1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_parser.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <linux/time_namespace.h>
98 #include <linux/resctrl.h>
99 #include <linux/cn_proc.h>
100 #include <linux/ksm.h>
101 #include <uapi/linux/lsm.h>
102 #include <trace/events/oom.h>
103 #include "internal.h"
104 #include "fd.h"
105
106 #include "../../lib/kstrtox.h"
107
108 /* NOTE:
109 * Implementing inode permission operations in /proc is almost
110 * certainly an error. Permission checks need to happen during
111 * each system call not at open time. The reason is that most of
112 * what we wish to check for permissions in /proc varies at runtime.
113 *
114 * The classic example of a problem is opening file descriptors
115 * in /proc for a task before it execs a suid executable.
116 */
117
118 static u8 nlink_tid __ro_after_init;
119 static u8 nlink_tgid __ro_after_init;
120
121 enum proc_mem_force {
122 PROC_MEM_FORCE_ALWAYS,
123 PROC_MEM_FORCE_PTRACE,
124 PROC_MEM_FORCE_NEVER
125 };
126
127 static enum proc_mem_force proc_mem_force_override __ro_after_init =
128 IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER :
129 IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE :
130 PROC_MEM_FORCE_ALWAYS;
131
132 static const struct constant_table proc_mem_force_table[] __initconst = {
133 { "always", PROC_MEM_FORCE_ALWAYS },
134 { "ptrace", PROC_MEM_FORCE_PTRACE },
135 { "never", PROC_MEM_FORCE_NEVER },
136 { }
137 };
138
early_proc_mem_force_override(char * buf)139 static int __init early_proc_mem_force_override(char *buf)
140 {
141 if (!buf)
142 return -EINVAL;
143
144 /*
145 * lookup_constant() defaults to proc_mem_force_override to preseve
146 * the initial Kconfig choice in case an invalid param gets passed.
147 */
148 proc_mem_force_override = lookup_constant(proc_mem_force_table,
149 buf, proc_mem_force_override);
150
151 return 0;
152 }
153 early_param("proc_mem.force_override", early_proc_mem_force_override);
154
155 struct pid_entry {
156 const char *name;
157 unsigned int len;
158 umode_t mode;
159 const struct inode_operations *iop;
160 const struct file_operations *fop;
161 union proc_op op;
162 };
163
164 #define NOD(NAME, MODE, IOP, FOP, OP) { \
165 .name = (NAME), \
166 .len = sizeof(NAME) - 1, \
167 .mode = MODE, \
168 .iop = IOP, \
169 .fop = FOP, \
170 .op = OP, \
171 }
172
173 #define DIR(NAME, MODE, iops, fops) \
174 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
175 #define LNK(NAME, get_link) \
176 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
177 &proc_pid_link_inode_operations, NULL, \
178 { .proc_get_link = get_link } )
179 #define REG(NAME, MODE, fops) \
180 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
181 #define ONE(NAME, MODE, show) \
182 NOD(NAME, (S_IFREG|(MODE)), \
183 NULL, &proc_single_file_operations, \
184 { .proc_show = show } )
185 #define ATTR(LSMID, NAME, MODE) \
186 NOD(NAME, (S_IFREG|(MODE)), \
187 NULL, &proc_pid_attr_operations, \
188 { .lsmid = LSMID })
189
190 /*
191 * Count the number of hardlinks for the pid_entry table, excluding the .
192 * and .. links.
193 */
pid_entry_nlink(const struct pid_entry * entries,unsigned int n)194 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
195 unsigned int n)
196 {
197 unsigned int i;
198 unsigned int count;
199
200 count = 2;
201 for (i = 0; i < n; ++i) {
202 if (S_ISDIR(entries[i].mode))
203 ++count;
204 }
205
206 return count;
207 }
208
get_task_root(struct task_struct * task,struct path * root)209 static int get_task_root(struct task_struct *task, struct path *root)
210 {
211 int result = -ENOENT;
212
213 task_lock(task);
214 if (task->fs) {
215 get_fs_root(task->fs, root);
216 result = 0;
217 }
218 task_unlock(task);
219 return result;
220 }
221
proc_cwd_link(struct dentry * dentry,struct path * path)222 static int proc_cwd_link(struct dentry *dentry, struct path *path)
223 {
224 struct task_struct *task = get_proc_task(d_inode(dentry));
225 int result = -ENOENT;
226
227 if (task) {
228 task_lock(task);
229 if (task->fs) {
230 get_fs_pwd(task->fs, path);
231 result = 0;
232 }
233 task_unlock(task);
234 put_task_struct(task);
235 }
236 return result;
237 }
238
proc_root_link(struct dentry * dentry,struct path * path)239 static int proc_root_link(struct dentry *dentry, struct path *path)
240 {
241 struct task_struct *task = get_proc_task(d_inode(dentry));
242 int result = -ENOENT;
243
244 if (task) {
245 result = get_task_root(task, path);
246 put_task_struct(task);
247 }
248 return result;
249 }
250
251 /*
252 * If the user used setproctitle(), we just get the string from
253 * user space at arg_start, and limit it to a maximum of one page.
254 */
get_mm_proctitle(struct mm_struct * mm,char __user * buf,size_t count,unsigned long pos,unsigned long arg_start)255 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
256 size_t count, unsigned long pos,
257 unsigned long arg_start)
258 {
259 char *page;
260 int ret, got;
261
262 if (pos >= PAGE_SIZE)
263 return 0;
264
265 page = (char *)__get_free_page(GFP_KERNEL);
266 if (!page)
267 return -ENOMEM;
268
269 ret = 0;
270 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
271 if (got > 0) {
272 int len = strnlen(page, got);
273
274 /* Include the NUL character if it was found */
275 if (len < got)
276 len++;
277
278 if (len > pos) {
279 len -= pos;
280 if (len > count)
281 len = count;
282 len -= copy_to_user(buf, page+pos, len);
283 if (!len)
284 len = -EFAULT;
285 ret = len;
286 }
287 }
288 free_page((unsigned long)page);
289 return ret;
290 }
291
get_mm_cmdline(struct mm_struct * mm,char __user * buf,size_t count,loff_t * ppos)292 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
293 size_t count, loff_t *ppos)
294 {
295 unsigned long arg_start, arg_end, env_start, env_end;
296 unsigned long pos, len;
297 char *page, c;
298
299 /* Check if process spawned far enough to have cmdline. */
300 if (!mm->env_end)
301 return 0;
302
303 spin_lock(&mm->arg_lock);
304 arg_start = mm->arg_start;
305 arg_end = mm->arg_end;
306 env_start = mm->env_start;
307 env_end = mm->env_end;
308 spin_unlock(&mm->arg_lock);
309
310 if (arg_start >= arg_end)
311 return 0;
312
313 /*
314 * We allow setproctitle() to overwrite the argument
315 * strings, and overflow past the original end. But
316 * only when it overflows into the environment area.
317 */
318 if (env_start != arg_end || env_end < env_start)
319 env_start = env_end = arg_end;
320 len = env_end - arg_start;
321
322 /* We're not going to care if "*ppos" has high bits set */
323 pos = *ppos;
324 if (pos >= len)
325 return 0;
326 if (count > len - pos)
327 count = len - pos;
328 if (!count)
329 return 0;
330
331 /*
332 * Magical special case: if the argv[] end byte is not
333 * zero, the user has overwritten it with setproctitle(3).
334 *
335 * Possible future enhancement: do this only once when
336 * pos is 0, and set a flag in the 'struct file'.
337 */
338 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
339 return get_mm_proctitle(mm, buf, count, pos, arg_start);
340
341 /*
342 * For the non-setproctitle() case we limit things strictly
343 * to the [arg_start, arg_end[ range.
344 */
345 pos += arg_start;
346 if (pos < arg_start || pos >= arg_end)
347 return 0;
348 if (count > arg_end - pos)
349 count = arg_end - pos;
350
351 page = (char *)__get_free_page(GFP_KERNEL);
352 if (!page)
353 return -ENOMEM;
354
355 len = 0;
356 while (count) {
357 int got;
358 size_t size = min_t(size_t, PAGE_SIZE, count);
359
360 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
361 if (got <= 0)
362 break;
363 got -= copy_to_user(buf, page, got);
364 if (unlikely(!got)) {
365 if (!len)
366 len = -EFAULT;
367 break;
368 }
369 pos += got;
370 buf += got;
371 len += got;
372 count -= got;
373 }
374
375 free_page((unsigned long)page);
376 return len;
377 }
378
get_task_cmdline(struct task_struct * tsk,char __user * buf,size_t count,loff_t * pos)379 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
380 size_t count, loff_t *pos)
381 {
382 struct mm_struct *mm;
383 ssize_t ret;
384
385 mm = get_task_mm(tsk);
386 if (!mm)
387 return 0;
388
389 ret = get_mm_cmdline(mm, buf, count, pos);
390 mmput(mm);
391 return ret;
392 }
393
proc_pid_cmdline_read(struct file * file,char __user * buf,size_t count,loff_t * pos)394 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
395 size_t count, loff_t *pos)
396 {
397 struct task_struct *tsk;
398 ssize_t ret;
399
400 BUG_ON(*pos < 0);
401
402 tsk = get_proc_task(file_inode(file));
403 if (!tsk)
404 return -ESRCH;
405 ret = get_task_cmdline(tsk, buf, count, pos);
406 put_task_struct(tsk);
407 if (ret > 0)
408 *pos += ret;
409 return ret;
410 }
411
412 static const struct file_operations proc_pid_cmdline_ops = {
413 .read = proc_pid_cmdline_read,
414 .llseek = generic_file_llseek,
415 };
416
417 #ifdef CONFIG_KALLSYMS
418 /*
419 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
420 * Returns the resolved symbol. If that fails, simply return the address.
421 */
proc_pid_wchan(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)422 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
423 struct pid *pid, struct task_struct *task)
424 {
425 unsigned long wchan;
426 char symname[KSYM_NAME_LEN];
427
428 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
429 goto print0;
430
431 wchan = get_wchan(task);
432 if (wchan && !lookup_symbol_name(wchan, symname)) {
433 seq_puts(m, symname);
434 return 0;
435 }
436
437 print0:
438 seq_putc(m, '0');
439 return 0;
440 }
441 #endif /* CONFIG_KALLSYMS */
442
lock_trace(struct task_struct * task)443 static int lock_trace(struct task_struct *task)
444 {
445 int err = down_read_killable(&task->signal->exec_update_lock);
446 if (err)
447 return err;
448 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
449 up_read(&task->signal->exec_update_lock);
450 return -EPERM;
451 }
452 return 0;
453 }
454
unlock_trace(struct task_struct * task)455 static void unlock_trace(struct task_struct *task)
456 {
457 up_read(&task->signal->exec_update_lock);
458 }
459
460 #ifdef CONFIG_STACKTRACE
461
462 #define MAX_STACK_TRACE_DEPTH 64
463
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)464 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
465 struct pid *pid, struct task_struct *task)
466 {
467 unsigned long *entries;
468 int err;
469
470 /*
471 * The ability to racily run the kernel stack unwinder on a running task
472 * and then observe the unwinder output is scary; while it is useful for
473 * debugging kernel issues, it can also allow an attacker to leak kernel
474 * stack contents.
475 * Doing this in a manner that is at least safe from races would require
476 * some work to ensure that the remote task can not be scheduled; and
477 * even then, this would still expose the unwinder as local attack
478 * surface.
479 * Therefore, this interface is restricted to root.
480 */
481 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
482 return -EACCES;
483
484 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
485 GFP_KERNEL);
486 if (!entries)
487 return -ENOMEM;
488
489 err = lock_trace(task);
490 if (!err) {
491 unsigned int i, nr_entries;
492
493 nr_entries = stack_trace_save_tsk(task, entries,
494 MAX_STACK_TRACE_DEPTH, 0);
495
496 for (i = 0; i < nr_entries; i++) {
497 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
498 }
499
500 unlock_trace(task);
501 }
502 kfree(entries);
503
504 return err;
505 }
506 #endif
507
508 #ifdef CONFIG_SCHED_INFO
509 /*
510 * Provides /proc/PID/schedstat
511 */
proc_pid_schedstat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)512 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
513 struct pid *pid, struct task_struct *task)
514 {
515 if (unlikely(!sched_info_on()))
516 seq_puts(m, "0 0 0\n");
517 else
518 seq_printf(m, "%llu %llu %lu\n",
519 (unsigned long long)task->se.sum_exec_runtime,
520 (unsigned long long)task->sched_info.run_delay,
521 task->sched_info.pcount);
522
523 return 0;
524 }
525 #endif
526
527 #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)528 static int lstats_show_proc(struct seq_file *m, void *v)
529 {
530 int i;
531 struct inode *inode = m->private;
532 struct task_struct *task = get_proc_task(inode);
533
534 if (!task)
535 return -ESRCH;
536 seq_puts(m, "Latency Top version : v0.1\n");
537 for (i = 0; i < LT_SAVECOUNT; i++) {
538 struct latency_record *lr = &task->latency_record[i];
539 if (lr->backtrace[0]) {
540 int q;
541 seq_printf(m, "%i %li %li",
542 lr->count, lr->time, lr->max);
543 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
544 unsigned long bt = lr->backtrace[q];
545
546 if (!bt)
547 break;
548 seq_printf(m, " %ps", (void *)bt);
549 }
550 seq_putc(m, '\n');
551 }
552
553 }
554 put_task_struct(task);
555 return 0;
556 }
557
lstats_open(struct inode * inode,struct file * file)558 static int lstats_open(struct inode *inode, struct file *file)
559 {
560 return single_open(file, lstats_show_proc, inode);
561 }
562
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)563 static ssize_t lstats_write(struct file *file, const char __user *buf,
564 size_t count, loff_t *offs)
565 {
566 struct task_struct *task = get_proc_task(file_inode(file));
567
568 if (!task)
569 return -ESRCH;
570 clear_tsk_latency_tracing(task);
571 put_task_struct(task);
572
573 return count;
574 }
575
576 static const struct file_operations proc_lstats_operations = {
577 .open = lstats_open,
578 .read = seq_read,
579 .write = lstats_write,
580 .llseek = seq_lseek,
581 .release = single_release,
582 };
583
584 #endif
585
proc_oom_score(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)586 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
587 struct pid *pid, struct task_struct *task)
588 {
589 unsigned long totalpages = totalram_pages() + total_swap_pages;
590 unsigned long points = 0;
591 long badness;
592
593 badness = oom_badness(task, totalpages);
594 /*
595 * Special case OOM_SCORE_ADJ_MIN for all others scale the
596 * badness value into [0, 2000] range which we have been
597 * exporting for a long time so userspace might depend on it.
598 */
599 if (badness != LONG_MIN)
600 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
601
602 seq_printf(m, "%lu\n", points);
603
604 return 0;
605 }
606
607 struct limit_names {
608 const char *name;
609 const char *unit;
610 };
611
612 static const struct limit_names lnames[RLIM_NLIMITS] = {
613 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
614 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
615 [RLIMIT_DATA] = {"Max data size", "bytes"},
616 [RLIMIT_STACK] = {"Max stack size", "bytes"},
617 [RLIMIT_CORE] = {"Max core file size", "bytes"},
618 [RLIMIT_RSS] = {"Max resident set", "bytes"},
619 [RLIMIT_NPROC] = {"Max processes", "processes"},
620 [RLIMIT_NOFILE] = {"Max open files", "files"},
621 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
622 [RLIMIT_AS] = {"Max address space", "bytes"},
623 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
624 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
625 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
626 [RLIMIT_NICE] = {"Max nice priority", NULL},
627 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
628 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
629 };
630
631 /* Display limits for a process */
proc_pid_limits(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)632 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
633 struct pid *pid, struct task_struct *task)
634 {
635 unsigned int i;
636 unsigned long flags;
637
638 struct rlimit rlim[RLIM_NLIMITS];
639
640 if (!lock_task_sighand(task, &flags))
641 return 0;
642 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
643 unlock_task_sighand(task, &flags);
644
645 /*
646 * print the file header
647 */
648 seq_puts(m, "Limit "
649 "Soft Limit "
650 "Hard Limit "
651 "Units \n");
652
653 for (i = 0; i < RLIM_NLIMITS; i++) {
654 if (rlim[i].rlim_cur == RLIM_INFINITY)
655 seq_printf(m, "%-25s %-20s ",
656 lnames[i].name, "unlimited");
657 else
658 seq_printf(m, "%-25s %-20lu ",
659 lnames[i].name, rlim[i].rlim_cur);
660
661 if (rlim[i].rlim_max == RLIM_INFINITY)
662 seq_printf(m, "%-20s ", "unlimited");
663 else
664 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
665
666 if (lnames[i].unit)
667 seq_printf(m, "%-10s\n", lnames[i].unit);
668 else
669 seq_putc(m, '\n');
670 }
671
672 return 0;
673 }
674
675 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)676 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
677 struct pid *pid, struct task_struct *task)
678 {
679 struct syscall_info info;
680 u64 *args = &info.data.args[0];
681 int res;
682
683 res = lock_trace(task);
684 if (res)
685 return res;
686
687 if (task_current_syscall(task, &info))
688 seq_puts(m, "running\n");
689 else if (info.data.nr < 0)
690 seq_printf(m, "%d 0x%llx 0x%llx\n",
691 info.data.nr, info.sp, info.data.instruction_pointer);
692 else
693 seq_printf(m,
694 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
695 info.data.nr,
696 args[0], args[1], args[2], args[3], args[4], args[5],
697 info.sp, info.data.instruction_pointer);
698 unlock_trace(task);
699
700 return 0;
701 }
702 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
703
704 /************************************************************************/
705 /* Here the fs part begins */
706 /************************************************************************/
707
708 /* permission checks */
proc_fd_access_allowed(struct inode * inode)709 static bool proc_fd_access_allowed(struct inode *inode)
710 {
711 struct task_struct *task;
712 bool allowed = false;
713 /* Allow access to a task's file descriptors if it is us or we
714 * may use ptrace attach to the process and find out that
715 * information.
716 */
717 task = get_proc_task(inode);
718 if (task) {
719 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
720 put_task_struct(task);
721 }
722 return allowed;
723 }
724
proc_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)725 int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
726 struct iattr *attr)
727 {
728 int error;
729 struct inode *inode = d_inode(dentry);
730
731 if (attr->ia_valid & ATTR_MODE)
732 return -EPERM;
733
734 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
735 if (error)
736 return error;
737
738 setattr_copy(&nop_mnt_idmap, inode, attr);
739 return 0;
740 }
741
742 /*
743 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
744 * or euid/egid (for hide_pid_min=2)?
745 */
has_pid_permissions(struct proc_fs_info * fs_info,struct task_struct * task,enum proc_hidepid hide_pid_min)746 static bool has_pid_permissions(struct proc_fs_info *fs_info,
747 struct task_struct *task,
748 enum proc_hidepid hide_pid_min)
749 {
750 /*
751 * If 'hidpid' mount option is set force a ptrace check,
752 * we indicate that we are using a filesystem syscall
753 * by passing PTRACE_MODE_READ_FSCREDS
754 */
755 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
756 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
757
758 if (fs_info->hide_pid < hide_pid_min)
759 return true;
760 if (in_group_p(fs_info->pid_gid))
761 return true;
762 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
763 }
764
765
proc_pid_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)766 static int proc_pid_permission(struct mnt_idmap *idmap,
767 struct inode *inode, int mask)
768 {
769 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
770 struct task_struct *task;
771 bool has_perms;
772
773 task = get_proc_task(inode);
774 if (!task)
775 return -ESRCH;
776 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
777 put_task_struct(task);
778
779 if (!has_perms) {
780 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
781 /*
782 * Let's make getdents(), stat(), and open()
783 * consistent with each other. If a process
784 * may not stat() a file, it shouldn't be seen
785 * in procfs at all.
786 */
787 return -ENOENT;
788 }
789
790 return -EPERM;
791 }
792 return generic_permission(&nop_mnt_idmap, inode, mask);
793 }
794
795
796
797 static const struct inode_operations proc_def_inode_operations = {
798 .setattr = proc_setattr,
799 };
800
proc_single_show(struct seq_file * m,void * v)801 static int proc_single_show(struct seq_file *m, void *v)
802 {
803 struct inode *inode = m->private;
804 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
805 struct pid *pid = proc_pid(inode);
806 struct task_struct *task;
807 int ret;
808
809 task = get_pid_task(pid, PIDTYPE_PID);
810 if (!task)
811 return -ESRCH;
812
813 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
814
815 put_task_struct(task);
816 return ret;
817 }
818
proc_single_open(struct inode * inode,struct file * filp)819 static int proc_single_open(struct inode *inode, struct file *filp)
820 {
821 return single_open(filp, proc_single_show, inode);
822 }
823
824 static const struct file_operations proc_single_file_operations = {
825 .open = proc_single_open,
826 .read = seq_read,
827 .llseek = seq_lseek,
828 .release = single_release,
829 };
830
831
proc_mem_open(struct inode * inode,unsigned int mode)832 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
833 {
834 struct task_struct *task = get_proc_task(inode);
835 struct mm_struct *mm = ERR_PTR(-ESRCH);
836
837 if (task) {
838 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
839 put_task_struct(task);
840
841 if (!IS_ERR_OR_NULL(mm)) {
842 /* ensure this mm_struct can't be freed */
843 mmgrab(mm);
844 /* but do not pin its memory */
845 mmput(mm);
846 }
847 }
848
849 return mm;
850 }
851
__mem_open(struct inode * inode,struct file * file,unsigned int mode)852 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
853 {
854 struct mm_struct *mm = proc_mem_open(inode, mode);
855
856 if (IS_ERR(mm))
857 return PTR_ERR(mm);
858
859 file->private_data = mm;
860 return 0;
861 }
862
mem_open(struct inode * inode,struct file * file)863 static int mem_open(struct inode *inode, struct file *file)
864 {
865 if (WARN_ON_ONCE(!(file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)))
866 return -EINVAL;
867 return __mem_open(inode, file, PTRACE_MODE_ATTACH);
868 }
869
proc_mem_foll_force(struct file * file,struct mm_struct * mm)870 static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm)
871 {
872 struct task_struct *task;
873 bool ptrace_active = false;
874
875 switch (proc_mem_force_override) {
876 case PROC_MEM_FORCE_NEVER:
877 return false;
878 case PROC_MEM_FORCE_PTRACE:
879 task = get_proc_task(file_inode(file));
880 if (task) {
881 ptrace_active = READ_ONCE(task->ptrace) &&
882 READ_ONCE(task->mm) == mm &&
883 READ_ONCE(task->parent) == current;
884 put_task_struct(task);
885 }
886 return ptrace_active;
887 default:
888 return true;
889 }
890 }
891
mem_rw(struct file * file,char __user * buf,size_t count,loff_t * ppos,int write)892 static ssize_t mem_rw(struct file *file, char __user *buf,
893 size_t count, loff_t *ppos, int write)
894 {
895 struct mm_struct *mm = file->private_data;
896 unsigned long addr = *ppos;
897 ssize_t copied;
898 char *page;
899 unsigned int flags;
900
901 if (!mm)
902 return 0;
903
904 page = (char *)__get_free_page(GFP_KERNEL);
905 if (!page)
906 return -ENOMEM;
907
908 copied = 0;
909 if (!mmget_not_zero(mm))
910 goto free;
911
912 flags = write ? FOLL_WRITE : 0;
913 if (proc_mem_foll_force(file, mm))
914 flags |= FOLL_FORCE;
915
916 while (count > 0) {
917 size_t this_len = min_t(size_t, count, PAGE_SIZE);
918
919 if (write && copy_from_user(page, buf, this_len)) {
920 copied = -EFAULT;
921 break;
922 }
923
924 this_len = access_remote_vm(mm, addr, page, this_len, flags);
925 if (!this_len) {
926 if (!copied)
927 copied = -EIO;
928 break;
929 }
930
931 if (!write && copy_to_user(buf, page, this_len)) {
932 copied = -EFAULT;
933 break;
934 }
935
936 buf += this_len;
937 addr += this_len;
938 copied += this_len;
939 count -= this_len;
940 }
941 *ppos = addr;
942
943 mmput(mm);
944 free:
945 free_page((unsigned long) page);
946 return copied;
947 }
948
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)949 static ssize_t mem_read(struct file *file, char __user *buf,
950 size_t count, loff_t *ppos)
951 {
952 return mem_rw(file, buf, count, ppos, 0);
953 }
954
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)955 static ssize_t mem_write(struct file *file, const char __user *buf,
956 size_t count, loff_t *ppos)
957 {
958 return mem_rw(file, (char __user*)buf, count, ppos, 1);
959 }
960
mem_lseek(struct file * file,loff_t offset,int orig)961 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
962 {
963 switch (orig) {
964 case 0:
965 file->f_pos = offset;
966 break;
967 case 1:
968 file->f_pos += offset;
969 break;
970 default:
971 return -EINVAL;
972 }
973 force_successful_syscall_return();
974 return file->f_pos;
975 }
976
mem_release(struct inode * inode,struct file * file)977 static int mem_release(struct inode *inode, struct file *file)
978 {
979 struct mm_struct *mm = file->private_data;
980 if (mm)
981 mmdrop(mm);
982 return 0;
983 }
984
985 static const struct file_operations proc_mem_operations = {
986 .llseek = mem_lseek,
987 .read = mem_read,
988 .write = mem_write,
989 .open = mem_open,
990 .release = mem_release,
991 .fop_flags = FOP_UNSIGNED_OFFSET,
992 };
993
environ_open(struct inode * inode,struct file * file)994 static int environ_open(struct inode *inode, struct file *file)
995 {
996 return __mem_open(inode, file, PTRACE_MODE_READ);
997 }
998
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)999 static ssize_t environ_read(struct file *file, char __user *buf,
1000 size_t count, loff_t *ppos)
1001 {
1002 char *page;
1003 unsigned long src = *ppos;
1004 int ret = 0;
1005 struct mm_struct *mm = file->private_data;
1006 unsigned long env_start, env_end;
1007
1008 /* Ensure the process spawned far enough to have an environment. */
1009 if (!mm || !mm->env_end)
1010 return 0;
1011
1012 page = (char *)__get_free_page(GFP_KERNEL);
1013 if (!page)
1014 return -ENOMEM;
1015
1016 ret = 0;
1017 if (!mmget_not_zero(mm))
1018 goto free;
1019
1020 spin_lock(&mm->arg_lock);
1021 env_start = mm->env_start;
1022 env_end = mm->env_end;
1023 spin_unlock(&mm->arg_lock);
1024
1025 while (count > 0) {
1026 size_t this_len, max_len;
1027 int retval;
1028
1029 if (src >= (env_end - env_start))
1030 break;
1031
1032 this_len = env_end - (env_start + src);
1033
1034 max_len = min_t(size_t, PAGE_SIZE, count);
1035 this_len = min(max_len, this_len);
1036
1037 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
1038
1039 if (retval <= 0) {
1040 ret = retval;
1041 break;
1042 }
1043
1044 if (copy_to_user(buf, page, retval)) {
1045 ret = -EFAULT;
1046 break;
1047 }
1048
1049 ret += retval;
1050 src += retval;
1051 buf += retval;
1052 count -= retval;
1053 }
1054 *ppos = src;
1055 mmput(mm);
1056
1057 free:
1058 free_page((unsigned long) page);
1059 return ret;
1060 }
1061
1062 static const struct file_operations proc_environ_operations = {
1063 .open = environ_open,
1064 .read = environ_read,
1065 .llseek = generic_file_llseek,
1066 .release = mem_release,
1067 };
1068
auxv_open(struct inode * inode,struct file * file)1069 static int auxv_open(struct inode *inode, struct file *file)
1070 {
1071 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1072 }
1073
auxv_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1074 static ssize_t auxv_read(struct file *file, char __user *buf,
1075 size_t count, loff_t *ppos)
1076 {
1077 struct mm_struct *mm = file->private_data;
1078 unsigned int nwords = 0;
1079
1080 if (!mm)
1081 return 0;
1082 do {
1083 nwords += 2;
1084 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1085 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1086 nwords * sizeof(mm->saved_auxv[0]));
1087 }
1088
1089 static const struct file_operations proc_auxv_operations = {
1090 .open = auxv_open,
1091 .read = auxv_read,
1092 .llseek = generic_file_llseek,
1093 .release = mem_release,
1094 };
1095
oom_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1096 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1097 loff_t *ppos)
1098 {
1099 struct task_struct *task = get_proc_task(file_inode(file));
1100 char buffer[PROC_NUMBUF];
1101 int oom_adj = OOM_ADJUST_MIN;
1102 size_t len;
1103
1104 if (!task)
1105 return -ESRCH;
1106 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1107 oom_adj = OOM_ADJUST_MAX;
1108 else
1109 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1110 OOM_SCORE_ADJ_MAX;
1111 put_task_struct(task);
1112 if (oom_adj > OOM_ADJUST_MAX)
1113 oom_adj = OOM_ADJUST_MAX;
1114 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1115 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1116 }
1117
__set_oom_adj(struct file * file,int oom_adj,bool legacy)1118 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1119 {
1120 struct mm_struct *mm = NULL;
1121 struct task_struct *task;
1122 int err = 0;
1123
1124 task = get_proc_task(file_inode(file));
1125 if (!task)
1126 return -ESRCH;
1127
1128 mutex_lock(&oom_adj_mutex);
1129 if (legacy) {
1130 if (oom_adj < task->signal->oom_score_adj &&
1131 !capable(CAP_SYS_RESOURCE)) {
1132 err = -EACCES;
1133 goto err_unlock;
1134 }
1135 /*
1136 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1137 * /proc/pid/oom_score_adj instead.
1138 */
1139 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1140 current->comm, task_pid_nr(current), task_pid_nr(task),
1141 task_pid_nr(task));
1142 } else {
1143 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1144 !capable(CAP_SYS_RESOURCE)) {
1145 err = -EACCES;
1146 goto err_unlock;
1147 }
1148 }
1149
1150 /*
1151 * Make sure we will check other processes sharing the mm if this is
1152 * not vfrok which wants its own oom_score_adj.
1153 * pin the mm so it doesn't go away and get reused after task_unlock
1154 */
1155 if (!task->vfork_done) {
1156 struct task_struct *p = find_lock_task_mm(task);
1157
1158 if (p) {
1159 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1160 mm = p->mm;
1161 mmgrab(mm);
1162 }
1163 task_unlock(p);
1164 }
1165 }
1166
1167 task->signal->oom_score_adj = oom_adj;
1168 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1169 task->signal->oom_score_adj_min = (short)oom_adj;
1170 trace_oom_score_adj_update(task);
1171
1172 if (mm) {
1173 struct task_struct *p;
1174
1175 rcu_read_lock();
1176 for_each_process(p) {
1177 if (same_thread_group(task, p))
1178 continue;
1179
1180 /* do not touch kernel threads or the global init */
1181 if (p->flags & PF_KTHREAD || is_global_init(p))
1182 continue;
1183
1184 task_lock(p);
1185 if (!p->vfork_done && process_shares_mm(p, mm)) {
1186 p->signal->oom_score_adj = oom_adj;
1187 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1188 p->signal->oom_score_adj_min = (short)oom_adj;
1189 }
1190 task_unlock(p);
1191 }
1192 rcu_read_unlock();
1193 mmdrop(mm);
1194 }
1195 err_unlock:
1196 mutex_unlock(&oom_adj_mutex);
1197 put_task_struct(task);
1198 return err;
1199 }
1200
1201 /*
1202 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1203 * kernels. The effective policy is defined by oom_score_adj, which has a
1204 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1205 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1206 * Processes that become oom disabled via oom_adj will still be oom disabled
1207 * with this implementation.
1208 *
1209 * oom_adj cannot be removed since existing userspace binaries use it.
1210 */
oom_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1211 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1212 size_t count, loff_t *ppos)
1213 {
1214 char buffer[PROC_NUMBUF] = {};
1215 int oom_adj;
1216 int err;
1217
1218 if (count > sizeof(buffer) - 1)
1219 count = sizeof(buffer) - 1;
1220 if (copy_from_user(buffer, buf, count)) {
1221 err = -EFAULT;
1222 goto out;
1223 }
1224
1225 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1226 if (err)
1227 goto out;
1228 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1229 oom_adj != OOM_DISABLE) {
1230 err = -EINVAL;
1231 goto out;
1232 }
1233
1234 /*
1235 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1236 * value is always attainable.
1237 */
1238 if (oom_adj == OOM_ADJUST_MAX)
1239 oom_adj = OOM_SCORE_ADJ_MAX;
1240 else
1241 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1242
1243 err = __set_oom_adj(file, oom_adj, true);
1244 out:
1245 return err < 0 ? err : count;
1246 }
1247
1248 static const struct file_operations proc_oom_adj_operations = {
1249 .read = oom_adj_read,
1250 .write = oom_adj_write,
1251 .llseek = generic_file_llseek,
1252 };
1253
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1254 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1255 size_t count, loff_t *ppos)
1256 {
1257 struct task_struct *task = get_proc_task(file_inode(file));
1258 char buffer[PROC_NUMBUF];
1259 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1260 size_t len;
1261
1262 if (!task)
1263 return -ESRCH;
1264 oom_score_adj = task->signal->oom_score_adj;
1265 put_task_struct(task);
1266 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1267 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1268 }
1269
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1270 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1271 size_t count, loff_t *ppos)
1272 {
1273 char buffer[PROC_NUMBUF] = {};
1274 int oom_score_adj;
1275 int err;
1276
1277 if (count > sizeof(buffer) - 1)
1278 count = sizeof(buffer) - 1;
1279 if (copy_from_user(buffer, buf, count)) {
1280 err = -EFAULT;
1281 goto out;
1282 }
1283
1284 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1285 if (err)
1286 goto out;
1287 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1288 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1289 err = -EINVAL;
1290 goto out;
1291 }
1292
1293 err = __set_oom_adj(file, oom_score_adj, false);
1294 out:
1295 return err < 0 ? err : count;
1296 }
1297
1298 static const struct file_operations proc_oom_score_adj_operations = {
1299 .read = oom_score_adj_read,
1300 .write = oom_score_adj_write,
1301 .llseek = default_llseek,
1302 };
1303
1304 #ifdef CONFIG_AUDIT
1305 #define TMPBUFLEN 11
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1306 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1307 size_t count, loff_t *ppos)
1308 {
1309 struct inode * inode = file_inode(file);
1310 struct task_struct *task = get_proc_task(inode);
1311 ssize_t length;
1312 char tmpbuf[TMPBUFLEN];
1313
1314 if (!task)
1315 return -ESRCH;
1316 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1317 from_kuid(file->f_cred->user_ns,
1318 audit_get_loginuid(task)));
1319 put_task_struct(task);
1320 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1321 }
1322
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1323 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1324 size_t count, loff_t *ppos)
1325 {
1326 struct inode * inode = file_inode(file);
1327 uid_t loginuid;
1328 kuid_t kloginuid;
1329 int rv;
1330
1331 /* Don't let kthreads write their own loginuid */
1332 if (current->flags & PF_KTHREAD)
1333 return -EPERM;
1334
1335 rcu_read_lock();
1336 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1337 rcu_read_unlock();
1338 return -EPERM;
1339 }
1340 rcu_read_unlock();
1341
1342 if (*ppos != 0) {
1343 /* No partial writes. */
1344 return -EINVAL;
1345 }
1346
1347 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1348 if (rv < 0)
1349 return rv;
1350
1351 /* is userspace tring to explicitly UNSET the loginuid? */
1352 if (loginuid == AUDIT_UID_UNSET) {
1353 kloginuid = INVALID_UID;
1354 } else {
1355 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1356 if (!uid_valid(kloginuid))
1357 return -EINVAL;
1358 }
1359
1360 rv = audit_set_loginuid(kloginuid);
1361 if (rv < 0)
1362 return rv;
1363 return count;
1364 }
1365
1366 static const struct file_operations proc_loginuid_operations = {
1367 .read = proc_loginuid_read,
1368 .write = proc_loginuid_write,
1369 .llseek = generic_file_llseek,
1370 };
1371
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1372 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1373 size_t count, loff_t *ppos)
1374 {
1375 struct inode * inode = file_inode(file);
1376 struct task_struct *task = get_proc_task(inode);
1377 ssize_t length;
1378 char tmpbuf[TMPBUFLEN];
1379
1380 if (!task)
1381 return -ESRCH;
1382 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1383 audit_get_sessionid(task));
1384 put_task_struct(task);
1385 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1386 }
1387
1388 static const struct file_operations proc_sessionid_operations = {
1389 .read = proc_sessionid_read,
1390 .llseek = generic_file_llseek,
1391 };
1392 #endif
1393
1394 #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1395 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1396 size_t count, loff_t *ppos)
1397 {
1398 struct task_struct *task = get_proc_task(file_inode(file));
1399 char buffer[PROC_NUMBUF];
1400 size_t len;
1401 int make_it_fail;
1402
1403 if (!task)
1404 return -ESRCH;
1405 make_it_fail = task->make_it_fail;
1406 put_task_struct(task);
1407
1408 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1409
1410 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1411 }
1412
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1413 static ssize_t proc_fault_inject_write(struct file * file,
1414 const char __user * buf, size_t count, loff_t *ppos)
1415 {
1416 struct task_struct *task;
1417 char buffer[PROC_NUMBUF] = {};
1418 int make_it_fail;
1419 int rv;
1420
1421 if (!capable(CAP_SYS_RESOURCE))
1422 return -EPERM;
1423
1424 if (count > sizeof(buffer) - 1)
1425 count = sizeof(buffer) - 1;
1426 if (copy_from_user(buffer, buf, count))
1427 return -EFAULT;
1428 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1429 if (rv < 0)
1430 return rv;
1431 if (make_it_fail < 0 || make_it_fail > 1)
1432 return -EINVAL;
1433
1434 task = get_proc_task(file_inode(file));
1435 if (!task)
1436 return -ESRCH;
1437 task->make_it_fail = make_it_fail;
1438 put_task_struct(task);
1439
1440 return count;
1441 }
1442
1443 static const struct file_operations proc_fault_inject_operations = {
1444 .read = proc_fault_inject_read,
1445 .write = proc_fault_inject_write,
1446 .llseek = generic_file_llseek,
1447 };
1448
proc_fail_nth_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1449 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1450 size_t count, loff_t *ppos)
1451 {
1452 struct task_struct *task;
1453 int err;
1454 unsigned int n;
1455
1456 err = kstrtouint_from_user(buf, count, 0, &n);
1457 if (err)
1458 return err;
1459
1460 task = get_proc_task(file_inode(file));
1461 if (!task)
1462 return -ESRCH;
1463 task->fail_nth = n;
1464 put_task_struct(task);
1465
1466 return count;
1467 }
1468
proc_fail_nth_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1469 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1470 size_t count, loff_t *ppos)
1471 {
1472 struct task_struct *task;
1473 char numbuf[PROC_NUMBUF];
1474 ssize_t len;
1475
1476 task = get_proc_task(file_inode(file));
1477 if (!task)
1478 return -ESRCH;
1479 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1480 put_task_struct(task);
1481 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1482 }
1483
1484 static const struct file_operations proc_fail_nth_operations = {
1485 .read = proc_fail_nth_read,
1486 .write = proc_fail_nth_write,
1487 };
1488 #endif
1489
1490
1491 #ifdef CONFIG_SCHED_DEBUG
1492 /*
1493 * Print out various scheduling related per-task fields:
1494 */
sched_show(struct seq_file * m,void * v)1495 static int sched_show(struct seq_file *m, void *v)
1496 {
1497 struct inode *inode = m->private;
1498 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1499 struct task_struct *p;
1500
1501 p = get_proc_task(inode);
1502 if (!p)
1503 return -ESRCH;
1504 proc_sched_show_task(p, ns, m);
1505
1506 put_task_struct(p);
1507
1508 return 0;
1509 }
1510
1511 static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1512 sched_write(struct file *file, const char __user *buf,
1513 size_t count, loff_t *offset)
1514 {
1515 struct inode *inode = file_inode(file);
1516 struct task_struct *p;
1517
1518 p = get_proc_task(inode);
1519 if (!p)
1520 return -ESRCH;
1521 proc_sched_set_task(p);
1522
1523 put_task_struct(p);
1524
1525 return count;
1526 }
1527
sched_open(struct inode * inode,struct file * filp)1528 static int sched_open(struct inode *inode, struct file *filp)
1529 {
1530 return single_open(filp, sched_show, inode);
1531 }
1532
1533 static const struct file_operations proc_pid_sched_operations = {
1534 .open = sched_open,
1535 .read = seq_read,
1536 .write = sched_write,
1537 .llseek = seq_lseek,
1538 .release = single_release,
1539 };
1540
1541 #endif
1542
1543 #ifdef CONFIG_SCHED_AUTOGROUP
1544 /*
1545 * Print out autogroup related information:
1546 */
sched_autogroup_show(struct seq_file * m,void * v)1547 static int sched_autogroup_show(struct seq_file *m, void *v)
1548 {
1549 struct inode *inode = m->private;
1550 struct task_struct *p;
1551
1552 p = get_proc_task(inode);
1553 if (!p)
1554 return -ESRCH;
1555 proc_sched_autogroup_show_task(p, m);
1556
1557 put_task_struct(p);
1558
1559 return 0;
1560 }
1561
1562 static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1563 sched_autogroup_write(struct file *file, const char __user *buf,
1564 size_t count, loff_t *offset)
1565 {
1566 struct inode *inode = file_inode(file);
1567 struct task_struct *p;
1568 char buffer[PROC_NUMBUF] = {};
1569 int nice;
1570 int err;
1571
1572 if (count > sizeof(buffer) - 1)
1573 count = sizeof(buffer) - 1;
1574 if (copy_from_user(buffer, buf, count))
1575 return -EFAULT;
1576
1577 err = kstrtoint(strstrip(buffer), 0, &nice);
1578 if (err < 0)
1579 return err;
1580
1581 p = get_proc_task(inode);
1582 if (!p)
1583 return -ESRCH;
1584
1585 err = proc_sched_autogroup_set_nice(p, nice);
1586 if (err)
1587 count = err;
1588
1589 put_task_struct(p);
1590
1591 return count;
1592 }
1593
sched_autogroup_open(struct inode * inode,struct file * filp)1594 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1595 {
1596 int ret;
1597
1598 ret = single_open(filp, sched_autogroup_show, NULL);
1599 if (!ret) {
1600 struct seq_file *m = filp->private_data;
1601
1602 m->private = inode;
1603 }
1604 return ret;
1605 }
1606
1607 static const struct file_operations proc_pid_sched_autogroup_operations = {
1608 .open = sched_autogroup_open,
1609 .read = seq_read,
1610 .write = sched_autogroup_write,
1611 .llseek = seq_lseek,
1612 .release = single_release,
1613 };
1614
1615 #endif /* CONFIG_SCHED_AUTOGROUP */
1616
1617 #ifdef CONFIG_TIME_NS
timens_offsets_show(struct seq_file * m,void * v)1618 static int timens_offsets_show(struct seq_file *m, void *v)
1619 {
1620 struct task_struct *p;
1621
1622 p = get_proc_task(file_inode(m->file));
1623 if (!p)
1624 return -ESRCH;
1625 proc_timens_show_offsets(p, m);
1626
1627 put_task_struct(p);
1628
1629 return 0;
1630 }
1631
timens_offsets_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1632 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1633 size_t count, loff_t *ppos)
1634 {
1635 struct inode *inode = file_inode(file);
1636 struct proc_timens_offset offsets[2];
1637 char *kbuf = NULL, *pos, *next_line;
1638 struct task_struct *p;
1639 int ret, noffsets;
1640
1641 /* Only allow < page size writes at the beginning of the file */
1642 if ((*ppos != 0) || (count >= PAGE_SIZE))
1643 return -EINVAL;
1644
1645 /* Slurp in the user data */
1646 kbuf = memdup_user_nul(buf, count);
1647 if (IS_ERR(kbuf))
1648 return PTR_ERR(kbuf);
1649
1650 /* Parse the user data */
1651 ret = -EINVAL;
1652 noffsets = 0;
1653 for (pos = kbuf; pos; pos = next_line) {
1654 struct proc_timens_offset *off = &offsets[noffsets];
1655 char clock[10];
1656 int err;
1657
1658 /* Find the end of line and ensure we don't look past it */
1659 next_line = strchr(pos, '\n');
1660 if (next_line) {
1661 *next_line = '\0';
1662 next_line++;
1663 if (*next_line == '\0')
1664 next_line = NULL;
1665 }
1666
1667 err = sscanf(pos, "%9s %lld %lu", clock,
1668 &off->val.tv_sec, &off->val.tv_nsec);
1669 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1670 goto out;
1671
1672 clock[sizeof(clock) - 1] = 0;
1673 if (strcmp(clock, "monotonic") == 0 ||
1674 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1675 off->clockid = CLOCK_MONOTONIC;
1676 else if (strcmp(clock, "boottime") == 0 ||
1677 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1678 off->clockid = CLOCK_BOOTTIME;
1679 else
1680 goto out;
1681
1682 noffsets++;
1683 if (noffsets == ARRAY_SIZE(offsets)) {
1684 if (next_line)
1685 count = next_line - kbuf;
1686 break;
1687 }
1688 }
1689
1690 ret = -ESRCH;
1691 p = get_proc_task(inode);
1692 if (!p)
1693 goto out;
1694 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1695 put_task_struct(p);
1696 if (ret)
1697 goto out;
1698
1699 ret = count;
1700 out:
1701 kfree(kbuf);
1702 return ret;
1703 }
1704
timens_offsets_open(struct inode * inode,struct file * filp)1705 static int timens_offsets_open(struct inode *inode, struct file *filp)
1706 {
1707 return single_open(filp, timens_offsets_show, inode);
1708 }
1709
1710 static const struct file_operations proc_timens_offsets_operations = {
1711 .open = timens_offsets_open,
1712 .read = seq_read,
1713 .write = timens_offsets_write,
1714 .llseek = seq_lseek,
1715 .release = single_release,
1716 };
1717 #endif /* CONFIG_TIME_NS */
1718
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1719 static ssize_t comm_write(struct file *file, const char __user *buf,
1720 size_t count, loff_t *offset)
1721 {
1722 struct inode *inode = file_inode(file);
1723 struct task_struct *p;
1724 char buffer[TASK_COMM_LEN] = {};
1725 const size_t maxlen = sizeof(buffer) - 1;
1726
1727 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1728 return -EFAULT;
1729
1730 p = get_proc_task(inode);
1731 if (!p)
1732 return -ESRCH;
1733
1734 if (same_thread_group(current, p)) {
1735 set_task_comm(p, buffer);
1736 proc_comm_connector(p);
1737 }
1738 else
1739 count = -EINVAL;
1740
1741 put_task_struct(p);
1742
1743 return count;
1744 }
1745
comm_show(struct seq_file * m,void * v)1746 static int comm_show(struct seq_file *m, void *v)
1747 {
1748 struct inode *inode = m->private;
1749 struct task_struct *p;
1750
1751 p = get_proc_task(inode);
1752 if (!p)
1753 return -ESRCH;
1754
1755 proc_task_name(m, p, false);
1756 seq_putc(m, '\n');
1757
1758 put_task_struct(p);
1759
1760 return 0;
1761 }
1762
comm_open(struct inode * inode,struct file * filp)1763 static int comm_open(struct inode *inode, struct file *filp)
1764 {
1765 return single_open(filp, comm_show, inode);
1766 }
1767
1768 static const struct file_operations proc_pid_set_comm_operations = {
1769 .open = comm_open,
1770 .read = seq_read,
1771 .write = comm_write,
1772 .llseek = seq_lseek,
1773 .release = single_release,
1774 };
1775
proc_exe_link(struct dentry * dentry,struct path * exe_path)1776 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1777 {
1778 struct task_struct *task;
1779 struct file *exe_file;
1780
1781 task = get_proc_task(d_inode(dentry));
1782 if (!task)
1783 return -ENOENT;
1784 exe_file = get_task_exe_file(task);
1785 put_task_struct(task);
1786 if (exe_file) {
1787 *exe_path = exe_file->f_path;
1788 path_get(&exe_file->f_path);
1789 fput(exe_file);
1790 return 0;
1791 } else
1792 return -ENOENT;
1793 }
1794
proc_pid_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1795 static const char *proc_pid_get_link(struct dentry *dentry,
1796 struct inode *inode,
1797 struct delayed_call *done)
1798 {
1799 struct path path;
1800 int error = -EACCES;
1801
1802 if (!dentry)
1803 return ERR_PTR(-ECHILD);
1804
1805 /* Are we allowed to snoop on the tasks file descriptors? */
1806 if (!proc_fd_access_allowed(inode))
1807 goto out;
1808
1809 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1810 if (error)
1811 goto out;
1812
1813 error = nd_jump_link(&path);
1814 out:
1815 return ERR_PTR(error);
1816 }
1817
do_proc_readlink(const struct path * path,char __user * buffer,int buflen)1818 static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1819 {
1820 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1821 char *pathname;
1822 int len;
1823
1824 if (!tmp)
1825 return -ENOMEM;
1826
1827 pathname = d_path(path, tmp, PATH_MAX);
1828 len = PTR_ERR(pathname);
1829 if (IS_ERR(pathname))
1830 goto out;
1831 len = tmp + PATH_MAX - 1 - pathname;
1832
1833 if (len > buflen)
1834 len = buflen;
1835 if (copy_to_user(buffer, pathname, len))
1836 len = -EFAULT;
1837 out:
1838 kfree(tmp);
1839 return len;
1840 }
1841
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)1842 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1843 {
1844 int error = -EACCES;
1845 struct inode *inode = d_inode(dentry);
1846 struct path path;
1847
1848 /* Are we allowed to snoop on the tasks file descriptors? */
1849 if (!proc_fd_access_allowed(inode))
1850 goto out;
1851
1852 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1853 if (error)
1854 goto out;
1855
1856 error = do_proc_readlink(&path, buffer, buflen);
1857 path_put(&path);
1858 out:
1859 return error;
1860 }
1861
1862 const struct inode_operations proc_pid_link_inode_operations = {
1863 .readlink = proc_pid_readlink,
1864 .get_link = proc_pid_get_link,
1865 .setattr = proc_setattr,
1866 };
1867
1868
1869 /* building an inode */
1870
task_dump_owner(struct task_struct * task,umode_t mode,kuid_t * ruid,kgid_t * rgid)1871 void task_dump_owner(struct task_struct *task, umode_t mode,
1872 kuid_t *ruid, kgid_t *rgid)
1873 {
1874 /* Depending on the state of dumpable compute who should own a
1875 * proc file for a task.
1876 */
1877 const struct cred *cred;
1878 kuid_t uid;
1879 kgid_t gid;
1880
1881 if (unlikely(task->flags & PF_KTHREAD)) {
1882 *ruid = GLOBAL_ROOT_UID;
1883 *rgid = GLOBAL_ROOT_GID;
1884 return;
1885 }
1886
1887 /* Default to the tasks effective ownership */
1888 rcu_read_lock();
1889 cred = __task_cred(task);
1890 uid = cred->euid;
1891 gid = cred->egid;
1892 rcu_read_unlock();
1893
1894 /*
1895 * Before the /proc/pid/status file was created the only way to read
1896 * the effective uid of a /process was to stat /proc/pid. Reading
1897 * /proc/pid/status is slow enough that procps and other packages
1898 * kept stating /proc/pid. To keep the rules in /proc simple I have
1899 * made this apply to all per process world readable and executable
1900 * directories.
1901 */
1902 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1903 struct mm_struct *mm;
1904 task_lock(task);
1905 mm = task->mm;
1906 /* Make non-dumpable tasks owned by some root */
1907 if (mm) {
1908 if (get_dumpable(mm) != SUID_DUMP_USER) {
1909 struct user_namespace *user_ns = mm->user_ns;
1910
1911 uid = make_kuid(user_ns, 0);
1912 if (!uid_valid(uid))
1913 uid = GLOBAL_ROOT_UID;
1914
1915 gid = make_kgid(user_ns, 0);
1916 if (!gid_valid(gid))
1917 gid = GLOBAL_ROOT_GID;
1918 }
1919 } else {
1920 uid = GLOBAL_ROOT_UID;
1921 gid = GLOBAL_ROOT_GID;
1922 }
1923 task_unlock(task);
1924 }
1925 *ruid = uid;
1926 *rgid = gid;
1927 }
1928
proc_pid_evict_inode(struct proc_inode * ei)1929 void proc_pid_evict_inode(struct proc_inode *ei)
1930 {
1931 struct pid *pid = ei->pid;
1932
1933 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1934 spin_lock(&pid->lock);
1935 hlist_del_init_rcu(&ei->sibling_inodes);
1936 spin_unlock(&pid->lock);
1937 }
1938 }
1939
proc_pid_make_inode(struct super_block * sb,struct task_struct * task,umode_t mode)1940 struct inode *proc_pid_make_inode(struct super_block *sb,
1941 struct task_struct *task, umode_t mode)
1942 {
1943 struct inode * inode;
1944 struct proc_inode *ei;
1945 struct pid *pid;
1946
1947 /* We need a new inode */
1948
1949 inode = new_inode(sb);
1950 if (!inode)
1951 goto out;
1952
1953 /* Common stuff */
1954 ei = PROC_I(inode);
1955 inode->i_mode = mode;
1956 inode->i_ino = get_next_ino();
1957 simple_inode_init_ts(inode);
1958 inode->i_op = &proc_def_inode_operations;
1959
1960 /*
1961 * grab the reference to task.
1962 */
1963 pid = get_task_pid(task, PIDTYPE_PID);
1964 if (!pid)
1965 goto out_unlock;
1966
1967 /* Let the pid remember us for quick removal */
1968 ei->pid = pid;
1969
1970 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1971 security_task_to_inode(task, inode);
1972
1973 out:
1974 return inode;
1975
1976 out_unlock:
1977 iput(inode);
1978 return NULL;
1979 }
1980
1981 /*
1982 * Generating an inode and adding it into @pid->inodes, so that task will
1983 * invalidate inode's dentry before being released.
1984 *
1985 * This helper is used for creating dir-type entries under '/proc' and
1986 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1987 * can be released by invalidating '/proc/<tgid>' dentry.
1988 * In theory, dentries under '/proc/<tgid>/task' can also be released by
1989 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1990 * thread exiting situation: Any one of threads should invalidate its
1991 * '/proc/<tgid>/task/<pid>' dentry before released.
1992 */
proc_pid_make_base_inode(struct super_block * sb,struct task_struct * task,umode_t mode)1993 static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1994 struct task_struct *task, umode_t mode)
1995 {
1996 struct inode *inode;
1997 struct proc_inode *ei;
1998 struct pid *pid;
1999
2000 inode = proc_pid_make_inode(sb, task, mode);
2001 if (!inode)
2002 return NULL;
2003
2004 /* Let proc_flush_pid find this directory inode */
2005 ei = PROC_I(inode);
2006 pid = ei->pid;
2007 spin_lock(&pid->lock);
2008 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2009 spin_unlock(&pid->lock);
2010
2011 return inode;
2012 }
2013
pid_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)2014 int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
2015 struct kstat *stat, u32 request_mask, unsigned int query_flags)
2016 {
2017 struct inode *inode = d_inode(path->dentry);
2018 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2019 struct task_struct *task;
2020
2021 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
2022
2023 stat->uid = GLOBAL_ROOT_UID;
2024 stat->gid = GLOBAL_ROOT_GID;
2025 rcu_read_lock();
2026 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2027 if (task) {
2028 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2029 rcu_read_unlock();
2030 /*
2031 * This doesn't prevent learning whether PID exists,
2032 * it only makes getattr() consistent with readdir().
2033 */
2034 return -ENOENT;
2035 }
2036 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
2037 }
2038 rcu_read_unlock();
2039 return 0;
2040 }
2041
2042 /* dentry stuff */
2043
2044 /*
2045 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2046 */
pid_update_inode(struct task_struct * task,struct inode * inode)2047 void pid_update_inode(struct task_struct *task, struct inode *inode)
2048 {
2049 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2050
2051 inode->i_mode &= ~(S_ISUID | S_ISGID);
2052 security_task_to_inode(task, inode);
2053 }
2054
2055 /*
2056 * Rewrite the inode's ownerships here because the owning task may have
2057 * performed a setuid(), etc.
2058 *
2059 */
pid_revalidate(struct dentry * dentry,unsigned int flags)2060 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2061 {
2062 struct inode *inode;
2063 struct task_struct *task;
2064 int ret = 0;
2065
2066 rcu_read_lock();
2067 inode = d_inode_rcu(dentry);
2068 if (!inode)
2069 goto out;
2070 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2071
2072 if (task) {
2073 pid_update_inode(task, inode);
2074 ret = 1;
2075 }
2076 out:
2077 rcu_read_unlock();
2078 return ret;
2079 }
2080
proc_inode_is_dead(struct inode * inode)2081 static inline bool proc_inode_is_dead(struct inode *inode)
2082 {
2083 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2084 }
2085
pid_delete_dentry(const struct dentry * dentry)2086 int pid_delete_dentry(const struct dentry *dentry)
2087 {
2088 /* Is the task we represent dead?
2089 * If so, then don't put the dentry on the lru list,
2090 * kill it immediately.
2091 */
2092 return proc_inode_is_dead(d_inode(dentry));
2093 }
2094
2095 const struct dentry_operations pid_dentry_operations =
2096 {
2097 .d_revalidate = pid_revalidate,
2098 .d_delete = pid_delete_dentry,
2099 };
2100
2101 /* Lookups */
2102
2103 /*
2104 * Fill a directory entry.
2105 *
2106 * If possible create the dcache entry and derive our inode number and
2107 * file type from dcache entry.
2108 *
2109 * Since all of the proc inode numbers are dynamically generated, the inode
2110 * numbers do not exist until the inode is cache. This means creating
2111 * the dcache entry in readdir is necessary to keep the inode numbers
2112 * reported by readdir in sync with the inode numbers reported
2113 * by stat.
2114 */
proc_fill_cache(struct file * file,struct dir_context * ctx,const char * name,unsigned int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)2115 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2116 const char *name, unsigned int len,
2117 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2118 {
2119 struct dentry *child, *dir = file->f_path.dentry;
2120 struct qstr qname = QSTR_INIT(name, len);
2121 struct inode *inode;
2122 unsigned type = DT_UNKNOWN;
2123 ino_t ino = 1;
2124
2125 child = d_hash_and_lookup(dir, &qname);
2126 if (!child) {
2127 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2128 child = d_alloc_parallel(dir, &qname, &wq);
2129 if (IS_ERR(child))
2130 goto end_instantiate;
2131 if (d_in_lookup(child)) {
2132 struct dentry *res;
2133 res = instantiate(child, task, ptr);
2134 d_lookup_done(child);
2135 if (unlikely(res)) {
2136 dput(child);
2137 child = res;
2138 if (IS_ERR(child))
2139 goto end_instantiate;
2140 }
2141 }
2142 }
2143 inode = d_inode(child);
2144 ino = inode->i_ino;
2145 type = inode->i_mode >> 12;
2146 dput(child);
2147 end_instantiate:
2148 return dir_emit(ctx, name, len, ino, type);
2149 }
2150
2151 /*
2152 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2153 * which represent vma start and end addresses.
2154 */
dname_to_vma_addr(struct dentry * dentry,unsigned long * start,unsigned long * end)2155 static int dname_to_vma_addr(struct dentry *dentry,
2156 unsigned long *start, unsigned long *end)
2157 {
2158 const char *str = dentry->d_name.name;
2159 unsigned long long sval, eval;
2160 unsigned int len;
2161
2162 if (str[0] == '0' && str[1] != '-')
2163 return -EINVAL;
2164 len = _parse_integer(str, 16, &sval);
2165 if (len & KSTRTOX_OVERFLOW)
2166 return -EINVAL;
2167 if (sval != (unsigned long)sval)
2168 return -EINVAL;
2169 str += len;
2170
2171 if (*str != '-')
2172 return -EINVAL;
2173 str++;
2174
2175 if (str[0] == '0' && str[1])
2176 return -EINVAL;
2177 len = _parse_integer(str, 16, &eval);
2178 if (len & KSTRTOX_OVERFLOW)
2179 return -EINVAL;
2180 if (eval != (unsigned long)eval)
2181 return -EINVAL;
2182 str += len;
2183
2184 if (*str != '\0')
2185 return -EINVAL;
2186
2187 *start = sval;
2188 *end = eval;
2189
2190 return 0;
2191 }
2192
map_files_d_revalidate(struct dentry * dentry,unsigned int flags)2193 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2194 {
2195 unsigned long vm_start, vm_end;
2196 bool exact_vma_exists = false;
2197 struct mm_struct *mm = NULL;
2198 struct task_struct *task;
2199 struct inode *inode;
2200 int status = 0;
2201
2202 if (flags & LOOKUP_RCU)
2203 return -ECHILD;
2204
2205 inode = d_inode(dentry);
2206 task = get_proc_task(inode);
2207 if (!task)
2208 goto out_notask;
2209
2210 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2211 if (IS_ERR_OR_NULL(mm))
2212 goto out;
2213
2214 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2215 status = mmap_read_lock_killable(mm);
2216 if (!status) {
2217 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2218 vm_end);
2219 mmap_read_unlock(mm);
2220 }
2221 }
2222
2223 mmput(mm);
2224
2225 if (exact_vma_exists) {
2226 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2227
2228 security_task_to_inode(task, inode);
2229 status = 1;
2230 }
2231
2232 out:
2233 put_task_struct(task);
2234
2235 out_notask:
2236 return status;
2237 }
2238
2239 static const struct dentry_operations tid_map_files_dentry_operations = {
2240 .d_revalidate = map_files_d_revalidate,
2241 .d_delete = pid_delete_dentry,
2242 };
2243
map_files_get_link(struct dentry * dentry,struct path * path)2244 static int map_files_get_link(struct dentry *dentry, struct path *path)
2245 {
2246 unsigned long vm_start, vm_end;
2247 struct vm_area_struct *vma;
2248 struct task_struct *task;
2249 struct mm_struct *mm;
2250 int rc;
2251
2252 rc = -ENOENT;
2253 task = get_proc_task(d_inode(dentry));
2254 if (!task)
2255 goto out;
2256
2257 mm = get_task_mm(task);
2258 put_task_struct(task);
2259 if (!mm)
2260 goto out;
2261
2262 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2263 if (rc)
2264 goto out_mmput;
2265
2266 rc = mmap_read_lock_killable(mm);
2267 if (rc)
2268 goto out_mmput;
2269
2270 rc = -ENOENT;
2271 vma = find_exact_vma(mm, vm_start, vm_end);
2272 if (vma && vma->vm_file) {
2273 *path = *file_user_path(vma->vm_file);
2274 path_get(path);
2275 rc = 0;
2276 }
2277 mmap_read_unlock(mm);
2278
2279 out_mmput:
2280 mmput(mm);
2281 out:
2282 return rc;
2283 }
2284
2285 struct map_files_info {
2286 unsigned long start;
2287 unsigned long end;
2288 fmode_t mode;
2289 };
2290
2291 /*
2292 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2293 * to concerns about how the symlinks may be used to bypass permissions on
2294 * ancestor directories in the path to the file in question.
2295 */
2296 static const char *
proc_map_files_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)2297 proc_map_files_get_link(struct dentry *dentry,
2298 struct inode *inode,
2299 struct delayed_call *done)
2300 {
2301 if (!checkpoint_restore_ns_capable(&init_user_ns))
2302 return ERR_PTR(-EPERM);
2303
2304 return proc_pid_get_link(dentry, inode, done);
2305 }
2306
2307 /*
2308 * Identical to proc_pid_link_inode_operations except for get_link()
2309 */
2310 static const struct inode_operations proc_map_files_link_inode_operations = {
2311 .readlink = proc_pid_readlink,
2312 .get_link = proc_map_files_get_link,
2313 .setattr = proc_setattr,
2314 };
2315
2316 static struct dentry *
proc_map_files_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2317 proc_map_files_instantiate(struct dentry *dentry,
2318 struct task_struct *task, const void *ptr)
2319 {
2320 fmode_t mode = (fmode_t)(unsigned long)ptr;
2321 struct proc_inode *ei;
2322 struct inode *inode;
2323
2324 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2325 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2326 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2327 if (!inode)
2328 return ERR_PTR(-ENOENT);
2329
2330 ei = PROC_I(inode);
2331 ei->op.proc_get_link = map_files_get_link;
2332
2333 inode->i_op = &proc_map_files_link_inode_operations;
2334 inode->i_size = 64;
2335
2336 return proc_splice_unmountable(inode, dentry,
2337 &tid_map_files_dentry_operations);
2338 }
2339
proc_map_files_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2340 static struct dentry *proc_map_files_lookup(struct inode *dir,
2341 struct dentry *dentry, unsigned int flags)
2342 {
2343 unsigned long vm_start, vm_end;
2344 struct vm_area_struct *vma;
2345 struct task_struct *task;
2346 struct dentry *result;
2347 struct mm_struct *mm;
2348
2349 result = ERR_PTR(-ENOENT);
2350 task = get_proc_task(dir);
2351 if (!task)
2352 goto out;
2353
2354 result = ERR_PTR(-EACCES);
2355 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2356 goto out_put_task;
2357
2358 result = ERR_PTR(-ENOENT);
2359 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2360 goto out_put_task;
2361
2362 mm = get_task_mm(task);
2363 if (!mm)
2364 goto out_put_task;
2365
2366 result = ERR_PTR(-EINTR);
2367 if (mmap_read_lock_killable(mm))
2368 goto out_put_mm;
2369
2370 result = ERR_PTR(-ENOENT);
2371 vma = find_exact_vma(mm, vm_start, vm_end);
2372 if (!vma)
2373 goto out_no_vma;
2374
2375 if (vma->vm_file)
2376 result = proc_map_files_instantiate(dentry, task,
2377 (void *)(unsigned long)vma->vm_file->f_mode);
2378
2379 out_no_vma:
2380 mmap_read_unlock(mm);
2381 out_put_mm:
2382 mmput(mm);
2383 out_put_task:
2384 put_task_struct(task);
2385 out:
2386 return result;
2387 }
2388
2389 static const struct inode_operations proc_map_files_inode_operations = {
2390 .lookup = proc_map_files_lookup,
2391 .permission = proc_fd_permission,
2392 .setattr = proc_setattr,
2393 };
2394
2395 static int
proc_map_files_readdir(struct file * file,struct dir_context * ctx)2396 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2397 {
2398 struct vm_area_struct *vma;
2399 struct task_struct *task;
2400 struct mm_struct *mm;
2401 unsigned long nr_files, pos, i;
2402 GENRADIX(struct map_files_info) fa;
2403 struct map_files_info *p;
2404 int ret;
2405 struct vma_iterator vmi;
2406
2407 genradix_init(&fa);
2408
2409 ret = -ENOENT;
2410 task = get_proc_task(file_inode(file));
2411 if (!task)
2412 goto out;
2413
2414 ret = -EACCES;
2415 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2416 goto out_put_task;
2417
2418 ret = 0;
2419 if (!dir_emit_dots(file, ctx))
2420 goto out_put_task;
2421
2422 mm = get_task_mm(task);
2423 if (!mm)
2424 goto out_put_task;
2425
2426 ret = mmap_read_lock_killable(mm);
2427 if (ret) {
2428 mmput(mm);
2429 goto out_put_task;
2430 }
2431
2432 nr_files = 0;
2433
2434 /*
2435 * We need two passes here:
2436 *
2437 * 1) Collect vmas of mapped files with mmap_lock taken
2438 * 2) Release mmap_lock and instantiate entries
2439 *
2440 * otherwise we get lockdep complained, since filldir()
2441 * routine might require mmap_lock taken in might_fault().
2442 */
2443
2444 pos = 2;
2445 vma_iter_init(&vmi, mm, 0);
2446 for_each_vma(vmi, vma) {
2447 if (!vma->vm_file)
2448 continue;
2449 if (++pos <= ctx->pos)
2450 continue;
2451
2452 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2453 if (!p) {
2454 ret = -ENOMEM;
2455 mmap_read_unlock(mm);
2456 mmput(mm);
2457 goto out_put_task;
2458 }
2459
2460 p->start = vma->vm_start;
2461 p->end = vma->vm_end;
2462 p->mode = vma->vm_file->f_mode;
2463 }
2464 mmap_read_unlock(mm);
2465 mmput(mm);
2466
2467 for (i = 0; i < nr_files; i++) {
2468 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2469 unsigned int len;
2470
2471 p = genradix_ptr(&fa, i);
2472 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2473 if (!proc_fill_cache(file, ctx,
2474 buf, len,
2475 proc_map_files_instantiate,
2476 task,
2477 (void *)(unsigned long)p->mode))
2478 break;
2479 ctx->pos++;
2480 }
2481
2482 out_put_task:
2483 put_task_struct(task);
2484 out:
2485 genradix_free(&fa);
2486 return ret;
2487 }
2488
2489 static const struct file_operations proc_map_files_operations = {
2490 .read = generic_read_dir,
2491 .iterate_shared = proc_map_files_readdir,
2492 .llseek = generic_file_llseek,
2493 };
2494
2495 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2496 struct timers_private {
2497 struct pid *pid;
2498 struct task_struct *task;
2499 struct sighand_struct *sighand;
2500 struct pid_namespace *ns;
2501 unsigned long flags;
2502 };
2503
timers_start(struct seq_file * m,loff_t * pos)2504 static void *timers_start(struct seq_file *m, loff_t *pos)
2505 {
2506 struct timers_private *tp = m->private;
2507
2508 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2509 if (!tp->task)
2510 return ERR_PTR(-ESRCH);
2511
2512 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2513 if (!tp->sighand)
2514 return ERR_PTR(-ESRCH);
2515
2516 return seq_hlist_start(&tp->task->signal->posix_timers, *pos);
2517 }
2518
timers_next(struct seq_file * m,void * v,loff_t * pos)2519 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2520 {
2521 struct timers_private *tp = m->private;
2522 return seq_hlist_next(v, &tp->task->signal->posix_timers, pos);
2523 }
2524
timers_stop(struct seq_file * m,void * v)2525 static void timers_stop(struct seq_file *m, void *v)
2526 {
2527 struct timers_private *tp = m->private;
2528
2529 if (tp->sighand) {
2530 unlock_task_sighand(tp->task, &tp->flags);
2531 tp->sighand = NULL;
2532 }
2533
2534 if (tp->task) {
2535 put_task_struct(tp->task);
2536 tp->task = NULL;
2537 }
2538 }
2539
show_timer(struct seq_file * m,void * v)2540 static int show_timer(struct seq_file *m, void *v)
2541 {
2542 struct k_itimer *timer;
2543 struct timers_private *tp = m->private;
2544 int notify;
2545 static const char * const nstr[] = {
2546 [SIGEV_SIGNAL] = "signal",
2547 [SIGEV_NONE] = "none",
2548 [SIGEV_THREAD] = "thread",
2549 };
2550
2551 timer = hlist_entry((struct hlist_node *)v, struct k_itimer, list);
2552 notify = timer->it_sigev_notify;
2553
2554 seq_printf(m, "ID: %d\n", timer->it_id);
2555 seq_printf(m, "signal: %d/%px\n",
2556 timer->sigq->info.si_signo,
2557 timer->sigq->info.si_value.sival_ptr);
2558 seq_printf(m, "notify: %s/%s.%d\n",
2559 nstr[notify & ~SIGEV_THREAD_ID],
2560 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2561 pid_nr_ns(timer->it_pid, tp->ns));
2562 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2563
2564 return 0;
2565 }
2566
2567 static const struct seq_operations proc_timers_seq_ops = {
2568 .start = timers_start,
2569 .next = timers_next,
2570 .stop = timers_stop,
2571 .show = show_timer,
2572 };
2573
proc_timers_open(struct inode * inode,struct file * file)2574 static int proc_timers_open(struct inode *inode, struct file *file)
2575 {
2576 struct timers_private *tp;
2577
2578 tp = __seq_open_private(file, &proc_timers_seq_ops,
2579 sizeof(struct timers_private));
2580 if (!tp)
2581 return -ENOMEM;
2582
2583 tp->pid = proc_pid(inode);
2584 tp->ns = proc_pid_ns(inode->i_sb);
2585 return 0;
2586 }
2587
2588 static const struct file_operations proc_timers_operations = {
2589 .open = proc_timers_open,
2590 .read = seq_read,
2591 .llseek = seq_lseek,
2592 .release = seq_release_private,
2593 };
2594 #endif
2595
timerslack_ns_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)2596 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2597 size_t count, loff_t *offset)
2598 {
2599 struct inode *inode = file_inode(file);
2600 struct task_struct *p;
2601 u64 slack_ns;
2602 int err;
2603
2604 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2605 if (err < 0)
2606 return err;
2607
2608 p = get_proc_task(inode);
2609 if (!p)
2610 return -ESRCH;
2611
2612 if (p != current) {
2613 rcu_read_lock();
2614 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2615 rcu_read_unlock();
2616 count = -EPERM;
2617 goto out;
2618 }
2619 rcu_read_unlock();
2620
2621 err = security_task_setscheduler(p);
2622 if (err) {
2623 count = err;
2624 goto out;
2625 }
2626 }
2627
2628 task_lock(p);
2629 if (rt_or_dl_task_policy(p))
2630 slack_ns = 0;
2631 else if (slack_ns == 0)
2632 slack_ns = p->default_timer_slack_ns;
2633 p->timer_slack_ns = slack_ns;
2634 task_unlock(p);
2635
2636 out:
2637 put_task_struct(p);
2638
2639 return count;
2640 }
2641
timerslack_ns_show(struct seq_file * m,void * v)2642 static int timerslack_ns_show(struct seq_file *m, void *v)
2643 {
2644 struct inode *inode = m->private;
2645 struct task_struct *p;
2646 int err = 0;
2647
2648 p = get_proc_task(inode);
2649 if (!p)
2650 return -ESRCH;
2651
2652 if (p != current) {
2653 rcu_read_lock();
2654 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2655 rcu_read_unlock();
2656 err = -EPERM;
2657 goto out;
2658 }
2659 rcu_read_unlock();
2660
2661 err = security_task_getscheduler(p);
2662 if (err)
2663 goto out;
2664 }
2665
2666 task_lock(p);
2667 seq_printf(m, "%llu\n", p->timer_slack_ns);
2668 task_unlock(p);
2669
2670 out:
2671 put_task_struct(p);
2672
2673 return err;
2674 }
2675
timerslack_ns_open(struct inode * inode,struct file * filp)2676 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2677 {
2678 return single_open(filp, timerslack_ns_show, inode);
2679 }
2680
2681 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2682 .open = timerslack_ns_open,
2683 .read = seq_read,
2684 .write = timerslack_ns_write,
2685 .llseek = seq_lseek,
2686 .release = single_release,
2687 };
2688
proc_pident_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2689 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2690 struct task_struct *task, const void *ptr)
2691 {
2692 const struct pid_entry *p = ptr;
2693 struct inode *inode;
2694 struct proc_inode *ei;
2695
2696 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2697 if (!inode)
2698 return ERR_PTR(-ENOENT);
2699
2700 ei = PROC_I(inode);
2701 if (S_ISDIR(inode->i_mode))
2702 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2703 if (p->iop)
2704 inode->i_op = p->iop;
2705 if (p->fop)
2706 inode->i_fop = p->fop;
2707 ei->op = p->op;
2708 pid_update_inode(task, inode);
2709 d_set_d_op(dentry, &pid_dentry_operations);
2710 return d_splice_alias(inode, dentry);
2711 }
2712
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * p,const struct pid_entry * end)2713 static struct dentry *proc_pident_lookup(struct inode *dir,
2714 struct dentry *dentry,
2715 const struct pid_entry *p,
2716 const struct pid_entry *end)
2717 {
2718 struct task_struct *task = get_proc_task(dir);
2719 struct dentry *res = ERR_PTR(-ENOENT);
2720
2721 if (!task)
2722 goto out_no_task;
2723
2724 /*
2725 * Yes, it does not scale. And it should not. Don't add
2726 * new entries into /proc/<tgid>/ without very good reasons.
2727 */
2728 for (; p < end; p++) {
2729 if (p->len != dentry->d_name.len)
2730 continue;
2731 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2732 res = proc_pident_instantiate(dentry, task, p);
2733 break;
2734 }
2735 }
2736 put_task_struct(task);
2737 out_no_task:
2738 return res;
2739 }
2740
proc_pident_readdir(struct file * file,struct dir_context * ctx,const struct pid_entry * ents,unsigned int nents)2741 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2742 const struct pid_entry *ents, unsigned int nents)
2743 {
2744 struct task_struct *task = get_proc_task(file_inode(file));
2745 const struct pid_entry *p;
2746
2747 if (!task)
2748 return -ENOENT;
2749
2750 if (!dir_emit_dots(file, ctx))
2751 goto out;
2752
2753 if (ctx->pos >= nents + 2)
2754 goto out;
2755
2756 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2757 if (!proc_fill_cache(file, ctx, p->name, p->len,
2758 proc_pident_instantiate, task, p))
2759 break;
2760 ctx->pos++;
2761 }
2762 out:
2763 put_task_struct(task);
2764 return 0;
2765 }
2766
2767 #ifdef CONFIG_SECURITY
proc_pid_attr_open(struct inode * inode,struct file * file)2768 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2769 {
2770 file->private_data = NULL;
2771 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2772 return 0;
2773 }
2774
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2775 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2776 size_t count, loff_t *ppos)
2777 {
2778 struct inode * inode = file_inode(file);
2779 char *p = NULL;
2780 ssize_t length;
2781 struct task_struct *task = get_proc_task(inode);
2782
2783 if (!task)
2784 return -ESRCH;
2785
2786 length = security_getprocattr(task, PROC_I(inode)->op.lsmid,
2787 file->f_path.dentry->d_name.name,
2788 &p);
2789 put_task_struct(task);
2790 if (length > 0)
2791 length = simple_read_from_buffer(buf, count, ppos, p, length);
2792 kfree(p);
2793 return length;
2794 }
2795
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2796 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2797 size_t count, loff_t *ppos)
2798 {
2799 struct inode * inode = file_inode(file);
2800 struct task_struct *task;
2801 void *page;
2802 int rv;
2803
2804 /* A task may only write when it was the opener. */
2805 if (file->private_data != current->mm)
2806 return -EPERM;
2807
2808 rcu_read_lock();
2809 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2810 if (!task) {
2811 rcu_read_unlock();
2812 return -ESRCH;
2813 }
2814 /* A task may only write its own attributes. */
2815 if (current != task) {
2816 rcu_read_unlock();
2817 return -EACCES;
2818 }
2819 /* Prevent changes to overridden credentials. */
2820 if (current_cred() != current_real_cred()) {
2821 rcu_read_unlock();
2822 return -EBUSY;
2823 }
2824 rcu_read_unlock();
2825
2826 if (count > PAGE_SIZE)
2827 count = PAGE_SIZE;
2828
2829 /* No partial writes. */
2830 if (*ppos != 0)
2831 return -EINVAL;
2832
2833 page = memdup_user(buf, count);
2834 if (IS_ERR(page)) {
2835 rv = PTR_ERR(page);
2836 goto out;
2837 }
2838
2839 /* Guard against adverse ptrace interaction */
2840 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2841 if (rv < 0)
2842 goto out_free;
2843
2844 rv = security_setprocattr(PROC_I(inode)->op.lsmid,
2845 file->f_path.dentry->d_name.name, page,
2846 count);
2847 mutex_unlock(¤t->signal->cred_guard_mutex);
2848 out_free:
2849 kfree(page);
2850 out:
2851 return rv;
2852 }
2853
2854 static const struct file_operations proc_pid_attr_operations = {
2855 .open = proc_pid_attr_open,
2856 .read = proc_pid_attr_read,
2857 .write = proc_pid_attr_write,
2858 .llseek = generic_file_llseek,
2859 .release = mem_release,
2860 };
2861
2862 #define LSM_DIR_OPS(LSM) \
2863 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2864 struct dir_context *ctx) \
2865 { \
2866 return proc_pident_readdir(filp, ctx, \
2867 LSM##_attr_dir_stuff, \
2868 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2869 } \
2870 \
2871 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2872 .read = generic_read_dir, \
2873 .iterate_shared = proc_##LSM##_attr_dir_iterate, \
2874 .llseek = default_llseek, \
2875 }; \
2876 \
2877 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2878 struct dentry *dentry, unsigned int flags) \
2879 { \
2880 return proc_pident_lookup(dir, dentry, \
2881 LSM##_attr_dir_stuff, \
2882 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2883 } \
2884 \
2885 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2886 .lookup = proc_##LSM##_attr_dir_lookup, \
2887 .getattr = pid_getattr, \
2888 .setattr = proc_setattr, \
2889 }
2890
2891 #ifdef CONFIG_SECURITY_SMACK
2892 static const struct pid_entry smack_attr_dir_stuff[] = {
2893 ATTR(LSM_ID_SMACK, "current", 0666),
2894 };
2895 LSM_DIR_OPS(smack);
2896 #endif
2897
2898 #ifdef CONFIG_SECURITY_APPARMOR
2899 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2900 ATTR(LSM_ID_APPARMOR, "current", 0666),
2901 ATTR(LSM_ID_APPARMOR, "prev", 0444),
2902 ATTR(LSM_ID_APPARMOR, "exec", 0666),
2903 };
2904 LSM_DIR_OPS(apparmor);
2905 #endif
2906
2907 static const struct pid_entry attr_dir_stuff[] = {
2908 ATTR(LSM_ID_UNDEF, "current", 0666),
2909 ATTR(LSM_ID_UNDEF, "prev", 0444),
2910 ATTR(LSM_ID_UNDEF, "exec", 0666),
2911 ATTR(LSM_ID_UNDEF, "fscreate", 0666),
2912 ATTR(LSM_ID_UNDEF, "keycreate", 0666),
2913 ATTR(LSM_ID_UNDEF, "sockcreate", 0666),
2914 #ifdef CONFIG_SECURITY_SMACK
2915 DIR("smack", 0555,
2916 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2917 #endif
2918 #ifdef CONFIG_SECURITY_APPARMOR
2919 DIR("apparmor", 0555,
2920 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2921 #endif
2922 };
2923
proc_attr_dir_readdir(struct file * file,struct dir_context * ctx)2924 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2925 {
2926 return proc_pident_readdir(file, ctx,
2927 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2928 }
2929
2930 static const struct file_operations proc_attr_dir_operations = {
2931 .read = generic_read_dir,
2932 .iterate_shared = proc_attr_dir_readdir,
2933 .llseek = generic_file_llseek,
2934 };
2935
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2936 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2937 struct dentry *dentry, unsigned int flags)
2938 {
2939 return proc_pident_lookup(dir, dentry,
2940 attr_dir_stuff,
2941 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2942 }
2943
2944 static const struct inode_operations proc_attr_dir_inode_operations = {
2945 .lookup = proc_attr_dir_lookup,
2946 .getattr = pid_getattr,
2947 .setattr = proc_setattr,
2948 };
2949
2950 #endif
2951
2952 #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2953 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2954 size_t count, loff_t *ppos)
2955 {
2956 struct task_struct *task = get_proc_task(file_inode(file));
2957 struct mm_struct *mm;
2958 char buffer[PROC_NUMBUF];
2959 size_t len;
2960 int ret;
2961
2962 if (!task)
2963 return -ESRCH;
2964
2965 ret = 0;
2966 mm = get_task_mm(task);
2967 if (mm) {
2968 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2969 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2970 MMF_DUMP_FILTER_SHIFT));
2971 mmput(mm);
2972 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2973 }
2974
2975 put_task_struct(task);
2976
2977 return ret;
2978 }
2979
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2980 static ssize_t proc_coredump_filter_write(struct file *file,
2981 const char __user *buf,
2982 size_t count,
2983 loff_t *ppos)
2984 {
2985 struct task_struct *task;
2986 struct mm_struct *mm;
2987 unsigned int val;
2988 int ret;
2989 int i;
2990 unsigned long mask;
2991
2992 ret = kstrtouint_from_user(buf, count, 0, &val);
2993 if (ret < 0)
2994 return ret;
2995
2996 ret = -ESRCH;
2997 task = get_proc_task(file_inode(file));
2998 if (!task)
2999 goto out_no_task;
3000
3001 mm = get_task_mm(task);
3002 if (!mm)
3003 goto out_no_mm;
3004 ret = 0;
3005
3006 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3007 if (val & mask)
3008 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3009 else
3010 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3011 }
3012
3013 mmput(mm);
3014 out_no_mm:
3015 put_task_struct(task);
3016 out_no_task:
3017 if (ret < 0)
3018 return ret;
3019 return count;
3020 }
3021
3022 static const struct file_operations proc_coredump_filter_operations = {
3023 .read = proc_coredump_filter_read,
3024 .write = proc_coredump_filter_write,
3025 .llseek = generic_file_llseek,
3026 };
3027 #endif
3028
3029 #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,struct seq_file * m,int whole)3030 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3031 {
3032 struct task_io_accounting acct;
3033 int result;
3034
3035 result = down_read_killable(&task->signal->exec_update_lock);
3036 if (result)
3037 return result;
3038
3039 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3040 result = -EACCES;
3041 goto out_unlock;
3042 }
3043
3044 if (whole) {
3045 struct signal_struct *sig = task->signal;
3046 struct task_struct *t;
3047 unsigned int seq = 1;
3048 unsigned long flags;
3049
3050 rcu_read_lock();
3051 do {
3052 seq++; /* 2 on the 1st/lockless path, otherwise odd */
3053 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
3054
3055 acct = sig->ioac;
3056 __for_each_thread(sig, t)
3057 task_io_accounting_add(&acct, &t->ioac);
3058
3059 } while (need_seqretry(&sig->stats_lock, seq));
3060 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
3061 rcu_read_unlock();
3062 } else {
3063 acct = task->ioac;
3064 }
3065
3066 seq_printf(m,
3067 "rchar: %llu\n"
3068 "wchar: %llu\n"
3069 "syscr: %llu\n"
3070 "syscw: %llu\n"
3071 "read_bytes: %llu\n"
3072 "write_bytes: %llu\n"
3073 "cancelled_write_bytes: %llu\n",
3074 (unsigned long long)acct.rchar,
3075 (unsigned long long)acct.wchar,
3076 (unsigned long long)acct.syscr,
3077 (unsigned long long)acct.syscw,
3078 (unsigned long long)acct.read_bytes,
3079 (unsigned long long)acct.write_bytes,
3080 (unsigned long long)acct.cancelled_write_bytes);
3081 result = 0;
3082
3083 out_unlock:
3084 up_read(&task->signal->exec_update_lock);
3085 return result;
3086 }
3087
proc_tid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3088 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3089 struct pid *pid, struct task_struct *task)
3090 {
3091 return do_io_accounting(task, m, 0);
3092 }
3093
proc_tgid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3094 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3095 struct pid *pid, struct task_struct *task)
3096 {
3097 return do_io_accounting(task, m, 1);
3098 }
3099 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3100
3101 #ifdef CONFIG_USER_NS
proc_id_map_open(struct inode * inode,struct file * file,const struct seq_operations * seq_ops)3102 static int proc_id_map_open(struct inode *inode, struct file *file,
3103 const struct seq_operations *seq_ops)
3104 {
3105 struct user_namespace *ns = NULL;
3106 struct task_struct *task;
3107 struct seq_file *seq;
3108 int ret = -EINVAL;
3109
3110 task = get_proc_task(inode);
3111 if (task) {
3112 rcu_read_lock();
3113 ns = get_user_ns(task_cred_xxx(task, user_ns));
3114 rcu_read_unlock();
3115 put_task_struct(task);
3116 }
3117 if (!ns)
3118 goto err;
3119
3120 ret = seq_open(file, seq_ops);
3121 if (ret)
3122 goto err_put_ns;
3123
3124 seq = file->private_data;
3125 seq->private = ns;
3126
3127 return 0;
3128 err_put_ns:
3129 put_user_ns(ns);
3130 err:
3131 return ret;
3132 }
3133
proc_id_map_release(struct inode * inode,struct file * file)3134 static int proc_id_map_release(struct inode *inode, struct file *file)
3135 {
3136 struct seq_file *seq = file->private_data;
3137 struct user_namespace *ns = seq->private;
3138 put_user_ns(ns);
3139 return seq_release(inode, file);
3140 }
3141
proc_uid_map_open(struct inode * inode,struct file * file)3142 static int proc_uid_map_open(struct inode *inode, struct file *file)
3143 {
3144 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3145 }
3146
proc_gid_map_open(struct inode * inode,struct file * file)3147 static int proc_gid_map_open(struct inode *inode, struct file *file)
3148 {
3149 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3150 }
3151
proc_projid_map_open(struct inode * inode,struct file * file)3152 static int proc_projid_map_open(struct inode *inode, struct file *file)
3153 {
3154 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3155 }
3156
3157 static const struct file_operations proc_uid_map_operations = {
3158 .open = proc_uid_map_open,
3159 .write = proc_uid_map_write,
3160 .read = seq_read,
3161 .llseek = seq_lseek,
3162 .release = proc_id_map_release,
3163 };
3164
3165 static const struct file_operations proc_gid_map_operations = {
3166 .open = proc_gid_map_open,
3167 .write = proc_gid_map_write,
3168 .read = seq_read,
3169 .llseek = seq_lseek,
3170 .release = proc_id_map_release,
3171 };
3172
3173 static const struct file_operations proc_projid_map_operations = {
3174 .open = proc_projid_map_open,
3175 .write = proc_projid_map_write,
3176 .read = seq_read,
3177 .llseek = seq_lseek,
3178 .release = proc_id_map_release,
3179 };
3180
proc_setgroups_open(struct inode * inode,struct file * file)3181 static int proc_setgroups_open(struct inode *inode, struct file *file)
3182 {
3183 struct user_namespace *ns = NULL;
3184 struct task_struct *task;
3185 int ret;
3186
3187 ret = -ESRCH;
3188 task = get_proc_task(inode);
3189 if (task) {
3190 rcu_read_lock();
3191 ns = get_user_ns(task_cred_xxx(task, user_ns));
3192 rcu_read_unlock();
3193 put_task_struct(task);
3194 }
3195 if (!ns)
3196 goto err;
3197
3198 if (file->f_mode & FMODE_WRITE) {
3199 ret = -EACCES;
3200 if (!ns_capable(ns, CAP_SYS_ADMIN))
3201 goto err_put_ns;
3202 }
3203
3204 ret = single_open(file, &proc_setgroups_show, ns);
3205 if (ret)
3206 goto err_put_ns;
3207
3208 return 0;
3209 err_put_ns:
3210 put_user_ns(ns);
3211 err:
3212 return ret;
3213 }
3214
proc_setgroups_release(struct inode * inode,struct file * file)3215 static int proc_setgroups_release(struct inode *inode, struct file *file)
3216 {
3217 struct seq_file *seq = file->private_data;
3218 struct user_namespace *ns = seq->private;
3219 int ret = single_release(inode, file);
3220 put_user_ns(ns);
3221 return ret;
3222 }
3223
3224 static const struct file_operations proc_setgroups_operations = {
3225 .open = proc_setgroups_open,
3226 .write = proc_setgroups_write,
3227 .read = seq_read,
3228 .llseek = seq_lseek,
3229 .release = proc_setgroups_release,
3230 };
3231 #endif /* CONFIG_USER_NS */
3232
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3233 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3234 struct pid *pid, struct task_struct *task)
3235 {
3236 int err = lock_trace(task);
3237 if (!err) {
3238 seq_printf(m, "%08x\n", task->personality);
3239 unlock_trace(task);
3240 }
3241 return err;
3242 }
3243
3244 #ifdef CONFIG_LIVEPATCH
proc_pid_patch_state(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3245 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3246 struct pid *pid, struct task_struct *task)
3247 {
3248 seq_printf(m, "%d\n", task->patch_state);
3249 return 0;
3250 }
3251 #endif /* CONFIG_LIVEPATCH */
3252
3253 #ifdef CONFIG_KSM
proc_pid_ksm_merging_pages(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3254 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3255 struct pid *pid, struct task_struct *task)
3256 {
3257 struct mm_struct *mm;
3258
3259 mm = get_task_mm(task);
3260 if (mm) {
3261 seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3262 mmput(mm);
3263 }
3264
3265 return 0;
3266 }
proc_pid_ksm_stat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3267 static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3268 struct pid *pid, struct task_struct *task)
3269 {
3270 struct mm_struct *mm;
3271
3272 mm = get_task_mm(task);
3273 if (mm) {
3274 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3275 seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm));
3276 seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3277 seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3278 mmput(mm);
3279 }
3280
3281 return 0;
3282 }
3283 #endif /* CONFIG_KSM */
3284
3285 #ifdef CONFIG_STACKLEAK_METRICS
proc_stack_depth(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3286 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3287 struct pid *pid, struct task_struct *task)
3288 {
3289 unsigned long prev_depth = THREAD_SIZE -
3290 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3291 unsigned long depth = THREAD_SIZE -
3292 (task->lowest_stack & (THREAD_SIZE - 1));
3293
3294 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3295 prev_depth, depth);
3296 return 0;
3297 }
3298 #endif /* CONFIG_STACKLEAK_METRICS */
3299
3300 /*
3301 * Thread groups
3302 */
3303 static const struct file_operations proc_task_operations;
3304 static const struct inode_operations proc_task_inode_operations;
3305
3306 static const struct pid_entry tgid_base_stuff[] = {
3307 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3308 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3309 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3310 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3311 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3312 #ifdef CONFIG_NET
3313 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3314 #endif
3315 REG("environ", S_IRUSR, proc_environ_operations),
3316 REG("auxv", S_IRUSR, proc_auxv_operations),
3317 ONE("status", S_IRUGO, proc_pid_status),
3318 ONE("personality", S_IRUSR, proc_pid_personality),
3319 ONE("limits", S_IRUGO, proc_pid_limits),
3320 #ifdef CONFIG_SCHED_DEBUG
3321 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3322 #endif
3323 #ifdef CONFIG_SCHED_AUTOGROUP
3324 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3325 #endif
3326 #ifdef CONFIG_TIME_NS
3327 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3328 #endif
3329 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3330 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3331 ONE("syscall", S_IRUSR, proc_pid_syscall),
3332 #endif
3333 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3334 ONE("stat", S_IRUGO, proc_tgid_stat),
3335 ONE("statm", S_IRUGO, proc_pid_statm),
3336 REG("maps", S_IRUGO, proc_pid_maps_operations),
3337 #ifdef CONFIG_NUMA
3338 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3339 #endif
3340 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3341 LNK("cwd", proc_cwd_link),
3342 LNK("root", proc_root_link),
3343 LNK("exe", proc_exe_link),
3344 REG("mounts", S_IRUGO, proc_mounts_operations),
3345 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3346 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3347 #ifdef CONFIG_PROC_PAGE_MONITOR
3348 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3349 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3350 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3351 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3352 #endif
3353 #ifdef CONFIG_SECURITY
3354 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3355 #endif
3356 #ifdef CONFIG_KALLSYMS
3357 ONE("wchan", S_IRUGO, proc_pid_wchan),
3358 #endif
3359 #ifdef CONFIG_STACKTRACE
3360 ONE("stack", S_IRUSR, proc_pid_stack),
3361 #endif
3362 #ifdef CONFIG_SCHED_INFO
3363 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3364 #endif
3365 #ifdef CONFIG_LATENCYTOP
3366 REG("latency", S_IRUGO, proc_lstats_operations),
3367 #endif
3368 #ifdef CONFIG_PROC_PID_CPUSET
3369 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3370 #endif
3371 #ifdef CONFIG_CGROUPS
3372 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3373 #endif
3374 #ifdef CONFIG_PROC_CPU_RESCTRL
3375 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3376 #endif
3377 ONE("oom_score", S_IRUGO, proc_oom_score),
3378 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3379 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3380 #ifdef CONFIG_AUDIT
3381 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3382 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3383 #endif
3384 #ifdef CONFIG_FAULT_INJECTION
3385 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3386 REG("fail-nth", 0644, proc_fail_nth_operations),
3387 #endif
3388 #ifdef CONFIG_ELF_CORE
3389 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3390 #endif
3391 #ifdef CONFIG_TASK_IO_ACCOUNTING
3392 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3393 #endif
3394 #ifdef CONFIG_USER_NS
3395 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3396 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3397 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3398 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3399 #endif
3400 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3401 REG("timers", S_IRUGO, proc_timers_operations),
3402 #endif
3403 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3404 #ifdef CONFIG_LIVEPATCH
3405 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3406 #endif
3407 #ifdef CONFIG_STACKLEAK_METRICS
3408 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3409 #endif
3410 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3411 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3412 #endif
3413 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3414 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3415 #endif
3416 #ifdef CONFIG_KSM
3417 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3418 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3419 #endif
3420 };
3421
proc_tgid_base_readdir(struct file * file,struct dir_context * ctx)3422 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3423 {
3424 return proc_pident_readdir(file, ctx,
3425 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3426 }
3427
3428 static const struct file_operations proc_tgid_base_operations = {
3429 .read = generic_read_dir,
3430 .iterate_shared = proc_tgid_base_readdir,
3431 .llseek = generic_file_llseek,
3432 };
3433
tgid_pidfd_to_pid(const struct file * file)3434 struct pid *tgid_pidfd_to_pid(const struct file *file)
3435 {
3436 if (file->f_op != &proc_tgid_base_operations)
3437 return ERR_PTR(-EBADF);
3438
3439 return proc_pid(file_inode(file));
3440 }
3441
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3442 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3443 {
3444 return proc_pident_lookup(dir, dentry,
3445 tgid_base_stuff,
3446 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3447 }
3448
3449 static const struct inode_operations proc_tgid_base_inode_operations = {
3450 .lookup = proc_tgid_base_lookup,
3451 .getattr = pid_getattr,
3452 .setattr = proc_setattr,
3453 .permission = proc_pid_permission,
3454 };
3455
3456 /**
3457 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3458 * @pid: pid that should be flushed.
3459 *
3460 * This function walks a list of inodes (that belong to any proc
3461 * filesystem) that are attached to the pid and flushes them from
3462 * the dentry cache.
3463 *
3464 * It is safe and reasonable to cache /proc entries for a task until
3465 * that task exits. After that they just clog up the dcache with
3466 * useless entries, possibly causing useful dcache entries to be
3467 * flushed instead. This routine is provided to flush those useless
3468 * dcache entries when a process is reaped.
3469 *
3470 * NOTE: This routine is just an optimization so it does not guarantee
3471 * that no dcache entries will exist after a process is reaped
3472 * it just makes it very unlikely that any will persist.
3473 */
3474
proc_flush_pid(struct pid * pid)3475 void proc_flush_pid(struct pid *pid)
3476 {
3477 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3478 }
3479
proc_pid_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3480 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3481 struct task_struct *task, const void *ptr)
3482 {
3483 struct inode *inode;
3484
3485 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3486 S_IFDIR | S_IRUGO | S_IXUGO);
3487 if (!inode)
3488 return ERR_PTR(-ENOENT);
3489
3490 inode->i_op = &proc_tgid_base_inode_operations;
3491 inode->i_fop = &proc_tgid_base_operations;
3492 inode->i_flags|=S_IMMUTABLE;
3493
3494 set_nlink(inode, nlink_tgid);
3495 pid_update_inode(task, inode);
3496
3497 d_set_d_op(dentry, &pid_dentry_operations);
3498 return d_splice_alias(inode, dentry);
3499 }
3500
proc_pid_lookup(struct dentry * dentry,unsigned int flags)3501 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3502 {
3503 struct task_struct *task;
3504 unsigned tgid;
3505 struct proc_fs_info *fs_info;
3506 struct pid_namespace *ns;
3507 struct dentry *result = ERR_PTR(-ENOENT);
3508
3509 tgid = name_to_int(&dentry->d_name);
3510 if (tgid == ~0U)
3511 goto out;
3512
3513 fs_info = proc_sb_info(dentry->d_sb);
3514 ns = fs_info->pid_ns;
3515 rcu_read_lock();
3516 task = find_task_by_pid_ns(tgid, ns);
3517 if (task)
3518 get_task_struct(task);
3519 rcu_read_unlock();
3520 if (!task)
3521 goto out;
3522
3523 /* Limit procfs to only ptraceable tasks */
3524 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3525 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3526 goto out_put_task;
3527 }
3528
3529 result = proc_pid_instantiate(dentry, task, NULL);
3530 out_put_task:
3531 put_task_struct(task);
3532 out:
3533 return result;
3534 }
3535
3536 /*
3537 * Find the first task with tgid >= tgid
3538 *
3539 */
3540 struct tgid_iter {
3541 unsigned int tgid;
3542 struct task_struct *task;
3543 };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)3544 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3545 {
3546 struct pid *pid;
3547
3548 if (iter.task)
3549 put_task_struct(iter.task);
3550 rcu_read_lock();
3551 retry:
3552 iter.task = NULL;
3553 pid = find_ge_pid(iter.tgid, ns);
3554 if (pid) {
3555 iter.tgid = pid_nr_ns(pid, ns);
3556 iter.task = pid_task(pid, PIDTYPE_TGID);
3557 if (!iter.task) {
3558 iter.tgid += 1;
3559 goto retry;
3560 }
3561 get_task_struct(iter.task);
3562 }
3563 rcu_read_unlock();
3564 return iter;
3565 }
3566
3567 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3568
3569 /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * file,struct dir_context * ctx)3570 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3571 {
3572 struct tgid_iter iter;
3573 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3574 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3575 loff_t pos = ctx->pos;
3576
3577 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3578 return 0;
3579
3580 if (pos == TGID_OFFSET - 2) {
3581 struct inode *inode = d_inode(fs_info->proc_self);
3582 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3583 return 0;
3584 ctx->pos = pos = pos + 1;
3585 }
3586 if (pos == TGID_OFFSET - 1) {
3587 struct inode *inode = d_inode(fs_info->proc_thread_self);
3588 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3589 return 0;
3590 ctx->pos = pos = pos + 1;
3591 }
3592 iter.tgid = pos - TGID_OFFSET;
3593 iter.task = NULL;
3594 for (iter = next_tgid(ns, iter);
3595 iter.task;
3596 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3597 char name[10 + 1];
3598 unsigned int len;
3599
3600 cond_resched();
3601 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3602 continue;
3603
3604 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3605 ctx->pos = iter.tgid + TGID_OFFSET;
3606 if (!proc_fill_cache(file, ctx, name, len,
3607 proc_pid_instantiate, iter.task, NULL)) {
3608 put_task_struct(iter.task);
3609 return 0;
3610 }
3611 }
3612 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3613 return 0;
3614 }
3615
3616 /*
3617 * proc_tid_comm_permission is a special permission function exclusively
3618 * used for the node /proc/<pid>/task/<tid>/comm.
3619 * It bypasses generic permission checks in the case where a task of the same
3620 * task group attempts to access the node.
3621 * The rationale behind this is that glibc and bionic access this node for
3622 * cross thread naming (pthread_set/getname_np(!self)). However, if
3623 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3624 * which locks out the cross thread naming implementation.
3625 * This function makes sure that the node is always accessible for members of
3626 * same thread group.
3627 */
proc_tid_comm_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)3628 static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3629 struct inode *inode, int mask)
3630 {
3631 bool is_same_tgroup;
3632 struct task_struct *task;
3633
3634 task = get_proc_task(inode);
3635 if (!task)
3636 return -ESRCH;
3637 is_same_tgroup = same_thread_group(current, task);
3638 put_task_struct(task);
3639
3640 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3641 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3642 * read or written by the members of the corresponding
3643 * thread group.
3644 */
3645 return 0;
3646 }
3647
3648 return generic_permission(&nop_mnt_idmap, inode, mask);
3649 }
3650
3651 static const struct inode_operations proc_tid_comm_inode_operations = {
3652 .setattr = proc_setattr,
3653 .permission = proc_tid_comm_permission,
3654 };
3655
3656 /*
3657 * Tasks
3658 */
3659 static const struct pid_entry tid_base_stuff[] = {
3660 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3661 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3662 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3663 #ifdef CONFIG_NET
3664 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3665 #endif
3666 REG("environ", S_IRUSR, proc_environ_operations),
3667 REG("auxv", S_IRUSR, proc_auxv_operations),
3668 ONE("status", S_IRUGO, proc_pid_status),
3669 ONE("personality", S_IRUSR, proc_pid_personality),
3670 ONE("limits", S_IRUGO, proc_pid_limits),
3671 #ifdef CONFIG_SCHED_DEBUG
3672 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3673 #endif
3674 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3675 &proc_tid_comm_inode_operations,
3676 &proc_pid_set_comm_operations, {}),
3677 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3678 ONE("syscall", S_IRUSR, proc_pid_syscall),
3679 #endif
3680 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3681 ONE("stat", S_IRUGO, proc_tid_stat),
3682 ONE("statm", S_IRUGO, proc_pid_statm),
3683 REG("maps", S_IRUGO, proc_pid_maps_operations),
3684 #ifdef CONFIG_PROC_CHILDREN
3685 REG("children", S_IRUGO, proc_tid_children_operations),
3686 #endif
3687 #ifdef CONFIG_NUMA
3688 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3689 #endif
3690 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3691 LNK("cwd", proc_cwd_link),
3692 LNK("root", proc_root_link),
3693 LNK("exe", proc_exe_link),
3694 REG("mounts", S_IRUGO, proc_mounts_operations),
3695 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3696 #ifdef CONFIG_PROC_PAGE_MONITOR
3697 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3698 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3699 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3700 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3701 #endif
3702 #ifdef CONFIG_SECURITY
3703 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3704 #endif
3705 #ifdef CONFIG_KALLSYMS
3706 ONE("wchan", S_IRUGO, proc_pid_wchan),
3707 #endif
3708 #ifdef CONFIG_STACKTRACE
3709 ONE("stack", S_IRUSR, proc_pid_stack),
3710 #endif
3711 #ifdef CONFIG_SCHED_INFO
3712 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3713 #endif
3714 #ifdef CONFIG_LATENCYTOP
3715 REG("latency", S_IRUGO, proc_lstats_operations),
3716 #endif
3717 #ifdef CONFIG_PROC_PID_CPUSET
3718 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3719 #endif
3720 #ifdef CONFIG_CGROUPS
3721 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3722 #endif
3723 #ifdef CONFIG_PROC_CPU_RESCTRL
3724 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3725 #endif
3726 ONE("oom_score", S_IRUGO, proc_oom_score),
3727 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3728 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3729 #ifdef CONFIG_AUDIT
3730 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3731 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3732 #endif
3733 #ifdef CONFIG_FAULT_INJECTION
3734 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3735 REG("fail-nth", 0644, proc_fail_nth_operations),
3736 #endif
3737 #ifdef CONFIG_TASK_IO_ACCOUNTING
3738 ONE("io", S_IRUSR, proc_tid_io_accounting),
3739 #endif
3740 #ifdef CONFIG_USER_NS
3741 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3742 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3743 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3744 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3745 #endif
3746 #ifdef CONFIG_LIVEPATCH
3747 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3748 #endif
3749 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3750 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3751 #endif
3752 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3753 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3754 #endif
3755 #ifdef CONFIG_KSM
3756 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3757 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3758 #endif
3759 };
3760
proc_tid_base_readdir(struct file * file,struct dir_context * ctx)3761 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3762 {
3763 return proc_pident_readdir(file, ctx,
3764 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3765 }
3766
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3767 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3768 {
3769 return proc_pident_lookup(dir, dentry,
3770 tid_base_stuff,
3771 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3772 }
3773
3774 static const struct file_operations proc_tid_base_operations = {
3775 .read = generic_read_dir,
3776 .iterate_shared = proc_tid_base_readdir,
3777 .llseek = generic_file_llseek,
3778 };
3779
3780 static const struct inode_operations proc_tid_base_inode_operations = {
3781 .lookup = proc_tid_base_lookup,
3782 .getattr = pid_getattr,
3783 .setattr = proc_setattr,
3784 };
3785
proc_task_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3786 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3787 struct task_struct *task, const void *ptr)
3788 {
3789 struct inode *inode;
3790 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3791 S_IFDIR | S_IRUGO | S_IXUGO);
3792 if (!inode)
3793 return ERR_PTR(-ENOENT);
3794
3795 inode->i_op = &proc_tid_base_inode_operations;
3796 inode->i_fop = &proc_tid_base_operations;
3797 inode->i_flags |= S_IMMUTABLE;
3798
3799 set_nlink(inode, nlink_tid);
3800 pid_update_inode(task, inode);
3801
3802 d_set_d_op(dentry, &pid_dentry_operations);
3803 return d_splice_alias(inode, dentry);
3804 }
3805
proc_task_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3806 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3807 {
3808 struct task_struct *task;
3809 struct task_struct *leader = get_proc_task(dir);
3810 unsigned tid;
3811 struct proc_fs_info *fs_info;
3812 struct pid_namespace *ns;
3813 struct dentry *result = ERR_PTR(-ENOENT);
3814
3815 if (!leader)
3816 goto out_no_task;
3817
3818 tid = name_to_int(&dentry->d_name);
3819 if (tid == ~0U)
3820 goto out;
3821
3822 fs_info = proc_sb_info(dentry->d_sb);
3823 ns = fs_info->pid_ns;
3824 rcu_read_lock();
3825 task = find_task_by_pid_ns(tid, ns);
3826 if (task)
3827 get_task_struct(task);
3828 rcu_read_unlock();
3829 if (!task)
3830 goto out;
3831 if (!same_thread_group(leader, task))
3832 goto out_drop_task;
3833
3834 result = proc_task_instantiate(dentry, task, NULL);
3835 out_drop_task:
3836 put_task_struct(task);
3837 out:
3838 put_task_struct(leader);
3839 out_no_task:
3840 return result;
3841 }
3842
3843 /*
3844 * Find the first tid of a thread group to return to user space.
3845 *
3846 * Usually this is just the thread group leader, but if the users
3847 * buffer was too small or there was a seek into the middle of the
3848 * directory we have more work todo.
3849 *
3850 * In the case of a short read we start with find_task_by_pid.
3851 *
3852 * In the case of a seek we start with the leader and walk nr
3853 * threads past it.
3854 */
first_tid(struct pid * pid,int tid,loff_t f_pos,struct pid_namespace * ns)3855 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3856 struct pid_namespace *ns)
3857 {
3858 struct task_struct *pos, *task;
3859 unsigned long nr = f_pos;
3860
3861 if (nr != f_pos) /* 32bit overflow? */
3862 return NULL;
3863
3864 rcu_read_lock();
3865 task = pid_task(pid, PIDTYPE_PID);
3866 if (!task)
3867 goto fail;
3868
3869 /* Attempt to start with the tid of a thread */
3870 if (tid && nr) {
3871 pos = find_task_by_pid_ns(tid, ns);
3872 if (pos && same_thread_group(pos, task))
3873 goto found;
3874 }
3875
3876 /* If nr exceeds the number of threads there is nothing todo */
3877 if (nr >= get_nr_threads(task))
3878 goto fail;
3879
3880 /* If we haven't found our starting place yet start
3881 * with the leader and walk nr threads forward.
3882 */
3883 for_each_thread(task, pos) {
3884 if (!nr--)
3885 goto found;
3886 }
3887 fail:
3888 pos = NULL;
3889 goto out;
3890 found:
3891 get_task_struct(pos);
3892 out:
3893 rcu_read_unlock();
3894 return pos;
3895 }
3896
3897 /*
3898 * Find the next thread in the thread list.
3899 * Return NULL if there is an error or no next thread.
3900 *
3901 * The reference to the input task_struct is released.
3902 */
next_tid(struct task_struct * start)3903 static struct task_struct *next_tid(struct task_struct *start)
3904 {
3905 struct task_struct *pos = NULL;
3906 rcu_read_lock();
3907 if (pid_alive(start)) {
3908 pos = __next_thread(start);
3909 if (pos)
3910 get_task_struct(pos);
3911 }
3912 rcu_read_unlock();
3913 put_task_struct(start);
3914 return pos;
3915 }
3916
3917 /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * file,struct dir_context * ctx)3918 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3919 {
3920 struct inode *inode = file_inode(file);
3921 struct task_struct *task;
3922 struct pid_namespace *ns;
3923 int tid;
3924
3925 if (proc_inode_is_dead(inode))
3926 return -ENOENT;
3927
3928 if (!dir_emit_dots(file, ctx))
3929 return 0;
3930
3931 /* We cache the tgid value that the last readdir call couldn't
3932 * return and lseek resets it to 0.
3933 */
3934 ns = proc_pid_ns(inode->i_sb);
3935 tid = (int)(intptr_t)file->private_data;
3936 file->private_data = NULL;
3937 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3938 task;
3939 task = next_tid(task), ctx->pos++) {
3940 char name[10 + 1];
3941 unsigned int len;
3942
3943 tid = task_pid_nr_ns(task, ns);
3944 if (!tid)
3945 continue; /* The task has just exited. */
3946 len = snprintf(name, sizeof(name), "%u", tid);
3947 if (!proc_fill_cache(file, ctx, name, len,
3948 proc_task_instantiate, task, NULL)) {
3949 /* returning this tgid failed, save it as the first
3950 * pid for the next readir call */
3951 file->private_data = (void *)(intptr_t)tid;
3952 put_task_struct(task);
3953 break;
3954 }
3955 }
3956
3957 return 0;
3958 }
3959
proc_task_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)3960 static int proc_task_getattr(struct mnt_idmap *idmap,
3961 const struct path *path, struct kstat *stat,
3962 u32 request_mask, unsigned int query_flags)
3963 {
3964 struct inode *inode = d_inode(path->dentry);
3965 struct task_struct *p = get_proc_task(inode);
3966 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
3967
3968 if (p) {
3969 stat->nlink += get_nr_threads(p);
3970 put_task_struct(p);
3971 }
3972
3973 return 0;
3974 }
3975
3976 /*
3977 * proc_task_readdir() set @file->private_data to a positive integer
3978 * value, so casting that to u64 is safe. generic_llseek_cookie() will
3979 * set @cookie to 0, so casting to an int is safe. The WARN_ON_ONCE() is
3980 * here to catch any unexpected change in behavior either in
3981 * proc_task_readdir() or generic_llseek_cookie().
3982 */
proc_dir_llseek(struct file * file,loff_t offset,int whence)3983 static loff_t proc_dir_llseek(struct file *file, loff_t offset, int whence)
3984 {
3985 u64 cookie = (u64)(intptr_t)file->private_data;
3986 loff_t off;
3987
3988 off = generic_llseek_cookie(file, offset, whence, &cookie);
3989 WARN_ON_ONCE(cookie > INT_MAX);
3990 file->private_data = (void *)(intptr_t)cookie; /* serialized by f_pos_lock */
3991 return off;
3992 }
3993
3994 static const struct inode_operations proc_task_inode_operations = {
3995 .lookup = proc_task_lookup,
3996 .getattr = proc_task_getattr,
3997 .setattr = proc_setattr,
3998 .permission = proc_pid_permission,
3999 };
4000
4001 static const struct file_operations proc_task_operations = {
4002 .read = generic_read_dir,
4003 .iterate_shared = proc_task_readdir,
4004 .llseek = proc_dir_llseek,
4005 };
4006
set_proc_pid_nlink(void)4007 void __init set_proc_pid_nlink(void)
4008 {
4009 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
4010 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
4011 }
4012