1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "OF: " fmt 3 4 #include <linux/device.h> 5 #include <linux/fwnode.h> 6 #include <linux/io.h> 7 #include <linux/ioport.h> 8 #include <linux/logic_pio.h> 9 #include <linux/module.h> 10 #include <linux/of_address.h> 11 #include <linux/overflow.h> 12 #include <linux/pci.h> 13 #include <linux/pci_regs.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/dma-direct.h> /* for bus_dma_region */ 18 19 #include <kunit/visibility.h> 20 21 /* Uncomment me to enable of_dump_addr() debugging output */ 22 // #define DEBUG 23 24 #include "of_private.h" 25 26 /* Callbacks for bus specific translators */ 27 struct of_bus { 28 const char *name; 29 const char *addresses; 30 int (*match)(struct device_node *parent); 31 void (*count_cells)(struct device_node *child, 32 int *addrc, int *sizec); 33 u64 (*map)(__be32 *addr, const __be32 *range, 34 int na, int ns, int pna, int fna); 35 int (*translate)(__be32 *addr, u64 offset, int na); 36 int flag_cells; 37 unsigned int (*get_flags)(const __be32 *addr); 38 }; 39 40 /* 41 * Default translator (generic bus) 42 */ 43 44 static void of_bus_default_count_cells(struct device_node *dev, 45 int *addrc, int *sizec) 46 { 47 if (addrc) 48 *addrc = of_n_addr_cells(dev); 49 if (sizec) 50 *sizec = of_n_size_cells(dev); 51 } 52 53 static u64 of_bus_default_map(__be32 *addr, const __be32 *range, 54 int na, int ns, int pna, int fna) 55 { 56 u64 cp, s, da; 57 58 cp = of_read_number(range + fna, na - fna); 59 s = of_read_number(range + na + pna, ns); 60 da = of_read_number(addr + fna, na - fna); 61 62 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 63 64 if (da < cp || da >= (cp + s)) 65 return OF_BAD_ADDR; 66 return da - cp; 67 } 68 69 static int of_bus_default_translate(__be32 *addr, u64 offset, int na) 70 { 71 u64 a = of_read_number(addr, na); 72 memset(addr, 0, na * 4); 73 a += offset; 74 if (na > 1) 75 addr[na - 2] = cpu_to_be32(a >> 32); 76 addr[na - 1] = cpu_to_be32(a & 0xffffffffu); 77 78 return 0; 79 } 80 81 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr) 82 { 83 return of_read_number(addr, 1); 84 } 85 86 static unsigned int of_bus_default_get_flags(const __be32 *addr) 87 { 88 return IORESOURCE_MEM; 89 } 90 91 static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na, 92 int ns, int pna, int fna) 93 { 94 /* Check that flags match */ 95 if (*addr != *range) 96 return OF_BAD_ADDR; 97 98 return of_bus_default_map(addr, range, na, ns, pna, fna); 99 } 100 101 static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na) 102 { 103 /* Keep "flags" part (high cell) in translated address */ 104 return of_bus_default_translate(addr + 1, offset, na - 1); 105 } 106 107 #ifdef CONFIG_PCI 108 static unsigned int of_bus_pci_get_flags(const __be32 *addr) 109 { 110 unsigned int flags = 0; 111 u32 w = be32_to_cpup(addr); 112 113 if (!IS_ENABLED(CONFIG_PCI)) 114 return 0; 115 116 switch((w >> 24) & 0x03) { 117 case 0x01: 118 flags |= IORESOURCE_IO; 119 break; 120 case 0x02: /* 32 bits */ 121 flags |= IORESOURCE_MEM; 122 break; 123 124 case 0x03: /* 64 bits */ 125 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64; 126 break; 127 } 128 if (w & 0x40000000) 129 flags |= IORESOURCE_PREFETCH; 130 return flags; 131 } 132 133 /* 134 * PCI bus specific translator 135 */ 136 137 static bool of_node_is_pcie(const struct device_node *np) 138 { 139 bool is_pcie = of_node_name_eq(np, "pcie"); 140 141 if (is_pcie) 142 pr_warn_once("%pOF: Missing device_type\n", np); 143 144 return is_pcie; 145 } 146 147 static int of_bus_pci_match(struct device_node *np) 148 { 149 /* 150 * "pciex" is PCI Express 151 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs 152 * "ht" is hypertransport 153 * 154 * If none of the device_type match, and that the node name is 155 * "pcie", accept the device as PCI (with a warning). 156 */ 157 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") || 158 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") || 159 of_node_is_pcie(np); 160 } 161 162 static void of_bus_pci_count_cells(struct device_node *np, 163 int *addrc, int *sizec) 164 { 165 if (addrc) 166 *addrc = 3; 167 if (sizec) 168 *sizec = 2; 169 } 170 171 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, 172 int pna, int fna) 173 { 174 unsigned int af, rf; 175 176 af = of_bus_pci_get_flags(addr); 177 rf = of_bus_pci_get_flags(range); 178 179 /* Check address type match */ 180 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) 181 return OF_BAD_ADDR; 182 183 return of_bus_default_map(addr, range, na, ns, pna, fna); 184 } 185 186 #endif /* CONFIG_PCI */ 187 188 VISIBLE_IF_KUNIT int __of_address_resource_bounds(struct resource *r, u64 start, u64 size) 189 { 190 if (overflows_type(start, r->start)) 191 return -EOVERFLOW; 192 193 r->start = start; 194 195 if (!size) 196 r->end = wrapping_sub(typeof(r->end), r->start, 1); 197 else if (size && check_add_overflow(r->start, size - 1, &r->end)) 198 return -EOVERFLOW; 199 200 return 0; 201 } 202 EXPORT_SYMBOL_IF_KUNIT(__of_address_resource_bounds); 203 204 /* 205 * of_pci_range_to_resource - Create a resource from an of_pci_range 206 * @range: the PCI range that describes the resource 207 * @np: device node where the range belongs to 208 * @res: pointer to a valid resource that will be updated to 209 * reflect the values contained in the range. 210 * 211 * Returns -EINVAL if the range cannot be converted to resource. 212 * 213 * Note that if the range is an IO range, the resource will be converted 214 * using pci_address_to_pio() which can fail if it is called too early or 215 * if the range cannot be matched to any host bridge IO space (our case here). 216 * To guard against that we try to register the IO range first. 217 * If that fails we know that pci_address_to_pio() will do too. 218 */ 219 int of_pci_range_to_resource(const struct of_pci_range *range, 220 const struct device_node *np, struct resource *res) 221 { 222 u64 start; 223 int err; 224 res->flags = range->flags; 225 res->parent = res->child = res->sibling = NULL; 226 res->name = np->full_name; 227 228 if (res->flags & IORESOURCE_IO) { 229 unsigned long port; 230 err = pci_register_io_range(&np->fwnode, range->cpu_addr, 231 range->size); 232 if (err) 233 goto invalid_range; 234 port = pci_address_to_pio(range->cpu_addr); 235 if (port == (unsigned long)-1) { 236 err = -EINVAL; 237 goto invalid_range; 238 } 239 start = port; 240 } else { 241 start = range->cpu_addr; 242 } 243 return __of_address_resource_bounds(res, start, range->size); 244 245 invalid_range: 246 res->start = (resource_size_t)OF_BAD_ADDR; 247 res->end = (resource_size_t)OF_BAD_ADDR; 248 return err; 249 } 250 EXPORT_SYMBOL(of_pci_range_to_resource); 251 252 /* 253 * of_range_to_resource - Create a resource from a ranges entry 254 * @np: device node where the range belongs to 255 * @index: the 'ranges' index to convert to a resource 256 * @res: pointer to a valid resource that will be updated to 257 * reflect the values contained in the range. 258 * 259 * Returns -ENOENT if the entry is not found or -EOVERFLOW if the range 260 * cannot be converted to resource. 261 */ 262 int of_range_to_resource(struct device_node *np, int index, struct resource *res) 263 { 264 int ret, i = 0; 265 struct of_range_parser parser; 266 struct of_range range; 267 268 ret = of_range_parser_init(&parser, np); 269 if (ret) 270 return ret; 271 272 for_each_of_range(&parser, &range) 273 if (i++ == index) 274 return of_pci_range_to_resource(&range, np, res); 275 276 return -ENOENT; 277 } 278 EXPORT_SYMBOL(of_range_to_resource); 279 280 /* 281 * ISA bus specific translator 282 */ 283 284 static int of_bus_isa_match(struct device_node *np) 285 { 286 return of_node_name_eq(np, "isa"); 287 } 288 289 static void of_bus_isa_count_cells(struct device_node *child, 290 int *addrc, int *sizec) 291 { 292 if (addrc) 293 *addrc = 2; 294 if (sizec) 295 *sizec = 1; 296 } 297 298 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, 299 int pna, int fna) 300 { 301 /* Check address type match */ 302 if ((addr[0] ^ range[0]) & cpu_to_be32(1)) 303 return OF_BAD_ADDR; 304 305 return of_bus_default_map(addr, range, na, ns, pna, fna); 306 } 307 308 static unsigned int of_bus_isa_get_flags(const __be32 *addr) 309 { 310 unsigned int flags = 0; 311 u32 w = be32_to_cpup(addr); 312 313 if (w & 1) 314 flags |= IORESOURCE_IO; 315 else 316 flags |= IORESOURCE_MEM; 317 return flags; 318 } 319 320 static int of_bus_default_flags_match(struct device_node *np) 321 { 322 /* 323 * Check for presence first since of_bus_n_addr_cells() will warn when 324 * walking parent nodes. 325 */ 326 return of_property_present(np, "#address-cells") && (of_bus_n_addr_cells(np) == 3); 327 } 328 329 static int of_bus_default_match(struct device_node *np) 330 { 331 /* 332 * Check for presence first since of_bus_n_addr_cells() will warn when 333 * walking parent nodes. 334 */ 335 return of_property_present(np, "#address-cells"); 336 } 337 338 /* 339 * Array of bus specific translators 340 */ 341 342 static const struct of_bus of_busses[] = { 343 #ifdef CONFIG_PCI 344 /* PCI */ 345 { 346 .name = "pci", 347 .addresses = "assigned-addresses", 348 .match = of_bus_pci_match, 349 .count_cells = of_bus_pci_count_cells, 350 .map = of_bus_pci_map, 351 .translate = of_bus_default_flags_translate, 352 .flag_cells = 1, 353 .get_flags = of_bus_pci_get_flags, 354 }, 355 #endif /* CONFIG_PCI */ 356 /* ISA */ 357 { 358 .name = "isa", 359 .addresses = "reg", 360 .match = of_bus_isa_match, 361 .count_cells = of_bus_isa_count_cells, 362 .map = of_bus_isa_map, 363 .translate = of_bus_default_flags_translate, 364 .flag_cells = 1, 365 .get_flags = of_bus_isa_get_flags, 366 }, 367 /* Default with flags cell */ 368 { 369 .name = "default-flags", 370 .addresses = "reg", 371 .match = of_bus_default_flags_match, 372 .count_cells = of_bus_default_count_cells, 373 .map = of_bus_default_flags_map, 374 .translate = of_bus_default_flags_translate, 375 .flag_cells = 1, 376 .get_flags = of_bus_default_flags_get_flags, 377 }, 378 /* Default */ 379 { 380 .name = "default", 381 .addresses = "reg", 382 .match = of_bus_default_match, 383 .count_cells = of_bus_default_count_cells, 384 .map = of_bus_default_map, 385 .translate = of_bus_default_translate, 386 .get_flags = of_bus_default_get_flags, 387 }, 388 }; 389 390 static const struct of_bus *of_match_bus(struct device_node *np) 391 { 392 int i; 393 394 for (i = 0; i < ARRAY_SIZE(of_busses); i++) 395 if (!of_busses[i].match || of_busses[i].match(np)) 396 return &of_busses[i]; 397 return NULL; 398 } 399 400 static int of_empty_ranges_quirk(const struct device_node *np) 401 { 402 if (IS_ENABLED(CONFIG_PPC)) { 403 /* To save cycles, we cache the result for global "Mac" setting */ 404 static int quirk_state = -1; 405 406 /* PA-SEMI sdc DT bug */ 407 if (of_device_is_compatible(np, "1682m-sdc")) 408 return true; 409 410 /* Make quirk cached */ 411 if (quirk_state < 0) 412 quirk_state = 413 of_machine_is_compatible("Power Macintosh") || 414 of_machine_is_compatible("MacRISC"); 415 return quirk_state; 416 } 417 return false; 418 } 419 420 static int of_translate_one(const struct device_node *parent, const struct of_bus *bus, 421 const struct of_bus *pbus, __be32 *addr, 422 int na, int ns, int pna, const char *rprop) 423 { 424 const __be32 *ranges; 425 unsigned int rlen; 426 int rone; 427 u64 offset = OF_BAD_ADDR; 428 429 /* 430 * Normally, an absence of a "ranges" property means we are 431 * crossing a non-translatable boundary, and thus the addresses 432 * below the current cannot be converted to CPU physical ones. 433 * Unfortunately, while this is very clear in the spec, it's not 434 * what Apple understood, and they do have things like /uni-n or 435 * /ht nodes with no "ranges" property and a lot of perfectly 436 * useable mapped devices below them. Thus we treat the absence of 437 * "ranges" as equivalent to an empty "ranges" property which means 438 * a 1:1 translation at that level. It's up to the caller not to try 439 * to translate addresses that aren't supposed to be translated in 440 * the first place. --BenH. 441 * 442 * As far as we know, this damage only exists on Apple machines, so 443 * This code is only enabled on powerpc. --gcl 444 * 445 * This quirk also applies for 'dma-ranges' which frequently exist in 446 * child nodes without 'dma-ranges' in the parent nodes. --RobH 447 */ 448 ranges = of_get_property(parent, rprop, &rlen); 449 if (ranges == NULL && !of_empty_ranges_quirk(parent) && 450 strcmp(rprop, "dma-ranges")) { 451 pr_debug("no ranges; cannot translate\n"); 452 return 1; 453 } 454 if (ranges == NULL || rlen == 0) { 455 offset = of_read_number(addr, na); 456 /* set address to zero, pass flags through */ 457 memset(addr + pbus->flag_cells, 0, (pna - pbus->flag_cells) * 4); 458 pr_debug("empty ranges; 1:1 translation\n"); 459 goto finish; 460 } 461 462 pr_debug("walking ranges...\n"); 463 464 /* Now walk through the ranges */ 465 rlen /= 4; 466 rone = na + pna + ns; 467 for (; rlen >= rone; rlen -= rone, ranges += rone) { 468 offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells); 469 if (offset != OF_BAD_ADDR) 470 break; 471 } 472 if (offset == OF_BAD_ADDR) { 473 pr_debug("not found !\n"); 474 return 1; 475 } 476 memcpy(addr, ranges + na, 4 * pna); 477 478 finish: 479 of_dump_addr("parent translation for:", addr, pna); 480 pr_debug("with offset: %llx\n", offset); 481 482 /* Translate it into parent bus space */ 483 return pbus->translate(addr, offset, pna); 484 } 485 486 /* 487 * Translate an address from the device-tree into a CPU physical address, 488 * this walks up the tree and applies the various bus mappings on the 489 * way. 490 * 491 * Note: We consider that crossing any level with #size-cells == 0 to mean 492 * that translation is impossible (that is we are not dealing with a value 493 * that can be mapped to a cpu physical address). This is not really specified 494 * that way, but this is traditionally the way IBM at least do things 495 * 496 * Whenever the translation fails, the *host pointer will be set to the 497 * device that had registered logical PIO mapping, and the return code is 498 * relative to that node. 499 */ 500 static u64 __of_translate_address(struct device_node *node, 501 struct device_node *(*get_parent)(const struct device_node *), 502 const __be32 *in_addr, const char *rprop, 503 struct device_node **host) 504 { 505 struct device_node *dev __free(device_node) = of_node_get(node); 506 struct device_node *parent __free(device_node) = get_parent(dev); 507 const struct of_bus *bus, *pbus; 508 __be32 addr[OF_MAX_ADDR_CELLS]; 509 int na, ns, pna, pns; 510 511 pr_debug("** translation for device %pOF **\n", dev); 512 513 *host = NULL; 514 515 if (parent == NULL) 516 return OF_BAD_ADDR; 517 bus = of_match_bus(parent); 518 if (!bus) 519 return OF_BAD_ADDR; 520 521 /* Count address cells & copy address locally */ 522 bus->count_cells(dev, &na, &ns); 523 if (!OF_CHECK_COUNTS(na, ns)) { 524 pr_debug("Bad cell count for %pOF\n", dev); 525 return OF_BAD_ADDR; 526 } 527 memcpy(addr, in_addr, na * 4); 528 529 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", 530 bus->name, na, ns, parent); 531 of_dump_addr("translating address:", addr, na); 532 533 /* Translate */ 534 for (;;) { 535 struct logic_pio_hwaddr *iorange; 536 537 /* Switch to parent bus */ 538 of_node_put(dev); 539 dev = parent; 540 parent = get_parent(dev); 541 542 /* If root, we have finished */ 543 if (parent == NULL) { 544 pr_debug("reached root node\n"); 545 return of_read_number(addr, na); 546 } 547 548 /* 549 * For indirectIO device which has no ranges property, get 550 * the address from reg directly. 551 */ 552 iorange = find_io_range_by_fwnode(&dev->fwnode); 553 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { 554 u64 result = of_read_number(addr + 1, na - 1); 555 pr_debug("indirectIO matched(%pOF) 0x%llx\n", 556 dev, result); 557 *host = no_free_ptr(dev); 558 return result; 559 } 560 561 /* Get new parent bus and counts */ 562 pbus = of_match_bus(parent); 563 if (!pbus) 564 return OF_BAD_ADDR; 565 pbus->count_cells(dev, &pna, &pns); 566 if (!OF_CHECK_COUNTS(pna, pns)) { 567 pr_err("Bad cell count for %pOF\n", dev); 568 return OF_BAD_ADDR; 569 } 570 571 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", 572 pbus->name, pna, pns, parent); 573 574 /* Apply bus translation */ 575 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) 576 return OF_BAD_ADDR; 577 578 /* Complete the move up one level */ 579 na = pna; 580 ns = pns; 581 bus = pbus; 582 583 of_dump_addr("one level translation:", addr, na); 584 } 585 586 unreachable(); 587 } 588 589 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) 590 { 591 struct device_node *host; 592 u64 ret; 593 594 ret = __of_translate_address(dev, of_get_parent, 595 in_addr, "ranges", &host); 596 if (host) { 597 of_node_put(host); 598 return OF_BAD_ADDR; 599 } 600 601 return ret; 602 } 603 EXPORT_SYMBOL(of_translate_address); 604 605 #ifdef CONFIG_HAS_DMA 606 struct device_node *__of_get_dma_parent(const struct device_node *np) 607 { 608 struct of_phandle_args args; 609 int ret, index; 610 611 index = of_property_match_string(np, "interconnect-names", "dma-mem"); 612 if (index < 0) 613 return of_get_parent(np); 614 615 ret = of_parse_phandle_with_args(np, "interconnects", 616 "#interconnect-cells", 617 index, &args); 618 if (ret < 0) 619 return of_get_parent(np); 620 621 return args.np; 622 } 623 #endif 624 625 static struct device_node *of_get_next_dma_parent(struct device_node *np) 626 { 627 struct device_node *parent; 628 629 parent = __of_get_dma_parent(np); 630 of_node_put(np); 631 632 return parent; 633 } 634 635 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) 636 { 637 struct device_node *host; 638 u64 ret; 639 640 ret = __of_translate_address(dev, __of_get_dma_parent, 641 in_addr, "dma-ranges", &host); 642 643 if (host) { 644 of_node_put(host); 645 return OF_BAD_ADDR; 646 } 647 648 return ret; 649 } 650 EXPORT_SYMBOL(of_translate_dma_address); 651 652 /** 653 * of_translate_dma_region - Translate device tree address and size tuple 654 * @dev: device tree node for which to translate 655 * @prop: pointer into array of cells 656 * @start: return value for the start of the DMA range 657 * @length: return value for the length of the DMA range 658 * 659 * Returns a pointer to the cell immediately following the translated DMA region. 660 */ 661 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop, 662 phys_addr_t *start, size_t *length) 663 { 664 struct device_node *parent __free(device_node) = __of_get_dma_parent(dev); 665 u64 address, size; 666 int na, ns; 667 668 if (!parent) 669 return NULL; 670 671 na = of_bus_n_addr_cells(parent); 672 ns = of_bus_n_size_cells(parent); 673 674 address = of_translate_dma_address(dev, prop); 675 if (address == OF_BAD_ADDR) 676 return NULL; 677 678 size = of_read_number(prop + na, ns); 679 680 if (start) 681 *start = address; 682 683 if (length) 684 *length = size; 685 686 return prop + na + ns; 687 } 688 EXPORT_SYMBOL(of_translate_dma_region); 689 690 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no, 691 u64 *size, unsigned int *flags) 692 { 693 const __be32 *prop; 694 unsigned int psize; 695 struct device_node *parent __free(device_node) = of_get_parent(dev); 696 const struct of_bus *bus; 697 int onesize, i, na, ns; 698 699 if (parent == NULL) 700 return NULL; 701 702 /* match the parent's bus type */ 703 bus = of_match_bus(parent); 704 if (!bus || (strcmp(bus->name, "pci") && (bar_no >= 0))) 705 return NULL; 706 707 /* Get "reg" or "assigned-addresses" property */ 708 prop = of_get_property(dev, bus->addresses, &psize); 709 if (prop == NULL) 710 return NULL; 711 psize /= 4; 712 713 bus->count_cells(dev, &na, &ns); 714 if (!OF_CHECK_ADDR_COUNT(na)) 715 return NULL; 716 717 onesize = na + ns; 718 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { 719 u32 val = be32_to_cpu(prop[0]); 720 /* PCI bus matches on BAR number instead of index */ 721 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) || 722 ((index >= 0) && (i == index))) { 723 if (size) 724 *size = of_read_number(prop + na, ns); 725 if (flags) 726 *flags = bus->get_flags(prop); 727 return prop; 728 } 729 } 730 return NULL; 731 } 732 EXPORT_SYMBOL(__of_get_address); 733 734 /** 735 * of_property_read_reg - Retrieve the specified "reg" entry index without translating 736 * @np: device tree node for which to retrieve "reg" from 737 * @idx: "reg" entry index to read 738 * @addr: return value for the untranslated address 739 * @size: return value for the entry size 740 * 741 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and 742 * size values filled in. 743 */ 744 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size) 745 { 746 const __be32 *prop = of_get_address(np, idx, size, NULL); 747 748 if (!prop) 749 return -EINVAL; 750 751 *addr = of_read_number(prop, of_n_addr_cells(np)); 752 753 return 0; 754 } 755 EXPORT_SYMBOL(of_property_read_reg); 756 757 static int parser_init(struct of_pci_range_parser *parser, 758 struct device_node *node, const char *name) 759 { 760 int rlen; 761 762 parser->node = node; 763 parser->pna = of_n_addr_cells(node); 764 parser->na = of_bus_n_addr_cells(node); 765 parser->ns = of_bus_n_size_cells(node); 766 parser->dma = !strcmp(name, "dma-ranges"); 767 parser->bus = of_match_bus(node); 768 769 parser->range = of_get_property(node, name, &rlen); 770 if (parser->range == NULL) 771 return -ENOENT; 772 773 parser->end = parser->range + rlen / sizeof(__be32); 774 775 return 0; 776 } 777 778 int of_pci_range_parser_init(struct of_pci_range_parser *parser, 779 struct device_node *node) 780 { 781 return parser_init(parser, node, "ranges"); 782 } 783 EXPORT_SYMBOL_GPL(of_pci_range_parser_init); 784 785 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, 786 struct device_node *node) 787 { 788 return parser_init(parser, node, "dma-ranges"); 789 } 790 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); 791 #define of_dma_range_parser_init of_pci_dma_range_parser_init 792 793 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, 794 struct of_pci_range *range) 795 { 796 int na = parser->na; 797 int ns = parser->ns; 798 int np = parser->pna + na + ns; 799 int busflag_na = parser->bus->flag_cells; 800 801 if (!range) 802 return NULL; 803 804 if (!parser->range || parser->range + np > parser->end) 805 return NULL; 806 807 range->flags = parser->bus->get_flags(parser->range); 808 809 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 810 811 if (parser->dma) 812 range->cpu_addr = of_translate_dma_address(parser->node, 813 parser->range + na); 814 else 815 range->cpu_addr = of_translate_address(parser->node, 816 parser->range + na); 817 818 range->parent_bus_addr = of_read_number(parser->range + na, parser->pna); 819 range->size = of_read_number(parser->range + parser->pna + na, ns); 820 821 parser->range += np; 822 823 /* Now consume following elements while they are contiguous */ 824 while (parser->range + np <= parser->end) { 825 u32 flags = 0; 826 u64 bus_addr, cpu_addr, size; 827 828 flags = parser->bus->get_flags(parser->range); 829 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 830 if (parser->dma) 831 cpu_addr = of_translate_dma_address(parser->node, 832 parser->range + na); 833 else 834 cpu_addr = of_translate_address(parser->node, 835 parser->range + na); 836 size = of_read_number(parser->range + parser->pna + na, ns); 837 838 if (flags != range->flags) 839 break; 840 if (bus_addr != range->bus_addr + range->size || 841 cpu_addr != range->cpu_addr + range->size) 842 break; 843 844 range->size += size; 845 parser->range += np; 846 } 847 848 return range; 849 } 850 EXPORT_SYMBOL_GPL(of_pci_range_parser_one); 851 852 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, 853 u64 size) 854 { 855 u64 taddr; 856 unsigned long port; 857 struct device_node *host; 858 859 taddr = __of_translate_address(dev, of_get_parent, 860 in_addr, "ranges", &host); 861 if (host) { 862 /* host-specific port access */ 863 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); 864 of_node_put(host); 865 } else { 866 /* memory-mapped I/O range */ 867 port = pci_address_to_pio(taddr); 868 } 869 870 if (port == (unsigned long)-1) 871 return OF_BAD_ADDR; 872 873 return port; 874 } 875 876 #ifdef CONFIG_HAS_DMA 877 /** 878 * of_dma_get_range - Get DMA range info and put it into a map array 879 * @np: device node to get DMA range info 880 * @map: dma range structure to return 881 * 882 * Look in bottom up direction for the first "dma-ranges" property 883 * and parse it. Put the information into a DMA offset map array. 884 * 885 * dma-ranges format: 886 * DMA addr (dma_addr) : naddr cells 887 * CPU addr (phys_addr_t) : pna cells 888 * size : nsize cells 889 * 890 * It returns -ENODEV if "dma-ranges" property was not found for this 891 * device in the DT. 892 */ 893 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map) 894 { 895 struct device_node *node __free(device_node) = of_node_get(np); 896 const __be32 *ranges = NULL; 897 bool found_dma_ranges = false; 898 struct of_range_parser parser; 899 struct of_range range; 900 struct bus_dma_region *r; 901 int len, num_ranges = 0; 902 903 while (node) { 904 ranges = of_get_property(node, "dma-ranges", &len); 905 906 /* Ignore empty ranges, they imply no translation required */ 907 if (ranges && len > 0) 908 break; 909 910 /* Once we find 'dma-ranges', then a missing one is an error */ 911 if (found_dma_ranges && !ranges) 912 return -ENODEV; 913 914 found_dma_ranges = true; 915 916 node = of_get_next_dma_parent(node); 917 } 918 919 if (!node || !ranges) { 920 pr_debug("no dma-ranges found for node(%pOF)\n", np); 921 return -ENODEV; 922 } 923 of_dma_range_parser_init(&parser, node); 924 for_each_of_range(&parser, &range) { 925 if (range.cpu_addr == OF_BAD_ADDR) { 926 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n", 927 range.bus_addr, node); 928 continue; 929 } 930 num_ranges++; 931 } 932 933 if (!num_ranges) 934 return -EINVAL; 935 936 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL); 937 if (!r) 938 return -ENOMEM; 939 940 /* 941 * Record all info in the generic DMA ranges array for struct device, 942 * returning an error if we don't find any parsable ranges. 943 */ 944 *map = r; 945 of_dma_range_parser_init(&parser, node); 946 for_each_of_range(&parser, &range) { 947 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", 948 range.bus_addr, range.cpu_addr, range.size); 949 if (range.cpu_addr == OF_BAD_ADDR) 950 continue; 951 r->cpu_start = range.cpu_addr; 952 r->dma_start = range.bus_addr; 953 r->size = range.size; 954 r++; 955 } 956 return 0; 957 } 958 #endif /* CONFIG_HAS_DMA */ 959 960 /** 961 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA 962 * @np: The node to start searching from or NULL to start from the root 963 * 964 * Gets the highest CPU physical address that is addressable by all DMA masters 965 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no 966 * DMA constrained device is found, it returns PHYS_ADDR_MAX. 967 */ 968 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np) 969 { 970 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX; 971 struct of_range_parser parser; 972 phys_addr_t subtree_max_addr; 973 struct device_node *child; 974 struct of_range range; 975 const __be32 *ranges; 976 u64 cpu_end = 0; 977 int len; 978 979 if (!np) 980 np = of_root; 981 982 ranges = of_get_property(np, "dma-ranges", &len); 983 if (ranges && len) { 984 of_dma_range_parser_init(&parser, np); 985 for_each_of_range(&parser, &range) 986 if (range.cpu_addr + range.size > cpu_end) 987 cpu_end = range.cpu_addr + range.size - 1; 988 989 if (max_cpu_addr > cpu_end) 990 max_cpu_addr = cpu_end; 991 } 992 993 for_each_available_child_of_node(np, child) { 994 subtree_max_addr = of_dma_get_max_cpu_address(child); 995 if (max_cpu_addr > subtree_max_addr) 996 max_cpu_addr = subtree_max_addr; 997 } 998 999 return max_cpu_addr; 1000 } 1001 1002 /** 1003 * of_dma_is_coherent - Check if device is coherent 1004 * @np: device node 1005 * 1006 * It returns true if "dma-coherent" property was found 1007 * for this device in the DT, or if DMA is coherent by 1008 * default for OF devices on the current platform and no 1009 * "dma-noncoherent" property was found for this device. 1010 */ 1011 bool of_dma_is_coherent(struct device_node *np) 1012 { 1013 struct device_node *node __free(device_node) = of_node_get(np); 1014 1015 while (node) { 1016 if (of_property_read_bool(node, "dma-coherent")) 1017 return true; 1018 1019 if (of_property_read_bool(node, "dma-noncoherent")) 1020 return false; 1021 1022 node = of_get_next_dma_parent(node); 1023 } 1024 return dma_default_coherent; 1025 } 1026 EXPORT_SYMBOL_GPL(of_dma_is_coherent); 1027 1028 /** 1029 * of_mmio_is_nonposted - Check if device uses non-posted MMIO 1030 * @np: device node 1031 * 1032 * Returns true if the "nonposted-mmio" property was found for 1033 * the device's bus. 1034 */ 1035 static bool of_mmio_is_nonposted(const struct device_node *np) 1036 { 1037 struct device_node *parent __free(device_node) = of_get_parent(np); 1038 1039 if (of_property_read_bool(np, "nonposted-mmio")) 1040 return true; 1041 1042 return parent && of_property_read_bool(parent, "nonposted-mmio"); 1043 } 1044 1045 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no, 1046 struct resource *r) 1047 { 1048 u64 taddr; 1049 const __be32 *addrp; 1050 u64 size; 1051 unsigned int flags; 1052 const char *name = NULL; 1053 1054 addrp = __of_get_address(dev, index, bar_no, &size, &flags); 1055 if (addrp == NULL) 1056 return -EINVAL; 1057 1058 /* Get optional "reg-names" property to add a name to a resource */ 1059 if (index >= 0) 1060 of_property_read_string_index(dev, "reg-names", index, &name); 1061 1062 if (flags & IORESOURCE_MEM) 1063 taddr = of_translate_address(dev, addrp); 1064 else if (flags & IORESOURCE_IO) 1065 taddr = of_translate_ioport(dev, addrp, size); 1066 else 1067 return -EINVAL; 1068 1069 if (taddr == OF_BAD_ADDR) 1070 return -EINVAL; 1071 memset(r, 0, sizeof(struct resource)); 1072 1073 if (of_mmio_is_nonposted(dev)) 1074 flags |= IORESOURCE_MEM_NONPOSTED; 1075 1076 r->flags = flags; 1077 r->name = name ? name : dev->full_name; 1078 1079 return __of_address_resource_bounds(r, taddr, size); 1080 } 1081 1082 /** 1083 * of_address_to_resource - Translate device tree address and return as resource 1084 * @dev: Caller's Device Node 1085 * @index: Index into the array 1086 * @r: Pointer to resource array 1087 * 1088 * Returns -EINVAL if the range cannot be converted to resource. 1089 * 1090 * Note that if your address is a PIO address, the conversion will fail if 1091 * the physical address can't be internally converted to an IO token with 1092 * pci_address_to_pio(), that is because it's either called too early or it 1093 * can't be matched to any host bridge IO space 1094 */ 1095 int of_address_to_resource(struct device_node *dev, int index, 1096 struct resource *r) 1097 { 1098 return __of_address_to_resource(dev, index, -1, r); 1099 } 1100 EXPORT_SYMBOL_GPL(of_address_to_resource); 1101 1102 int of_pci_address_to_resource(struct device_node *dev, int bar, 1103 struct resource *r) 1104 { 1105 1106 if (!IS_ENABLED(CONFIG_PCI)) 1107 return -ENOSYS; 1108 1109 return __of_address_to_resource(dev, -1, bar, r); 1110 } 1111 EXPORT_SYMBOL_GPL(of_pci_address_to_resource); 1112 1113 /** 1114 * of_iomap - Maps the memory mapped IO for a given device_node 1115 * @np: the device whose io range will be mapped 1116 * @index: index of the io range 1117 * 1118 * Returns a pointer to the mapped memory 1119 */ 1120 void __iomem *of_iomap(struct device_node *np, int index) 1121 { 1122 struct resource res; 1123 1124 if (of_address_to_resource(np, index, &res)) 1125 return NULL; 1126 1127 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1128 return ioremap_np(res.start, resource_size(&res)); 1129 else 1130 return ioremap(res.start, resource_size(&res)); 1131 } 1132 EXPORT_SYMBOL(of_iomap); 1133 1134 /* 1135 * of_io_request_and_map - Requests a resource and maps the memory mapped IO 1136 * for a given device_node 1137 * @device: the device whose io range will be mapped 1138 * @index: index of the io range 1139 * @name: name "override" for the memory region request or NULL 1140 * 1141 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded 1142 * error code on failure. Usage example: 1143 * 1144 * base = of_io_request_and_map(node, 0, "foo"); 1145 * if (IS_ERR(base)) 1146 * return PTR_ERR(base); 1147 */ 1148 void __iomem *of_io_request_and_map(struct device_node *np, int index, 1149 const char *name) 1150 { 1151 struct resource res; 1152 void __iomem *mem; 1153 1154 if (of_address_to_resource(np, index, &res)) 1155 return IOMEM_ERR_PTR(-EINVAL); 1156 1157 if (!name) 1158 name = res.name; 1159 if (!request_mem_region(res.start, resource_size(&res), name)) 1160 return IOMEM_ERR_PTR(-EBUSY); 1161 1162 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1163 mem = ioremap_np(res.start, resource_size(&res)); 1164 else 1165 mem = ioremap(res.start, resource_size(&res)); 1166 1167 if (!mem) { 1168 release_mem_region(res.start, resource_size(&res)); 1169 return IOMEM_ERR_PTR(-ENOMEM); 1170 } 1171 1172 return mem; 1173 } 1174 EXPORT_SYMBOL(of_io_request_and_map); 1175