ctx);
1609 break;
1610
1611 /* JUMP off */
1612 case BPF_JMP | BPF_JA:
1613 case BPF_JMP32 | BPF_JA:
1614 if (BPF_CLASS(code) == BPF_JMP)
1615 rvoff = rv_offset(i, off, ctx);
1616 else
1617 rvoff = rv_offset(i, imm, ctx);
1618 ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1619 if (ret)
1620 return ret;
1621 break;
1622
1623 /* IF (dst COND src) JUMP off */
1624 case BPF_JMP | BPF_JEQ | BPF_X:
1625 case BPF_JMP32 | BPF_JEQ | BPF_X:
1626 case BPF_JMP | BPF_JGT | BPF_X:
1627 case BPF_JMP32 | BPF_JGT | BPF_X:
1628 case BPF_JMP | BPF_JLT | BPF_X:
1629 case BPF_JMP32 | BPF_JLT | BPF_X:
1630 case BPF_JMP | BPF_JGE | BPF_X:
1631 case BPF_JMP32 | BPF_JGE | BPF_X:
1632 case BPF_JMP | BPF_JLE | BPF_X:
1633 case BPF_JMP32 | BPF_JLE | BPF_X:
1634 case BPF_JMP | BPF_JNE | BPF_X:
1635 case BPF_JMP32 | BPF_JNE | BPF_X:
1636 case BPF_JMP | BPF_JSGT | BPF_X:
1637 case BPF_JMP32 | BPF_JSGT | BPF_X:
1638 case BPF_JMP | BPF_JSLT | BPF_X:
1639 case BPF_JMP32 | BPF_JSLT | BPF_X:
1640 case BPF_JMP | BPF_JSGE | BPF_X:
1641 case BPF_JMP32 | BPF_JSGE | BPF_X:
1642 case BPF_JMP | BPF_JSLE | BPF_X:
1643 case BPF_JMP32 | BPF_JSLE | BPF_X:
1644 case BPF_JMP | BPF_JSET | BPF_X:
1645 case BPF_JMP32 | BPF_JSET | BPF_X:
1646 rvoff = rv_offset(i, off, ctx);
1647 if (!is64) {
1648 s = ctx->ninsns;
1649 if (is_signed_bpf_cond(BPF_OP(code))) {
1650 emit_sextw_alt(&rs, RV_REG_T1, ctx);
1651 emit_sextw_alt(&rd, RV_REG_T2, ctx);
1652 } else {
1653 emit_zextw_alt(&rs, RV_REG_T1, ctx);
1654 emit_zextw_alt(&rd, RV_REG_T2, ctx);
1655 }
1656 e = ctx->ninsns;
1657
1658 /* Adjust for extra insns */
1659 rvoff -= ninsns_rvoff(e - s);
1660 }
1661
1662 if (BPF_OP(code) == BPF_JSET) {
1663 /* Adjust for and */
1664 rvoff -= 4;
1665 emit_and(RV_REG_T1, rd, rs, ctx);
1666 emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1667 } else {
1668 emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1669 }
1670 break;
1671
1672 /* IF (dst COND imm) JUMP off */
1673 case BPF_JMP | BPF_JEQ | BPF_K:
1674 case BPF_JMP32 | BPF_JEQ | BPF_K:
1675 case BPF_JMP | BPF_JGT | BPF_K:
1676 case BPF_JMP32 | BPF_JGT | BPF_K:
1677 case BPF_JMP | BPF_JLT | BPF_K:
1678 case BPF_JMP32 | BPF_JLT | BPF_K:
1679 case BPF_JMP | BPF_JGE | BPF_K:
1680 case BPF_JMP32 | BPF_JGE | BPF_K:
1681 case BPF_JMP | BPF_JLE | BPF_K:
1682 case BPF_JMP32 | BPF_JLE | BPF_K:
1683 case BPF_JMP | BPF_JNE | BPF_K:
1684 case BPF_JMP32 | BPF_JNE | BPF_K:
1685 case BPF_JMP | BPF_JSGT | BPF_K:
1686 case BPF_JMP32 | BPF_JSGT | BPF_K:
1687 case BPF_JMP | BPF_JSLT | BPF_K:
1688 case BPF_JMP32 | BPF_JSLT | BPF_K:
1689 case BPF_JMP | BPF_JSGE | BPF_K:
1690 case BPF_JMP32 | BPF_JSGE | BPF_K:
1691 case BPF_JMP | BPF_JSLE | BPF_K:
1692 case BPF_JMP32 | BPF_JSLE | BPF_K:
1693 rvoff = rv_offset(i, off, ctx);
1694 s = ctx->ninsns;
1695 if (imm)
1696 emit_imm(RV_REG_T1, imm, ctx);
1697 rs = imm ? RV_REG_T1 : RV_REG_ZERO;
1698 if (!is64) {
1699 if (is_signed_bpf_cond(BPF_OP(code))) {
1700 emit_sextw_alt(&rd, RV_REG_T2, ctx);
1701 /* rs has been sign extended */
1702 } else {
1703 emit_zextw_alt(&rd, RV_REG_T2, ctx);
1704 if (imm)
1705 emit_zextw(rs, rs, ctx);
1706 }
1707 }
1708 e = ctx->ninsns;
1709
1710 /* Adjust for extra insns */
1711 rvoff -= ninsns_rvoff(e - s);
1712 emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1713 break;
1714
1715 case BPF_JMP | BPF_JSET | BPF_K:
1716 case BPF_JMP32 | BPF_JSET | BPF_K:
1717 rvoff = rv_offset(i, off, ctx);
1718 s = ctx->ninsns;
1719 if (is_12b_int(imm)) {
1720 emit_andi(RV_REG_T1, rd, imm, ctx);
1721 } else {
1722 emit_imm(RV_REG_T1, imm, ctx);
1723 emit_and(RV_REG_T1, rd, RV_REG_T1, ctx);
1724 }
1725 /* For jset32, we should clear the upper 32 bits of t1, but
1726 * sign-extension is sufficient here and saves one instruction,
1727 * as t1 is used only in comparison against zero.
1728 */
1729 if (!is64 && imm < 0)
1730 emit_sextw(RV_REG_T1, RV_REG_T1, ctx);
1731 e = ctx->ninsns;
1732 rvoff -= ninsns_rvoff(e - s);
1733 emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1734 break;
1735
1736 /* function call */
1737 case BPF_JMP | BPF_CALL:
1738 {
1739 bool fixed_addr;
1740 u64 addr;
1741
1742 /* Inline calls to bpf_get_smp_processor_id()
1743 *
1744 * RV_REG_TP holds the address of the current CPU's task_struct and thread_info is
1745 * at offset 0 in task_struct.
1746 * Load cpu from thread_info:
1747 * Set R0 to ((struct thread_info *)(RV_REG_TP))->cpu
1748 *
1749 * This replicates the implementation of raw_smp_processor_id() on RISCV
1750 */
1751 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) {
1752 /* Load current CPU number in R0 */
1753 emit_lw(bpf_to_rv_reg(BPF_REG_0, ctx), offsetof(struct thread_info, cpu),
1754 RV_REG_TP, ctx);
1755 break;
1756 }
1757
1758 mark_call(ctx);
1759 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1760 &addr, &fixed_addr);
1761 if (ret < 0)
1762 return ret;
1763
1764 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1765 const struct btf_func_model *fm;
1766 int idx;
1767
1768 fm = bpf_jit_find_kfunc_model(ctx->prog, insn);
1769 if (!fm)
1770 return -EINVAL;
1771
1772 for (idx = 0; idx < fm->nr_args; idx++) {
1773 u8 reg = bpf_to_rv_reg(BPF_REG_1 + idx, ctx);
1774
1775 if (fm->arg_size[idx] == sizeof(int))
1776 emit_sextw(reg, reg, ctx);
1777 }
1778 }
1779
1780 ret = emit_call(addr, fixed_addr, ctx);
1781 if (ret)
1782 return ret;
1783
1784 if (insn->src_reg != BPF_PSEUDO_CALL)
1785 emit_mv(bpf_to_rv_reg(BPF_REG_0, ctx), RV_REG_A0, ctx);
1786 break;
1787 }
1788 /* tail call */
1789 case BPF_JMP | BPF_TAIL_CALL:
1790 if (emit_bpf_tail_call(i, ctx))
1791 return -1;
1792 break;
1793
1794 /* function return */
1795 case BPF_JMP | BPF_EXIT:
1796 if (i == ctx->prog->len - 1)
1797 break;
1798
1799 rvoff = epilogue_offset(ctx);
1800 ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1801 if (ret)
1802 return ret;
1803 break;
1804
1805 /* dst = imm64 */
1806 case BPF_LD | BPF_IMM | BPF_DW:
1807 {
1808 struct bpf_insn insn1 = insn[1];
1809 u64 imm64;
1810
1811 imm64 = (u64)insn1.imm << 32 | (u32)imm;
1812 if (bpf_pseudo_func(insn)) {
1813 /* fixed-length insns for extra jit pass */
1814 ret = emit_addr(rd, imm64, extra_pass, ctx);
1815 if (ret)
1816 return ret;
1817 } else {
1818 emit_imm(rd, imm64, ctx);
1819 }
1820
1821 return 1;
1822 }
1823
1824 /* LDX: dst = *(unsigned size *)(src + off) */
1825 case BPF_LDX | BPF_MEM | BPF_B:
1826 case BPF_LDX | BPF_MEM | BPF_H:
1827 case BPF_LDX | BPF_MEM | BPF_W:
1828 case BPF_LDX | BPF_MEM | BPF_DW:
1829 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1830 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1831 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1832 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1833 /* LDSX: dst = *(signed size *)(src + off) */
1834 case BPF_LDX | BPF_MEMSX | BPF_B:
1835 case BPF_LDX | BPF_MEMSX | BPF_H:
1836 case BPF_LDX | BPF_MEMSX | BPF_W:
1837 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1838 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1839 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1840 /* LDX | PROBE_MEM32: dst = *(unsigned size *)(src + RV_REG_ARENA + off) */
1841 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1842 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1843 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1844 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1845 {
1846 bool sign_ext;
1847
1848 sign_ext = BPF_MODE(insn->code) == BPF_MEMSX ||
1849 BPF_MODE(insn->code) == BPF_PROBE_MEMSX;
1850
1851 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1852 emit_add(RV_REG_T2, rs, RV_REG_ARENA, ctx);
1853 rs = RV_REG_T2;
1854 }
1855
1856 emit_ldx(rd, off, rs, BPF_SIZE(code), sign_ext, ctx);
1857
1858 ret = add_exception_handler(insn, rd, ctx);
1859 if (ret)
1860 return ret;
1861
1862 if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
1863 return 1;
1864 break;
1865 }
1866
1867 /* speculation barrier */
1868 case BPF_ST | BPF_NOSPEC:
1869 break;
1870
1871 /* ST: *(size *)(dst + off) = imm */
1872 case BPF_ST | BPF_MEM | BPF_B:
1873 case BPF_ST | BPF_MEM | BPF_H:
1874 case BPF_ST | BPF_MEM | BPF_W:
1875 case BPF_ST | BPF_MEM | BPF_DW:
1876 /* ST | PROBE_MEM32: *(size *)(dst + RV_REG_ARENA + off) = imm */
1877 case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1878 case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1879 case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1880 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1881 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1882 emit_add(RV_REG_T3, rd, RV_REG_ARENA, ctx);
1883 rd = RV_REG_T3;
1884 }
1885
1886 emit_st(rd, off, imm, BPF_SIZE(code), ctx);
1887
1888 ret = add_exception_handler(insn, REG_DONT_CLEAR_MARKER, ctx);
1889 if (ret)
1890 return ret;
1891 break;
1892
1893 /* STX: *(size *)(dst + off) = src */
1894 case BPF_STX | BPF_MEM | BPF_B:
1895 case BPF_STX | BPF_MEM | BPF_H:
1896 case BPF_STX | BPF_MEM | BPF_W:
1897 case BPF_STX | BPF_MEM | BPF_DW:
1898 /* STX | PROBE_MEM32: *(size *)(dst + RV_REG_ARENA + off) = src */
1899 case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1900 case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1901 case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1902 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1903 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1904 emit_add(RV_REG_T2, rd, RV_REG_ARENA, ctx);
1905 rd = RV_REG_T2;
1906 }
1907
1908 emit_stx(rd, off, rs, BPF_SIZE(code), ctx);
1909
1910 ret = add_exception_handler(insn, REG_DONT_CLEAR_MARKER, ctx);
1911 if (ret)
1912 return ret;
1913 break;
1914
1915 /* Atomics */
1916 case BPF_STX | BPF_ATOMIC | BPF_B:
1917 case BPF_STX | BPF_ATOMIC | BPF_H:
1918 case BPF_STX | BPF_ATOMIC | BPF_W:
1919 case BPF_STX | BPF_ATOMIC | BPF_DW:
1920 case BPF_STX | BPF_PROBE_ATOMIC | BPF_B:
1921 case BPF_STX | BPF_PROBE_ATOMIC | BPF_H:
1922 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1923 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1924 if (bpf_atomic_is_load_store(insn))
1925 ret = emit_atomic_ld_st(rd, rs, insn, ctx);
1926 else
1927 ret = emit_atomic_rmw(rd, rs, insn, ctx);
1928
1929 ret = ret ?: add_exception_handler(insn, REG_DONT_CLEAR_MARKER, ctx);
1930 if (ret)
1931 return ret;
1932 break;
1933
1934 default:
1935 pr_err("bpf-jit: unknown opcode %02x\n", code);
1936 return -EINVAL;
1937 }
1938
1939 return 0;
1940 }
1941
bpf_jit_build_prologue(struct rv_jit_context * ctx,bool is_subprog)1942 void bpf_jit_build_prologue(struct rv_jit_context *ctx, bool is_subprog)
1943 {
1944 int i, stack_adjust = 0, store_offset, bpf_stack_adjust;
1945
1946 bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, STACK_ALIGN);
1947 if (bpf_stack_adjust)
1948 mark_fp(ctx);
1949
1950 if (seen_reg(RV_REG_RA, ctx))
1951 stack_adjust += 8;
1952 stack_adjust += 8; /* RV_REG_FP */
1953 if (seen_reg(RV_REG_S1, ctx))
1954 stack_adjust += 8;
1955 if (seen_reg(RV_REG_S2, ctx))
1956 stack_adjust += 8;
1957 if (seen_reg(RV_REG_S3, ctx))
1958 stack_adjust += 8;
1959 if (seen_reg(RV_REG_S4, ctx))
1960 stack_adjust += 8;
1961 if (seen_reg(RV_REG_S5, ctx))
1962 stack_adjust += 8;
1963 if (seen_reg(RV_REG_S6, ctx))
1964 stack_adjust += 8;
1965 if (ctx->arena_vm_start)
1966 stack_adjust += 8;
1967
1968 stack_adjust = round_up(stack_adjust, STACK_ALIGN);
1969 stack_adjust += bpf_stack_adjust;
1970
1971 store_offset = stack_adjust - 8;
1972
1973 /* emit kcfi type preamble immediately before the first insn */
1974 emit_kcfi(is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash, ctx);
1975
1976 /* nops reserved for auipc+jalr pair */
1977 for (i = 0; i < RV_FENTRY_NINSNS; i++)
1978 emit(rv_nop(), ctx);
1979
1980 /* First instruction is always setting the tail-call-counter
1981 * (TCC) register. This instruction is skipped for tail calls.
1982 * Force using a 4-byte (non-compressed) instruction.
1983 */
1984 emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
1985
1986 emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx);
1987
1988 if (seen_reg(RV_REG_RA, ctx)) {
1989 emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx);
1990 store_offset -= 8;
1991 }
1992 emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx);
1993 store_offset -= 8;
1994 if (seen_reg(RV_REG_S1, ctx)) {
1995 emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx);
1996 store_offset -= 8;
1997 }
1998 if (seen_reg(RV_REG_S2, ctx)) {
1999 emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx);
2000 store_offset -= 8;
2001 }
2002 if (seen_reg(RV_REG_S3, ctx)) {
2003 emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx);
2004 store_offset -= 8;
2005 }
2006 if (seen_reg(RV_REG_S4, ctx)) {
2007 emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx);
2008 store_offset -= 8;
2009 }
2010 if (seen_reg(RV_REG_S5, ctx)) {
2011 emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx);
2012 store_offset -= 8;
2013 }
2014 if (seen_reg(RV_REG_S6, ctx)) {
2015 emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx);
2016 store_offset -= 8;
2017 }
2018 if (ctx->arena_vm_start) {
2019 emit_sd(RV_REG_SP, store_offset, RV_REG_ARENA, ctx);
2020 store_offset -= 8;
2021 }
2022
2023 emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx);
2024
2025 if (bpf_stack_adjust)
2026 emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx);
2027
2028 /* Program contains calls and tail calls, so RV_REG_TCC need
2029 * to be saved across calls.
2030 */
2031 if (seen_tail_call(ctx) && seen_call(ctx))
2032 emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx);
2033
2034 ctx->stack_size = stack_adjust;
2035
2036 if (ctx->arena_vm_start)
2037 emit_imm(RV_REG_ARENA, ctx->arena_vm_start, ctx);
2038 }
2039
bpf_jit_build_epilogue(struct rv_jit_context * ctx)2040 void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
2041 {
2042 __build_epilogue(false, ctx);
2043 }
2044
bpf_jit_supports_kfunc_call(void)2045 bool bpf_jit_supports_kfunc_call(void)
2046 {
2047 return true;
2048 }
2049
bpf_jit_supports_ptr_xchg(void)2050 bool bpf_jit_supports_ptr_xchg(void)
2051 {
2052 return true;
2053 }
2054
bpf_jit_supports_arena(void)2055 bool bpf_jit_supports_arena(void)
2056 {
2057 return true;
2058 }
2059
bpf_jit_supports_insn(struct bpf_insn * insn,bool in_arena)2060 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2061 {
2062 if (in_arena) {
2063 switch (insn->code) {
2064 case BPF_STX | BPF_ATOMIC | BPF_W:
2065 case BPF_STX | BPF_ATOMIC | BPF_DW:
2066 if (insn->imm == BPF_CMPXCHG)
2067 return rv_ext_enabled(ZACAS);
2068 break;
2069 case BPF_LDX | BPF_MEMSX | BPF_B:
2070 case BPF_LDX | BPF_MEMSX | BPF_H:
2071 case BPF_LDX | BPF_MEMSX | BPF_W:
2072 return false;
2073 }
2074 }
2075
2076 return true;
2077 }
2078
bpf_jit_supports_percpu_insn(void)2079 bool bpf_jit_supports_percpu_insn(void)
2080 {
2081 return true;
2082 }
2083
bpf_jit_inlines_helper_call(s32 imm)2084 bool bpf_jit_inlines_helper_call(s32 imm)
2085 {
2086 switch (imm) {
2087 case BPF_FUNC_get_smp_processor_id:
2088 return true;
2089 default:
2090 return false;
2091 }
2092 }
2093