1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75 #define pr_fmt(fmt) "UDP: " fmt
76
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #include <net/inet_dscp.h>
119 #if IS_ENABLED(CONFIG_IPV6)
120 #include <net/ipv6_stubs.h>
121 #endif
122
123 struct udp_table udp_table __read_mostly;
124 EXPORT_SYMBOL(udp_table);
125
126 long sysctl_udp_mem[3] __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_mem);
128
129 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
130 EXPORT_SYMBOL(udp_memory_allocated);
131 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
132 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
133
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
136
udp_get_table_prot(struct sock * sk)137 static struct udp_table *udp_get_table_prot(struct sock *sk)
138 {
139 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
140 }
141
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 const struct udp_hslot *hslot,
144 unsigned long *bitmap,
145 struct sock *sk, unsigned int log)
146 {
147 struct sock *sk2;
148 kuid_t uid = sock_i_uid(sk);
149
150 sk_for_each(sk2, &hslot->head) {
151 if (net_eq(sock_net(sk2), net) &&
152 sk2 != sk &&
153 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 (!sk2->sk_reuse || !sk->sk_reuse) &&
155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 inet_rcv_saddr_equal(sk, sk2, true)) {
158 if (sk2->sk_reuseport && sk->sk_reuseport &&
159 !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 uid_eq(uid, sock_i_uid(sk2))) {
161 if (!bitmap)
162 return 0;
163 } else {
164 if (!bitmap)
165 return 1;
166 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 bitmap);
168 }
169 }
170 }
171 return 0;
172 }
173
174 /*
175 * Note: we still hold spinlock of primary hash chain, so no other writer
176 * can insert/delete a socket with local_port == num
177 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 struct udp_hslot *hslot2,
180 struct sock *sk)
181 {
182 struct sock *sk2;
183 kuid_t uid = sock_i_uid(sk);
184 int res = 0;
185
186 spin_lock(&hslot2->lock);
187 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 if (net_eq(sock_net(sk2), net) &&
189 sk2 != sk &&
190 (udp_sk(sk2)->udp_port_hash == num) &&
191 (!sk2->sk_reuse || !sk->sk_reuse) &&
192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 inet_rcv_saddr_equal(sk, sk2, true)) {
195 if (sk2->sk_reuseport && sk->sk_reuseport &&
196 !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 uid_eq(uid, sock_i_uid(sk2))) {
198 res = 0;
199 } else {
200 res = 1;
201 }
202 break;
203 }
204 }
205 spin_unlock(&hslot2->lock);
206 return res;
207 }
208
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 struct net *net = sock_net(sk);
212 kuid_t uid = sock_i_uid(sk);
213 struct sock *sk2;
214
215 sk_for_each(sk2, &hslot->head) {
216 if (net_eq(sock_net(sk2), net) &&
217 sk2 != sk &&
218 sk2->sk_family == sk->sk_family &&
219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 inet_rcv_saddr_equal(sk, sk2, false)) {
224 return reuseport_add_sock(sk, sk2,
225 inet_rcv_saddr_any(sk));
226 }
227 }
228
229 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
230 }
231
232 /**
233 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
234 *
235 * @sk: socket struct in question
236 * @snum: port number to look up
237 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238 * with NULL address
239 */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 unsigned int hash2_nulladdr)
242 {
243 struct udp_table *udptable = udp_get_table_prot(sk);
244 struct udp_hslot *hslot, *hslot2;
245 struct net *net = sock_net(sk);
246 int error = -EADDRINUSE;
247
248 if (!snum) {
249 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250 unsigned short first, last;
251 int low, high, remaining;
252 unsigned int rand;
253
254 inet_sk_get_local_port_range(sk, &low, &high);
255 remaining = (high - low) + 1;
256
257 rand = get_random_u32();
258 first = reciprocal_scale(rand, remaining) + low;
259 /*
260 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261 */
262 rand = (rand | 1) * (udptable->mask + 1);
263 last = first + udptable->mask + 1;
264 do {
265 hslot = udp_hashslot(udptable, net, first);
266 bitmap_zero(bitmap, PORTS_PER_CHAIN);
267 spin_lock_bh(&hslot->lock);
268 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
269 udptable->log);
270
271 snum = first;
272 /*
273 * Iterate on all possible values of snum for this hash.
274 * Using steps of an odd multiple of UDP_HTABLE_SIZE
275 * give us randomization and full range coverage.
276 */
277 do {
278 if (low <= snum && snum <= high &&
279 !test_bit(snum >> udptable->log, bitmap) &&
280 !inet_is_local_reserved_port(net, snum))
281 goto found;
282 snum += rand;
283 } while (snum != first);
284 spin_unlock_bh(&hslot->lock);
285 cond_resched();
286 } while (++first != last);
287 goto fail;
288 } else {
289 hslot = udp_hashslot(udptable, net, snum);
290 spin_lock_bh(&hslot->lock);
291 if (hslot->count > 10) {
292 int exist;
293 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
294
295 slot2 &= udptable->mask;
296 hash2_nulladdr &= udptable->mask;
297
298 hslot2 = udp_hashslot2(udptable, slot2);
299 if (hslot->count < hslot2->count)
300 goto scan_primary_hash;
301
302 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
303 if (!exist && (hash2_nulladdr != slot2)) {
304 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
305 exist = udp_lib_lport_inuse2(net, snum, hslot2,
306 sk);
307 }
308 if (exist)
309 goto fail_unlock;
310 else
311 goto found;
312 }
313 scan_primary_hash:
314 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
315 goto fail_unlock;
316 }
317 found:
318 inet_sk(sk)->inet_num = snum;
319 udp_sk(sk)->udp_port_hash = snum;
320 udp_sk(sk)->udp_portaddr_hash ^= snum;
321 if (sk_unhashed(sk)) {
322 if (sk->sk_reuseport &&
323 udp_reuseport_add_sock(sk, hslot)) {
324 inet_sk(sk)->inet_num = 0;
325 udp_sk(sk)->udp_port_hash = 0;
326 udp_sk(sk)->udp_portaddr_hash ^= snum;
327 goto fail_unlock;
328 }
329
330 sock_set_flag(sk, SOCK_RCU_FREE);
331
332 sk_add_node_rcu(sk, &hslot->head);
333 hslot->count++;
334 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
335
336 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
337 spin_lock(&hslot2->lock);
338 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
339 sk->sk_family == AF_INET6)
340 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
341 &hslot2->head);
342 else
343 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
344 &hslot2->head);
345 hslot2->count++;
346 spin_unlock(&hslot2->lock);
347 }
348
349 error = 0;
350 fail_unlock:
351 spin_unlock_bh(&hslot->lock);
352 fail:
353 return error;
354 }
355 EXPORT_SYMBOL(udp_lib_get_port);
356
udp_v4_get_port(struct sock * sk,unsigned short snum)357 int udp_v4_get_port(struct sock *sk, unsigned short snum)
358 {
359 unsigned int hash2_nulladdr =
360 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
361 unsigned int hash2_partial =
362 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
363
364 /* precompute partial secondary hash */
365 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
366 return udp_lib_get_port(sk, snum, hash2_nulladdr);
367 }
368
compute_score(struct sock * sk,const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)369 static int compute_score(struct sock *sk, const struct net *net,
370 __be32 saddr, __be16 sport,
371 __be32 daddr, unsigned short hnum,
372 int dif, int sdif)
373 {
374 int score;
375 struct inet_sock *inet;
376 bool dev_match;
377
378 if (!net_eq(sock_net(sk), net) ||
379 udp_sk(sk)->udp_port_hash != hnum ||
380 ipv6_only_sock(sk))
381 return -1;
382
383 if (sk->sk_rcv_saddr != daddr)
384 return -1;
385
386 score = (sk->sk_family == PF_INET) ? 2 : 1;
387
388 inet = inet_sk(sk);
389 if (inet->inet_daddr) {
390 if (inet->inet_daddr != saddr)
391 return -1;
392 score += 4;
393 }
394
395 if (inet->inet_dport) {
396 if (inet->inet_dport != sport)
397 return -1;
398 score += 4;
399 }
400
401 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
402 dif, sdif);
403 if (!dev_match)
404 return -1;
405 if (sk->sk_bound_dev_if)
406 score += 4;
407
408 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
409 score++;
410 return score;
411 }
412
413 INDIRECT_CALLABLE_SCOPE
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)414 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
415 const __be32 faddr, const __be16 fport)
416 {
417 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
418
419 return __inet_ehashfn(laddr, lport, faddr, fport,
420 udp_ehash_secret + net_hash_mix(net));
421 }
422
423 /* called with rcu_read_lock() */
udp4_lib_lookup2(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)424 static struct sock *udp4_lib_lookup2(const struct net *net,
425 __be32 saddr, __be16 sport,
426 __be32 daddr, unsigned int hnum,
427 int dif, int sdif,
428 struct udp_hslot *hslot2,
429 struct sk_buff *skb)
430 {
431 struct sock *sk, *result;
432 int score, badness;
433 bool need_rescore;
434
435 result = NULL;
436 badness = 0;
437 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
438 need_rescore = false;
439 rescore:
440 score = compute_score(need_rescore ? result : sk, net, saddr,
441 sport, daddr, hnum, dif, sdif);
442 if (score > badness) {
443 badness = score;
444
445 if (need_rescore)
446 continue;
447
448 if (sk->sk_state == TCP_ESTABLISHED) {
449 result = sk;
450 continue;
451 }
452
453 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
454 saddr, sport, daddr, hnum, udp_ehashfn);
455 if (!result) {
456 result = sk;
457 continue;
458 }
459
460 /* Fall back to scoring if group has connections */
461 if (!reuseport_has_conns(sk))
462 return result;
463
464 /* Reuseport logic returned an error, keep original score. */
465 if (IS_ERR(result))
466 continue;
467
468 /* compute_score is too long of a function to be
469 * inlined, and calling it again here yields
470 * measureable overhead for some
471 * workloads. Work around it by jumping
472 * backwards to rescore 'result'.
473 */
474 need_rescore = true;
475 goto rescore;
476 }
477 }
478 return result;
479 }
480
481 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
482 * harder than this. -DaveM
483 */
__udp4_lib_lookup(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)484 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
485 __be16 sport, __be32 daddr, __be16 dport, int dif,
486 int sdif, struct udp_table *udptable, struct sk_buff *skb)
487 {
488 unsigned short hnum = ntohs(dport);
489 unsigned int hash2, slot2;
490 struct udp_hslot *hslot2;
491 struct sock *result, *sk;
492
493 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
494 slot2 = hash2 & udptable->mask;
495 hslot2 = &udptable->hash2[slot2];
496
497 /* Lookup connected or non-wildcard socket */
498 result = udp4_lib_lookup2(net, saddr, sport,
499 daddr, hnum, dif, sdif,
500 hslot2, skb);
501 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
502 goto done;
503
504 /* Lookup redirect from BPF */
505 if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
506 udptable == net->ipv4.udp_table) {
507 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
508 saddr, sport, daddr, hnum, dif,
509 udp_ehashfn);
510 if (sk) {
511 result = sk;
512 goto done;
513 }
514 }
515
516 /* Got non-wildcard socket or error on first lookup */
517 if (result)
518 goto done;
519
520 /* Lookup wildcard sockets */
521 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
522 slot2 = hash2 & udptable->mask;
523 hslot2 = &udptable->hash2[slot2];
524
525 result = udp4_lib_lookup2(net, saddr, sport,
526 htonl(INADDR_ANY), hnum, dif, sdif,
527 hslot2, skb);
528 done:
529 if (IS_ERR(result))
530 return NULL;
531 return result;
532 }
533 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
534
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)535 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
536 __be16 sport, __be16 dport,
537 struct udp_table *udptable)
538 {
539 const struct iphdr *iph = ip_hdr(skb);
540
541 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
542 iph->daddr, dport, inet_iif(skb),
543 inet_sdif(skb), udptable, skb);
544 }
545
udp4_lib_lookup_skb(const struct sk_buff * skb,__be16 sport,__be16 dport)546 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
547 __be16 sport, __be16 dport)
548 {
549 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
550 const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
551 struct net *net = dev_net(skb->dev);
552 int iif, sdif;
553
554 inet_get_iif_sdif(skb, &iif, &sdif);
555
556 return __udp4_lib_lookup(net, iph->saddr, sport,
557 iph->daddr, dport, iif,
558 sdif, net->ipv4.udp_table, NULL);
559 }
560
561 /* Must be called under rcu_read_lock().
562 * Does increment socket refcount.
563 */
564 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)565 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
566 __be32 daddr, __be16 dport, int dif)
567 {
568 struct sock *sk;
569
570 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
571 dif, 0, net->ipv4.udp_table, NULL);
572 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
573 sk = NULL;
574 return sk;
575 }
576 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
577 #endif
578
__udp_is_mcast_sock(struct net * net,const struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)579 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
580 __be16 loc_port, __be32 loc_addr,
581 __be16 rmt_port, __be32 rmt_addr,
582 int dif, int sdif, unsigned short hnum)
583 {
584 const struct inet_sock *inet = inet_sk(sk);
585
586 if (!net_eq(sock_net(sk), net) ||
587 udp_sk(sk)->udp_port_hash != hnum ||
588 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
589 (inet->inet_dport != rmt_port && inet->inet_dport) ||
590 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
591 ipv6_only_sock(sk) ||
592 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
593 return false;
594 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
595 return false;
596 return true;
597 }
598
599 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
600 EXPORT_SYMBOL(udp_encap_needed_key);
601
602 #if IS_ENABLED(CONFIG_IPV6)
603 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
604 EXPORT_SYMBOL(udpv6_encap_needed_key);
605 #endif
606
udp_encap_enable(void)607 void udp_encap_enable(void)
608 {
609 static_branch_inc(&udp_encap_needed_key);
610 }
611 EXPORT_SYMBOL(udp_encap_enable);
612
udp_encap_disable(void)613 void udp_encap_disable(void)
614 {
615 static_branch_dec(&udp_encap_needed_key);
616 }
617 EXPORT_SYMBOL(udp_encap_disable);
618
619 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
620 * through error handlers in encapsulations looking for a match.
621 */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)622 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
623 {
624 int i;
625
626 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
627 int (*handler)(struct sk_buff *skb, u32 info);
628 const struct ip_tunnel_encap_ops *encap;
629
630 encap = rcu_dereference(iptun_encaps[i]);
631 if (!encap)
632 continue;
633 handler = encap->err_handler;
634 if (handler && !handler(skb, info))
635 return 0;
636 }
637
638 return -ENOENT;
639 }
640
641 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
642 * reversing source and destination port: this will match tunnels that force the
643 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
644 * lwtunnels might actually break this assumption by being configured with
645 * different destination ports on endpoints, in this case we won't be able to
646 * trace ICMP messages back to them.
647 *
648 * If this doesn't match any socket, probe tunnels with arbitrary destination
649 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
650 * we've sent packets to won't necessarily match the local destination port.
651 *
652 * Then ask the tunnel implementation to match the error against a valid
653 * association.
654 *
655 * Return an error if we can't find a match, the socket if we need further
656 * processing, zero otherwise.
657 */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sock * sk,struct sk_buff * skb,u32 info)658 static struct sock *__udp4_lib_err_encap(struct net *net,
659 const struct iphdr *iph,
660 struct udphdr *uh,
661 struct udp_table *udptable,
662 struct sock *sk,
663 struct sk_buff *skb, u32 info)
664 {
665 int (*lookup)(struct sock *sk, struct sk_buff *skb);
666 int network_offset, transport_offset;
667 struct udp_sock *up;
668
669 network_offset = skb_network_offset(skb);
670 transport_offset = skb_transport_offset(skb);
671
672 /* Network header needs to point to the outer IPv4 header inside ICMP */
673 skb_reset_network_header(skb);
674
675 /* Transport header needs to point to the UDP header */
676 skb_set_transport_header(skb, iph->ihl << 2);
677
678 if (sk) {
679 up = udp_sk(sk);
680
681 lookup = READ_ONCE(up->encap_err_lookup);
682 if (lookup && lookup(sk, skb))
683 sk = NULL;
684
685 goto out;
686 }
687
688 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
689 iph->saddr, uh->dest, skb->dev->ifindex, 0,
690 udptable, NULL);
691 if (sk) {
692 up = udp_sk(sk);
693
694 lookup = READ_ONCE(up->encap_err_lookup);
695 if (!lookup || lookup(sk, skb))
696 sk = NULL;
697 }
698
699 out:
700 if (!sk)
701 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
702
703 skb_set_transport_header(skb, transport_offset);
704 skb_set_network_header(skb, network_offset);
705
706 return sk;
707 }
708
709 /*
710 * This routine is called by the ICMP module when it gets some
711 * sort of error condition. If err < 0 then the socket should
712 * be closed and the error returned to the user. If err > 0
713 * it's just the icmp type << 8 | icmp code.
714 * Header points to the ip header of the error packet. We move
715 * on past this. Then (as it used to claim before adjustment)
716 * header points to the first 8 bytes of the udp header. We need
717 * to find the appropriate port.
718 */
719
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)720 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
721 {
722 struct inet_sock *inet;
723 const struct iphdr *iph = (const struct iphdr *)skb->data;
724 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
725 const int type = icmp_hdr(skb)->type;
726 const int code = icmp_hdr(skb)->code;
727 bool tunnel = false;
728 struct sock *sk;
729 int harderr;
730 int err;
731 struct net *net = dev_net(skb->dev);
732
733 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
734 iph->saddr, uh->source, skb->dev->ifindex,
735 inet_sdif(skb), udptable, NULL);
736
737 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
738 /* No socket for error: try tunnels before discarding */
739 if (static_branch_unlikely(&udp_encap_needed_key)) {
740 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
741 info);
742 if (!sk)
743 return 0;
744 } else
745 sk = ERR_PTR(-ENOENT);
746
747 if (IS_ERR(sk)) {
748 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
749 return PTR_ERR(sk);
750 }
751
752 tunnel = true;
753 }
754
755 err = 0;
756 harderr = 0;
757 inet = inet_sk(sk);
758
759 switch (type) {
760 default:
761 case ICMP_TIME_EXCEEDED:
762 err = EHOSTUNREACH;
763 break;
764 case ICMP_SOURCE_QUENCH:
765 goto out;
766 case ICMP_PARAMETERPROB:
767 err = EPROTO;
768 harderr = 1;
769 break;
770 case ICMP_DEST_UNREACH:
771 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
772 ipv4_sk_update_pmtu(skb, sk, info);
773 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
774 err = EMSGSIZE;
775 harderr = 1;
776 break;
777 }
778 goto out;
779 }
780 err = EHOSTUNREACH;
781 if (code <= NR_ICMP_UNREACH) {
782 harderr = icmp_err_convert[code].fatal;
783 err = icmp_err_convert[code].errno;
784 }
785 break;
786 case ICMP_REDIRECT:
787 ipv4_sk_redirect(skb, sk);
788 goto out;
789 }
790
791 /*
792 * RFC1122: OK. Passes ICMP errors back to application, as per
793 * 4.1.3.3.
794 */
795 if (tunnel) {
796 /* ...not for tunnels though: we don't have a sending socket */
797 if (udp_sk(sk)->encap_err_rcv)
798 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
799 (u8 *)(uh+1));
800 goto out;
801 }
802 if (!inet_test_bit(RECVERR, sk)) {
803 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
804 goto out;
805 } else
806 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
807
808 sk->sk_err = err;
809 sk_error_report(sk);
810 out:
811 return 0;
812 }
813
udp_err(struct sk_buff * skb,u32 info)814 int udp_err(struct sk_buff *skb, u32 info)
815 {
816 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
817 }
818
819 /*
820 * Throw away all pending data and cancel the corking. Socket is locked.
821 */
udp_flush_pending_frames(struct sock * sk)822 void udp_flush_pending_frames(struct sock *sk)
823 {
824 struct udp_sock *up = udp_sk(sk);
825
826 if (up->pending) {
827 up->len = 0;
828 WRITE_ONCE(up->pending, 0);
829 ip_flush_pending_frames(sk);
830 }
831 }
832 EXPORT_SYMBOL(udp_flush_pending_frames);
833
834 /**
835 * udp4_hwcsum - handle outgoing HW checksumming
836 * @skb: sk_buff containing the filled-in UDP header
837 * (checksum field must be zeroed out)
838 * @src: source IP address
839 * @dst: destination IP address
840 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)841 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
842 {
843 struct udphdr *uh = udp_hdr(skb);
844 int offset = skb_transport_offset(skb);
845 int len = skb->len - offset;
846 int hlen = len;
847 __wsum csum = 0;
848
849 if (!skb_has_frag_list(skb)) {
850 /*
851 * Only one fragment on the socket.
852 */
853 skb->csum_start = skb_transport_header(skb) - skb->head;
854 skb->csum_offset = offsetof(struct udphdr, check);
855 uh->check = ~csum_tcpudp_magic(src, dst, len,
856 IPPROTO_UDP, 0);
857 } else {
858 struct sk_buff *frags;
859
860 /*
861 * HW-checksum won't work as there are two or more
862 * fragments on the socket so that all csums of sk_buffs
863 * should be together
864 */
865 skb_walk_frags(skb, frags) {
866 csum = csum_add(csum, frags->csum);
867 hlen -= frags->len;
868 }
869
870 csum = skb_checksum(skb, offset, hlen, csum);
871 skb->ip_summed = CHECKSUM_NONE;
872
873 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
874 if (uh->check == 0)
875 uh->check = CSUM_MANGLED_0;
876 }
877 }
878 EXPORT_SYMBOL_GPL(udp4_hwcsum);
879
880 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
881 * for the simple case like when setting the checksum for a UDP tunnel.
882 */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)883 void udp_set_csum(bool nocheck, struct sk_buff *skb,
884 __be32 saddr, __be32 daddr, int len)
885 {
886 struct udphdr *uh = udp_hdr(skb);
887
888 if (nocheck) {
889 uh->check = 0;
890 } else if (skb_is_gso(skb)) {
891 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
892 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
893 uh->check = 0;
894 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
895 if (uh->check == 0)
896 uh->check = CSUM_MANGLED_0;
897 } else {
898 skb->ip_summed = CHECKSUM_PARTIAL;
899 skb->csum_start = skb_transport_header(skb) - skb->head;
900 skb->csum_offset = offsetof(struct udphdr, check);
901 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
902 }
903 }
904 EXPORT_SYMBOL(udp_set_csum);
905
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)906 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
907 struct inet_cork *cork)
908 {
909 struct sock *sk = skb->sk;
910 struct inet_sock *inet = inet_sk(sk);
911 struct udphdr *uh;
912 int err;
913 int is_udplite = IS_UDPLITE(sk);
914 int offset = skb_transport_offset(skb);
915 int len = skb->len - offset;
916 int datalen = len - sizeof(*uh);
917 __wsum csum = 0;
918
919 /*
920 * Create a UDP header
921 */
922 uh = udp_hdr(skb);
923 uh->source = inet->inet_sport;
924 uh->dest = fl4->fl4_dport;
925 uh->len = htons(len);
926 uh->check = 0;
927
928 if (cork->gso_size) {
929 const int hlen = skb_network_header_len(skb) +
930 sizeof(struct udphdr);
931
932 if (hlen + cork->gso_size > cork->fragsize) {
933 kfree_skb(skb);
934 return -EINVAL;
935 }
936 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
937 kfree_skb(skb);
938 return -EINVAL;
939 }
940 if (sk->sk_no_check_tx) {
941 kfree_skb(skb);
942 return -EINVAL;
943 }
944 if (is_udplite || dst_xfrm(skb_dst(skb))) {
945 kfree_skb(skb);
946 return -EIO;
947 }
948
949 if (datalen > cork->gso_size) {
950 skb_shinfo(skb)->gso_size = cork->gso_size;
951 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
952 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
953 cork->gso_size);
954
955 /* Don't checksum the payload, skb will get segmented */
956 goto csum_partial;
957 }
958 }
959
960 if (is_udplite) /* UDP-Lite */
961 csum = udplite_csum(skb);
962
963 else if (sk->sk_no_check_tx) { /* UDP csum off */
964
965 skb->ip_summed = CHECKSUM_NONE;
966 goto send;
967
968 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
969 csum_partial:
970
971 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
972 goto send;
973
974 } else
975 csum = udp_csum(skb);
976
977 /* add protocol-dependent pseudo-header */
978 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
979 sk->sk_protocol, csum);
980 if (uh->check == 0)
981 uh->check = CSUM_MANGLED_0;
982
983 send:
984 err = ip_send_skb(sock_net(sk), skb);
985 if (err) {
986 if (err == -ENOBUFS &&
987 !inet_test_bit(RECVERR, sk)) {
988 UDP_INC_STATS(sock_net(sk),
989 UDP_MIB_SNDBUFERRORS, is_udplite);
990 err = 0;
991 }
992 } else
993 UDP_INC_STATS(sock_net(sk),
994 UDP_MIB_OUTDATAGRAMS, is_udplite);
995 return err;
996 }
997
998 /*
999 * Push out all pending data as one UDP datagram. Socket is locked.
1000 */
udp_push_pending_frames(struct sock * sk)1001 int udp_push_pending_frames(struct sock *sk)
1002 {
1003 struct udp_sock *up = udp_sk(sk);
1004 struct inet_sock *inet = inet_sk(sk);
1005 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1006 struct sk_buff *skb;
1007 int err = 0;
1008
1009 skb = ip_finish_skb(sk, fl4);
1010 if (!skb)
1011 goto out;
1012
1013 err = udp_send_skb(skb, fl4, &inet->cork.base);
1014
1015 out:
1016 up->len = 0;
1017 WRITE_ONCE(up->pending, 0);
1018 return err;
1019 }
1020 EXPORT_SYMBOL(udp_push_pending_frames);
1021
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1022 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1023 {
1024 switch (cmsg->cmsg_type) {
1025 case UDP_SEGMENT:
1026 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1027 return -EINVAL;
1028 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1029 return 0;
1030 default:
1031 return -EINVAL;
1032 }
1033 }
1034
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1035 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1036 {
1037 struct cmsghdr *cmsg;
1038 bool need_ip = false;
1039 int err;
1040
1041 for_each_cmsghdr(cmsg, msg) {
1042 if (!CMSG_OK(msg, cmsg))
1043 return -EINVAL;
1044
1045 if (cmsg->cmsg_level != SOL_UDP) {
1046 need_ip = true;
1047 continue;
1048 }
1049
1050 err = __udp_cmsg_send(cmsg, gso_size);
1051 if (err)
1052 return err;
1053 }
1054
1055 return need_ip;
1056 }
1057 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1058
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1059 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1060 {
1061 struct inet_sock *inet = inet_sk(sk);
1062 struct udp_sock *up = udp_sk(sk);
1063 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1064 struct flowi4 fl4_stack;
1065 struct flowi4 *fl4;
1066 int ulen = len;
1067 struct ipcm_cookie ipc;
1068 struct rtable *rt = NULL;
1069 int free = 0;
1070 int connected = 0;
1071 __be32 daddr, faddr, saddr;
1072 u8 tos, scope;
1073 __be16 dport;
1074 int err, is_udplite = IS_UDPLITE(sk);
1075 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1076 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1077 struct sk_buff *skb;
1078 struct ip_options_data opt_copy;
1079 int uc_index;
1080
1081 if (len > 0xFFFF)
1082 return -EMSGSIZE;
1083
1084 /*
1085 * Check the flags.
1086 */
1087
1088 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1089 return -EOPNOTSUPP;
1090
1091 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1092
1093 fl4 = &inet->cork.fl.u.ip4;
1094 if (READ_ONCE(up->pending)) {
1095 /*
1096 * There are pending frames.
1097 * The socket lock must be held while it's corked.
1098 */
1099 lock_sock(sk);
1100 if (likely(up->pending)) {
1101 if (unlikely(up->pending != AF_INET)) {
1102 release_sock(sk);
1103 return -EINVAL;
1104 }
1105 goto do_append_data;
1106 }
1107 release_sock(sk);
1108 }
1109 ulen += sizeof(struct udphdr);
1110
1111 /*
1112 * Get and verify the address.
1113 */
1114 if (usin) {
1115 if (msg->msg_namelen < sizeof(*usin))
1116 return -EINVAL;
1117 if (usin->sin_family != AF_INET) {
1118 if (usin->sin_family != AF_UNSPEC)
1119 return -EAFNOSUPPORT;
1120 }
1121
1122 daddr = usin->sin_addr.s_addr;
1123 dport = usin->sin_port;
1124 if (dport == 0)
1125 return -EINVAL;
1126 } else {
1127 if (sk->sk_state != TCP_ESTABLISHED)
1128 return -EDESTADDRREQ;
1129 daddr = inet->inet_daddr;
1130 dport = inet->inet_dport;
1131 /* Open fast path for connected socket.
1132 Route will not be used, if at least one option is set.
1133 */
1134 connected = 1;
1135 }
1136
1137 ipcm_init_sk(&ipc, inet);
1138 ipc.gso_size = READ_ONCE(up->gso_size);
1139
1140 if (msg->msg_controllen) {
1141 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1142 if (err > 0) {
1143 err = ip_cmsg_send(sk, msg, &ipc,
1144 sk->sk_family == AF_INET6);
1145 connected = 0;
1146 }
1147 if (unlikely(err < 0)) {
1148 kfree(ipc.opt);
1149 return err;
1150 }
1151 if (ipc.opt)
1152 free = 1;
1153 }
1154 if (!ipc.opt) {
1155 struct ip_options_rcu *inet_opt;
1156
1157 rcu_read_lock();
1158 inet_opt = rcu_dereference(inet->inet_opt);
1159 if (inet_opt) {
1160 memcpy(&opt_copy, inet_opt,
1161 sizeof(*inet_opt) + inet_opt->opt.optlen);
1162 ipc.opt = &opt_copy.opt;
1163 }
1164 rcu_read_unlock();
1165 }
1166
1167 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1168 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1169 (struct sockaddr *)usin,
1170 &msg->msg_namelen,
1171 &ipc.addr);
1172 if (err)
1173 goto out_free;
1174 if (usin) {
1175 if (usin->sin_port == 0) {
1176 /* BPF program set invalid port. Reject it. */
1177 err = -EINVAL;
1178 goto out_free;
1179 }
1180 daddr = usin->sin_addr.s_addr;
1181 dport = usin->sin_port;
1182 }
1183 }
1184
1185 saddr = ipc.addr;
1186 ipc.addr = faddr = daddr;
1187
1188 if (ipc.opt && ipc.opt->opt.srr) {
1189 if (!daddr) {
1190 err = -EINVAL;
1191 goto out_free;
1192 }
1193 faddr = ipc.opt->opt.faddr;
1194 connected = 0;
1195 }
1196 tos = get_rttos(&ipc, inet);
1197 scope = ip_sendmsg_scope(inet, &ipc, msg);
1198 if (scope == RT_SCOPE_LINK)
1199 connected = 0;
1200
1201 uc_index = READ_ONCE(inet->uc_index);
1202 if (ipv4_is_multicast(daddr)) {
1203 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1204 ipc.oif = READ_ONCE(inet->mc_index);
1205 if (!saddr)
1206 saddr = READ_ONCE(inet->mc_addr);
1207 connected = 0;
1208 } else if (!ipc.oif) {
1209 ipc.oif = uc_index;
1210 } else if (ipv4_is_lbcast(daddr) && uc_index) {
1211 /* oif is set, packet is to local broadcast and
1212 * uc_index is set. oif is most likely set
1213 * by sk_bound_dev_if. If uc_index != oif check if the
1214 * oif is an L3 master and uc_index is an L3 slave.
1215 * If so, we want to allow the send using the uc_index.
1216 */
1217 if (ipc.oif != uc_index &&
1218 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1219 uc_index)) {
1220 ipc.oif = uc_index;
1221 }
1222 }
1223
1224 if (connected)
1225 rt = dst_rtable(sk_dst_check(sk, 0));
1226
1227 if (!rt) {
1228 struct net *net = sock_net(sk);
1229 __u8 flow_flags = inet_sk_flowi_flags(sk);
1230
1231 fl4 = &fl4_stack;
1232
1233 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1234 sk->sk_protocol, flow_flags, faddr, saddr,
1235 dport, inet->inet_sport, sk->sk_uid);
1236
1237 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1238 rt = ip_route_output_flow(net, fl4, sk);
1239 if (IS_ERR(rt)) {
1240 err = PTR_ERR(rt);
1241 rt = NULL;
1242 if (err == -ENETUNREACH)
1243 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1244 goto out;
1245 }
1246
1247 err = -EACCES;
1248 if ((rt->rt_flags & RTCF_BROADCAST) &&
1249 !sock_flag(sk, SOCK_BROADCAST))
1250 goto out;
1251 if (connected)
1252 sk_dst_set(sk, dst_clone(&rt->dst));
1253 }
1254
1255 if (msg->msg_flags&MSG_CONFIRM)
1256 goto do_confirm;
1257 back_from_confirm:
1258
1259 saddr = fl4->saddr;
1260 if (!ipc.addr)
1261 daddr = ipc.addr = fl4->daddr;
1262
1263 /* Lockless fast path for the non-corking case. */
1264 if (!corkreq) {
1265 struct inet_cork cork;
1266
1267 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1268 sizeof(struct udphdr), &ipc, &rt,
1269 &cork, msg->msg_flags);
1270 err = PTR_ERR(skb);
1271 if (!IS_ERR_OR_NULL(skb))
1272 err = udp_send_skb(skb, fl4, &cork);
1273 goto out;
1274 }
1275
1276 lock_sock(sk);
1277 if (unlikely(up->pending)) {
1278 /* The socket is already corked while preparing it. */
1279 /* ... which is an evident application bug. --ANK */
1280 release_sock(sk);
1281
1282 net_dbg_ratelimited("socket already corked\n");
1283 err = -EINVAL;
1284 goto out;
1285 }
1286 /*
1287 * Now cork the socket to pend data.
1288 */
1289 fl4 = &inet->cork.fl.u.ip4;
1290 fl4->daddr = daddr;
1291 fl4->saddr = saddr;
1292 fl4->fl4_dport = dport;
1293 fl4->fl4_sport = inet->inet_sport;
1294 WRITE_ONCE(up->pending, AF_INET);
1295
1296 do_append_data:
1297 up->len += ulen;
1298 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1299 sizeof(struct udphdr), &ipc, &rt,
1300 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1301 if (err)
1302 udp_flush_pending_frames(sk);
1303 else if (!corkreq)
1304 err = udp_push_pending_frames(sk);
1305 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1306 WRITE_ONCE(up->pending, 0);
1307 release_sock(sk);
1308
1309 out:
1310 ip_rt_put(rt);
1311 out_free:
1312 if (free)
1313 kfree(ipc.opt);
1314 if (!err)
1315 return len;
1316 /*
1317 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1318 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1319 * we don't have a good statistic (IpOutDiscards but it can be too many
1320 * things). We could add another new stat but at least for now that
1321 * seems like overkill.
1322 */
1323 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1324 UDP_INC_STATS(sock_net(sk),
1325 UDP_MIB_SNDBUFERRORS, is_udplite);
1326 }
1327 return err;
1328
1329 do_confirm:
1330 if (msg->msg_flags & MSG_PROBE)
1331 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1332 if (!(msg->msg_flags&MSG_PROBE) || len)
1333 goto back_from_confirm;
1334 err = 0;
1335 goto out;
1336 }
1337 EXPORT_SYMBOL(udp_sendmsg);
1338
udp_splice_eof(struct socket * sock)1339 void udp_splice_eof(struct socket *sock)
1340 {
1341 struct sock *sk = sock->sk;
1342 struct udp_sock *up = udp_sk(sk);
1343
1344 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1345 return;
1346
1347 lock_sock(sk);
1348 if (up->pending && !udp_test_bit(CORK, sk))
1349 udp_push_pending_frames(sk);
1350 release_sock(sk);
1351 }
1352 EXPORT_SYMBOL_GPL(udp_splice_eof);
1353
1354 #define UDP_SKB_IS_STATELESS 0x80000000
1355
1356 /* all head states (dst, sk, nf conntrack) except skb extensions are
1357 * cleared by udp_rcv().
1358 *
1359 * We need to preserve secpath, if present, to eventually process
1360 * IP_CMSG_PASSSEC at recvmsg() time.
1361 *
1362 * Other extensions can be cleared.
1363 */
udp_try_make_stateless(struct sk_buff * skb)1364 static bool udp_try_make_stateless(struct sk_buff *skb)
1365 {
1366 if (!skb_has_extensions(skb))
1367 return true;
1368
1369 if (!secpath_exists(skb)) {
1370 skb_ext_reset(skb);
1371 return true;
1372 }
1373
1374 return false;
1375 }
1376
udp_set_dev_scratch(struct sk_buff * skb)1377 static void udp_set_dev_scratch(struct sk_buff *skb)
1378 {
1379 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1380
1381 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1382 scratch->_tsize_state = skb->truesize;
1383 #if BITS_PER_LONG == 64
1384 scratch->len = skb->len;
1385 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1386 scratch->is_linear = !skb_is_nonlinear(skb);
1387 #endif
1388 if (udp_try_make_stateless(skb))
1389 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1390 }
1391
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1392 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1393 {
1394 /* We come here after udp_lib_checksum_complete() returned 0.
1395 * This means that __skb_checksum_complete() might have
1396 * set skb->csum_valid to 1.
1397 * On 64bit platforms, we can set csum_unnecessary
1398 * to true, but only if the skb is not shared.
1399 */
1400 #if BITS_PER_LONG == 64
1401 if (!skb_shared(skb))
1402 udp_skb_scratch(skb)->csum_unnecessary = true;
1403 #endif
1404 }
1405
udp_skb_truesize(struct sk_buff * skb)1406 static int udp_skb_truesize(struct sk_buff *skb)
1407 {
1408 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1409 }
1410
udp_skb_has_head_state(struct sk_buff * skb)1411 static bool udp_skb_has_head_state(struct sk_buff *skb)
1412 {
1413 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1414 }
1415
1416 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1417 static void udp_rmem_release(struct sock *sk, int size, int partial,
1418 bool rx_queue_lock_held)
1419 {
1420 struct udp_sock *up = udp_sk(sk);
1421 struct sk_buff_head *sk_queue;
1422 int amt;
1423
1424 if (likely(partial)) {
1425 up->forward_deficit += size;
1426 size = up->forward_deficit;
1427 if (size < READ_ONCE(up->forward_threshold) &&
1428 !skb_queue_empty(&up->reader_queue))
1429 return;
1430 } else {
1431 size += up->forward_deficit;
1432 }
1433 up->forward_deficit = 0;
1434
1435 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1436 * if the called don't held it already
1437 */
1438 sk_queue = &sk->sk_receive_queue;
1439 if (!rx_queue_lock_held)
1440 spin_lock(&sk_queue->lock);
1441
1442
1443 sk_forward_alloc_add(sk, size);
1444 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1445 sk_forward_alloc_add(sk, -amt);
1446
1447 if (amt)
1448 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1449
1450 atomic_sub(size, &sk->sk_rmem_alloc);
1451
1452 /* this can save us from acquiring the rx queue lock on next receive */
1453 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1454
1455 if (!rx_queue_lock_held)
1456 spin_unlock(&sk_queue->lock);
1457 }
1458
1459 /* Note: called with reader_queue.lock held.
1460 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1461 * This avoids a cache line miss while receive_queue lock is held.
1462 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1463 */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1464 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1465 {
1466 prefetch(&skb->data);
1467 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1468 }
1469 EXPORT_SYMBOL(udp_skb_destructor);
1470
1471 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1472 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1473 {
1474 prefetch(&skb->data);
1475 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1476 }
1477
1478 /* Idea of busylocks is to let producers grab an extra spinlock
1479 * to relieve pressure on the receive_queue spinlock shared by consumer.
1480 * Under flood, this means that only one producer can be in line
1481 * trying to acquire the receive_queue spinlock.
1482 * These busylock can be allocated on a per cpu manner, instead of a
1483 * per socket one (that would consume a cache line per socket)
1484 */
1485 static int udp_busylocks_log __read_mostly;
1486 static spinlock_t *udp_busylocks __read_mostly;
1487
busylock_acquire(void * ptr)1488 static spinlock_t *busylock_acquire(void *ptr)
1489 {
1490 spinlock_t *busy;
1491
1492 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1493 spin_lock(busy);
1494 return busy;
1495 }
1496
busylock_release(spinlock_t * busy)1497 static void busylock_release(spinlock_t *busy)
1498 {
1499 if (busy)
1500 spin_unlock(busy);
1501 }
1502
udp_rmem_schedule(struct sock * sk,int size)1503 static int udp_rmem_schedule(struct sock *sk, int size)
1504 {
1505 int delta;
1506
1507 delta = size - sk->sk_forward_alloc;
1508 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1509 return -ENOBUFS;
1510
1511 return 0;
1512 }
1513
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1514 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1515 {
1516 struct sk_buff_head *list = &sk->sk_receive_queue;
1517 int rmem, err = -ENOMEM;
1518 spinlock_t *busy = NULL;
1519 bool becomes_readable;
1520 int size, rcvbuf;
1521
1522 /* Immediately drop when the receive queue is full.
1523 * Always allow at least one packet.
1524 */
1525 rmem = atomic_read(&sk->sk_rmem_alloc);
1526 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1527 if (rmem > rcvbuf)
1528 goto drop;
1529
1530 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1531 * having linear skbs :
1532 * - Reduce memory overhead and thus increase receive queue capacity
1533 * - Less cache line misses at copyout() time
1534 * - Less work at consume_skb() (less alien page frag freeing)
1535 */
1536 if (rmem > (rcvbuf >> 1)) {
1537 skb_condense(skb);
1538
1539 busy = busylock_acquire(sk);
1540 }
1541 size = skb->truesize;
1542 udp_set_dev_scratch(skb);
1543
1544 atomic_add(size, &sk->sk_rmem_alloc);
1545
1546 spin_lock(&list->lock);
1547 err = udp_rmem_schedule(sk, size);
1548 if (err) {
1549 spin_unlock(&list->lock);
1550 goto uncharge_drop;
1551 }
1552
1553 sk_forward_alloc_add(sk, -size);
1554
1555 /* no need to setup a destructor, we will explicitly release the
1556 * forward allocated memory on dequeue
1557 */
1558 sock_skb_set_dropcount(sk, skb);
1559
1560 becomes_readable = skb_queue_empty(list);
1561 __skb_queue_tail(list, skb);
1562 spin_unlock(&list->lock);
1563
1564 if (!sock_flag(sk, SOCK_DEAD)) {
1565 if (becomes_readable ||
1566 sk->sk_data_ready != sock_def_readable ||
1567 READ_ONCE(sk->sk_peek_off) >= 0)
1568 INDIRECT_CALL_1(sk->sk_data_ready,
1569 sock_def_readable, sk);
1570 else
1571 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
1572 }
1573 busylock_release(busy);
1574 return 0;
1575
1576 uncharge_drop:
1577 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1578
1579 drop:
1580 atomic_inc(&sk->sk_drops);
1581 busylock_release(busy);
1582 return err;
1583 }
1584 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1585
udp_destruct_common(struct sock * sk)1586 void udp_destruct_common(struct sock *sk)
1587 {
1588 /* reclaim completely the forward allocated memory */
1589 struct udp_sock *up = udp_sk(sk);
1590 unsigned int total = 0;
1591 struct sk_buff *skb;
1592
1593 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1594 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1595 total += skb->truesize;
1596 kfree_skb(skb);
1597 }
1598 udp_rmem_release(sk, total, 0, true);
1599 }
1600 EXPORT_SYMBOL_GPL(udp_destruct_common);
1601
udp_destruct_sock(struct sock * sk)1602 static void udp_destruct_sock(struct sock *sk)
1603 {
1604 udp_destruct_common(sk);
1605 inet_sock_destruct(sk);
1606 }
1607
udp_init_sock(struct sock * sk)1608 int udp_init_sock(struct sock *sk)
1609 {
1610 udp_lib_init_sock(sk);
1611 sk->sk_destruct = udp_destruct_sock;
1612 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1613 return 0;
1614 }
1615
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1616 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1617 {
1618 if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1619 sk_peek_offset_bwd(sk, len);
1620
1621 if (!skb_unref(skb))
1622 return;
1623
1624 /* In the more common cases we cleared the head states previously,
1625 * see __udp_queue_rcv_skb().
1626 */
1627 if (unlikely(udp_skb_has_head_state(skb)))
1628 skb_release_head_state(skb);
1629 __consume_stateless_skb(skb);
1630 }
1631 EXPORT_SYMBOL_GPL(skb_consume_udp);
1632
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1633 static struct sk_buff *__first_packet_length(struct sock *sk,
1634 struct sk_buff_head *rcvq,
1635 int *total)
1636 {
1637 struct sk_buff *skb;
1638
1639 while ((skb = skb_peek(rcvq)) != NULL) {
1640 if (udp_lib_checksum_complete(skb)) {
1641 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1642 IS_UDPLITE(sk));
1643 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1644 IS_UDPLITE(sk));
1645 atomic_inc(&sk->sk_drops);
1646 __skb_unlink(skb, rcvq);
1647 *total += skb->truesize;
1648 kfree_skb(skb);
1649 } else {
1650 udp_skb_csum_unnecessary_set(skb);
1651 break;
1652 }
1653 }
1654 return skb;
1655 }
1656
1657 /**
1658 * first_packet_length - return length of first packet in receive queue
1659 * @sk: socket
1660 *
1661 * Drops all bad checksum frames, until a valid one is found.
1662 * Returns the length of found skb, or -1 if none is found.
1663 */
first_packet_length(struct sock * sk)1664 static int first_packet_length(struct sock *sk)
1665 {
1666 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1667 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1668 struct sk_buff *skb;
1669 int total = 0;
1670 int res;
1671
1672 spin_lock_bh(&rcvq->lock);
1673 skb = __first_packet_length(sk, rcvq, &total);
1674 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1675 spin_lock(&sk_queue->lock);
1676 skb_queue_splice_tail_init(sk_queue, rcvq);
1677 spin_unlock(&sk_queue->lock);
1678
1679 skb = __first_packet_length(sk, rcvq, &total);
1680 }
1681 res = skb ? skb->len : -1;
1682 if (total)
1683 udp_rmem_release(sk, total, 1, false);
1684 spin_unlock_bh(&rcvq->lock);
1685 return res;
1686 }
1687
1688 /*
1689 * IOCTL requests applicable to the UDP protocol
1690 */
1691
udp_ioctl(struct sock * sk,int cmd,int * karg)1692 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1693 {
1694 switch (cmd) {
1695 case SIOCOUTQ:
1696 {
1697 *karg = sk_wmem_alloc_get(sk);
1698 return 0;
1699 }
1700
1701 case SIOCINQ:
1702 {
1703 *karg = max_t(int, 0, first_packet_length(sk));
1704 return 0;
1705 }
1706
1707 default:
1708 return -ENOIOCTLCMD;
1709 }
1710
1711 return 0;
1712 }
1713 EXPORT_SYMBOL(udp_ioctl);
1714
__skb_recv_udp(struct sock * sk,unsigned int flags,int * off,int * err)1715 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1716 int *off, int *err)
1717 {
1718 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1719 struct sk_buff_head *queue;
1720 struct sk_buff *last;
1721 long timeo;
1722 int error;
1723
1724 queue = &udp_sk(sk)->reader_queue;
1725 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1726 do {
1727 struct sk_buff *skb;
1728
1729 error = sock_error(sk);
1730 if (error)
1731 break;
1732
1733 error = -EAGAIN;
1734 do {
1735 spin_lock_bh(&queue->lock);
1736 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1737 err, &last);
1738 if (skb) {
1739 if (!(flags & MSG_PEEK))
1740 udp_skb_destructor(sk, skb);
1741 spin_unlock_bh(&queue->lock);
1742 return skb;
1743 }
1744
1745 if (skb_queue_empty_lockless(sk_queue)) {
1746 spin_unlock_bh(&queue->lock);
1747 goto busy_check;
1748 }
1749
1750 /* refill the reader queue and walk it again
1751 * keep both queues locked to avoid re-acquiring
1752 * the sk_receive_queue lock if fwd memory scheduling
1753 * is needed.
1754 */
1755 spin_lock(&sk_queue->lock);
1756 skb_queue_splice_tail_init(sk_queue, queue);
1757
1758 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1759 err, &last);
1760 if (skb && !(flags & MSG_PEEK))
1761 udp_skb_dtor_locked(sk, skb);
1762 spin_unlock(&sk_queue->lock);
1763 spin_unlock_bh(&queue->lock);
1764 if (skb)
1765 return skb;
1766
1767 busy_check:
1768 if (!sk_can_busy_loop(sk))
1769 break;
1770
1771 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1772 } while (!skb_queue_empty_lockless(sk_queue));
1773
1774 /* sk_queue is empty, reader_queue may contain peeked packets */
1775 } while (timeo &&
1776 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1777 &error, &timeo,
1778 (struct sk_buff *)sk_queue));
1779
1780 *err = error;
1781 return NULL;
1782 }
1783 EXPORT_SYMBOL(__skb_recv_udp);
1784
udp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1785 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1786 {
1787 struct sk_buff *skb;
1788 int err;
1789
1790 try_again:
1791 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1792 if (!skb)
1793 return err;
1794
1795 if (udp_lib_checksum_complete(skb)) {
1796 int is_udplite = IS_UDPLITE(sk);
1797 struct net *net = sock_net(sk);
1798
1799 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1800 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1801 atomic_inc(&sk->sk_drops);
1802 kfree_skb(skb);
1803 goto try_again;
1804 }
1805
1806 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1807 return recv_actor(sk, skb);
1808 }
1809 EXPORT_SYMBOL(udp_read_skb);
1810
1811 /*
1812 * This should be easy, if there is something there we
1813 * return it, otherwise we block.
1814 */
1815
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)1816 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1817 int *addr_len)
1818 {
1819 struct inet_sock *inet = inet_sk(sk);
1820 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1821 struct sk_buff *skb;
1822 unsigned int ulen, copied;
1823 int off, err, peeking = flags & MSG_PEEK;
1824 int is_udplite = IS_UDPLITE(sk);
1825 bool checksum_valid = false;
1826
1827 if (flags & MSG_ERRQUEUE)
1828 return ip_recv_error(sk, msg, len, addr_len);
1829
1830 try_again:
1831 off = sk_peek_offset(sk, flags);
1832 skb = __skb_recv_udp(sk, flags, &off, &err);
1833 if (!skb)
1834 return err;
1835
1836 ulen = udp_skb_len(skb);
1837 copied = len;
1838 if (copied > ulen - off)
1839 copied = ulen - off;
1840 else if (copied < ulen)
1841 msg->msg_flags |= MSG_TRUNC;
1842
1843 /*
1844 * If checksum is needed at all, try to do it while copying the
1845 * data. If the data is truncated, or if we only want a partial
1846 * coverage checksum (UDP-Lite), do it before the copy.
1847 */
1848
1849 if (copied < ulen || peeking ||
1850 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1851 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1852 !__udp_lib_checksum_complete(skb);
1853 if (!checksum_valid)
1854 goto csum_copy_err;
1855 }
1856
1857 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1858 if (udp_skb_is_linear(skb))
1859 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1860 else
1861 err = skb_copy_datagram_msg(skb, off, msg, copied);
1862 } else {
1863 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1864
1865 if (err == -EINVAL)
1866 goto csum_copy_err;
1867 }
1868
1869 if (unlikely(err)) {
1870 if (!peeking) {
1871 atomic_inc(&sk->sk_drops);
1872 UDP_INC_STATS(sock_net(sk),
1873 UDP_MIB_INERRORS, is_udplite);
1874 }
1875 kfree_skb(skb);
1876 return err;
1877 }
1878
1879 if (!peeking)
1880 UDP_INC_STATS(sock_net(sk),
1881 UDP_MIB_INDATAGRAMS, is_udplite);
1882
1883 sock_recv_cmsgs(msg, sk, skb);
1884
1885 /* Copy the address. */
1886 if (sin) {
1887 sin->sin_family = AF_INET;
1888 sin->sin_port = udp_hdr(skb)->source;
1889 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1890 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1891 *addr_len = sizeof(*sin);
1892
1893 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1894 (struct sockaddr *)sin,
1895 addr_len);
1896 }
1897
1898 if (udp_test_bit(GRO_ENABLED, sk))
1899 udp_cmsg_recv(msg, sk, skb);
1900
1901 if (inet_cmsg_flags(inet))
1902 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1903
1904 err = copied;
1905 if (flags & MSG_TRUNC)
1906 err = ulen;
1907
1908 skb_consume_udp(sk, skb, peeking ? -err : err);
1909 return err;
1910
1911 csum_copy_err:
1912 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1913 udp_skb_destructor)) {
1914 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1915 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1916 }
1917 kfree_skb(skb);
1918
1919 /* starting over for a new packet, but check if we need to yield */
1920 cond_resched();
1921 msg->msg_flags &= ~MSG_TRUNC;
1922 goto try_again;
1923 }
1924
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1925 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1926 {
1927 /* This check is replicated from __ip4_datagram_connect() and
1928 * intended to prevent BPF program called below from accessing bytes
1929 * that are out of the bound specified by user in addr_len.
1930 */
1931 if (addr_len < sizeof(struct sockaddr_in))
1932 return -EINVAL;
1933
1934 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1935 }
1936 EXPORT_SYMBOL(udp_pre_connect);
1937
__udp_disconnect(struct sock * sk,int flags)1938 int __udp_disconnect(struct sock *sk, int flags)
1939 {
1940 struct inet_sock *inet = inet_sk(sk);
1941 /*
1942 * 1003.1g - break association.
1943 */
1944
1945 sk->sk_state = TCP_CLOSE;
1946 inet->inet_daddr = 0;
1947 inet->inet_dport = 0;
1948 sock_rps_reset_rxhash(sk);
1949 sk->sk_bound_dev_if = 0;
1950 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1951 inet_reset_saddr(sk);
1952 if (sk->sk_prot->rehash &&
1953 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1954 sk->sk_prot->rehash(sk);
1955 }
1956
1957 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1958 sk->sk_prot->unhash(sk);
1959 inet->inet_sport = 0;
1960 }
1961 sk_dst_reset(sk);
1962 return 0;
1963 }
1964 EXPORT_SYMBOL(__udp_disconnect);
1965
udp_disconnect(struct sock * sk,int flags)1966 int udp_disconnect(struct sock *sk, int flags)
1967 {
1968 lock_sock(sk);
1969 __udp_disconnect(sk, flags);
1970 release_sock(sk);
1971 return 0;
1972 }
1973 EXPORT_SYMBOL(udp_disconnect);
1974
udp_lib_unhash(struct sock * sk)1975 void udp_lib_unhash(struct sock *sk)
1976 {
1977 if (sk_hashed(sk)) {
1978 struct udp_table *udptable = udp_get_table_prot(sk);
1979 struct udp_hslot *hslot, *hslot2;
1980
1981 hslot = udp_hashslot(udptable, sock_net(sk),
1982 udp_sk(sk)->udp_port_hash);
1983 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1984
1985 spin_lock_bh(&hslot->lock);
1986 if (rcu_access_pointer(sk->sk_reuseport_cb))
1987 reuseport_detach_sock(sk);
1988 if (sk_del_node_init_rcu(sk)) {
1989 hslot->count--;
1990 inet_sk(sk)->inet_num = 0;
1991 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1992
1993 spin_lock(&hslot2->lock);
1994 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1995 hslot2->count--;
1996 spin_unlock(&hslot2->lock);
1997 }
1998 spin_unlock_bh(&hslot->lock);
1999 }
2000 }
2001 EXPORT_SYMBOL(udp_lib_unhash);
2002
2003 /*
2004 * inet_rcv_saddr was changed, we must rehash secondary hash
2005 */
udp_lib_rehash(struct sock * sk,u16 newhash)2006 void udp_lib_rehash(struct sock *sk, u16 newhash)
2007 {
2008 if (sk_hashed(sk)) {
2009 struct udp_table *udptable = udp_get_table_prot(sk);
2010 struct udp_hslot *hslot, *hslot2, *nhslot2;
2011
2012 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2013 nhslot2 = udp_hashslot2(udptable, newhash);
2014 udp_sk(sk)->udp_portaddr_hash = newhash;
2015
2016 if (hslot2 != nhslot2 ||
2017 rcu_access_pointer(sk->sk_reuseport_cb)) {
2018 hslot = udp_hashslot(udptable, sock_net(sk),
2019 udp_sk(sk)->udp_port_hash);
2020 /* we must lock primary chain too */
2021 spin_lock_bh(&hslot->lock);
2022 if (rcu_access_pointer(sk->sk_reuseport_cb))
2023 reuseport_detach_sock(sk);
2024
2025 if (hslot2 != nhslot2) {
2026 spin_lock(&hslot2->lock);
2027 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2028 hslot2->count--;
2029 spin_unlock(&hslot2->lock);
2030
2031 spin_lock(&nhslot2->lock);
2032 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2033 &nhslot2->head);
2034 nhslot2->count++;
2035 spin_unlock(&nhslot2->lock);
2036 }
2037
2038 spin_unlock_bh(&hslot->lock);
2039 }
2040 }
2041 }
2042 EXPORT_SYMBOL(udp_lib_rehash);
2043
udp_v4_rehash(struct sock * sk)2044 void udp_v4_rehash(struct sock *sk)
2045 {
2046 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2047 inet_sk(sk)->inet_rcv_saddr,
2048 inet_sk(sk)->inet_num);
2049 udp_lib_rehash(sk, new_hash);
2050 }
2051
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2052 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2053 {
2054 int rc;
2055
2056 if (inet_sk(sk)->inet_daddr) {
2057 sock_rps_save_rxhash(sk, skb);
2058 sk_mark_napi_id(sk, skb);
2059 sk_incoming_cpu_update(sk);
2060 } else {
2061 sk_mark_napi_id_once(sk, skb);
2062 }
2063
2064 rc = __udp_enqueue_schedule_skb(sk, skb);
2065 if (rc < 0) {
2066 int is_udplite = IS_UDPLITE(sk);
2067 int drop_reason;
2068
2069 /* Note that an ENOMEM error is charged twice */
2070 if (rc == -ENOMEM) {
2071 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2072 is_udplite);
2073 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2074 } else {
2075 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2076 is_udplite);
2077 drop_reason = SKB_DROP_REASON_PROTO_MEM;
2078 }
2079 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2080 trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2081 sk_skb_reason_drop(sk, skb, drop_reason);
2082 return -1;
2083 }
2084
2085 return 0;
2086 }
2087
2088 /* returns:
2089 * -1: error
2090 * 0: success
2091 * >0: "udp encap" protocol resubmission
2092 *
2093 * Note that in the success and error cases, the skb is assumed to
2094 * have either been requeued or freed.
2095 */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2096 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2097 {
2098 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2099 struct udp_sock *up = udp_sk(sk);
2100 int is_udplite = IS_UDPLITE(sk);
2101
2102 /*
2103 * Charge it to the socket, dropping if the queue is full.
2104 */
2105 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2106 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2107 goto drop;
2108 }
2109 nf_reset_ct(skb);
2110
2111 if (static_branch_unlikely(&udp_encap_needed_key) &&
2112 READ_ONCE(up->encap_type)) {
2113 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2114
2115 /*
2116 * This is an encapsulation socket so pass the skb to
2117 * the socket's udp_encap_rcv() hook. Otherwise, just
2118 * fall through and pass this up the UDP socket.
2119 * up->encap_rcv() returns the following value:
2120 * =0 if skb was successfully passed to the encap
2121 * handler or was discarded by it.
2122 * >0 if skb should be passed on to UDP.
2123 * <0 if skb should be resubmitted as proto -N
2124 */
2125
2126 /* if we're overly short, let UDP handle it */
2127 encap_rcv = READ_ONCE(up->encap_rcv);
2128 if (encap_rcv) {
2129 int ret;
2130
2131 /* Verify checksum before giving to encap */
2132 if (udp_lib_checksum_complete(skb))
2133 goto csum_error;
2134
2135 ret = encap_rcv(sk, skb);
2136 if (ret <= 0) {
2137 __UDP_INC_STATS(sock_net(sk),
2138 UDP_MIB_INDATAGRAMS,
2139 is_udplite);
2140 return -ret;
2141 }
2142 }
2143
2144 /* FALLTHROUGH -- it's a UDP Packet */
2145 }
2146
2147 /*
2148 * UDP-Lite specific tests, ignored on UDP sockets
2149 */
2150 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2151 u16 pcrlen = READ_ONCE(up->pcrlen);
2152
2153 /*
2154 * MIB statistics other than incrementing the error count are
2155 * disabled for the following two types of errors: these depend
2156 * on the application settings, not on the functioning of the
2157 * protocol stack as such.
2158 *
2159 * RFC 3828 here recommends (sec 3.3): "There should also be a
2160 * way ... to ... at least let the receiving application block
2161 * delivery of packets with coverage values less than a value
2162 * provided by the application."
2163 */
2164 if (pcrlen == 0) { /* full coverage was set */
2165 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2166 UDP_SKB_CB(skb)->cscov, skb->len);
2167 goto drop;
2168 }
2169 /* The next case involves violating the min. coverage requested
2170 * by the receiver. This is subtle: if receiver wants x and x is
2171 * greater than the buffersize/MTU then receiver will complain
2172 * that it wants x while sender emits packets of smaller size y.
2173 * Therefore the above ...()->partial_cov statement is essential.
2174 */
2175 if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2176 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2177 UDP_SKB_CB(skb)->cscov, pcrlen);
2178 goto drop;
2179 }
2180 }
2181
2182 prefetch(&sk->sk_rmem_alloc);
2183 if (rcu_access_pointer(sk->sk_filter) &&
2184 udp_lib_checksum_complete(skb))
2185 goto csum_error;
2186
2187 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2188 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2189 goto drop;
2190 }
2191
2192 udp_csum_pull_header(skb);
2193
2194 ipv4_pktinfo_prepare(sk, skb, true);
2195 return __udp_queue_rcv_skb(sk, skb);
2196
2197 csum_error:
2198 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2199 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2200 drop:
2201 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2202 atomic_inc(&sk->sk_drops);
2203 sk_skb_reason_drop(sk, skb, drop_reason);
2204 return -1;
2205 }
2206
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2207 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2208 {
2209 struct sk_buff *next, *segs;
2210 int ret;
2211
2212 if (likely(!udp_unexpected_gso(sk, skb)))
2213 return udp_queue_rcv_one_skb(sk, skb);
2214
2215 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2216 __skb_push(skb, -skb_mac_offset(skb));
2217 segs = udp_rcv_segment(sk, skb, true);
2218 skb_list_walk_safe(segs, skb, next) {
2219 __skb_pull(skb, skb_transport_offset(skb));
2220
2221 udp_post_segment_fix_csum(skb);
2222 ret = udp_queue_rcv_one_skb(sk, skb);
2223 if (ret > 0)
2224 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2225 }
2226 return 0;
2227 }
2228
2229 /* For TCP sockets, sk_rx_dst is protected by socket lock
2230 * For UDP, we use xchg() to guard against concurrent changes.
2231 */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2232 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2233 {
2234 struct dst_entry *old;
2235
2236 if (dst_hold_safe(dst)) {
2237 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2238 dst_release(old);
2239 return old != dst;
2240 }
2241 return false;
2242 }
2243 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2244
2245 /*
2246 * Multicasts and broadcasts go to each listener.
2247 *
2248 * Note: called only from the BH handler context.
2249 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2250 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2251 struct udphdr *uh,
2252 __be32 saddr, __be32 daddr,
2253 struct udp_table *udptable,
2254 int proto)
2255 {
2256 struct sock *sk, *first = NULL;
2257 unsigned short hnum = ntohs(uh->dest);
2258 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2259 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2260 unsigned int offset = offsetof(typeof(*sk), sk_node);
2261 int dif = skb->dev->ifindex;
2262 int sdif = inet_sdif(skb);
2263 struct hlist_node *node;
2264 struct sk_buff *nskb;
2265
2266 if (use_hash2) {
2267 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2268 udptable->mask;
2269 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2270 start_lookup:
2271 hslot = &udptable->hash2[hash2];
2272 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2273 }
2274
2275 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2276 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2277 uh->source, saddr, dif, sdif, hnum))
2278 continue;
2279
2280 if (!first) {
2281 first = sk;
2282 continue;
2283 }
2284 nskb = skb_clone(skb, GFP_ATOMIC);
2285
2286 if (unlikely(!nskb)) {
2287 atomic_inc(&sk->sk_drops);
2288 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2289 IS_UDPLITE(sk));
2290 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2291 IS_UDPLITE(sk));
2292 continue;
2293 }
2294 if (udp_queue_rcv_skb(sk, nskb) > 0)
2295 consume_skb(nskb);
2296 }
2297
2298 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2299 if (use_hash2 && hash2 != hash2_any) {
2300 hash2 = hash2_any;
2301 goto start_lookup;
2302 }
2303
2304 if (first) {
2305 if (udp_queue_rcv_skb(first, skb) > 0)
2306 consume_skb(skb);
2307 } else {
2308 kfree_skb(skb);
2309 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2310 proto == IPPROTO_UDPLITE);
2311 }
2312 return 0;
2313 }
2314
2315 /* Initialize UDP checksum. If exited with zero value (success),
2316 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2317 * Otherwise, csum completion requires checksumming packet body,
2318 * including udp header and folding it to skb->csum.
2319 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2320 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2321 int proto)
2322 {
2323 int err;
2324
2325 UDP_SKB_CB(skb)->partial_cov = 0;
2326 UDP_SKB_CB(skb)->cscov = skb->len;
2327
2328 if (proto == IPPROTO_UDPLITE) {
2329 err = udplite_checksum_init(skb, uh);
2330 if (err)
2331 return err;
2332
2333 if (UDP_SKB_CB(skb)->partial_cov) {
2334 skb->csum = inet_compute_pseudo(skb, proto);
2335 return 0;
2336 }
2337 }
2338
2339 /* Note, we are only interested in != 0 or == 0, thus the
2340 * force to int.
2341 */
2342 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2343 inet_compute_pseudo);
2344 if (err)
2345 return err;
2346
2347 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2348 /* If SW calculated the value, we know it's bad */
2349 if (skb->csum_complete_sw)
2350 return 1;
2351
2352 /* HW says the value is bad. Let's validate that.
2353 * skb->csum is no longer the full packet checksum,
2354 * so don't treat it as such.
2355 */
2356 skb_checksum_complete_unset(skb);
2357 }
2358
2359 return 0;
2360 }
2361
2362 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2363 * return code conversion for ip layer consumption
2364 */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2365 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2366 struct udphdr *uh)
2367 {
2368 int ret;
2369
2370 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2371 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2372
2373 ret = udp_queue_rcv_skb(sk, skb);
2374
2375 /* a return value > 0 means to resubmit the input, but
2376 * it wants the return to be -protocol, or 0
2377 */
2378 if (ret > 0)
2379 return -ret;
2380 return 0;
2381 }
2382
2383 /*
2384 * All we need to do is get the socket, and then do a checksum.
2385 */
2386
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2387 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2388 int proto)
2389 {
2390 struct sock *sk = NULL;
2391 struct udphdr *uh;
2392 unsigned short ulen;
2393 struct rtable *rt = skb_rtable(skb);
2394 __be32 saddr, daddr;
2395 struct net *net = dev_net(skb->dev);
2396 bool refcounted;
2397 int drop_reason;
2398
2399 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2400
2401 /*
2402 * Validate the packet.
2403 */
2404 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2405 goto drop; /* No space for header. */
2406
2407 uh = udp_hdr(skb);
2408 ulen = ntohs(uh->len);
2409 saddr = ip_hdr(skb)->saddr;
2410 daddr = ip_hdr(skb)->daddr;
2411
2412 if (ulen > skb->len)
2413 goto short_packet;
2414
2415 if (proto == IPPROTO_UDP) {
2416 /* UDP validates ulen. */
2417 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2418 goto short_packet;
2419 uh = udp_hdr(skb);
2420 }
2421
2422 if (udp4_csum_init(skb, uh, proto))
2423 goto csum_error;
2424
2425 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2426 &refcounted, udp_ehashfn);
2427 if (IS_ERR(sk))
2428 goto no_sk;
2429
2430 if (sk) {
2431 struct dst_entry *dst = skb_dst(skb);
2432 int ret;
2433
2434 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2435 udp_sk_rx_dst_set(sk, dst);
2436
2437 ret = udp_unicast_rcv_skb(sk, skb, uh);
2438 if (refcounted)
2439 sock_put(sk);
2440 return ret;
2441 }
2442
2443 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2444 return __udp4_lib_mcast_deliver(net, skb, uh,
2445 saddr, daddr, udptable, proto);
2446
2447 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2448 if (sk)
2449 return udp_unicast_rcv_skb(sk, skb, uh);
2450 no_sk:
2451 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2452 goto drop;
2453 nf_reset_ct(skb);
2454
2455 /* No socket. Drop packet silently, if checksum is wrong */
2456 if (udp_lib_checksum_complete(skb))
2457 goto csum_error;
2458
2459 drop_reason = SKB_DROP_REASON_NO_SOCKET;
2460 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2461 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2462
2463 /*
2464 * Hmm. We got an UDP packet to a port to which we
2465 * don't wanna listen. Ignore it.
2466 */
2467 sk_skb_reason_drop(sk, skb, drop_reason);
2468 return 0;
2469
2470 short_packet:
2471 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2472 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2473 proto == IPPROTO_UDPLITE ? "Lite" : "",
2474 &saddr, ntohs(uh->source),
2475 ulen, skb->len,
2476 &daddr, ntohs(uh->dest));
2477 goto drop;
2478
2479 csum_error:
2480 /*
2481 * RFC1122: OK. Discards the bad packet silently (as far as
2482 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2483 */
2484 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2485 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2486 proto == IPPROTO_UDPLITE ? "Lite" : "",
2487 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2488 ulen);
2489 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2490 drop:
2491 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2492 sk_skb_reason_drop(sk, skb, drop_reason);
2493 return 0;
2494 }
2495
2496 /* We can only early demux multicast if there is a single matching socket.
2497 * If more than one socket found returns NULL
2498 */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2499 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2500 __be16 loc_port, __be32 loc_addr,
2501 __be16 rmt_port, __be32 rmt_addr,
2502 int dif, int sdif)
2503 {
2504 struct udp_table *udptable = net->ipv4.udp_table;
2505 unsigned short hnum = ntohs(loc_port);
2506 struct sock *sk, *result;
2507 struct udp_hslot *hslot;
2508 unsigned int slot;
2509
2510 slot = udp_hashfn(net, hnum, udptable->mask);
2511 hslot = &udptable->hash[slot];
2512
2513 /* Do not bother scanning a too big list */
2514 if (hslot->count > 10)
2515 return NULL;
2516
2517 result = NULL;
2518 sk_for_each_rcu(sk, &hslot->head) {
2519 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2520 rmt_port, rmt_addr, dif, sdif, hnum)) {
2521 if (result)
2522 return NULL;
2523 result = sk;
2524 }
2525 }
2526
2527 return result;
2528 }
2529
2530 /* For unicast we should only early demux connected sockets or we can
2531 * break forwarding setups. The chains here can be long so only check
2532 * if the first socket is an exact match and if not move on.
2533 */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2534 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2535 __be16 loc_port, __be32 loc_addr,
2536 __be16 rmt_port, __be32 rmt_addr,
2537 int dif, int sdif)
2538 {
2539 struct udp_table *udptable = net->ipv4.udp_table;
2540 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2541 unsigned short hnum = ntohs(loc_port);
2542 unsigned int hash2, slot2;
2543 struct udp_hslot *hslot2;
2544 __portpair ports;
2545 struct sock *sk;
2546
2547 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2548 slot2 = hash2 & udptable->mask;
2549 hslot2 = &udptable->hash2[slot2];
2550 ports = INET_COMBINED_PORTS(rmt_port, hnum);
2551
2552 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2553 if (inet_match(net, sk, acookie, ports, dif, sdif))
2554 return sk;
2555 /* Only check first socket in chain */
2556 break;
2557 }
2558 return NULL;
2559 }
2560
udp_v4_early_demux(struct sk_buff * skb)2561 int udp_v4_early_demux(struct sk_buff *skb)
2562 {
2563 struct net *net = dev_net(skb->dev);
2564 struct in_device *in_dev = NULL;
2565 const struct iphdr *iph;
2566 const struct udphdr *uh;
2567 struct sock *sk = NULL;
2568 struct dst_entry *dst;
2569 int dif = skb->dev->ifindex;
2570 int sdif = inet_sdif(skb);
2571 int ours;
2572
2573 /* validate the packet */
2574 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2575 return 0;
2576
2577 iph = ip_hdr(skb);
2578 uh = udp_hdr(skb);
2579
2580 if (skb->pkt_type == PACKET_MULTICAST) {
2581 in_dev = __in_dev_get_rcu(skb->dev);
2582
2583 if (!in_dev)
2584 return 0;
2585
2586 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2587 iph->protocol);
2588 if (!ours)
2589 return 0;
2590
2591 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2592 uh->source, iph->saddr,
2593 dif, sdif);
2594 } else if (skb->pkt_type == PACKET_HOST) {
2595 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2596 uh->source, iph->saddr, dif, sdif);
2597 }
2598
2599 if (!sk)
2600 return 0;
2601
2602 skb->sk = sk;
2603 DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2604 skb->destructor = sock_pfree;
2605 dst = rcu_dereference(sk->sk_rx_dst);
2606
2607 if (dst)
2608 dst = dst_check(dst, 0);
2609 if (dst) {
2610 u32 itag = 0;
2611
2612 /* set noref for now.
2613 * any place which wants to hold dst has to call
2614 * dst_hold_safe()
2615 */
2616 skb_dst_set_noref(skb, dst);
2617
2618 /* for unconnected multicast sockets we need to validate
2619 * the source on each packet
2620 */
2621 if (!inet_sk(sk)->inet_daddr && in_dev)
2622 return ip_mc_validate_source(skb, iph->daddr,
2623 iph->saddr,
2624 iph->tos & INET_DSCP_MASK,
2625 skb->dev, in_dev, &itag);
2626 }
2627 return 0;
2628 }
2629
udp_rcv(struct sk_buff * skb)2630 int udp_rcv(struct sk_buff *skb)
2631 {
2632 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2633 }
2634
udp_destroy_sock(struct sock * sk)2635 void udp_destroy_sock(struct sock *sk)
2636 {
2637 struct udp_sock *up = udp_sk(sk);
2638 bool slow = lock_sock_fast(sk);
2639
2640 /* protects from races with udp_abort() */
2641 sock_set_flag(sk, SOCK_DEAD);
2642 udp_flush_pending_frames(sk);
2643 unlock_sock_fast(sk, slow);
2644 if (static_branch_unlikely(&udp_encap_needed_key)) {
2645 if (up->encap_type) {
2646 void (*encap_destroy)(struct sock *sk);
2647 encap_destroy = READ_ONCE(up->encap_destroy);
2648 if (encap_destroy)
2649 encap_destroy(sk);
2650 }
2651 if (udp_test_bit(ENCAP_ENABLED, sk))
2652 static_branch_dec(&udp_encap_needed_key);
2653 }
2654 }
2655
set_xfrm_gro_udp_encap_rcv(__u16 encap_type,unsigned short family,struct sock * sk)2656 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2657 struct sock *sk)
2658 {
2659 #ifdef CONFIG_XFRM
2660 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2661 if (family == AF_INET)
2662 WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2663 else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2664 WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2665 }
2666 #endif
2667 }
2668
2669 /*
2670 * Socket option code for UDP
2671 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2672 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2673 sockptr_t optval, unsigned int optlen,
2674 int (*push_pending_frames)(struct sock *))
2675 {
2676 struct udp_sock *up = udp_sk(sk);
2677 int val, valbool;
2678 int err = 0;
2679 int is_udplite = IS_UDPLITE(sk);
2680
2681 if (level == SOL_SOCKET) {
2682 err = sk_setsockopt(sk, level, optname, optval, optlen);
2683
2684 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2685 sockopt_lock_sock(sk);
2686 /* paired with READ_ONCE in udp_rmem_release() */
2687 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2688 sockopt_release_sock(sk);
2689 }
2690 return err;
2691 }
2692
2693 if (optlen < sizeof(int))
2694 return -EINVAL;
2695
2696 if (copy_from_sockptr(&val, optval, sizeof(val)))
2697 return -EFAULT;
2698
2699 valbool = val ? 1 : 0;
2700
2701 switch (optname) {
2702 case UDP_CORK:
2703 if (val != 0) {
2704 udp_set_bit(CORK, sk);
2705 } else {
2706 udp_clear_bit(CORK, sk);
2707 lock_sock(sk);
2708 push_pending_frames(sk);
2709 release_sock(sk);
2710 }
2711 break;
2712
2713 case UDP_ENCAP:
2714 switch (val) {
2715 case 0:
2716 #ifdef CONFIG_XFRM
2717 case UDP_ENCAP_ESPINUDP:
2718 set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2719 #if IS_ENABLED(CONFIG_IPV6)
2720 if (sk->sk_family == AF_INET6)
2721 WRITE_ONCE(up->encap_rcv,
2722 ipv6_stub->xfrm6_udp_encap_rcv);
2723 else
2724 #endif
2725 WRITE_ONCE(up->encap_rcv,
2726 xfrm4_udp_encap_rcv);
2727 #endif
2728 fallthrough;
2729 case UDP_ENCAP_L2TPINUDP:
2730 WRITE_ONCE(up->encap_type, val);
2731 udp_tunnel_encap_enable(sk);
2732 break;
2733 default:
2734 err = -ENOPROTOOPT;
2735 break;
2736 }
2737 break;
2738
2739 case UDP_NO_CHECK6_TX:
2740 udp_set_no_check6_tx(sk, valbool);
2741 break;
2742
2743 case UDP_NO_CHECK6_RX:
2744 udp_set_no_check6_rx(sk, valbool);
2745 break;
2746
2747 case UDP_SEGMENT:
2748 if (val < 0 || val > USHRT_MAX)
2749 return -EINVAL;
2750 WRITE_ONCE(up->gso_size, val);
2751 break;
2752
2753 case UDP_GRO:
2754
2755 /* when enabling GRO, accept the related GSO packet type */
2756 if (valbool)
2757 udp_tunnel_encap_enable(sk);
2758 udp_assign_bit(GRO_ENABLED, sk, valbool);
2759 udp_assign_bit(ACCEPT_L4, sk, valbool);
2760 set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2761 break;
2762
2763 /*
2764 * UDP-Lite's partial checksum coverage (RFC 3828).
2765 */
2766 /* The sender sets actual checksum coverage length via this option.
2767 * The case coverage > packet length is handled by send module. */
2768 case UDPLITE_SEND_CSCOV:
2769 if (!is_udplite) /* Disable the option on UDP sockets */
2770 return -ENOPROTOOPT;
2771 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2772 val = 8;
2773 else if (val > USHRT_MAX)
2774 val = USHRT_MAX;
2775 WRITE_ONCE(up->pcslen, val);
2776 udp_set_bit(UDPLITE_SEND_CC, sk);
2777 break;
2778
2779 /* The receiver specifies a minimum checksum coverage value. To make
2780 * sense, this should be set to at least 8 (as done below). If zero is
2781 * used, this again means full checksum coverage. */
2782 case UDPLITE_RECV_CSCOV:
2783 if (!is_udplite) /* Disable the option on UDP sockets */
2784 return -ENOPROTOOPT;
2785 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2786 val = 8;
2787 else if (val > USHRT_MAX)
2788 val = USHRT_MAX;
2789 WRITE_ONCE(up->pcrlen, val);
2790 udp_set_bit(UDPLITE_RECV_CC, sk);
2791 break;
2792
2793 default:
2794 err = -ENOPROTOOPT;
2795 break;
2796 }
2797
2798 return err;
2799 }
2800 EXPORT_SYMBOL(udp_lib_setsockopt);
2801
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2802 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2803 unsigned int optlen)
2804 {
2805 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET)
2806 return udp_lib_setsockopt(sk, level, optname,
2807 optval, optlen,
2808 udp_push_pending_frames);
2809 return ip_setsockopt(sk, level, optname, optval, optlen);
2810 }
2811
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2812 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2813 char __user *optval, int __user *optlen)
2814 {
2815 struct udp_sock *up = udp_sk(sk);
2816 int val, len;
2817
2818 if (get_user(len, optlen))
2819 return -EFAULT;
2820
2821 if (len < 0)
2822 return -EINVAL;
2823
2824 len = min_t(unsigned int, len, sizeof(int));
2825
2826 switch (optname) {
2827 case UDP_CORK:
2828 val = udp_test_bit(CORK, sk);
2829 break;
2830
2831 case UDP_ENCAP:
2832 val = READ_ONCE(up->encap_type);
2833 break;
2834
2835 case UDP_NO_CHECK6_TX:
2836 val = udp_get_no_check6_tx(sk);
2837 break;
2838
2839 case UDP_NO_CHECK6_RX:
2840 val = udp_get_no_check6_rx(sk);
2841 break;
2842
2843 case UDP_SEGMENT:
2844 val = READ_ONCE(up->gso_size);
2845 break;
2846
2847 case UDP_GRO:
2848 val = udp_test_bit(GRO_ENABLED, sk);
2849 break;
2850
2851 /* The following two cannot be changed on UDP sockets, the return is
2852 * always 0 (which corresponds to the full checksum coverage of UDP). */
2853 case UDPLITE_SEND_CSCOV:
2854 val = READ_ONCE(up->pcslen);
2855 break;
2856
2857 case UDPLITE_RECV_CSCOV:
2858 val = READ_ONCE(up->pcrlen);
2859 break;
2860
2861 default:
2862 return -ENOPROTOOPT;
2863 }
2864
2865 if (put_user(len, optlen))
2866 return -EFAULT;
2867 if (copy_to_user(optval, &val, len))
2868 return -EFAULT;
2869 return 0;
2870 }
2871 EXPORT_SYMBOL(udp_lib_getsockopt);
2872
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2873 int udp_getsockopt(struct sock *sk, int level, int optname,
2874 char __user *optval, int __user *optlen)
2875 {
2876 if (level == SOL_UDP || level == SOL_UDPLITE)
2877 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2878 return ip_getsockopt(sk, level, optname, optval, optlen);
2879 }
2880
2881 /**
2882 * udp_poll - wait for a UDP event.
2883 * @file: - file struct
2884 * @sock: - socket
2885 * @wait: - poll table
2886 *
2887 * This is same as datagram poll, except for the special case of
2888 * blocking sockets. If application is using a blocking fd
2889 * and a packet with checksum error is in the queue;
2890 * then it could get return from select indicating data available
2891 * but then block when reading it. Add special case code
2892 * to work around these arguably broken applications.
2893 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2894 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2895 {
2896 __poll_t mask = datagram_poll(file, sock, wait);
2897 struct sock *sk = sock->sk;
2898
2899 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2900 mask |= EPOLLIN | EPOLLRDNORM;
2901
2902 /* Check for false positives due to checksum errors */
2903 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2904 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2905 mask &= ~(EPOLLIN | EPOLLRDNORM);
2906
2907 /* psock ingress_msg queue should not contain any bad checksum frames */
2908 if (sk_is_readable(sk))
2909 mask |= EPOLLIN | EPOLLRDNORM;
2910 return mask;
2911
2912 }
2913 EXPORT_SYMBOL(udp_poll);
2914
udp_abort(struct sock * sk,int err)2915 int udp_abort(struct sock *sk, int err)
2916 {
2917 if (!has_current_bpf_ctx())
2918 lock_sock(sk);
2919
2920 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2921 * with close()
2922 */
2923 if (sock_flag(sk, SOCK_DEAD))
2924 goto out;
2925
2926 sk->sk_err = err;
2927 sk_error_report(sk);
2928 __udp_disconnect(sk, 0);
2929
2930 out:
2931 if (!has_current_bpf_ctx())
2932 release_sock(sk);
2933
2934 return 0;
2935 }
2936 EXPORT_SYMBOL_GPL(udp_abort);
2937
2938 struct proto udp_prot = {
2939 .name = "UDP",
2940 .owner = THIS_MODULE,
2941 .close = udp_lib_close,
2942 .pre_connect = udp_pre_connect,
2943 .connect = ip4_datagram_connect,
2944 .disconnect = udp_disconnect,
2945 .ioctl = udp_ioctl,
2946 .init = udp_init_sock,
2947 .destroy = udp_destroy_sock,
2948 .setsockopt = udp_setsockopt,
2949 .getsockopt = udp_getsockopt,
2950 .sendmsg = udp_sendmsg,
2951 .recvmsg = udp_recvmsg,
2952 .splice_eof = udp_splice_eof,
2953 .release_cb = ip4_datagram_release_cb,
2954 .hash = udp_lib_hash,
2955 .unhash = udp_lib_unhash,
2956 .rehash = udp_v4_rehash,
2957 .get_port = udp_v4_get_port,
2958 .put_port = udp_lib_unhash,
2959 #ifdef CONFIG_BPF_SYSCALL
2960 .psock_update_sk_prot = udp_bpf_update_proto,
2961 #endif
2962 .memory_allocated = &udp_memory_allocated,
2963 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc,
2964
2965 .sysctl_mem = sysctl_udp_mem,
2966 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2967 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2968 .obj_size = sizeof(struct udp_sock),
2969 .h.udp_table = NULL,
2970 .diag_destroy = udp_abort,
2971 };
2972 EXPORT_SYMBOL(udp_prot);
2973
2974 /* ------------------------------------------------------------------------ */
2975 #ifdef CONFIG_PROC_FS
2976
2977 static unsigned short seq_file_family(const struct seq_file *seq);
seq_sk_match(struct seq_file * seq,const struct sock * sk)2978 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2979 {
2980 unsigned short family = seq_file_family(seq);
2981
2982 /* AF_UNSPEC is used as a match all */
2983 return ((family == AF_UNSPEC || family == sk->sk_family) &&
2984 net_eq(sock_net(sk), seq_file_net(seq)));
2985 }
2986
2987 #ifdef CONFIG_BPF_SYSCALL
2988 static const struct seq_operations bpf_iter_udp_seq_ops;
2989 #endif
udp_get_table_seq(struct seq_file * seq,struct net * net)2990 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2991 struct net *net)
2992 {
2993 const struct udp_seq_afinfo *afinfo;
2994
2995 #ifdef CONFIG_BPF_SYSCALL
2996 if (seq->op == &bpf_iter_udp_seq_ops)
2997 return net->ipv4.udp_table;
2998 #endif
2999
3000 afinfo = pde_data(file_inode(seq->file));
3001 return afinfo->udp_table ? : net->ipv4.udp_table;
3002 }
3003
udp_get_first(struct seq_file * seq,int start)3004 static struct sock *udp_get_first(struct seq_file *seq, int start)
3005 {
3006 struct udp_iter_state *state = seq->private;
3007 struct net *net = seq_file_net(seq);
3008 struct udp_table *udptable;
3009 struct sock *sk;
3010
3011 udptable = udp_get_table_seq(seq, net);
3012
3013 for (state->bucket = start; state->bucket <= udptable->mask;
3014 ++state->bucket) {
3015 struct udp_hslot *hslot = &udptable->hash[state->bucket];
3016
3017 if (hlist_empty(&hslot->head))
3018 continue;
3019
3020 spin_lock_bh(&hslot->lock);
3021 sk_for_each(sk, &hslot->head) {
3022 if (seq_sk_match(seq, sk))
3023 goto found;
3024 }
3025 spin_unlock_bh(&hslot->lock);
3026 }
3027 sk = NULL;
3028 found:
3029 return sk;
3030 }
3031
udp_get_next(struct seq_file * seq,struct sock * sk)3032 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3033 {
3034 struct udp_iter_state *state = seq->private;
3035 struct net *net = seq_file_net(seq);
3036 struct udp_table *udptable;
3037
3038 do {
3039 sk = sk_next(sk);
3040 } while (sk && !seq_sk_match(seq, sk));
3041
3042 if (!sk) {
3043 udptable = udp_get_table_seq(seq, net);
3044
3045 if (state->bucket <= udptable->mask)
3046 spin_unlock_bh(&udptable->hash[state->bucket].lock);
3047
3048 return udp_get_first(seq, state->bucket + 1);
3049 }
3050 return sk;
3051 }
3052
udp_get_idx(struct seq_file * seq,loff_t pos)3053 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3054 {
3055 struct sock *sk = udp_get_first(seq, 0);
3056
3057 if (sk)
3058 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3059 --pos;
3060 return pos ? NULL : sk;
3061 }
3062
udp_seq_start(struct seq_file * seq,loff_t * pos)3063 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3064 {
3065 struct udp_iter_state *state = seq->private;
3066 state->bucket = MAX_UDP_PORTS;
3067
3068 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3069 }
3070 EXPORT_SYMBOL(udp_seq_start);
3071
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3072 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3073 {
3074 struct sock *sk;
3075
3076 if (v == SEQ_START_TOKEN)
3077 sk = udp_get_idx(seq, 0);
3078 else
3079 sk = udp_get_next(seq, v);
3080
3081 ++*pos;
3082 return sk;
3083 }
3084 EXPORT_SYMBOL(udp_seq_next);
3085
udp_seq_stop(struct seq_file * seq,void * v)3086 void udp_seq_stop(struct seq_file *seq, void *v)
3087 {
3088 struct udp_iter_state *state = seq->private;
3089 struct udp_table *udptable;
3090
3091 udptable = udp_get_table_seq(seq, seq_file_net(seq));
3092
3093 if (state->bucket <= udptable->mask)
3094 spin_unlock_bh(&udptable->hash[state->bucket].lock);
3095 }
3096 EXPORT_SYMBOL(udp_seq_stop);
3097
3098 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3099 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3100 int bucket)
3101 {
3102 struct inet_sock *inet = inet_sk(sp);
3103 __be32 dest = inet->inet_daddr;
3104 __be32 src = inet->inet_rcv_saddr;
3105 __u16 destp = ntohs(inet->inet_dport);
3106 __u16 srcp = ntohs(inet->inet_sport);
3107
3108 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3109 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3110 bucket, src, srcp, dest, destp, sp->sk_state,
3111 sk_wmem_alloc_get(sp),
3112 udp_rqueue_get(sp),
3113 0, 0L, 0,
3114 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3115 0, sock_i_ino(sp),
3116 refcount_read(&sp->sk_refcnt), sp,
3117 atomic_read(&sp->sk_drops));
3118 }
3119
udp4_seq_show(struct seq_file * seq,void * v)3120 int udp4_seq_show(struct seq_file *seq, void *v)
3121 {
3122 seq_setwidth(seq, 127);
3123 if (v == SEQ_START_TOKEN)
3124 seq_puts(seq, " sl local_address rem_address st tx_queue "
3125 "rx_queue tr tm->when retrnsmt uid timeout "
3126 "inode ref pointer drops");
3127 else {
3128 struct udp_iter_state *state = seq->private;
3129
3130 udp4_format_sock(v, seq, state->bucket);
3131 }
3132 seq_pad(seq, '\n');
3133 return 0;
3134 }
3135
3136 #ifdef CONFIG_BPF_SYSCALL
3137 struct bpf_iter__udp {
3138 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3139 __bpf_md_ptr(struct udp_sock *, udp_sk);
3140 uid_t uid __aligned(8);
3141 int bucket __aligned(8);
3142 };
3143
3144 struct bpf_udp_iter_state {
3145 struct udp_iter_state state;
3146 unsigned int cur_sk;
3147 unsigned int end_sk;
3148 unsigned int max_sk;
3149 int offset;
3150 struct sock **batch;
3151 bool st_bucket_done;
3152 };
3153
3154 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3155 unsigned int new_batch_sz);
bpf_iter_udp_batch(struct seq_file * seq)3156 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3157 {
3158 struct bpf_udp_iter_state *iter = seq->private;
3159 struct udp_iter_state *state = &iter->state;
3160 struct net *net = seq_file_net(seq);
3161 int resume_bucket, resume_offset;
3162 struct udp_table *udptable;
3163 unsigned int batch_sks = 0;
3164 bool resized = false;
3165 struct sock *sk;
3166
3167 resume_bucket = state->bucket;
3168 resume_offset = iter->offset;
3169
3170 /* The current batch is done, so advance the bucket. */
3171 if (iter->st_bucket_done)
3172 state->bucket++;
3173
3174 udptable = udp_get_table_seq(seq, net);
3175
3176 again:
3177 /* New batch for the next bucket.
3178 * Iterate over the hash table to find a bucket with sockets matching
3179 * the iterator attributes, and return the first matching socket from
3180 * the bucket. The remaining matched sockets from the bucket are batched
3181 * before releasing the bucket lock. This allows BPF programs that are
3182 * called in seq_show to acquire the bucket lock if needed.
3183 */
3184 iter->cur_sk = 0;
3185 iter->end_sk = 0;
3186 iter->st_bucket_done = false;
3187 batch_sks = 0;
3188
3189 for (; state->bucket <= udptable->mask; state->bucket++) {
3190 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3191
3192 if (hlist_empty(&hslot2->head))
3193 continue;
3194
3195 iter->offset = 0;
3196 spin_lock_bh(&hslot2->lock);
3197 udp_portaddr_for_each_entry(sk, &hslot2->head) {
3198 if (seq_sk_match(seq, sk)) {
3199 /* Resume from the last iterated socket at the
3200 * offset in the bucket before iterator was stopped.
3201 */
3202 if (state->bucket == resume_bucket &&
3203 iter->offset < resume_offset) {
3204 ++iter->offset;
3205 continue;
3206 }
3207 if (iter->end_sk < iter->max_sk) {
3208 sock_hold(sk);
3209 iter->batch[iter->end_sk++] = sk;
3210 }
3211 batch_sks++;
3212 }
3213 }
3214 spin_unlock_bh(&hslot2->lock);
3215
3216 if (iter->end_sk)
3217 break;
3218 }
3219
3220 /* All done: no batch made. */
3221 if (!iter->end_sk)
3222 return NULL;
3223
3224 if (iter->end_sk == batch_sks) {
3225 /* Batching is done for the current bucket; return the first
3226 * socket to be iterated from the batch.
3227 */
3228 iter->st_bucket_done = true;
3229 goto done;
3230 }
3231 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3232 resized = true;
3233 /* After allocating a larger batch, retry one more time to grab
3234 * the whole bucket.
3235 */
3236 goto again;
3237 }
3238 done:
3239 return iter->batch[0];
3240 }
3241
bpf_iter_udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3242 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3243 {
3244 struct bpf_udp_iter_state *iter = seq->private;
3245 struct sock *sk;
3246
3247 /* Whenever seq_next() is called, the iter->cur_sk is
3248 * done with seq_show(), so unref the iter->cur_sk.
3249 */
3250 if (iter->cur_sk < iter->end_sk) {
3251 sock_put(iter->batch[iter->cur_sk++]);
3252 ++iter->offset;
3253 }
3254
3255 /* After updating iter->cur_sk, check if there are more sockets
3256 * available in the current bucket batch.
3257 */
3258 if (iter->cur_sk < iter->end_sk)
3259 sk = iter->batch[iter->cur_sk];
3260 else
3261 /* Prepare a new batch. */
3262 sk = bpf_iter_udp_batch(seq);
3263
3264 ++*pos;
3265 return sk;
3266 }
3267
bpf_iter_udp_seq_start(struct seq_file * seq,loff_t * pos)3268 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3269 {
3270 /* bpf iter does not support lseek, so it always
3271 * continue from where it was stop()-ped.
3272 */
3273 if (*pos)
3274 return bpf_iter_udp_batch(seq);
3275
3276 return SEQ_START_TOKEN;
3277 }
3278
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3279 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3280 struct udp_sock *udp_sk, uid_t uid, int bucket)
3281 {
3282 struct bpf_iter__udp ctx;
3283
3284 meta->seq_num--; /* skip SEQ_START_TOKEN */
3285 ctx.meta = meta;
3286 ctx.udp_sk = udp_sk;
3287 ctx.uid = uid;
3288 ctx.bucket = bucket;
3289 return bpf_iter_run_prog(prog, &ctx);
3290 }
3291
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3292 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3293 {
3294 struct udp_iter_state *state = seq->private;
3295 struct bpf_iter_meta meta;
3296 struct bpf_prog *prog;
3297 struct sock *sk = v;
3298 uid_t uid;
3299 int ret;
3300
3301 if (v == SEQ_START_TOKEN)
3302 return 0;
3303
3304 lock_sock(sk);
3305
3306 if (unlikely(sk_unhashed(sk))) {
3307 ret = SEQ_SKIP;
3308 goto unlock;
3309 }
3310
3311 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3312 meta.seq = seq;
3313 prog = bpf_iter_get_info(&meta, false);
3314 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3315
3316 unlock:
3317 release_sock(sk);
3318 return ret;
3319 }
3320
bpf_iter_udp_put_batch(struct bpf_udp_iter_state * iter)3321 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3322 {
3323 while (iter->cur_sk < iter->end_sk)
3324 sock_put(iter->batch[iter->cur_sk++]);
3325 }
3326
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3327 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3328 {
3329 struct bpf_udp_iter_state *iter = seq->private;
3330 struct bpf_iter_meta meta;
3331 struct bpf_prog *prog;
3332
3333 if (!v) {
3334 meta.seq = seq;
3335 prog = bpf_iter_get_info(&meta, true);
3336 if (prog)
3337 (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3338 }
3339
3340 if (iter->cur_sk < iter->end_sk) {
3341 bpf_iter_udp_put_batch(iter);
3342 iter->st_bucket_done = false;
3343 }
3344 }
3345
3346 static const struct seq_operations bpf_iter_udp_seq_ops = {
3347 .start = bpf_iter_udp_seq_start,
3348 .next = bpf_iter_udp_seq_next,
3349 .stop = bpf_iter_udp_seq_stop,
3350 .show = bpf_iter_udp_seq_show,
3351 };
3352 #endif
3353
seq_file_family(const struct seq_file * seq)3354 static unsigned short seq_file_family(const struct seq_file *seq)
3355 {
3356 const struct udp_seq_afinfo *afinfo;
3357
3358 #ifdef CONFIG_BPF_SYSCALL
3359 /* BPF iterator: bpf programs to filter sockets. */
3360 if (seq->op == &bpf_iter_udp_seq_ops)
3361 return AF_UNSPEC;
3362 #endif
3363
3364 /* Proc fs iterator */
3365 afinfo = pde_data(file_inode(seq->file));
3366 return afinfo->family;
3367 }
3368
3369 const struct seq_operations udp_seq_ops = {
3370 .start = udp_seq_start,
3371 .next = udp_seq_next,
3372 .stop = udp_seq_stop,
3373 .show = udp4_seq_show,
3374 };
3375 EXPORT_SYMBOL(udp_seq_ops);
3376
3377 static struct udp_seq_afinfo udp4_seq_afinfo = {
3378 .family = AF_INET,
3379 .udp_table = NULL,
3380 };
3381
udp4_proc_init_net(struct net * net)3382 static int __net_init udp4_proc_init_net(struct net *net)
3383 {
3384 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3385 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3386 return -ENOMEM;
3387 return 0;
3388 }
3389
udp4_proc_exit_net(struct net * net)3390 static void __net_exit udp4_proc_exit_net(struct net *net)
3391 {
3392 remove_proc_entry("udp", net->proc_net);
3393 }
3394
3395 static struct pernet_operations udp4_net_ops = {
3396 .init = udp4_proc_init_net,
3397 .exit = udp4_proc_exit_net,
3398 };
3399
udp4_proc_init(void)3400 int __init udp4_proc_init(void)
3401 {
3402 return register_pernet_subsys(&udp4_net_ops);
3403 }
3404
udp4_proc_exit(void)3405 void udp4_proc_exit(void)
3406 {
3407 unregister_pernet_subsys(&udp4_net_ops);
3408 }
3409 #endif /* CONFIG_PROC_FS */
3410
3411 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3412 static int __init set_uhash_entries(char *str)
3413 {
3414 ssize_t ret;
3415
3416 if (!str)
3417 return 0;
3418
3419 ret = kstrtoul(str, 0, &uhash_entries);
3420 if (ret)
3421 return 0;
3422
3423 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3424 uhash_entries = UDP_HTABLE_SIZE_MIN;
3425 return 1;
3426 }
3427 __setup("uhash_entries=", set_uhash_entries);
3428
udp_table_init(struct udp_table * table,const char * name)3429 void __init udp_table_init(struct udp_table *table, const char *name)
3430 {
3431 unsigned int i;
3432
3433 table->hash = alloc_large_system_hash(name,
3434 2 * sizeof(struct udp_hslot),
3435 uhash_entries,
3436 21, /* one slot per 2 MB */
3437 0,
3438 &table->log,
3439 &table->mask,
3440 UDP_HTABLE_SIZE_MIN,
3441 UDP_HTABLE_SIZE_MAX);
3442
3443 table->hash2 = table->hash + (table->mask + 1);
3444 for (i = 0; i <= table->mask; i++) {
3445 INIT_HLIST_HEAD(&table->hash[i].head);
3446 table->hash[i].count = 0;
3447 spin_lock_init(&table->hash[i].lock);
3448 }
3449 for (i = 0; i <= table->mask; i++) {
3450 INIT_HLIST_HEAD(&table->hash2[i].head);
3451 table->hash2[i].count = 0;
3452 spin_lock_init(&table->hash2[i].lock);
3453 }
3454 }
3455
udp_flow_hashrnd(void)3456 u32 udp_flow_hashrnd(void)
3457 {
3458 static u32 hashrnd __read_mostly;
3459
3460 net_get_random_once(&hashrnd, sizeof(hashrnd));
3461
3462 return hashrnd;
3463 }
3464 EXPORT_SYMBOL(udp_flow_hashrnd);
3465
udp_sysctl_init(struct net * net)3466 static void __net_init udp_sysctl_init(struct net *net)
3467 {
3468 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3469 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3470
3471 #ifdef CONFIG_NET_L3_MASTER_DEV
3472 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3473 #endif
3474 }
3475
udp_pernet_table_alloc(unsigned int hash_entries)3476 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3477 {
3478 struct udp_table *udptable;
3479 int i;
3480
3481 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3482 if (!udptable)
3483 goto out;
3484
3485 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3486 GFP_KERNEL_ACCOUNT);
3487 if (!udptable->hash)
3488 goto free_table;
3489
3490 udptable->hash2 = udptable->hash + hash_entries;
3491 udptable->mask = hash_entries - 1;
3492 udptable->log = ilog2(hash_entries);
3493
3494 for (i = 0; i < hash_entries; i++) {
3495 INIT_HLIST_HEAD(&udptable->hash[i].head);
3496 udptable->hash[i].count = 0;
3497 spin_lock_init(&udptable->hash[i].lock);
3498
3499 INIT_HLIST_HEAD(&udptable->hash2[i].head);
3500 udptable->hash2[i].count = 0;
3501 spin_lock_init(&udptable->hash2[i].lock);
3502 }
3503
3504 return udptable;
3505
3506 free_table:
3507 kfree(udptable);
3508 out:
3509 return NULL;
3510 }
3511
udp_pernet_table_free(struct net * net)3512 static void __net_exit udp_pernet_table_free(struct net *net)
3513 {
3514 struct udp_table *udptable = net->ipv4.udp_table;
3515
3516 if (udptable == &udp_table)
3517 return;
3518
3519 kvfree(udptable->hash);
3520 kfree(udptable);
3521 }
3522
udp_set_table(struct net * net)3523 static void __net_init udp_set_table(struct net *net)
3524 {
3525 struct udp_table *udptable;
3526 unsigned int hash_entries;
3527 struct net *old_net;
3528
3529 if (net_eq(net, &init_net))
3530 goto fallback;
3531
3532 old_net = current->nsproxy->net_ns;
3533 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3534 if (!hash_entries)
3535 goto fallback;
3536
3537 /* Set min to keep the bitmap on stack in udp_lib_get_port() */
3538 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3539 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3540 else
3541 hash_entries = roundup_pow_of_two(hash_entries);
3542
3543 udptable = udp_pernet_table_alloc(hash_entries);
3544 if (udptable) {
3545 net->ipv4.udp_table = udptable;
3546 } else {
3547 pr_warn("Failed to allocate UDP hash table (entries: %u) "
3548 "for a netns, fallback to the global one\n",
3549 hash_entries);
3550 fallback:
3551 net->ipv4.udp_table = &udp_table;
3552 }
3553 }
3554
udp_pernet_init(struct net * net)3555 static int __net_init udp_pernet_init(struct net *net)
3556 {
3557 udp_sysctl_init(net);
3558 udp_set_table(net);
3559
3560 return 0;
3561 }
3562
udp_pernet_exit(struct net * net)3563 static void __net_exit udp_pernet_exit(struct net *net)
3564 {
3565 udp_pernet_table_free(net);
3566 }
3567
3568 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3569 .init = udp_pernet_init,
3570 .exit = udp_pernet_exit,
3571 };
3572
3573 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3574 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3575 struct udp_sock *udp_sk, uid_t uid, int bucket)
3576
3577 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3578 unsigned int new_batch_sz)
3579 {
3580 struct sock **new_batch;
3581
3582 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3583 GFP_USER | __GFP_NOWARN);
3584 if (!new_batch)
3585 return -ENOMEM;
3586
3587 bpf_iter_udp_put_batch(iter);
3588 kvfree(iter->batch);
3589 iter->batch = new_batch;
3590 iter->max_sk = new_batch_sz;
3591
3592 return 0;
3593 }
3594
3595 #define INIT_BATCH_SZ 16
3596
bpf_iter_init_udp(void * priv_data,struct bpf_iter_aux_info * aux)3597 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3598 {
3599 struct bpf_udp_iter_state *iter = priv_data;
3600 int ret;
3601
3602 ret = bpf_iter_init_seq_net(priv_data, aux);
3603 if (ret)
3604 return ret;
3605
3606 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3607 if (ret)
3608 bpf_iter_fini_seq_net(priv_data);
3609
3610 return ret;
3611 }
3612
bpf_iter_fini_udp(void * priv_data)3613 static void bpf_iter_fini_udp(void *priv_data)
3614 {
3615 struct bpf_udp_iter_state *iter = priv_data;
3616
3617 bpf_iter_fini_seq_net(priv_data);
3618 kvfree(iter->batch);
3619 }
3620
3621 static const struct bpf_iter_seq_info udp_seq_info = {
3622 .seq_ops = &bpf_iter_udp_seq_ops,
3623 .init_seq_private = bpf_iter_init_udp,
3624 .fini_seq_private = bpf_iter_fini_udp,
3625 .seq_priv_size = sizeof(struct bpf_udp_iter_state),
3626 };
3627
3628 static struct bpf_iter_reg udp_reg_info = {
3629 .target = "udp",
3630 .ctx_arg_info_size = 1,
3631 .ctx_arg_info = {
3632 { offsetof(struct bpf_iter__udp, udp_sk),
3633 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3634 },
3635 .seq_info = &udp_seq_info,
3636 };
3637
bpf_iter_register(void)3638 static void __init bpf_iter_register(void)
3639 {
3640 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3641 if (bpf_iter_reg_target(&udp_reg_info))
3642 pr_warn("Warning: could not register bpf iterator udp\n");
3643 }
3644 #endif
3645
udp_init(void)3646 void __init udp_init(void)
3647 {
3648 unsigned long limit;
3649 unsigned int i;
3650
3651 udp_table_init(&udp_table, "UDP");
3652 limit = nr_free_buffer_pages() / 8;
3653 limit = max(limit, 128UL);
3654 sysctl_udp_mem[0] = limit / 4 * 3;
3655 sysctl_udp_mem[1] = limit;
3656 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3657
3658 /* 16 spinlocks per cpu */
3659 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3660 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3661 GFP_KERNEL);
3662 if (!udp_busylocks)
3663 panic("UDP: failed to alloc udp_busylocks\n");
3664 for (i = 0; i < (1U << udp_busylocks_log); i++)
3665 spin_lock_init(udp_busylocks + i);
3666
3667 if (register_pernet_subsys(&udp_sysctl_ops))
3668 panic("UDP: failed to init sysctl parameters.\n");
3669
3670 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3671 bpf_iter_register();
3672 #endif
3673 }
3674