/linux/virt/lib/ |
H A D | Kconfig | f73f8173126ba68eb1c42bd9a234a51d78576ca6 Fri Sep 18 16:29:39 CEST 2015 Alex Williamson <alex.williamson@redhat.com> virt: IRQ bypass manager
When a physical I/O device is assigned to a virtual machine through facilities like VFIO and KVM, the interrupt for the device generally bounces through the host system before being injected into the VM. However, hardware technologies exist that often allow the host to be bypassed for some of these scenarios. Intel Posted Interrupts allow the specified physical edge interrupts to be directly injected into a guest when delivered to a physical processor while the vCPU is running. ARM IRQ Forwarding allows forwarded physical interrupts to be directly deactivated by the guest.
The IRQ bypass manager here is meant to provide the shim to connect interrupt producers, generally the host physical device driver, with interrupt consumers, generally the hypervisor, in order to configure these bypass mechanism. To do this, we base the connection on a shared, opaque token. For KVM-VFIO this is expected to be an eventfd_ctx since this is the connection we already use to connect an eventfd to an irqfd on the in-kernel path. When a producer and consumer with matching tokens is found, callbacks via both registered participants allow the bypass facilities to be automatically enabled.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Tested-by: Eric Auger <eric.auger@linaro.org> Tested-by: Feng Wu <feng.wu@intel.com> Signed-off-by: Feng Wu <feng.wu@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
H A D | Makefile | f73f8173126ba68eb1c42bd9a234a51d78576ca6 Fri Sep 18 16:29:39 CEST 2015 Alex Williamson <alex.williamson@redhat.com> virt: IRQ bypass manager
When a physical I/O device is assigned to a virtual machine through facilities like VFIO and KVM, the interrupt for the device generally bounces through the host system before being injected into the VM. However, hardware technologies exist that often allow the host to be bypassed for some of these scenarios. Intel Posted Interrupts allow the specified physical edge interrupts to be directly injected into a guest when delivered to a physical processor while the vCPU is running. ARM IRQ Forwarding allows forwarded physical interrupts to be directly deactivated by the guest.
The IRQ bypass manager here is meant to provide the shim to connect interrupt producers, generally the host physical device driver, with interrupt consumers, generally the hypervisor, in order to configure these bypass mechanism. To do this, we base the connection on a shared, opaque token. For KVM-VFIO this is expected to be an eventfd_ctx since this is the connection we already use to connect an eventfd to an irqfd on the in-kernel path. When a producer and consumer with matching tokens is found, callbacks via both registered participants allow the bypass facilities to be automatically enabled.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Tested-by: Eric Auger <eric.auger@linaro.org> Tested-by: Feng Wu <feng.wu@intel.com> Signed-off-by: Feng Wu <feng.wu@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
H A D | irqbypass.c | f73f8173126ba68eb1c42bd9a234a51d78576ca6 Fri Sep 18 16:29:39 CEST 2015 Alex Williamson <alex.williamson@redhat.com> virt: IRQ bypass manager
When a physical I/O device is assigned to a virtual machine through facilities like VFIO and KVM, the interrupt for the device generally bounces through the host system before being injected into the VM. However, hardware technologies exist that often allow the host to be bypassed for some of these scenarios. Intel Posted Interrupts allow the specified physical edge interrupts to be directly injected into a guest when delivered to a physical processor while the vCPU is running. ARM IRQ Forwarding allows forwarded physical interrupts to be directly deactivated by the guest.
The IRQ bypass manager here is meant to provide the shim to connect interrupt producers, generally the host physical device driver, with interrupt consumers, generally the hypervisor, in order to configure these bypass mechanism. To do this, we base the connection on a shared, opaque token. For KVM-VFIO this is expected to be an eventfd_ctx since this is the connection we already use to connect an eventfd to an irqfd on the in-kernel path. When a producer and consumer with matching tokens is found, callbacks via both registered participants allow the bypass facilities to be automatically enabled.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Tested-by: Eric Auger <eric.auger@linaro.org> Tested-by: Feng Wu <feng.wu@intel.com> Signed-off-by: Feng Wu <feng.wu@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
/linux/include/linux/ |
H A D | irqbypass.h | f73f8173126ba68eb1c42bd9a234a51d78576ca6 Fri Sep 18 16:29:39 CEST 2015 Alex Williamson <alex.williamson@redhat.com> virt: IRQ bypass manager
When a physical I/O device is assigned to a virtual machine through facilities like VFIO and KVM, the interrupt for the device generally bounces through the host system before being injected into the VM. However, hardware technologies exist that often allow the host to be bypassed for some of these scenarios. Intel Posted Interrupts allow the specified physical edge interrupts to be directly injected into a guest when delivered to a physical processor while the vCPU is running. ARM IRQ Forwarding allows forwarded physical interrupts to be directly deactivated by the guest.
The IRQ bypass manager here is meant to provide the shim to connect interrupt producers, generally the host physical device driver, with interrupt consumers, generally the hypervisor, in order to configure these bypass mechanism. To do this, we base the connection on a shared, opaque token. For KVM-VFIO this is expected to be an eventfd_ctx since this is the connection we already use to connect an eventfd to an irqfd on the in-kernel path. When a producer and consumer with matching tokens is found, callbacks via both registered participants allow the bypass facilities to be automatically enabled.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Tested-by: Eric Auger <eric.auger@linaro.org> Tested-by: Feng Wu <feng.wu@intel.com> Signed-off-by: Feng Wu <feng.wu@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
/linux/ |
H A D | MAINTAINERS | diff f73f8173126ba68eb1c42bd9a234a51d78576ca6 Fri Sep 18 16:29:39 CEST 2015 Alex Williamson <alex.williamson@redhat.com> virt: IRQ bypass manager
When a physical I/O device is assigned to a virtual machine through facilities like VFIO and KVM, the interrupt for the device generally bounces through the host system before being injected into the VM. However, hardware technologies exist that often allow the host to be bypassed for some of these scenarios. Intel Posted Interrupts allow the specified physical edge interrupts to be directly injected into a guest when delivered to a physical processor while the vCPU is running. ARM IRQ Forwarding allows forwarded physical interrupts to be directly deactivated by the guest.
The IRQ bypass manager here is meant to provide the shim to connect interrupt producers, generally the host physical device driver, with interrupt consumers, generally the hypervisor, in order to configure these bypass mechanism. To do this, we base the connection on a shared, opaque token. For KVM-VFIO this is expected to be an eventfd_ctx since this is the connection we already use to connect an eventfd to an irqfd on the in-kernel path. When a producer and consumer with matching tokens is found, callbacks via both registered participants allow the bypass facilities to be automatically enabled.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Tested-by: Eric Auger <eric.auger@linaro.org> Tested-by: Feng Wu <feng.wu@intel.com> Signed-off-by: Feng Wu <feng.wu@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|