1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/sd.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
8 */
9
10 #include <linux/err.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/string.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/random.h>
17 #include <linux/scatterlist.h>
18 #include <linux/sysfs.h>
19
20 #include <linux/mmc/host.h>
21 #include <linux/mmc/card.h>
22 #include <linux/mmc/mmc.h>
23 #include <linux/mmc/sd.h>
24
25 #include "core.h"
26 #include "card.h"
27 #include "host.h"
28 #include "bus.h"
29 #include "mmc_ops.h"
30 #include "quirks.h"
31 #include "sd.h"
32 #include "sd_ops.h"
33
34 static const unsigned int tran_exp[] = {
35 10000, 100000, 1000000, 10000000,
36 0, 0, 0, 0
37 };
38
39 static const unsigned char tran_mant[] = {
40 0, 10, 12, 13, 15, 20, 25, 30,
41 35, 40, 45, 50, 55, 60, 70, 80,
42 };
43
44 static const unsigned int taac_exp[] = {
45 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
46 };
47
48 static const unsigned int taac_mant[] = {
49 0, 10, 12, 13, 15, 20, 25, 30,
50 35, 40, 45, 50, 55, 60, 70, 80,
51 };
52
53 static const unsigned int sd_au_size[] = {
54 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512,
55 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512,
56 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512,
57 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512,
58 };
59
60 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000
61 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
62
63 struct sd_busy_data {
64 struct mmc_card *card;
65 u8 *reg_buf;
66 };
67
68 /*
69 * Given the decoded CSD structure, decode the raw CID to our CID structure.
70 */
mmc_decode_cid(struct mmc_card * card)71 void mmc_decode_cid(struct mmc_card *card)
72 {
73 u32 *resp = card->raw_cid;
74
75 /*
76 * Add the raw card ID (cid) data to the entropy pool. It doesn't
77 * matter that not all of it is unique, it's just bonus entropy.
78 */
79 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
80
81 /*
82 * SD doesn't currently have a version field so we will
83 * have to assume we can parse this.
84 */
85 card->cid.manfid = unstuff_bits(resp, 120, 8);
86 card->cid.oemid = unstuff_bits(resp, 104, 16);
87 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8);
88 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8);
89 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8);
90 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8);
91 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8);
92 card->cid.hwrev = unstuff_bits(resp, 60, 4);
93 card->cid.fwrev = unstuff_bits(resp, 56, 4);
94 card->cid.serial = unstuff_bits(resp, 24, 32);
95 card->cid.year = unstuff_bits(resp, 12, 8);
96 card->cid.month = unstuff_bits(resp, 8, 4);
97
98 card->cid.year += 2000; /* SD cards year offset */
99
100 /* some product names may include trailing whitespace */
101 strim(card->cid.prod_name);
102 }
103
104 /*
105 * Given a 128-bit response, decode to our card CSD structure.
106 */
mmc_decode_csd(struct mmc_card * card,bool is_sduc)107 static int mmc_decode_csd(struct mmc_card *card, bool is_sduc)
108 {
109 struct mmc_csd *csd = &card->csd;
110 unsigned int e, m, csd_struct;
111 u32 *resp = card->raw_csd;
112
113 csd_struct = unstuff_bits(resp, 126, 2);
114
115 switch (csd_struct) {
116 case 0:
117 m = unstuff_bits(resp, 115, 4);
118 e = unstuff_bits(resp, 112, 3);
119 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
120 csd->taac_clks = unstuff_bits(resp, 104, 8) * 100;
121
122 m = unstuff_bits(resp, 99, 4);
123 e = unstuff_bits(resp, 96, 3);
124 csd->max_dtr = tran_exp[e] * tran_mant[m];
125 csd->cmdclass = unstuff_bits(resp, 84, 12);
126
127 e = unstuff_bits(resp, 47, 3);
128 m = unstuff_bits(resp, 62, 12);
129 csd->capacity = (1 + m) << (e + 2);
130
131 csd->read_blkbits = unstuff_bits(resp, 80, 4);
132 csd->read_partial = unstuff_bits(resp, 79, 1);
133 csd->write_misalign = unstuff_bits(resp, 78, 1);
134 csd->read_misalign = unstuff_bits(resp, 77, 1);
135 csd->dsr_imp = unstuff_bits(resp, 76, 1);
136 csd->r2w_factor = unstuff_bits(resp, 26, 3);
137 csd->write_blkbits = unstuff_bits(resp, 22, 4);
138 csd->write_partial = unstuff_bits(resp, 21, 1);
139
140 if (unstuff_bits(resp, 46, 1)) {
141 csd->erase_size = 1;
142 } else if (csd->write_blkbits >= 9) {
143 csd->erase_size = unstuff_bits(resp, 39, 7) + 1;
144 csd->erase_size <<= csd->write_blkbits - 9;
145 }
146
147 if (unstuff_bits(resp, 13, 1))
148 mmc_card_set_readonly(card);
149 break;
150 case 1:
151 case 2:
152 /*
153 * This is a block-addressed SDHC, SDXC or SDUC card.
154 * Most interesting fields are unused and have fixed
155 * values. To avoid getting tripped by buggy cards,
156 * we assume those fixed values ourselves.
157 */
158 mmc_card_set_blockaddr(card);
159
160 csd->taac_ns = 0; /* Unused */
161 csd->taac_clks = 0; /* Unused */
162
163 m = unstuff_bits(resp, 99, 4);
164 e = unstuff_bits(resp, 96, 3);
165 csd->max_dtr = tran_exp[e] * tran_mant[m];
166 csd->cmdclass = unstuff_bits(resp, 84, 12);
167
168 if (csd_struct == 1)
169 m = unstuff_bits(resp, 48, 22);
170 else
171 m = unstuff_bits(resp, 48, 28);
172 csd->c_size = m;
173
174 if (csd->c_size >= 0x400000 && is_sduc)
175 mmc_card_set_ult_capacity(card);
176 else if (csd->c_size >= 0xFFFF)
177 mmc_card_set_ext_capacity(card);
178
179 csd->capacity = (1 + (typeof(sector_t))m) << 10;
180
181 csd->read_blkbits = 9;
182 csd->read_partial = 0;
183 csd->write_misalign = 0;
184 csd->read_misalign = 0;
185 csd->r2w_factor = 4; /* Unused */
186 csd->write_blkbits = 9;
187 csd->write_partial = 0;
188 csd->erase_size = 1;
189
190 if (unstuff_bits(resp, 13, 1))
191 mmc_card_set_readonly(card);
192 break;
193 default:
194 pr_err("%s: unrecognised CSD structure version %d\n",
195 mmc_hostname(card->host), csd_struct);
196 return -EINVAL;
197 }
198
199 card->erase_size = csd->erase_size;
200
201 return 0;
202 }
203
204 /*
205 * Given a 64-bit response, decode to our card SCR structure.
206 */
mmc_decode_scr(struct mmc_card * card)207 int mmc_decode_scr(struct mmc_card *card)
208 {
209 struct sd_scr *scr = &card->scr;
210 unsigned int scr_struct;
211 u32 resp[4];
212
213 resp[3] = card->raw_scr[1];
214 resp[2] = card->raw_scr[0];
215
216 scr_struct = unstuff_bits(resp, 60, 4);
217 if (scr_struct != 0) {
218 pr_err("%s: unrecognised SCR structure version %d\n",
219 mmc_hostname(card->host), scr_struct);
220 return -EINVAL;
221 }
222
223 scr->sda_vsn = unstuff_bits(resp, 56, 4);
224 scr->bus_widths = unstuff_bits(resp, 48, 4);
225 if (scr->sda_vsn == SCR_SPEC_VER_2)
226 /* Check if Physical Layer Spec v3.0 is supported */
227 scr->sda_spec3 = unstuff_bits(resp, 47, 1);
228
229 if (scr->sda_spec3) {
230 scr->sda_spec4 = unstuff_bits(resp, 42, 1);
231 scr->sda_specx = unstuff_bits(resp, 38, 4);
232 }
233
234 if (unstuff_bits(resp, 55, 1))
235 card->erased_byte = 0xFF;
236 else
237 card->erased_byte = 0x0;
238
239 if (scr->sda_spec4)
240 scr->cmds = unstuff_bits(resp, 32, 4);
241 else if (scr->sda_spec3)
242 scr->cmds = unstuff_bits(resp, 32, 2);
243
244 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */
245 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
246 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
247 pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
248 return -EINVAL;
249 }
250
251 return 0;
252 }
253
254 /*
255 * Fetch and process SD Status register.
256 */
mmc_read_ssr(struct mmc_card * card)257 static int mmc_read_ssr(struct mmc_card *card)
258 {
259 unsigned int au, es, et, eo;
260 __be32 *raw_ssr;
261 u32 resp[4] = {};
262 u8 discard_support;
263 int i;
264
265 if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
266 pr_warn("%s: card lacks mandatory SD Status function\n",
267 mmc_hostname(card->host));
268 return 0;
269 }
270
271 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
272 if (!raw_ssr)
273 return -ENOMEM;
274
275 if (mmc_app_sd_status(card, raw_ssr)) {
276 pr_warn("%s: problem reading SD Status register\n",
277 mmc_hostname(card->host));
278 kfree(raw_ssr);
279 return 0;
280 }
281
282 for (i = 0; i < 16; i++)
283 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
284
285 kfree(raw_ssr);
286
287 /*
288 * unstuff_bits only works with four u32s so we have to offset the
289 * bitfield positions accordingly.
290 */
291 au = unstuff_bits(card->raw_ssr, 428 - 384, 4);
292 if (au) {
293 if (au <= 9 || card->scr.sda_spec3) {
294 card->ssr.au = sd_au_size[au];
295 es = unstuff_bits(card->raw_ssr, 408 - 384, 16);
296 et = unstuff_bits(card->raw_ssr, 402 - 384, 6);
297 if (es && et) {
298 eo = unstuff_bits(card->raw_ssr, 400 - 384, 2);
299 card->ssr.erase_timeout = (et * 1000) / es;
300 card->ssr.erase_offset = eo * 1000;
301 }
302 } else {
303 pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
304 mmc_hostname(card->host));
305 }
306 }
307
308 /*
309 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
310 */
311 resp[3] = card->raw_ssr[6];
312 discard_support = unstuff_bits(resp, 313 - 288, 1);
313 card->erase_arg = (card->scr.sda_specx && discard_support) ?
314 SD_DISCARD_ARG : SD_ERASE_ARG;
315
316 return 0;
317 }
318
319 /*
320 * Fetches and decodes switch information
321 */
mmc_read_switch(struct mmc_card * card)322 static int mmc_read_switch(struct mmc_card *card)
323 {
324 int err;
325 u8 *status;
326
327 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
328 return 0;
329
330 if (!(card->csd.cmdclass & CCC_SWITCH)) {
331 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
332 mmc_hostname(card->host));
333 return 0;
334 }
335
336 status = kmalloc(64, GFP_KERNEL);
337 if (!status)
338 return -ENOMEM;
339
340 /*
341 * Find out the card's support bits with a mode 0 operation.
342 * The argument does not matter, as the support bits do not
343 * change with the arguments.
344 */
345 err = mmc_sd_switch(card, SD_SWITCH_CHECK, 0, 0, status);
346 if (err) {
347 /*
348 * If the host or the card can't do the switch,
349 * fail more gracefully.
350 */
351 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
352 goto out;
353
354 pr_warn("%s: problem reading Bus Speed modes\n",
355 mmc_hostname(card->host));
356 err = 0;
357
358 goto out;
359 }
360
361 if (status[13] & SD_MODE_HIGH_SPEED)
362 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
363
364 if (card->scr.sda_spec3) {
365 card->sw_caps.sd3_bus_mode = status[13];
366 /* Driver Strengths supported by the card */
367 card->sw_caps.sd3_drv_type = status[9];
368 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
369 }
370
371 out:
372 kfree(status);
373
374 return err;
375 }
376
377 /*
378 * Test if the card supports high-speed mode and, if so, switch to it.
379 */
mmc_sd_switch_hs(struct mmc_card * card)380 int mmc_sd_switch_hs(struct mmc_card *card)
381 {
382 int err;
383 u8 *status;
384
385 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
386 return 0;
387
388 if (!(card->csd.cmdclass & CCC_SWITCH))
389 return 0;
390
391 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
392 return 0;
393
394 if (card->sw_caps.hs_max_dtr == 0)
395 return 0;
396
397 status = kmalloc(64, GFP_KERNEL);
398 if (!status)
399 return -ENOMEM;
400
401 err = mmc_sd_switch(card, SD_SWITCH_SET, 0,
402 HIGH_SPEED_BUS_SPEED, status);
403 if (err)
404 goto out;
405
406 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
407 pr_warn("%s: Problem switching card into high-speed mode!\n",
408 mmc_hostname(card->host));
409 err = 0;
410 } else {
411 err = 1;
412 }
413
414 out:
415 kfree(status);
416
417 return err;
418 }
419
sd_select_driver_type(struct mmc_card * card,u8 * status)420 static int sd_select_driver_type(struct mmc_card *card, u8 *status)
421 {
422 int card_drv_type, drive_strength, drv_type;
423 int err;
424
425 card->drive_strength = 0;
426
427 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
428
429 drive_strength = mmc_select_drive_strength(card,
430 card->sw_caps.uhs_max_dtr,
431 card_drv_type, &drv_type);
432
433 if (drive_strength) {
434 err = mmc_sd_switch(card, SD_SWITCH_SET, 2,
435 drive_strength, status);
436 if (err)
437 return err;
438 if ((status[15] & 0xF) != drive_strength) {
439 pr_warn("%s: Problem setting drive strength!\n",
440 mmc_hostname(card->host));
441 return 0;
442 }
443 card->drive_strength = drive_strength;
444 }
445
446 if (drv_type)
447 mmc_set_driver_type(card->host, drv_type);
448
449 return 0;
450 }
451
sd_update_bus_speed_mode(struct mmc_card * card)452 static void sd_update_bus_speed_mode(struct mmc_card *card)
453 {
454 /*
455 * If the host doesn't support any of the UHS-I modes, fallback on
456 * default speed.
457 */
458 if (!mmc_host_can_uhs(card->host)) {
459 card->sd_bus_speed = 0;
460 return;
461 }
462
463 if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
464 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
465 card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
466 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
467 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
468 card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
469 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
470 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
471 SD_MODE_UHS_SDR50)) {
472 card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
473 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
474 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
475 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
476 card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
477 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
478 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
479 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
480 SD_MODE_UHS_SDR12)) {
481 card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
482 }
483 }
484
sd_set_bus_speed_mode(struct mmc_card * card,u8 * status)485 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
486 {
487 int err;
488 unsigned int timing = 0;
489
490 switch (card->sd_bus_speed) {
491 case UHS_SDR104_BUS_SPEED:
492 timing = MMC_TIMING_UHS_SDR104;
493 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
494 break;
495 case UHS_DDR50_BUS_SPEED:
496 timing = MMC_TIMING_UHS_DDR50;
497 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
498 break;
499 case UHS_SDR50_BUS_SPEED:
500 timing = MMC_TIMING_UHS_SDR50;
501 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
502 break;
503 case UHS_SDR25_BUS_SPEED:
504 timing = MMC_TIMING_UHS_SDR25;
505 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
506 break;
507 case UHS_SDR12_BUS_SPEED:
508 timing = MMC_TIMING_UHS_SDR12;
509 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
510 break;
511 default:
512 return 0;
513 }
514
515 err = mmc_sd_switch(card, SD_SWITCH_SET, 0, card->sd_bus_speed, status);
516 if (err)
517 return err;
518
519 if ((status[16] & 0xF) != card->sd_bus_speed)
520 pr_warn("%s: Problem setting bus speed mode!\n",
521 mmc_hostname(card->host));
522 else {
523 mmc_set_timing(card->host, timing);
524 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
525 }
526
527 return 0;
528 }
529
530 /* Get host's max current setting at its current voltage */
sd_get_host_max_current(struct mmc_host * host)531 static u32 sd_get_host_max_current(struct mmc_host *host)
532 {
533 u32 voltage, max_current;
534
535 voltage = 1 << host->ios.vdd;
536 switch (voltage) {
537 case MMC_VDD_165_195:
538 max_current = host->max_current_180;
539 break;
540 case MMC_VDD_29_30:
541 case MMC_VDD_30_31:
542 max_current = host->max_current_300;
543 break;
544 case MMC_VDD_32_33:
545 case MMC_VDD_33_34:
546 max_current = host->max_current_330;
547 break;
548 default:
549 max_current = 0;
550 }
551
552 return max_current;
553 }
554
sd_set_current_limit(struct mmc_card * card,u8 * status)555 static int sd_set_current_limit(struct mmc_card *card, u8 *status)
556 {
557 int current_limit = SD_SET_CURRENT_NO_CHANGE;
558 int err;
559 u32 max_current;
560
561 /*
562 * Current limit switch is only defined for SDR50, SDR104, and DDR50
563 * bus speed modes. For other bus speed modes, we do not change the
564 * current limit.
565 */
566 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
567 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
568 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
569 return 0;
570
571 /*
572 * Host has different current capabilities when operating at
573 * different voltages, so find out its max current first.
574 */
575 max_current = sd_get_host_max_current(card->host);
576
577 /*
578 * We only check host's capability here, if we set a limit that is
579 * higher than the card's maximum current, the card will be using its
580 * maximum current, e.g. if the card's maximum current is 300ma, and
581 * when we set current limit to 200ma, the card will draw 200ma, and
582 * when we set current limit to 400/600/800ma, the card will draw its
583 * maximum 300ma from the host.
584 *
585 * The above is incorrect: if we try to set a current limit that is
586 * not supported by the card, the card can rightfully error out the
587 * attempt, and remain at the default current limit. This results
588 * in a 300mA card being limited to 200mA even though the host
589 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
590 * an iMX6 host. --rmk
591 */
592 if (max_current >= 800 &&
593 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
594 current_limit = SD_SET_CURRENT_LIMIT_800;
595 else if (max_current >= 600 &&
596 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
597 current_limit = SD_SET_CURRENT_LIMIT_600;
598 else if (max_current >= 400 &&
599 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
600 current_limit = SD_SET_CURRENT_LIMIT_400;
601 else if (max_current >= 200 &&
602 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
603 current_limit = SD_SET_CURRENT_LIMIT_200;
604
605 if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
606 err = mmc_sd_switch(card, SD_SWITCH_SET, 3,
607 current_limit, status);
608 if (err)
609 return err;
610
611 if (((status[15] >> 4) & 0x0F) != current_limit)
612 pr_warn("%s: Problem setting current limit!\n",
613 mmc_hostname(card->host));
614
615 }
616
617 return 0;
618 }
619
620 /*
621 * Determine if the card should tune or not.
622 */
mmc_sd_use_tuning(struct mmc_card * card)623 static bool mmc_sd_use_tuning(struct mmc_card *card)
624 {
625 /*
626 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
627 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
628 */
629 if (mmc_host_is_spi(card->host))
630 return false;
631
632 switch (card->host->ios.timing) {
633 case MMC_TIMING_UHS_SDR50:
634 case MMC_TIMING_UHS_SDR104:
635 return true;
636 case MMC_TIMING_UHS_DDR50:
637 return !mmc_card_no_uhs_ddr50_tuning(card);
638 }
639
640 return false;
641 }
642
643 /*
644 * UHS-I specific initialization procedure
645 */
mmc_sd_init_uhs_card(struct mmc_card * card)646 static int mmc_sd_init_uhs_card(struct mmc_card *card)
647 {
648 int err;
649 u8 *status;
650
651 if (!(card->csd.cmdclass & CCC_SWITCH))
652 return 0;
653
654 status = kmalloc(64, GFP_KERNEL);
655 if (!status)
656 return -ENOMEM;
657
658 /* Set 4-bit bus width */
659 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
660 if (err)
661 goto out;
662
663 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
664
665 /*
666 * Select the bus speed mode depending on host
667 * and card capability.
668 */
669 sd_update_bus_speed_mode(card);
670
671 /* Set the driver strength for the card */
672 err = sd_select_driver_type(card, status);
673 if (err)
674 goto out;
675
676 /* Set current limit for the card */
677 err = sd_set_current_limit(card, status);
678 if (err)
679 goto out;
680
681 /* Set bus speed mode of the card */
682 err = sd_set_bus_speed_mode(card, status);
683 if (err)
684 goto out;
685
686 if (mmc_sd_use_tuning(card)) {
687 err = mmc_execute_tuning(card);
688
689 /*
690 * As SD Specifications Part1 Physical Layer Specification
691 * Version 3.01 says, CMD19 tuning is available for unlocked
692 * cards in transfer state of 1.8V signaling mode. The small
693 * difference between v3.00 and 3.01 spec means that CMD19
694 * tuning is also available for DDR50 mode.
695 */
696 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
697 pr_warn("%s: ddr50 tuning failed\n",
698 mmc_hostname(card->host));
699 err = 0;
700 }
701 }
702
703 out:
704 kfree(status);
705
706 return err;
707 }
708
709 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
710 card->raw_cid[2], card->raw_cid[3]);
711 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
712 card->raw_csd[2], card->raw_csd[3]);
713 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
714 MMC_DEV_ATTR(ssr,
715 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
716 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
717 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
718 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
719 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
720 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
721 card->raw_ssr[15]);
722 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
723 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
724 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
725 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
726 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
727 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
728 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
729 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
730 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
731 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
732 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
733
734
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)735 static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr,
736 char *buf)
737 {
738 struct mmc_card *card = mmc_dev_to_card(dev);
739 struct mmc_host *host = card->host;
740
741 if (card->csd.dsr_imp && host->dsr_req)
742 return sysfs_emit(buf, "0x%x\n", host->dsr);
743 /* return default DSR value */
744 return sysfs_emit(buf, "0x%x\n", 0x404);
745 }
746
747 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
748
749 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
750 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
751 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
752
753 #define sdio_info_attr(num) \
754 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \
755 { \
756 struct mmc_card *card = mmc_dev_to_card(dev); \
757 \
758 if (num > card->num_info) \
759 return -ENODATA; \
760 if (!card->info[num - 1][0]) \
761 return 0; \
762 return sysfs_emit(buf, "%s\n", card->info[num - 1]); \
763 } \
764 static DEVICE_ATTR_RO(info##num)
765
766 sdio_info_attr(1);
767 sdio_info_attr(2);
768 sdio_info_attr(3);
769 sdio_info_attr(4);
770
771 static struct attribute *sd_std_attrs[] = {
772 &dev_attr_vendor.attr,
773 &dev_attr_device.attr,
774 &dev_attr_revision.attr,
775 &dev_attr_info1.attr,
776 &dev_attr_info2.attr,
777 &dev_attr_info3.attr,
778 &dev_attr_info4.attr,
779 &dev_attr_cid.attr,
780 &dev_attr_csd.attr,
781 &dev_attr_scr.attr,
782 &dev_attr_ssr.attr,
783 &dev_attr_date.attr,
784 &dev_attr_erase_size.attr,
785 &dev_attr_preferred_erase_size.attr,
786 &dev_attr_fwrev.attr,
787 &dev_attr_hwrev.attr,
788 &dev_attr_manfid.attr,
789 &dev_attr_name.attr,
790 &dev_attr_oemid.attr,
791 &dev_attr_serial.attr,
792 &dev_attr_ocr.attr,
793 &dev_attr_rca.attr,
794 &dev_attr_dsr.attr,
795 NULL,
796 };
797
sd_std_is_visible(struct kobject * kobj,struct attribute * attr,int index)798 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
799 int index)
800 {
801 struct device *dev = kobj_to_dev(kobj);
802 struct mmc_card *card = mmc_dev_to_card(dev);
803
804 /* CIS vendor and device ids, revision and info string are available only for Combo cards */
805 if ((attr == &dev_attr_vendor.attr ||
806 attr == &dev_attr_device.attr ||
807 attr == &dev_attr_revision.attr ||
808 attr == &dev_attr_info1.attr ||
809 attr == &dev_attr_info2.attr ||
810 attr == &dev_attr_info3.attr ||
811 attr == &dev_attr_info4.attr
812 ) &&!mmc_card_sd_combo(card))
813 return 0;
814
815 return attr->mode;
816 }
817
818 static const struct attribute_group sd_std_group = {
819 .attrs = sd_std_attrs,
820 .is_visible = sd_std_is_visible,
821 };
822 __ATTRIBUTE_GROUPS(sd_std);
823
824 const struct device_type sd_type = {
825 .groups = sd_std_groups,
826 };
827
828 /*
829 * Fetch CID from card.
830 */
mmc_sd_get_cid(struct mmc_host * host,u32 ocr,u32 * cid,u32 * rocr)831 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
832 {
833 int err;
834 u32 max_current;
835 int retries = 10;
836 u32 pocr = ocr;
837
838 try_again:
839 if (!retries) {
840 ocr &= ~SD_OCR_S18R;
841 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
842 }
843
844 /*
845 * Since we're changing the OCR value, we seem to
846 * need to tell some cards to go back to the idle
847 * state. We wait 1ms to give cards time to
848 * respond.
849 */
850 mmc_go_idle(host);
851
852 /*
853 * If SD_SEND_IF_COND indicates an SD 2.0
854 * compliant card and we should set bit 30
855 * of the ocr to indicate that we can handle
856 * block-addressed SDHC cards.
857 */
858 err = mmc_send_if_cond(host, ocr);
859 if (!err) {
860 ocr |= SD_OCR_CCS;
861 /* Set HO2T as well - SDUC card won't respond otherwise */
862 ocr |= SD_OCR_2T;
863 }
864
865 /*
866 * If the host supports one of UHS-I modes, request the card
867 * to switch to 1.8V signaling level. If the card has failed
868 * repeatedly to switch however, skip this.
869 */
870 if (retries && mmc_host_can_uhs(host))
871 ocr |= SD_OCR_S18R;
872
873 /*
874 * If the host can supply more than 150mA at current voltage,
875 * XPC should be set to 1.
876 */
877 max_current = sd_get_host_max_current(host);
878 if (max_current > 150)
879 ocr |= SD_OCR_XPC;
880
881 err = mmc_send_app_op_cond(host, ocr, rocr);
882 if (err)
883 return err;
884
885 /*
886 * In case the S18A bit is set in the response, let's start the signal
887 * voltage switch procedure. SPI mode doesn't support CMD11.
888 * Note that, according to the spec, the S18A bit is not valid unless
889 * the CCS bit is set as well. We deliberately deviate from the spec in
890 * regards to this, which allows UHS-I to be supported for SDSC cards.
891 */
892 if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) &&
893 rocr && (*rocr & SD_ROCR_S18A)) {
894 err = mmc_set_uhs_voltage(host, pocr);
895 if (err == -EAGAIN) {
896 retries--;
897 goto try_again;
898 } else if (err) {
899 retries = 0;
900 goto try_again;
901 }
902 }
903
904 err = mmc_send_cid(host, cid);
905 return err;
906 }
907
mmc_sd_get_csd(struct mmc_card * card,bool is_sduc)908 int mmc_sd_get_csd(struct mmc_card *card, bool is_sduc)
909 {
910 int err;
911
912 /*
913 * Fetch CSD from card.
914 */
915 err = mmc_send_csd(card, card->raw_csd);
916 if (err)
917 return err;
918
919 err = mmc_decode_csd(card, is_sduc);
920 if (err)
921 return err;
922
923 return 0;
924 }
925
mmc_sd_get_ro(struct mmc_host * host)926 int mmc_sd_get_ro(struct mmc_host *host)
927 {
928 int ro;
929
930 /*
931 * Some systems don't feature a write-protect pin and don't need one.
932 * E.g. because they only have micro-SD card slot. For those systems
933 * assume that the SD card is always read-write.
934 */
935 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
936 return 0;
937
938 if (!host->ops->get_ro)
939 return -1;
940
941 ro = host->ops->get_ro(host);
942
943 return ro;
944 }
945
mmc_sd_setup_card(struct mmc_host * host,struct mmc_card * card,bool reinit)946 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
947 bool reinit)
948 {
949 int err;
950
951 if (!reinit) {
952 /*
953 * Fetch SCR from card.
954 */
955 err = mmc_app_send_scr(card);
956 if (err)
957 return err;
958
959 err = mmc_decode_scr(card);
960 if (err)
961 return err;
962
963 /*
964 * Fetch and process SD Status register.
965 */
966 err = mmc_read_ssr(card);
967 if (err)
968 return err;
969
970 /* Erase init depends on CSD and SSR */
971 mmc_init_erase(card);
972 }
973
974 /*
975 * Fetch switch information from card. Note, sd3_bus_mode can change if
976 * voltage switch outcome changes, so do this always.
977 */
978 err = mmc_read_switch(card);
979 if (err)
980 return err;
981
982 /*
983 * For SPI, enable CRC as appropriate.
984 * This CRC enable is located AFTER the reading of the
985 * card registers because some SDHC cards are not able
986 * to provide valid CRCs for non-512-byte blocks.
987 */
988 if (mmc_host_is_spi(host)) {
989 err = mmc_spi_set_crc(host, use_spi_crc);
990 if (err)
991 return err;
992 }
993
994 /*
995 * Check if read-only switch is active.
996 */
997 if (!reinit) {
998 int ro = mmc_sd_get_ro(host);
999
1000 if (ro < 0) {
1001 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
1002 mmc_hostname(host));
1003 } else if (ro > 0) {
1004 mmc_card_set_readonly(card);
1005 }
1006 }
1007
1008 return 0;
1009 }
1010
mmc_sd_get_max_clock(struct mmc_card * card)1011 unsigned mmc_sd_get_max_clock(struct mmc_card *card)
1012 {
1013 unsigned max_dtr = (unsigned int)-1;
1014
1015 if (mmc_card_hs(card)) {
1016 if (max_dtr > card->sw_caps.hs_max_dtr)
1017 max_dtr = card->sw_caps.hs_max_dtr;
1018 } else if (max_dtr > card->csd.max_dtr) {
1019 max_dtr = card->csd.max_dtr;
1020 }
1021
1022 return max_dtr;
1023 }
1024
mmc_sd_card_using_v18(struct mmc_card * card)1025 static bool mmc_sd_card_using_v18(struct mmc_card *card)
1026 {
1027 /*
1028 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1029 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1030 * they can be used to determine if the card has already switched to
1031 * 1.8V signaling.
1032 */
1033 return card->sw_caps.sd3_bus_mode &
1034 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1035 }
1036
sd_write_ext_reg(struct mmc_card * card,u8 fno,u8 page,u16 offset,u8 reg_data)1037 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1038 u8 reg_data)
1039 {
1040 struct mmc_host *host = card->host;
1041 struct mmc_request mrq = {};
1042 struct mmc_command cmd = {};
1043 struct mmc_data data = {};
1044 struct scatterlist sg;
1045 u8 *reg_buf;
1046
1047 reg_buf = kzalloc(512, GFP_KERNEL);
1048 if (!reg_buf)
1049 return -ENOMEM;
1050
1051 mrq.cmd = &cmd;
1052 mrq.data = &data;
1053
1054 /*
1055 * Arguments of CMD49:
1056 * [31:31] MIO (0 = memory).
1057 * [30:27] FNO (function number).
1058 * [26:26] MW - mask write mode (0 = disable).
1059 * [25:18] page number.
1060 * [17:9] offset address.
1061 * [8:0] length (0 = 1 byte).
1062 */
1063 cmd.arg = fno << 27 | page << 18 | offset << 9;
1064
1065 /* The first byte in the buffer is the data to be written. */
1066 reg_buf[0] = reg_data;
1067
1068 data.flags = MMC_DATA_WRITE;
1069 data.blksz = 512;
1070 data.blocks = 1;
1071 data.sg = &sg;
1072 data.sg_len = 1;
1073 sg_init_one(&sg, reg_buf, 512);
1074
1075 cmd.opcode = SD_WRITE_EXTR_SINGLE;
1076 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1077
1078 mmc_set_data_timeout(&data, card);
1079 mmc_wait_for_req(host, &mrq);
1080
1081 kfree(reg_buf);
1082
1083 /*
1084 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1085 * after the CMD49. Although, let's leave this to be managed by the
1086 * caller.
1087 */
1088
1089 if (cmd.error)
1090 return cmd.error;
1091 if (data.error)
1092 return data.error;
1093
1094 return 0;
1095 }
1096
sd_read_ext_reg(struct mmc_card * card,u8 fno,u8 page,u16 offset,u16 len,u8 * reg_buf)1097 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1098 u16 offset, u16 len, u8 *reg_buf)
1099 {
1100 u32 cmd_args;
1101
1102 /*
1103 * Command arguments of CMD48:
1104 * [31:31] MIO (0 = memory).
1105 * [30:27] FNO (function number).
1106 * [26:26] reserved (0).
1107 * [25:18] page number.
1108 * [17:9] offset address.
1109 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1110 */
1111 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1112
1113 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1114 cmd_args, reg_buf, 512);
1115 }
1116
sd_parse_ext_reg_power(struct mmc_card * card,u8 fno,u8 page,u16 offset)1117 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1118 u16 offset)
1119 {
1120 int err;
1121 u8 *reg_buf;
1122
1123 reg_buf = kzalloc(512, GFP_KERNEL);
1124 if (!reg_buf)
1125 return -ENOMEM;
1126
1127 /* Read the extension register for power management function. */
1128 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1129 if (err) {
1130 pr_warn("%s: error %d reading PM func of ext reg\n",
1131 mmc_hostname(card->host), err);
1132 goto out;
1133 }
1134
1135 /* PM revision consists of 4 bits. */
1136 card->ext_power.rev = reg_buf[0] & 0xf;
1137
1138 /* Power Off Notification support at bit 4. */
1139 if ((reg_buf[1] & BIT(4)) && !mmc_card_broken_sd_poweroff_notify(card))
1140 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1141
1142 /* Power Sustenance support at bit 5. */
1143 if (reg_buf[1] & BIT(5))
1144 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1145
1146 /* Power Down Mode support at bit 6. */
1147 if (reg_buf[1] & BIT(6))
1148 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1149
1150 card->ext_power.fno = fno;
1151 card->ext_power.page = page;
1152 card->ext_power.offset = offset;
1153
1154 out:
1155 kfree(reg_buf);
1156 return err;
1157 }
1158
sd_parse_ext_reg_perf(struct mmc_card * card,u8 fno,u8 page,u16 offset)1159 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1160 u16 offset)
1161 {
1162 int err;
1163 u8 *reg_buf;
1164
1165 reg_buf = kzalloc(512, GFP_KERNEL);
1166 if (!reg_buf)
1167 return -ENOMEM;
1168
1169 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1170 if (err) {
1171 pr_warn("%s: error %d reading PERF func of ext reg\n",
1172 mmc_hostname(card->host), err);
1173 goto out;
1174 }
1175
1176 /* PERF revision. */
1177 card->ext_perf.rev = reg_buf[0];
1178
1179 /* FX_EVENT support at bit 0. */
1180 if (reg_buf[1] & BIT(0))
1181 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1182
1183 /* Card initiated self-maintenance support at bit 0. */
1184 if (reg_buf[2] & BIT(0))
1185 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1186
1187 /* Host initiated self-maintenance support at bit 1. */
1188 if (reg_buf[2] & BIT(1))
1189 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1190
1191 /* Cache support at bit 0. */
1192 if ((reg_buf[4] & BIT(0)) && !mmc_card_broken_sd_cache(card))
1193 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1194
1195 /* Command queue support indicated via queue depth bits (0 to 4). */
1196 if (reg_buf[6] & 0x1f)
1197 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1198
1199 card->ext_perf.fno = fno;
1200 card->ext_perf.page = page;
1201 card->ext_perf.offset = offset;
1202
1203 out:
1204 kfree(reg_buf);
1205 return err;
1206 }
1207
sd_parse_ext_reg(struct mmc_card * card,u8 * gen_info_buf,u16 * next_ext_addr)1208 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1209 u16 *next_ext_addr)
1210 {
1211 u8 num_regs, fno, page;
1212 u16 sfc, offset, ext = *next_ext_addr;
1213 u32 reg_addr;
1214
1215 /*
1216 * Parse only one register set per extension, as that is sufficient to
1217 * support the standard functions. This means another 48 bytes in the
1218 * buffer must be available.
1219 */
1220 if (ext + 48 > 512)
1221 return -EFAULT;
1222
1223 /* Standard Function Code */
1224 memcpy(&sfc, &gen_info_buf[ext], 2);
1225
1226 /* Address to the next extension. */
1227 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1228
1229 /* Number of registers for this extension. */
1230 num_regs = gen_info_buf[ext + 42];
1231
1232 /* We support only one register per extension. */
1233 if (num_regs != 1)
1234 return 0;
1235
1236 /* Extension register address. */
1237 memcpy(®_addr, &gen_info_buf[ext + 44], 4);
1238
1239 /* 9 bits (0 to 8) contains the offset address. */
1240 offset = reg_addr & 0x1ff;
1241
1242 /* 8 bits (9 to 16) contains the page number. */
1243 page = reg_addr >> 9 & 0xff ;
1244
1245 /* 4 bits (18 to 21) contains the function number. */
1246 fno = reg_addr >> 18 & 0xf;
1247
1248 /* Standard Function Code for power management. */
1249 if (sfc == 0x1)
1250 return sd_parse_ext_reg_power(card, fno, page, offset);
1251
1252 /* Standard Function Code for performance enhancement. */
1253 if (sfc == 0x2)
1254 return sd_parse_ext_reg_perf(card, fno, page, offset);
1255
1256 return 0;
1257 }
1258
sd_read_ext_regs(struct mmc_card * card)1259 static int sd_read_ext_regs(struct mmc_card *card)
1260 {
1261 int err, i;
1262 u8 num_ext, *gen_info_buf;
1263 u16 rev, len, next_ext_addr;
1264
1265 if (mmc_host_is_spi(card->host))
1266 return 0;
1267
1268 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1269 return 0;
1270
1271 gen_info_buf = kzalloc(512, GFP_KERNEL);
1272 if (!gen_info_buf)
1273 return -ENOMEM;
1274
1275 /*
1276 * Read 512 bytes of general info, which is found at function number 0,
1277 * at page 0 and with no offset.
1278 */
1279 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1280 if (err) {
1281 pr_err("%s: error %d reading general info of SD ext reg\n",
1282 mmc_hostname(card->host), err);
1283 goto out;
1284 }
1285
1286 /* General info structure revision. */
1287 memcpy(&rev, &gen_info_buf[0], 2);
1288
1289 /* Length of general info in bytes. */
1290 memcpy(&len, &gen_info_buf[2], 2);
1291
1292 /* Number of extensions to be find. */
1293 num_ext = gen_info_buf[4];
1294
1295 /*
1296 * We only support revision 0 and limit it to 512 bytes for simplicity.
1297 * No matter what, let's return zero to allow us to continue using the
1298 * card, even if we can't support the features from the SD function
1299 * extensions registers.
1300 */
1301 if (rev != 0 || len > 512) {
1302 pr_warn("%s: non-supported SD ext reg layout\n",
1303 mmc_hostname(card->host));
1304 goto out;
1305 }
1306
1307 /*
1308 * Parse the extension registers. The first extension should start
1309 * immediately after the general info header (16 bytes).
1310 */
1311 next_ext_addr = 16;
1312 for (i = 0; i < num_ext; i++) {
1313 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1314 if (err) {
1315 pr_err("%s: error %d parsing SD ext reg\n",
1316 mmc_hostname(card->host), err);
1317 goto out;
1318 }
1319 }
1320
1321 out:
1322 kfree(gen_info_buf);
1323 return err;
1324 }
1325
sd_cache_enabled(struct mmc_host * host)1326 static bool sd_cache_enabled(struct mmc_host *host)
1327 {
1328 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1329 }
1330
sd_flush_cache(struct mmc_host * host)1331 static int sd_flush_cache(struct mmc_host *host)
1332 {
1333 struct mmc_card *card = host->card;
1334 u8 *reg_buf, fno, page;
1335 u16 offset;
1336 int err;
1337
1338 if (!sd_cache_enabled(host))
1339 return 0;
1340
1341 reg_buf = kzalloc(512, GFP_KERNEL);
1342 if (!reg_buf)
1343 return -ENOMEM;
1344
1345 /*
1346 * Set Flush Cache at bit 0 in the performance enhancement register at
1347 * 261 bytes offset.
1348 */
1349 fno = card->ext_perf.fno;
1350 page = card->ext_perf.page;
1351 offset = card->ext_perf.offset + 261;
1352
1353 err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1354 if (err) {
1355 pr_warn("%s: error %d writing Cache Flush bit\n",
1356 mmc_hostname(host), err);
1357 goto out;
1358 }
1359
1360 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1361 MMC_BUSY_EXTR_SINGLE);
1362 if (err)
1363 goto out;
1364
1365 /*
1366 * Read the Flush Cache bit. The card shall reset it, to confirm that
1367 * it's has completed the flushing of the cache.
1368 */
1369 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1370 if (err) {
1371 pr_warn("%s: error %d reading Cache Flush bit\n",
1372 mmc_hostname(host), err);
1373 goto out;
1374 }
1375
1376 if (reg_buf[0] & BIT(0))
1377 err = -ETIMEDOUT;
1378 out:
1379 kfree(reg_buf);
1380 return err;
1381 }
1382
sd_enable_cache(struct mmc_card * card)1383 static int sd_enable_cache(struct mmc_card *card)
1384 {
1385 u8 *reg_buf;
1386 int err;
1387
1388 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1389
1390 reg_buf = kzalloc(512, GFP_KERNEL);
1391 if (!reg_buf)
1392 return -ENOMEM;
1393
1394 /*
1395 * Set Cache Enable at bit 0 in the performance enhancement register at
1396 * 260 bytes offset.
1397 */
1398 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1399 card->ext_perf.offset + 260, BIT(0));
1400 if (err) {
1401 pr_warn("%s: error %d writing Cache Enable bit\n",
1402 mmc_hostname(card->host), err);
1403 goto out;
1404 }
1405
1406 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1407 MMC_BUSY_EXTR_SINGLE);
1408 if (!err)
1409 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1410
1411 out:
1412 kfree(reg_buf);
1413 return err;
1414 }
1415
1416 /*
1417 * Handle the detection and initialisation of a card.
1418 *
1419 * In the case of a resume, "oldcard" will contain the card
1420 * we're trying to reinitialise.
1421 */
mmc_sd_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1422 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1423 struct mmc_card *oldcard)
1424 {
1425 struct mmc_card *card;
1426 int err;
1427 u32 cid[4];
1428 u32 rocr = 0;
1429 bool v18_fixup_failed = false;
1430
1431 WARN_ON(!host->claimed);
1432 retry:
1433 err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1434 if (err)
1435 return err;
1436
1437 if (oldcard) {
1438 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1439 pr_debug("%s: Perhaps the card was replaced\n",
1440 mmc_hostname(host));
1441 return -ENOENT;
1442 }
1443
1444 card = oldcard;
1445 } else {
1446 /*
1447 * Allocate card structure.
1448 */
1449 card = mmc_alloc_card(host, &sd_type);
1450 if (IS_ERR(card))
1451 return PTR_ERR(card);
1452
1453 card->ocr = ocr;
1454 card->type = MMC_TYPE_SD;
1455 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1456 }
1457
1458 /*
1459 * Call the optional HC's init_card function to handle quirks.
1460 */
1461 if (host->ops->init_card)
1462 host->ops->init_card(host, card);
1463
1464 /*
1465 * For native busses: get card RCA and quit open drain mode.
1466 */
1467 if (!mmc_host_is_spi(host)) {
1468 err = mmc_send_relative_addr(host, &card->rca);
1469 if (err)
1470 goto free_card;
1471 }
1472
1473 if (!oldcard) {
1474 u32 sduc_arg = SD_OCR_CCS | SD_OCR_2T;
1475 bool is_sduc = (rocr & sduc_arg) == sduc_arg;
1476
1477 err = mmc_sd_get_csd(card, is_sduc);
1478 if (err)
1479 goto free_card;
1480
1481 mmc_decode_cid(card);
1482 }
1483
1484 /*
1485 * handling only for cards supporting DSR and hosts requesting
1486 * DSR configuration
1487 */
1488 if (card->csd.dsr_imp && host->dsr_req)
1489 mmc_set_dsr(host);
1490
1491 /*
1492 * Select card, as all following commands rely on that.
1493 */
1494 if (!mmc_host_is_spi(host)) {
1495 err = mmc_select_card(card);
1496 if (err)
1497 goto free_card;
1498 }
1499
1500 /* Apply quirks prior to card setup */
1501 mmc_fixup_device(card, mmc_sd_fixups);
1502
1503 err = mmc_sd_setup_card(host, card, oldcard != NULL);
1504 if (err)
1505 goto free_card;
1506
1507 /*
1508 * If the card has not been power cycled, it may still be using 1.8V
1509 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1510 * transfer mode.
1511 */
1512 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_can_uhs(host) &&
1513 mmc_sd_card_using_v18(card) &&
1514 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1515 if (mmc_host_set_uhs_voltage(host) ||
1516 mmc_sd_init_uhs_card(card)) {
1517 v18_fixup_failed = true;
1518 mmc_power_cycle(host, ocr);
1519 if (!oldcard)
1520 mmc_remove_card(card);
1521 goto retry;
1522 }
1523 goto cont;
1524 }
1525
1526 /* Initialization sequence for UHS-I cards */
1527 if (rocr & SD_ROCR_S18A && mmc_host_can_uhs(host)) {
1528 err = mmc_sd_init_uhs_card(card);
1529 if (err)
1530 goto free_card;
1531 } else {
1532 /*
1533 * Attempt to change to high-speed (if supported)
1534 */
1535 err = mmc_sd_switch_hs(card);
1536 if (err > 0)
1537 mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1538 else if (err)
1539 goto free_card;
1540
1541 /*
1542 * Set bus speed.
1543 */
1544 mmc_set_clock(host, mmc_sd_get_max_clock(card));
1545
1546 if (host->ios.timing == MMC_TIMING_SD_HS &&
1547 host->ops->prepare_sd_hs_tuning) {
1548 err = host->ops->prepare_sd_hs_tuning(host, card);
1549 if (err)
1550 goto free_card;
1551 }
1552
1553 /*
1554 * Switch to wider bus (if supported).
1555 */
1556 if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1557 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1558 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1559 if (err)
1560 goto free_card;
1561
1562 mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1563 }
1564
1565 if (host->ios.timing == MMC_TIMING_SD_HS &&
1566 host->ops->execute_sd_hs_tuning) {
1567 err = host->ops->execute_sd_hs_tuning(host, card);
1568 if (err)
1569 goto free_card;
1570 }
1571 }
1572 cont:
1573 if (!oldcard) {
1574 /* Read/parse the extension registers. */
1575 err = sd_read_ext_regs(card);
1576 if (err)
1577 goto free_card;
1578 }
1579
1580 /* Enable internal SD cache if supported. */
1581 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1582 err = sd_enable_cache(card);
1583 if (err)
1584 goto free_card;
1585 }
1586
1587 if (!mmc_card_ult_capacity(card) && host->cqe_ops && !host->cqe_enabled) {
1588 err = host->cqe_ops->cqe_enable(host, card);
1589 if (!err) {
1590 host->cqe_enabled = true;
1591 host->hsq_enabled = true;
1592 pr_info("%s: Host Software Queue enabled\n",
1593 mmc_hostname(host));
1594 }
1595 }
1596
1597 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1598 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1599 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1600 mmc_hostname(host));
1601 err = -EINVAL;
1602 goto free_card;
1603 }
1604
1605 host->card = card;
1606 return 0;
1607
1608 free_card:
1609 if (!oldcard)
1610 mmc_remove_card(card);
1611
1612 return err;
1613 }
1614
1615 /*
1616 * Card detection - card is alive.
1617 */
mmc_sd_alive(struct mmc_host * host)1618 static int mmc_sd_alive(struct mmc_host *host)
1619 {
1620 return mmc_send_status(host->card, NULL);
1621 }
1622
1623 /*
1624 * Card detection callback from host.
1625 */
mmc_sd_detect(struct mmc_host * host)1626 static void mmc_sd_detect(struct mmc_host *host)
1627 {
1628 int err;
1629
1630 mmc_get_card(host->card, NULL);
1631
1632 /*
1633 * Just check if our card has been removed.
1634 */
1635 err = _mmc_detect_card_removed(host);
1636
1637 mmc_put_card(host->card, NULL);
1638
1639 if (err) {
1640 mmc_remove_card(host->card);
1641 host->card = NULL;
1642
1643 mmc_claim_host(host);
1644 mmc_detach_bus(host);
1645 mmc_power_off(host);
1646 mmc_release_host(host);
1647 }
1648 }
1649
sd_can_poweroff_notify(struct mmc_card * card)1650 static int sd_can_poweroff_notify(struct mmc_card *card)
1651 {
1652 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1653 }
1654
sd_busy_poweroff_notify_cb(void * cb_data,bool * busy)1655 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1656 {
1657 struct sd_busy_data *data = cb_data;
1658 struct mmc_card *card = data->card;
1659 int err;
1660
1661 /*
1662 * Read the status register for the power management function. It's at
1663 * one byte offset and is one byte long. The Power Off Notification
1664 * Ready is bit 0.
1665 */
1666 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1667 card->ext_power.offset + 1, 1, data->reg_buf);
1668 if (err) {
1669 pr_warn("%s: error %d reading status reg of PM func\n",
1670 mmc_hostname(card->host), err);
1671 return err;
1672 }
1673
1674 *busy = !(data->reg_buf[0] & BIT(0));
1675 return 0;
1676 }
1677
sd_poweroff_notify(struct mmc_card * card)1678 static int sd_poweroff_notify(struct mmc_card *card)
1679 {
1680 struct sd_busy_data cb_data;
1681 u8 *reg_buf;
1682 int err;
1683
1684 reg_buf = kzalloc(512, GFP_KERNEL);
1685 if (!reg_buf)
1686 return -ENOMEM;
1687
1688 /*
1689 * Set the Power Off Notification bit in the power management settings
1690 * register at 2 bytes offset.
1691 */
1692 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1693 card->ext_power.offset + 2, BIT(0));
1694 if (err) {
1695 pr_warn("%s: error %d writing Power Off Notify bit\n",
1696 mmc_hostname(card->host), err);
1697 goto out;
1698 }
1699
1700 /* Find out when the command is completed. */
1701 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1702 MMC_BUSY_EXTR_SINGLE);
1703 if (err)
1704 goto out;
1705
1706 cb_data.card = card;
1707 cb_data.reg_buf = reg_buf;
1708 err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1709 &sd_busy_poweroff_notify_cb, &cb_data);
1710
1711 out:
1712 kfree(reg_buf);
1713 return err;
1714 }
1715
_mmc_sd_suspend(struct mmc_host * host)1716 static int _mmc_sd_suspend(struct mmc_host *host)
1717 {
1718 struct mmc_card *card = host->card;
1719 int err = 0;
1720
1721 mmc_claim_host(host);
1722
1723 if (mmc_card_suspended(card))
1724 goto out;
1725
1726 if (sd_can_poweroff_notify(card))
1727 err = sd_poweroff_notify(card);
1728 else if (!mmc_host_is_spi(host))
1729 err = mmc_deselect_cards(host);
1730
1731 if (!err) {
1732 mmc_power_off(host);
1733 mmc_card_set_suspended(card);
1734 }
1735
1736 out:
1737 mmc_release_host(host);
1738 return err;
1739 }
1740
1741 /*
1742 * Host is being removed. Free up the current card and do a graceful power-off.
1743 */
mmc_sd_remove(struct mmc_host * host)1744 static void mmc_sd_remove(struct mmc_host *host)
1745 {
1746 get_device(&host->card->dev);
1747 mmc_remove_card(host->card);
1748
1749 _mmc_sd_suspend(host);
1750
1751 put_device(&host->card->dev);
1752 host->card = NULL;
1753 }
1754 /*
1755 * Callback for suspend
1756 */
mmc_sd_suspend(struct mmc_host * host)1757 static int mmc_sd_suspend(struct mmc_host *host)
1758 {
1759 int err;
1760
1761 err = _mmc_sd_suspend(host);
1762 if (!err) {
1763 pm_runtime_disable(&host->card->dev);
1764 pm_runtime_set_suspended(&host->card->dev);
1765 }
1766
1767 return err;
1768 }
1769
1770 /*
1771 * This function tries to determine if the same card is still present
1772 * and, if so, restore all state to it.
1773 */
_mmc_sd_resume(struct mmc_host * host)1774 static int _mmc_sd_resume(struct mmc_host *host)
1775 {
1776 int err = 0;
1777
1778 mmc_claim_host(host);
1779
1780 if (!mmc_card_suspended(host->card))
1781 goto out;
1782
1783 mmc_power_up(host, host->card->ocr);
1784 err = mmc_sd_init_card(host, host->card->ocr, host->card);
1785 mmc_card_clr_suspended(host->card);
1786
1787 out:
1788 mmc_release_host(host);
1789 return err;
1790 }
1791
1792 /*
1793 * Callback for resume
1794 */
mmc_sd_resume(struct mmc_host * host)1795 static int mmc_sd_resume(struct mmc_host *host)
1796 {
1797 pm_runtime_enable(&host->card->dev);
1798 return 0;
1799 }
1800
1801 /*
1802 * Callback for runtime_suspend.
1803 */
mmc_sd_runtime_suspend(struct mmc_host * host)1804 static int mmc_sd_runtime_suspend(struct mmc_host *host)
1805 {
1806 int err;
1807
1808 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1809 return 0;
1810
1811 err = _mmc_sd_suspend(host);
1812 if (err)
1813 pr_err("%s: error %d doing aggressive suspend\n",
1814 mmc_hostname(host), err);
1815
1816 return err;
1817 }
1818
1819 /*
1820 * Callback for runtime_resume.
1821 */
mmc_sd_runtime_resume(struct mmc_host * host)1822 static int mmc_sd_runtime_resume(struct mmc_host *host)
1823 {
1824 int err;
1825
1826 err = _mmc_sd_resume(host);
1827 if (err && err != -ENOMEDIUM)
1828 pr_err("%s: error %d doing runtime resume\n",
1829 mmc_hostname(host), err);
1830
1831 return 0;
1832 }
1833
mmc_sd_hw_reset(struct mmc_host * host)1834 static int mmc_sd_hw_reset(struct mmc_host *host)
1835 {
1836 mmc_power_cycle(host, host->card->ocr);
1837 return mmc_sd_init_card(host, host->card->ocr, host->card);
1838 }
1839
1840 static const struct mmc_bus_ops mmc_sd_ops = {
1841 .remove = mmc_sd_remove,
1842 .detect = mmc_sd_detect,
1843 .runtime_suspend = mmc_sd_runtime_suspend,
1844 .runtime_resume = mmc_sd_runtime_resume,
1845 .suspend = mmc_sd_suspend,
1846 .resume = mmc_sd_resume,
1847 .alive = mmc_sd_alive,
1848 .shutdown = mmc_sd_suspend,
1849 .hw_reset = mmc_sd_hw_reset,
1850 .cache_enabled = sd_cache_enabled,
1851 .flush_cache = sd_flush_cache,
1852 };
1853
1854 /*
1855 * Starting point for SD card init.
1856 */
mmc_attach_sd(struct mmc_host * host)1857 int mmc_attach_sd(struct mmc_host *host)
1858 {
1859 int err;
1860 u32 ocr, rocr;
1861
1862 WARN_ON(!host->claimed);
1863
1864 err = mmc_send_app_op_cond(host, 0, &ocr);
1865 if (err)
1866 return err;
1867
1868 mmc_attach_bus(host, &mmc_sd_ops);
1869 if (host->ocr_avail_sd)
1870 host->ocr_avail = host->ocr_avail_sd;
1871
1872 /*
1873 * We need to get OCR a different way for SPI.
1874 */
1875 if (mmc_host_is_spi(host)) {
1876 mmc_go_idle(host);
1877
1878 err = mmc_spi_read_ocr(host, 0, &ocr);
1879 if (err)
1880 goto err;
1881 }
1882
1883 /*
1884 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1885 * these bits as being in-valid and especially also bit7.
1886 */
1887 ocr &= ~0x7FFF;
1888
1889 rocr = mmc_select_voltage(host, ocr);
1890
1891 /*
1892 * Can we support the voltage(s) of the card(s)?
1893 */
1894 if (!rocr) {
1895 err = -EINVAL;
1896 goto err;
1897 }
1898
1899 /*
1900 * Detect and init the card.
1901 */
1902 err = mmc_sd_init_card(host, rocr, NULL);
1903 if (err)
1904 goto err;
1905
1906 mmc_release_host(host);
1907 err = mmc_add_card(host->card);
1908 if (err)
1909 goto remove_card;
1910
1911 mmc_claim_host(host);
1912 return 0;
1913
1914 remove_card:
1915 mmc_remove_card(host->card);
1916 host->card = NULL;
1917 mmc_claim_host(host);
1918 err:
1919 mmc_detach_bus(host);
1920
1921 pr_err("%s: error %d whilst initialising SD card\n",
1922 mmc_hostname(host), err);
1923
1924 return err;
1925 }
1926