1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/cleanup.h> 10 #include <linux/spinlock.h> 11 #include <linux/rbtree.h> 12 #include <linux/mutex.h> 13 #include <linux/wait.h> 14 #include <linux/list.h> 15 #include <linux/atomic.h> 16 #include <linux/xarray.h> 17 #include <linux/refcount.h> 18 #include <uapi/linux/btrfs_tree.h> 19 #include "locking.h" 20 #include "accessors.h" 21 22 struct extent_buffer; 23 struct btrfs_block_rsv; 24 struct btrfs_trans_handle; 25 struct btrfs_block_group; 26 27 /* Read ahead values for struct btrfs_path.reada */ 28 enum { 29 READA_NONE, 30 READA_BACK, 31 READA_FORWARD, 32 /* 33 * Similar to READA_FORWARD but unlike it: 34 * 35 * 1) It will trigger readahead even for leaves that are not close to 36 * each other on disk; 37 * 2) It also triggers readahead for nodes; 38 * 3) During a search, even when a node or leaf is already in memory, it 39 * will still trigger readahead for other nodes and leaves that follow 40 * it. 41 * 42 * This is meant to be used only when we know we are iterating over the 43 * entire tree or a very large part of it. 44 */ 45 READA_FORWARD_ALWAYS, 46 }; 47 48 /* 49 * btrfs_paths remember the path taken from the root down to the leaf. 50 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 51 * to any other levels that are present. 52 * 53 * The slots array records the index of the item or block pointer 54 * used while walking the tree. 55 */ 56 struct btrfs_path { 57 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 58 int slots[BTRFS_MAX_LEVEL]; 59 /* if there is real range locking, this locks field will change */ 60 u8 locks[BTRFS_MAX_LEVEL]; 61 u8 reada; 62 u8 lowest_level; 63 64 /* 65 * set by btrfs_split_item, tells search_slot to keep all locks 66 * and to force calls to keep space in the nodes 67 */ 68 bool search_for_split:1; 69 /* Keep some upper locks as we walk down. */ 70 bool keep_locks:1; 71 bool skip_locking:1; 72 bool search_commit_root:1; 73 bool need_commit_sem:1; 74 bool skip_release_on_error:1; 75 /* 76 * Indicate that new item (btrfs_search_slot) is extending already 77 * existing item and ins_len contains only the data size and not item 78 * header (ie. sizeof(struct btrfs_item) is not included). 79 */ 80 bool search_for_extension:1; 81 /* Stop search if any locks need to be taken (for read) */ 82 bool nowait:1; 83 }; 84 85 #define BTRFS_PATH_AUTO_FREE(path_name) \ 86 struct btrfs_path *path_name __free(btrfs_free_path) = NULL 87 88 /* 89 * The state of btrfs root 90 */ 91 enum { 92 /* 93 * btrfs_record_root_in_trans is a multi-step process, and it can race 94 * with the balancing code. But the race is very small, and only the 95 * first time the root is added to each transaction. So IN_TRANS_SETUP 96 * is used to tell us when more checks are required 97 */ 98 BTRFS_ROOT_IN_TRANS_SETUP, 99 100 /* 101 * Set if tree blocks of this root can be shared by other roots. 102 * Only subvolume trees and their reloc trees have this bit set. 103 * Conflicts with TRACK_DIRTY bit. 104 * 105 * This affects two things: 106 * 107 * - How balance works 108 * For shareable roots, we need to use reloc tree and do path 109 * replacement for balance, and need various pre/post hooks for 110 * snapshot creation to handle them. 111 * 112 * While for non-shareable trees, we just simply do a tree search 113 * with COW. 114 * 115 * - How dirty roots are tracked 116 * For shareable roots, btrfs_record_root_in_trans() is needed to 117 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 118 * don't need to set this manually. 119 */ 120 BTRFS_ROOT_SHAREABLE, 121 BTRFS_ROOT_TRACK_DIRTY, 122 BTRFS_ROOT_IN_RADIX, 123 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 124 BTRFS_ROOT_DEFRAG_RUNNING, 125 BTRFS_ROOT_FORCE_COW, 126 BTRFS_ROOT_MULTI_LOG_TASKS, 127 BTRFS_ROOT_DIRTY, 128 BTRFS_ROOT_DELETING, 129 130 /* 131 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 132 * 133 * Set for the subvolume tree owning the reloc tree. 134 */ 135 BTRFS_ROOT_DEAD_RELOC_TREE, 136 /* Mark dead root stored on device whose cleanup needs to be resumed */ 137 BTRFS_ROOT_DEAD_TREE, 138 /* The root has a log tree. Used for subvolume roots and the tree root. */ 139 BTRFS_ROOT_HAS_LOG_TREE, 140 /* Qgroup flushing is in progress */ 141 BTRFS_ROOT_QGROUP_FLUSHING, 142 /* We started the orphan cleanup for this root. */ 143 BTRFS_ROOT_ORPHAN_CLEANUP, 144 /* This root has a drop operation that was started previously. */ 145 BTRFS_ROOT_UNFINISHED_DROP, 146 /* This reloc root needs to have its buffers lockdep class reset. */ 147 BTRFS_ROOT_RESET_LOCKDEP_CLASS, 148 }; 149 150 /* 151 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 152 * code. For detail check comment in fs/btrfs/qgroup.c. 153 */ 154 struct btrfs_qgroup_swapped_blocks { 155 spinlock_t lock; 156 /* RM_EMPTY_ROOT() of above blocks[] */ 157 bool swapped; 158 struct rb_root blocks[BTRFS_MAX_LEVEL]; 159 }; 160 161 /* 162 * in ram representation of the tree. extent_root is used for all allocations 163 * and for the extent tree extent_root root. 164 */ 165 struct btrfs_root { 166 struct rb_node rb_node; 167 168 struct extent_buffer *node; 169 170 struct extent_buffer *commit_root; 171 struct btrfs_root *log_root; 172 struct btrfs_root *reloc_root; 173 174 unsigned long state; 175 struct btrfs_root_item root_item; 176 struct btrfs_key root_key; 177 struct btrfs_fs_info *fs_info; 178 struct extent_io_tree dirty_log_pages; 179 180 struct mutex objectid_mutex; 181 182 spinlock_t accounting_lock; 183 struct btrfs_block_rsv *block_rsv; 184 185 struct mutex log_mutex; 186 wait_queue_head_t log_writer_wait; 187 wait_queue_head_t log_commit_wait[2]; 188 struct list_head log_ctxs[2]; 189 /* Used only for log trees of subvolumes, not for the log root tree */ 190 atomic_t log_writers; 191 atomic_t log_commit[2]; 192 /* Used only for log trees of subvolumes, not for the log root tree */ 193 atomic_t log_batch; 194 /* 195 * Protected by the 'log_mutex' lock but can be read without holding 196 * that lock to avoid unnecessary lock contention, in which case it 197 * should be read using btrfs_get_root_log_transid() except if it's a 198 * log tree in which case it can be directly accessed. Updates to this 199 * field should always use btrfs_set_root_log_transid(), except for log 200 * trees where the field can be updated directly. 201 */ 202 int log_transid; 203 /* No matter the commit succeeds or not*/ 204 int log_transid_committed; 205 /* 206 * Just be updated when the commit succeeds. Use 207 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit() 208 * to access this field. 209 */ 210 int last_log_commit; 211 pid_t log_start_pid; 212 213 u64 last_trans; 214 215 u64 free_objectid; 216 217 struct btrfs_key defrag_progress; 218 struct btrfs_key defrag_max; 219 220 /* The dirty list is only used by non-shareable roots */ 221 struct list_head dirty_list; 222 223 struct list_head root_list; 224 225 /* Xarray that keeps track of in-memory inodes. */ 226 struct xarray inodes; 227 228 /* Xarray that keeps track of delayed nodes of every inode. */ 229 struct xarray delayed_nodes; 230 /* 231 * right now this just gets used so that a root has its own devid 232 * for stat. It may be used for more later 233 */ 234 dev_t anon_dev; 235 236 spinlock_t root_item_lock; 237 refcount_t refs; 238 239 struct mutex delalloc_mutex; 240 spinlock_t delalloc_lock; 241 /* 242 * all of the inodes that have delalloc bytes. It is possible for 243 * this list to be empty even when there is still dirty data=ordered 244 * extents waiting to finish IO. 245 */ 246 struct list_head delalloc_inodes; 247 struct list_head delalloc_root; 248 u64 nr_delalloc_inodes; 249 250 struct mutex ordered_extent_mutex; 251 /* 252 * this is used by the balancing code to wait for all the pending 253 * ordered extents 254 */ 255 spinlock_t ordered_extent_lock; 256 257 /* 258 * all of the data=ordered extents pending writeback 259 * these can span multiple transactions and basically include 260 * every dirty data page that isn't from nodatacow 261 */ 262 struct list_head ordered_extents; 263 struct list_head ordered_root; 264 u64 nr_ordered_extents; 265 266 /* 267 * Not empty if this subvolume root has gone through tree block swap 268 * (relocation) 269 * 270 * Will be used by reloc_control::dirty_subvol_roots. 271 */ 272 struct list_head reloc_dirty_list; 273 274 /* 275 * Number of currently running SEND ioctls to prevent 276 * manipulation with the read-only status via SUBVOL_SETFLAGS 277 */ 278 int send_in_progress; 279 /* 280 * Number of currently running deduplication operations that have a 281 * destination inode belonging to this root. Protected by the lock 282 * root_item_lock. 283 */ 284 int dedupe_in_progress; 285 /* For exclusion of snapshot creation and nocow writes */ 286 struct btrfs_drew_lock snapshot_lock; 287 288 atomic_t snapshot_force_cow; 289 290 /* For qgroup metadata reserved space */ 291 spinlock_t qgroup_meta_rsv_lock; 292 u64 qgroup_meta_rsv_pertrans; 293 u64 qgroup_meta_rsv_prealloc; 294 wait_queue_head_t qgroup_flush_wait; 295 296 /* Number of active swapfiles */ 297 atomic_t nr_swapfiles; 298 299 /* Record pairs of swapped blocks for qgroup */ 300 struct btrfs_qgroup_swapped_blocks swapped_blocks; 301 302 /* Used only by log trees, when logging csum items */ 303 struct extent_io_tree log_csum_range; 304 305 /* Used in simple quotas, track root during relocation. */ 306 u64 relocation_src_root; 307 308 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 309 u64 alloc_bytenr; 310 #endif 311 312 #ifdef CONFIG_BTRFS_DEBUG 313 struct list_head leak_list; 314 #endif 315 }; 316 317 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 318 { 319 /* Byte-swap the constant at compile time, root_item::flags is LE */ 320 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 321 } 322 323 static inline bool btrfs_root_dead(const struct btrfs_root *root) 324 { 325 /* Byte-swap the constant at compile time, root_item::flags is LE */ 326 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 327 } 328 329 static inline u64 btrfs_root_id(const struct btrfs_root *root) 330 { 331 return root->root_key.objectid; 332 } 333 334 static inline int btrfs_get_root_log_transid(const struct btrfs_root *root) 335 { 336 return READ_ONCE(root->log_transid); 337 } 338 339 static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid) 340 { 341 WRITE_ONCE(root->log_transid, log_transid); 342 } 343 344 static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root) 345 { 346 return READ_ONCE(root->last_log_commit); 347 } 348 349 static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id) 350 { 351 WRITE_ONCE(root->last_log_commit, commit_id); 352 } 353 354 static inline u64 btrfs_get_root_last_trans(const struct btrfs_root *root) 355 { 356 return READ_ONCE(root->last_trans); 357 } 358 359 static inline void btrfs_set_root_last_trans(struct btrfs_root *root, u64 transid) 360 { 361 WRITE_ONCE(root->last_trans, transid); 362 } 363 364 /* 365 * Return the generation this root started with. 366 * 367 * Every normal root that is created with root->root_key.offset set to it's 368 * originating generation. If it is a snapshot it is the generation when the 369 * snapshot was created. 370 * 371 * However for TREE_RELOC roots root_key.offset is the objectid of the owning 372 * tree root. Thankfully we copy the root item of the owning tree root, which 373 * has it's last_snapshot set to what we would have root_key.offset set to, so 374 * return that if this is a TREE_RELOC root. 375 */ 376 static inline u64 btrfs_root_origin_generation(const struct btrfs_root *root) 377 { 378 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 379 return btrfs_root_last_snapshot(&root->root_item); 380 return root->root_key.offset; 381 } 382 383 /* 384 * Structure that conveys information about an extent that is going to replace 385 * all the extents in a file range. 386 */ 387 struct btrfs_replace_extent_info { 388 u64 disk_offset; 389 u64 disk_len; 390 u64 data_offset; 391 u64 data_len; 392 u64 file_offset; 393 /* Pointer to a file extent item of type regular or prealloc. */ 394 char *extent_buf; 395 /* 396 * Set to true when attempting to replace a file range with a new extent 397 * described by this structure, set to false when attempting to clone an 398 * existing extent into a file range. 399 */ 400 bool is_new_extent; 401 /* Indicate if we should update the inode's mtime and ctime. */ 402 bool update_times; 403 /* Meaningful only if is_new_extent is true. */ 404 int qgroup_reserved; 405 /* 406 * Meaningful only if is_new_extent is true. 407 * Used to track how many extent items we have already inserted in a 408 * subvolume tree that refer to the extent described by this structure, 409 * so that we know when to create a new delayed ref or update an existing 410 * one. 411 */ 412 int insertions; 413 }; 414 415 /* Arguments for btrfs_drop_extents() */ 416 struct btrfs_drop_extents_args { 417 /* Input parameters */ 418 419 /* 420 * If NULL, btrfs_drop_extents() will allocate and free its own path. 421 * If 'replace_extent' is true, this must not be NULL. Also the path 422 * is always released except if 'replace_extent' is true and 423 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 424 * the path is kept locked. 425 */ 426 struct btrfs_path *path; 427 /* Start offset of the range to drop extents from */ 428 u64 start; 429 /* End (exclusive, last byte + 1) of the range to drop extents from */ 430 u64 end; 431 /* If true drop all the extent maps in the range */ 432 bool drop_cache; 433 /* 434 * If true it means we want to insert a new extent after dropping all 435 * the extents in the range. If this is true, the 'extent_item_size' 436 * parameter must be set as well and the 'extent_inserted' field will 437 * be set to true by btrfs_drop_extents() if it could insert the new 438 * extent. 439 * Note: when this is set to true the path must not be NULL. 440 */ 441 bool replace_extent; 442 /* 443 * Used if 'replace_extent' is true. Size of the file extent item to 444 * insert after dropping all existing extents in the range 445 */ 446 u32 extent_item_size; 447 448 /* Output parameters */ 449 450 /* 451 * Set to the minimum between the input parameter 'end' and the end 452 * (exclusive, last byte + 1) of the last dropped extent. This is always 453 * set even if btrfs_drop_extents() returns an error. 454 */ 455 u64 drop_end; 456 /* 457 * The number of allocated bytes found in the range. This can be smaller 458 * than the range's length when there are holes in the range. 459 */ 460 u64 bytes_found; 461 /* 462 * Only set if 'replace_extent' is true. Set to true if we were able 463 * to insert a replacement extent after dropping all extents in the 464 * range, otherwise set to false by btrfs_drop_extents(). 465 * Also, if btrfs_drop_extents() has set this to true it means it 466 * returned with the path locked, otherwise if it has set this to 467 * false it has returned with the path released. 468 */ 469 bool extent_inserted; 470 }; 471 472 struct btrfs_file_private { 473 void *filldir_buf; 474 u64 last_index; 475 struct extent_state *llseek_cached_state; 476 /* Task that allocated this structure. */ 477 struct task_struct *owner_task; 478 }; 479 480 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 481 { 482 return info->nodesize - sizeof(struct btrfs_header); 483 } 484 485 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 486 { 487 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 488 } 489 490 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 491 { 492 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 493 } 494 495 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 496 { 497 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 498 } 499 500 int __init btrfs_ctree_init(void); 501 void __cold btrfs_ctree_exit(void); 502 503 int btrfs_bin_search(const struct extent_buffer *eb, int first_slot, 504 const struct btrfs_key *key, int *slot); 505 506 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 507 508 #ifdef __LITTLE_ENDIAN 509 510 /* 511 * Compare two keys, on little-endian the disk order is same as CPU order and 512 * we can avoid the conversion. 513 */ 514 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key, 515 const struct btrfs_key *k2) 516 { 517 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 518 519 return btrfs_comp_cpu_keys(k1, k2); 520 } 521 522 #else 523 524 /* Compare two keys in a memcmp fashion. */ 525 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk, 526 const struct btrfs_key *k2) 527 { 528 struct btrfs_key k1; 529 530 btrfs_disk_key_to_cpu(&k1, disk); 531 532 return btrfs_comp_cpu_keys(&k1, k2); 533 } 534 535 #endif 536 537 int btrfs_previous_item(struct btrfs_root *root, 538 struct btrfs_path *path, u64 min_objectid, 539 int type); 540 int btrfs_previous_extent_item(struct btrfs_root *root, 541 struct btrfs_path *path, u64 min_objectid); 542 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 543 const struct btrfs_path *path, 544 const struct btrfs_key *new_key); 545 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 546 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 547 struct btrfs_key *key, int lowest_level, 548 u64 min_trans); 549 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 550 struct btrfs_path *path, 551 u64 min_trans); 552 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 553 int slot); 554 555 int btrfs_cow_block(struct btrfs_trans_handle *trans, 556 struct btrfs_root *root, struct extent_buffer *buf, 557 struct extent_buffer *parent, int parent_slot, 558 struct extent_buffer **cow_ret, 559 enum btrfs_lock_nesting nest); 560 int btrfs_force_cow_block(struct btrfs_trans_handle *trans, 561 struct btrfs_root *root, 562 struct extent_buffer *buf, 563 struct extent_buffer *parent, int parent_slot, 564 struct extent_buffer **cow_ret, 565 u64 search_start, u64 empty_size, 566 enum btrfs_lock_nesting nest); 567 int btrfs_copy_root(struct btrfs_trans_handle *trans, 568 struct btrfs_root *root, 569 struct extent_buffer *buf, 570 struct extent_buffer **cow_ret, u64 new_root_objectid); 571 bool btrfs_block_can_be_shared(const struct btrfs_trans_handle *trans, 572 const struct btrfs_root *root, 573 const struct extent_buffer *buf); 574 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 575 struct btrfs_path *path, int level, int slot); 576 void btrfs_extend_item(struct btrfs_trans_handle *trans, 577 const struct btrfs_path *path, u32 data_size); 578 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 579 const struct btrfs_path *path, u32 new_size, int from_end); 580 int btrfs_split_item(struct btrfs_trans_handle *trans, 581 struct btrfs_root *root, 582 struct btrfs_path *path, 583 const struct btrfs_key *new_key, 584 unsigned long split_offset); 585 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 586 struct btrfs_root *root, 587 struct btrfs_path *path, 588 const struct btrfs_key *new_key); 589 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 590 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 591 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 592 const struct btrfs_key *key, struct btrfs_path *p, 593 int ins_len, int cow); 594 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 595 struct btrfs_path *p, u64 time_seq); 596 int btrfs_search_slot_for_read(struct btrfs_root *root, 597 const struct btrfs_key *key, 598 struct btrfs_path *p, int find_higher, 599 int return_any); 600 void btrfs_release_path(struct btrfs_path *p); 601 struct btrfs_path *btrfs_alloc_path(void); 602 void btrfs_free_path(struct btrfs_path *p); 603 DEFINE_FREE(btrfs_free_path, struct btrfs_path *, btrfs_free_path(_T)) 604 605 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 606 struct btrfs_path *path, int slot, int nr); 607 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 608 struct btrfs_root *root, 609 struct btrfs_path *path) 610 { 611 return btrfs_del_items(trans, root, path, path->slots[0], 1); 612 } 613 614 /* 615 * Describes a batch of items to insert in a btree. This is used by 616 * btrfs_insert_empty_items(). 617 */ 618 struct btrfs_item_batch { 619 /* 620 * Pointer to an array containing the keys of the items to insert (in 621 * sorted order). 622 */ 623 const struct btrfs_key *keys; 624 /* Pointer to an array containing the data size for each item to insert. */ 625 const u32 *data_sizes; 626 /* 627 * The sum of data sizes for all items. The caller can compute this while 628 * setting up the data_sizes array, so it ends up being more efficient 629 * than having btrfs_insert_empty_items() or setup_item_for_insert() 630 * doing it, as it would avoid an extra loop over a potentially large 631 * array, and in the case of setup_item_for_insert(), we would be doing 632 * it while holding a write lock on a leaf and often on upper level nodes 633 * too, unnecessarily increasing the size of a critical section. 634 */ 635 u32 total_data_size; 636 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 637 int nr; 638 }; 639 640 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans, 641 struct btrfs_root *root, 642 struct btrfs_path *path, 643 const struct btrfs_key *key, 644 u32 data_size); 645 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 646 const struct btrfs_key *key, void *data, u32 data_size); 647 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 648 struct btrfs_root *root, 649 struct btrfs_path *path, 650 const struct btrfs_item_batch *batch); 651 652 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 653 struct btrfs_root *root, 654 struct btrfs_path *path, 655 const struct btrfs_key *key, 656 u32 data_size) 657 { 658 struct btrfs_item_batch batch; 659 660 batch.keys = key; 661 batch.data_sizes = &data_size; 662 batch.total_data_size = data_size; 663 batch.nr = 1; 664 665 return btrfs_insert_empty_items(trans, root, path, &batch); 666 } 667 668 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 669 u64 time_seq); 670 671 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 672 struct btrfs_path *path); 673 674 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 675 struct btrfs_path *path); 676 677 /* 678 * Search in @root for a given @key, and store the slot found in @found_key. 679 * 680 * @root: The root node of the tree. 681 * @key: The key we are looking for. 682 * @found_key: Will hold the found item. 683 * @path: Holds the current slot/leaf. 684 * @iter_ret: Contains the value returned from btrfs_search_slot or 685 * btrfs_get_next_valid_item, whichever was executed last. 686 * 687 * The @iter_ret is an output variable that will contain the return value of 688 * btrfs_search_slot, if it encountered an error, or the value returned from 689 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid 690 * slot was found, 1 if there were no more leaves, and <0 if there was an error. 691 * 692 * It's recommended to use a separate variable for iter_ret and then use it to 693 * set the function return value so there's no confusion of the 0/1/errno 694 * values stemming from btrfs_search_slot. 695 */ 696 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \ 697 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \ 698 (iter_ret) >= 0 && \ 699 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ 700 (path)->slots[0]++ \ 701 ) 702 703 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq); 704 705 /* 706 * Search the tree again to find a leaf with greater keys. 707 * 708 * Returns 0 if it found something or 1 if there are no greater leaves. 709 * Returns < 0 on error. 710 */ 711 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 712 { 713 return btrfs_next_old_leaf(root, path, 0); 714 } 715 716 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 717 { 718 return btrfs_next_old_item(root, p, 0); 719 } 720 int btrfs_leaf_free_space(const struct extent_buffer *leaf); 721 722 static inline bool btrfs_is_fstree(u64 rootid) 723 { 724 if (rootid == BTRFS_FS_TREE_OBJECTID) 725 return true; 726 727 if ((s64)rootid < (s64)BTRFS_FIRST_FREE_OBJECTID) 728 return false; 729 730 if (btrfs_qgroup_level(rootid) != 0) 731 return false; 732 733 return true; 734 } 735 736 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 737 { 738 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 739 } 740 741 #endif 742