1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Xilinx Zynq MPSoC Firmware layer
4 *
5 * Copyright (C) 2014-2022 Xilinx, Inc.
6 * Copyright (C) 2022 - 2025 Advanced Micro Devices, Inc.
7 *
8 * Michal Simek <michal.simek@amd.com>
9 * Davorin Mista <davorin.mista@aggios.com>
10 * Jolly Shah <jollys@xilinx.com>
11 * Rajan Vaja <rajanv@xilinx.com>
12 */
13
14 #include <linux/arm-smccc.h>
15 #include <linux/compiler.h>
16 #include <linux/device.h>
17 #include <linux/init.h>
18 #include <linux/mfd/core.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_domain.h>
24 #include <linux/slab.h>
25 #include <linux/uaccess.h>
26 #include <linux/hashtable.h>
27
28 #include <linux/firmware/xlnx-zynqmp.h>
29 #include <linux/firmware/xlnx-event-manager.h>
30 #include "zynqmp-debug.h"
31
32 /* Max HashMap Order for PM API feature check (1<<7 = 128) */
33 #define PM_API_FEATURE_CHECK_MAX_ORDER 7
34
35 /* CRL registers and bitfields */
36 #define CRL_APB_BASE 0xFF5E0000U
37 /* BOOT_PIN_CTRL- Used to control the mode pins after boot */
38 #define CRL_APB_BOOT_PIN_CTRL (CRL_APB_BASE + (0x250U))
39 /* BOOT_PIN_CTRL_MASK- out_val[11:8], out_en[3:0] */
40 #define CRL_APB_BOOTPIN_CTRL_MASK 0xF0FU
41
42 /* IOCTL/QUERY feature payload size */
43 #define FEATURE_PAYLOAD_SIZE 2
44
45 static bool feature_check_enabled;
46 static DEFINE_HASHTABLE(pm_api_features_map, PM_API_FEATURE_CHECK_MAX_ORDER);
47 static u32 ioctl_features[FEATURE_PAYLOAD_SIZE];
48 static u32 query_features[FEATURE_PAYLOAD_SIZE];
49
50 static u32 sip_svc_version;
51 static struct platform_device *em_dev;
52
53 /**
54 * struct zynqmp_devinfo - Structure for Zynqmp device instance
55 * @dev: Device Pointer
56 * @feature_conf_id: Feature conf id
57 */
58 struct zynqmp_devinfo {
59 struct device *dev;
60 u32 feature_conf_id;
61 };
62
63 /**
64 * struct pm_api_feature_data - PM API Feature data
65 * @pm_api_id: PM API Id, used as key to index into hashmap
66 * @feature_status: status of PM API feature: valid, invalid
67 * @hentry: hlist_node that hooks this entry into hashtable
68 */
69 struct pm_api_feature_data {
70 u32 pm_api_id;
71 int feature_status;
72 struct hlist_node hentry;
73 };
74
75 struct platform_fw_data {
76 /*
77 * Family code for platform.
78 */
79 const u32 family_code;
80 };
81
82 static struct platform_fw_data *active_platform_fw_data;
83
84 static const struct mfd_cell firmware_devs[] = {
85 {
86 .name = "zynqmp_power_controller",
87 },
88 };
89
90 /**
91 * zynqmp_pm_ret_code() - Convert PMU-FW error codes to Linux error codes
92 * @ret_status: PMUFW return code
93 *
94 * Return: corresponding Linux error code
95 */
zynqmp_pm_ret_code(u32 ret_status)96 static int zynqmp_pm_ret_code(u32 ret_status)
97 {
98 switch (ret_status) {
99 case XST_PM_SUCCESS:
100 case XST_PM_DOUBLE_REQ:
101 return 0;
102 case XST_PM_NO_FEATURE:
103 return -ENOTSUPP;
104 case XST_PM_INVALID_VERSION:
105 return -EOPNOTSUPP;
106 case XST_PM_NO_ACCESS:
107 return -EACCES;
108 case XST_PM_ABORT_SUSPEND:
109 return -ECANCELED;
110 case XST_PM_MULT_USER:
111 return -EUSERS;
112 case XST_PM_INTERNAL:
113 case XST_PM_CONFLICT:
114 case XST_PM_INVALID_NODE:
115 case XST_PM_INVALID_CRC:
116 default:
117 return -EINVAL;
118 }
119 }
120
do_fw_call_fail(u32 * ret_payload,u32 num_args,...)121 static noinline int do_fw_call_fail(u32 *ret_payload, u32 num_args, ...)
122 {
123 return -ENODEV;
124 }
125
126 /*
127 * PM function call wrapper
128 * Invoke do_fw_call_smc or do_fw_call_hvc, depending on the configuration
129 */
130 static int (*do_fw_call)(u32 *ret_payload, u32, ...) = do_fw_call_fail;
131
132 /**
133 * do_fw_call_smc() - Call system-level platform management layer (SMC)
134 * @num_args: Number of variable arguments should be <= 8
135 * @ret_payload: Returned value array
136 *
137 * Invoke platform management function via SMC call (no hypervisor present).
138 *
139 * Return: Returns status, either success or error+reason
140 */
do_fw_call_smc(u32 * ret_payload,u32 num_args,...)141 static noinline int do_fw_call_smc(u32 *ret_payload, u32 num_args, ...)
142 {
143 struct arm_smccc_res res;
144 u64 args[8] = {0};
145 va_list arg_list;
146 u8 i;
147
148 if (num_args > 8)
149 return -EINVAL;
150
151 va_start(arg_list, num_args);
152
153 for (i = 0; i < num_args; i++)
154 args[i] = va_arg(arg_list, u64);
155
156 va_end(arg_list);
157
158 arm_smccc_smc(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], &res);
159
160 if (ret_payload) {
161 ret_payload[0] = lower_32_bits(res.a0);
162 ret_payload[1] = upper_32_bits(res.a0);
163 ret_payload[2] = lower_32_bits(res.a1);
164 ret_payload[3] = upper_32_bits(res.a1);
165 ret_payload[4] = lower_32_bits(res.a2);
166 ret_payload[5] = upper_32_bits(res.a2);
167 ret_payload[6] = lower_32_bits(res.a3);
168 }
169
170 return zynqmp_pm_ret_code((enum pm_ret_status)res.a0);
171 }
172
173 /**
174 * do_fw_call_hvc() - Call system-level platform management layer (HVC)
175 * @num_args: Number of variable arguments should be <= 8
176 * @ret_payload: Returned value array
177 *
178 * Invoke platform management function via HVC
179 * HVC-based for communication through hypervisor
180 * (no direct communication with ATF).
181 *
182 * Return: Returns status, either success or error+reason
183 */
do_fw_call_hvc(u32 * ret_payload,u32 num_args,...)184 static noinline int do_fw_call_hvc(u32 *ret_payload, u32 num_args, ...)
185 {
186 struct arm_smccc_res res;
187 u64 args[8] = {0};
188 va_list arg_list;
189 u8 i;
190
191 if (num_args > 8)
192 return -EINVAL;
193
194 va_start(arg_list, num_args);
195
196 for (i = 0; i < num_args; i++)
197 args[i] = va_arg(arg_list, u64);
198
199 va_end(arg_list);
200
201 arm_smccc_hvc(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], &res);
202
203 if (ret_payload) {
204 ret_payload[0] = lower_32_bits(res.a0);
205 ret_payload[1] = upper_32_bits(res.a0);
206 ret_payload[2] = lower_32_bits(res.a1);
207 ret_payload[3] = upper_32_bits(res.a1);
208 ret_payload[4] = lower_32_bits(res.a2);
209 ret_payload[5] = upper_32_bits(res.a2);
210 ret_payload[6] = lower_32_bits(res.a3);
211 }
212
213 return zynqmp_pm_ret_code((enum pm_ret_status)res.a0);
214 }
215
__do_feature_check_call(const u32 api_id,u32 * ret_payload)216 static int __do_feature_check_call(const u32 api_id, u32 *ret_payload)
217 {
218 int ret;
219 u64 smc_arg[2];
220 u32 module_id;
221 u32 feature_check_api_id;
222
223 module_id = FIELD_GET(MODULE_ID_MASK, api_id);
224
225 /*
226 * Feature check of APIs belonging to PM, XSEM, and TF-A are handled by calling
227 * PM_FEATURE_CHECK API. For other modules, call PM_API_FEATURES API.
228 */
229 if (module_id == PM_MODULE_ID || module_id == XSEM_MODULE_ID || module_id == TF_A_MODULE_ID)
230 feature_check_api_id = PM_FEATURE_CHECK;
231 else
232 feature_check_api_id = PM_API_FEATURES;
233
234 /*
235 * Feature check of TF-A APIs is done in the TF-A layer and it expects for
236 * MODULE_ID_MASK bits of SMC's arg[0] to be the same as PM_MODULE_ID.
237 */
238 if (module_id == TF_A_MODULE_ID) {
239 module_id = PM_MODULE_ID;
240 smc_arg[1] = api_id;
241 } else {
242 smc_arg[1] = (api_id & API_ID_MASK);
243 }
244
245 smc_arg[0] = PM_SIP_SVC | FIELD_PREP(MODULE_ID_MASK, module_id) | feature_check_api_id;
246
247 ret = do_fw_call(ret_payload, 2, smc_arg[0], smc_arg[1]);
248 if (ret)
249 ret = -EOPNOTSUPP;
250 else
251 ret = ret_payload[1];
252
253 return ret;
254 }
255
do_feature_check_call(const u32 api_id)256 static int do_feature_check_call(const u32 api_id)
257 {
258 int ret;
259 u32 ret_payload[PAYLOAD_ARG_CNT];
260 struct pm_api_feature_data *feature_data;
261
262 /* Check for existing entry in hash table for given api */
263 hash_for_each_possible(pm_api_features_map, feature_data, hentry,
264 api_id) {
265 if (feature_data->pm_api_id == api_id)
266 return feature_data->feature_status;
267 }
268
269 /* Add new entry if not present */
270 feature_data = kmalloc(sizeof(*feature_data), GFP_ATOMIC);
271 if (!feature_data)
272 return -ENOMEM;
273
274 feature_data->pm_api_id = api_id;
275 ret = __do_feature_check_call(api_id, ret_payload);
276
277 feature_data->feature_status = ret;
278 hash_add(pm_api_features_map, &feature_data->hentry, api_id);
279
280 if (api_id == PM_IOCTL)
281 /* Store supported IOCTL IDs mask */
282 memcpy(ioctl_features, &ret_payload[2], FEATURE_PAYLOAD_SIZE * 4);
283 else if (api_id == PM_QUERY_DATA)
284 /* Store supported QUERY IDs mask */
285 memcpy(query_features, &ret_payload[2], FEATURE_PAYLOAD_SIZE * 4);
286
287 return ret;
288 }
289
290 /**
291 * zynqmp_pm_feature() - Check whether given feature is supported or not and
292 * store supported IOCTL/QUERY ID mask
293 * @api_id: API ID to check
294 *
295 * Return: Returns status, either success or error+reason
296 */
zynqmp_pm_feature(const u32 api_id)297 int zynqmp_pm_feature(const u32 api_id)
298 {
299 int ret;
300
301 if (!feature_check_enabled)
302 return 0;
303
304 ret = do_feature_check_call(api_id);
305
306 return ret;
307 }
308 EXPORT_SYMBOL_GPL(zynqmp_pm_feature);
309
310 /**
311 * zynqmp_pm_is_function_supported() - Check whether given IOCTL/QUERY function
312 * is supported or not
313 * @api_id: PM_IOCTL or PM_QUERY_DATA
314 * @id: IOCTL or QUERY function IDs
315 *
316 * Return: Returns status, either success or error+reason
317 */
zynqmp_pm_is_function_supported(const u32 api_id,const u32 id)318 int zynqmp_pm_is_function_supported(const u32 api_id, const u32 id)
319 {
320 int ret;
321 u32 *bit_mask;
322
323 /* Input arguments validation */
324 if (id >= 64 || (api_id != PM_IOCTL && api_id != PM_QUERY_DATA))
325 return -EINVAL;
326
327 /* Check feature check API version */
328 ret = do_feature_check_call(PM_FEATURE_CHECK);
329 if (ret < 0)
330 return ret;
331
332 /* Check if feature check version 2 is supported or not */
333 if ((ret & FIRMWARE_VERSION_MASK) == PM_API_VERSION_2) {
334 /*
335 * Call feature check for IOCTL/QUERY API to get IOCTL ID or
336 * QUERY ID feature status.
337 */
338 ret = do_feature_check_call(api_id);
339 if (ret < 0)
340 return ret;
341
342 bit_mask = (api_id == PM_IOCTL) ? ioctl_features : query_features;
343
344 if ((bit_mask[(id / 32)] & BIT((id % 32))) == 0U)
345 return -EOPNOTSUPP;
346 } else {
347 return -ENODATA;
348 }
349
350 return 0;
351 }
352 EXPORT_SYMBOL_GPL(zynqmp_pm_is_function_supported);
353
354 /**
355 * zynqmp_pm_invoke_fw_fn() - Invoke the system-level platform management layer
356 * caller function depending on the configuration
357 * @pm_api_id: Requested PM-API call
358 * @ret_payload: Returned value array
359 * @num_args: Number of arguments to requested PM-API call
360 *
361 * Invoke platform management function for SMC or HVC call, depending on
362 * configuration.
363 * Following SMC Calling Convention (SMCCC) for SMC64:
364 * Pm Function Identifier,
365 * PM_SIP_SVC + PASS_THROUGH_FW_CMD_ID =
366 * ((SMC_TYPE_FAST << FUNCID_TYPE_SHIFT)
367 * ((SMC_64) << FUNCID_CC_SHIFT)
368 * ((SIP_START) << FUNCID_OEN_SHIFT)
369 * (PASS_THROUGH_FW_CMD_ID))
370 *
371 * PM_SIP_SVC - Registered ZynqMP SIP Service Call.
372 * PASS_THROUGH_FW_CMD_ID - Fixed SiP SVC call ID for FW specific calls.
373 *
374 * Return: Returns status, either success or error+reason
375 */
zynqmp_pm_invoke_fw_fn(u32 pm_api_id,u32 * ret_payload,u32 num_args,...)376 int zynqmp_pm_invoke_fw_fn(u32 pm_api_id, u32 *ret_payload, u32 num_args, ...)
377 {
378 /*
379 * Added SIP service call Function Identifier
380 * Make sure to stay in x0 register
381 */
382 u64 smc_arg[SMC_ARG_CNT_64];
383 int ret, i;
384 va_list arg_list;
385 u32 args[SMC_ARG_CNT_32] = {0};
386 u32 module_id;
387
388 if (num_args > SMC_ARG_CNT_32)
389 return -EINVAL;
390
391 va_start(arg_list, num_args);
392
393 /* Check if feature is supported or not */
394 ret = zynqmp_pm_feature(pm_api_id);
395 if (ret < 0)
396 return ret;
397
398 for (i = 0; i < num_args; i++)
399 args[i] = va_arg(arg_list, u32);
400
401 va_end(arg_list);
402
403 module_id = FIELD_GET(PLM_MODULE_ID_MASK, pm_api_id);
404
405 if (module_id == 0)
406 module_id = XPM_MODULE_ID;
407
408 smc_arg[0] = PM_SIP_SVC | PASS_THROUGH_FW_CMD_ID;
409 smc_arg[1] = ((u64)args[0] << 32U) | FIELD_PREP(PLM_MODULE_ID_MASK, module_id) |
410 (pm_api_id & API_ID_MASK);
411 for (i = 1; i < (SMC_ARG_CNT_64 - 1); i++)
412 smc_arg[i + 1] = ((u64)args[(i * 2)] << 32U) | args[(i * 2) - 1];
413
414 return do_fw_call(ret_payload, 8, smc_arg[0], smc_arg[1], smc_arg[2], smc_arg[3],
415 smc_arg[4], smc_arg[5], smc_arg[6], smc_arg[7]);
416 }
417
418 /**
419 * zynqmp_pm_invoke_fn() - Invoke the system-level platform management layer
420 * caller function depending on the configuration
421 * @pm_api_id: Requested PM-API call
422 * @ret_payload: Returned value array
423 * @num_args: Number of arguments to requested PM-API call
424 *
425 * Invoke platform management function for SMC or HVC call, depending on
426 * configuration.
427 * Following SMC Calling Convention (SMCCC) for SMC64:
428 * Pm Function Identifier,
429 * PM_SIP_SVC + PM_API_ID =
430 * ((SMC_TYPE_FAST << FUNCID_TYPE_SHIFT)
431 * ((SMC_64) << FUNCID_CC_SHIFT)
432 * ((SIP_START) << FUNCID_OEN_SHIFT)
433 * ((PM_API_ID) & FUNCID_NUM_MASK))
434 *
435 * PM_SIP_SVC - Registered ZynqMP SIP Service Call.
436 * PM_API_ID - Platform Management API ID.
437 *
438 * Return: Returns status, either success or error+reason
439 */
zynqmp_pm_invoke_fn(u32 pm_api_id,u32 * ret_payload,u32 num_args,...)440 int zynqmp_pm_invoke_fn(u32 pm_api_id, u32 *ret_payload, u32 num_args, ...)
441 {
442 /*
443 * Added SIP service call Function Identifier
444 * Make sure to stay in x0 register
445 */
446 u64 smc_arg[8];
447 int ret, i;
448 va_list arg_list;
449 u32 args[14] = {0};
450
451 if (num_args > 14)
452 return -EINVAL;
453
454 va_start(arg_list, num_args);
455
456 /* Check if feature is supported or not */
457 ret = zynqmp_pm_feature(pm_api_id);
458 if (ret < 0)
459 return ret;
460
461 for (i = 0; i < num_args; i++)
462 args[i] = va_arg(arg_list, u32);
463
464 va_end(arg_list);
465
466 smc_arg[0] = PM_SIP_SVC | pm_api_id;
467 for (i = 0; i < 7; i++)
468 smc_arg[i + 1] = ((u64)args[(i * 2) + 1] << 32) | args[i * 2];
469
470 return do_fw_call(ret_payload, 8, smc_arg[0], smc_arg[1], smc_arg[2], smc_arg[3],
471 smc_arg[4], smc_arg[5], smc_arg[6], smc_arg[7]);
472 }
473
474 static u32 pm_api_version;
475 static u32 pm_tz_version;
476
zynqmp_pm_register_sgi(u32 sgi_num,u32 reset)477 int zynqmp_pm_register_sgi(u32 sgi_num, u32 reset)
478 {
479 int ret;
480
481 ret = zynqmp_pm_invoke_fn(TF_A_PM_REGISTER_SGI, NULL, 2, sgi_num, reset);
482 if (ret != -EOPNOTSUPP && !ret)
483 return ret;
484
485 /* try old implementation as fallback strategy if above fails */
486 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, IOCTL_REGISTER_SGI, sgi_num, reset);
487 }
488
489 /**
490 * zynqmp_pm_get_api_version() - Get version number of PMU PM firmware
491 * @version: Returned version value
492 *
493 * Return: Returns status, either success or error+reason
494 */
zynqmp_pm_get_api_version(u32 * version)495 int zynqmp_pm_get_api_version(u32 *version)
496 {
497 u32 ret_payload[PAYLOAD_ARG_CNT];
498 int ret;
499
500 if (!version)
501 return -EINVAL;
502
503 /* Check is PM API version already verified */
504 if (pm_api_version > 0) {
505 *version = pm_api_version;
506 return 0;
507 }
508 ret = zynqmp_pm_invoke_fn(PM_GET_API_VERSION, ret_payload, 0);
509 *version = ret_payload[1];
510
511 return ret;
512 }
513 EXPORT_SYMBOL_GPL(zynqmp_pm_get_api_version);
514
515 /**
516 * zynqmp_pm_get_chipid - Get silicon ID registers
517 * @idcode: IDCODE register
518 * @version: version register
519 *
520 * Return: Returns the status of the operation and the idcode and version
521 * registers in @idcode and @version.
522 */
zynqmp_pm_get_chipid(u32 * idcode,u32 * version)523 int zynqmp_pm_get_chipid(u32 *idcode, u32 *version)
524 {
525 u32 ret_payload[PAYLOAD_ARG_CNT];
526 int ret;
527
528 if (!idcode || !version)
529 return -EINVAL;
530
531 ret = zynqmp_pm_invoke_fn(PM_GET_CHIPID, ret_payload, 0);
532 *idcode = ret_payload[1];
533 *version = ret_payload[2];
534
535 return ret;
536 }
537 EXPORT_SYMBOL_GPL(zynqmp_pm_get_chipid);
538
539 /**
540 * zynqmp_pm_get_family_info() - Get family info of platform
541 * @family: Returned family code value
542 *
543 * Return: Returns status, either success or error+reason
544 */
zynqmp_pm_get_family_info(u32 * family)545 int zynqmp_pm_get_family_info(u32 *family)
546 {
547 if (!active_platform_fw_data)
548 return -ENODEV;
549
550 if (!family)
551 return -EINVAL;
552
553 *family = active_platform_fw_data->family_code;
554
555 return 0;
556 }
557 EXPORT_SYMBOL_GPL(zynqmp_pm_get_family_info);
558
559 /**
560 * zynqmp_pm_get_sip_svc_version() - Get SiP service call version
561 * @version: Returned version value
562 *
563 * Return: Returns status, either success or error+reason
564 */
zynqmp_pm_get_sip_svc_version(u32 * version)565 static int zynqmp_pm_get_sip_svc_version(u32 *version)
566 {
567 struct arm_smccc_res res;
568 u64 args[SMC_ARG_CNT_64] = {0};
569
570 if (!version)
571 return -EINVAL;
572
573 /* Check if SiP SVC version already verified */
574 if (sip_svc_version > 0) {
575 *version = sip_svc_version;
576 return 0;
577 }
578
579 args[0] = GET_SIP_SVC_VERSION;
580
581 arm_smccc_smc(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], &res);
582
583 *version = ((lower_32_bits(res.a0) << 16U) | lower_32_bits(res.a1));
584
585 return zynqmp_pm_ret_code(XST_PM_SUCCESS);
586 }
587
588 /**
589 * zynqmp_pm_get_trustzone_version() - Get secure trustzone firmware version
590 * @version: Returned version value
591 *
592 * Return: Returns status, either success or error+reason
593 */
zynqmp_pm_get_trustzone_version(u32 * version)594 static int zynqmp_pm_get_trustzone_version(u32 *version)
595 {
596 u32 ret_payload[PAYLOAD_ARG_CNT];
597 int ret;
598
599 if (!version)
600 return -EINVAL;
601
602 /* Check is PM trustzone version already verified */
603 if (pm_tz_version > 0) {
604 *version = pm_tz_version;
605 return 0;
606 }
607 ret = zynqmp_pm_invoke_fn(PM_GET_TRUSTZONE_VERSION, ret_payload, 0);
608 *version = ret_payload[1];
609
610 return ret;
611 }
612
613 /**
614 * get_set_conduit_method() - Choose SMC or HVC based communication
615 * @np: Pointer to the device_node structure
616 *
617 * Use SMC or HVC-based functions to communicate with EL2/EL3.
618 *
619 * Return: Returns 0 on success or error code
620 */
get_set_conduit_method(struct device_node * np)621 static int get_set_conduit_method(struct device_node *np)
622 {
623 const char *method;
624
625 if (of_property_read_string(np, "method", &method)) {
626 pr_warn("%s missing \"method\" property\n", __func__);
627 return -ENXIO;
628 }
629
630 if (!strcmp("hvc", method)) {
631 do_fw_call = do_fw_call_hvc;
632 } else if (!strcmp("smc", method)) {
633 do_fw_call = do_fw_call_smc;
634 } else {
635 pr_warn("%s Invalid \"method\" property: %s\n",
636 __func__, method);
637 return -EINVAL;
638 }
639
640 return 0;
641 }
642
643 /**
644 * zynqmp_pm_query_data() - Get query data from firmware
645 * @qdata: Variable to the zynqmp_pm_query_data structure
646 * @out: Returned output value
647 *
648 * Return: Returns status, either success or error+reason
649 */
zynqmp_pm_query_data(struct zynqmp_pm_query_data qdata,u32 * out)650 int zynqmp_pm_query_data(struct zynqmp_pm_query_data qdata, u32 *out)
651 {
652 int ret, i = 0;
653 u32 ret_payload[PAYLOAD_ARG_CNT] = {0};
654
655 if (sip_svc_version >= SIP_SVC_PASSTHROUGH_VERSION) {
656 ret = zynqmp_pm_invoke_fw_fn(PM_QUERY_DATA, ret_payload, 4,
657 qdata.qid, qdata.arg1,
658 qdata.arg2, qdata.arg3);
659 /* To support backward compatibility */
660 if (!ret && !ret_payload[0]) {
661 /*
662 * TF-A passes return status on 0th index but
663 * api to get clock name reads data from 0th
664 * index so pass data at 0th index instead of
665 * return status
666 */
667 if (qdata.qid == PM_QID_CLOCK_GET_NAME ||
668 qdata.qid == PM_QID_PINCTRL_GET_FUNCTION_NAME)
669 i = 1;
670
671 for (; i < PAYLOAD_ARG_CNT; i++, out++)
672 *out = ret_payload[i];
673
674 return ret;
675 }
676 }
677
678 ret = zynqmp_pm_invoke_fn(PM_QUERY_DATA, out, 4, qdata.qid,
679 qdata.arg1, qdata.arg2, qdata.arg3);
680
681 /*
682 * For clock name query, all bytes in SMC response are clock name
683 * characters and return code is always success. For invalid clocks,
684 * clock name bytes would be zeros.
685 */
686 return qdata.qid == PM_QID_CLOCK_GET_NAME ? 0 : ret;
687 }
688 EXPORT_SYMBOL_GPL(zynqmp_pm_query_data);
689
690 /**
691 * zynqmp_pm_clock_enable() - Enable the clock for given id
692 * @clock_id: ID of the clock to be enabled
693 *
694 * This function is used by master to enable the clock
695 * including peripherals and PLL clocks.
696 *
697 * Return: Returns status, either success or error+reason
698 */
zynqmp_pm_clock_enable(u32 clock_id)699 int zynqmp_pm_clock_enable(u32 clock_id)
700 {
701 return zynqmp_pm_invoke_fn(PM_CLOCK_ENABLE, NULL, 1, clock_id);
702 }
703 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_enable);
704
705 /**
706 * zynqmp_pm_clock_disable() - Disable the clock for given id
707 * @clock_id: ID of the clock to be disable
708 *
709 * This function is used by master to disable the clock
710 * including peripherals and PLL clocks.
711 *
712 * Return: Returns status, either success or error+reason
713 */
zynqmp_pm_clock_disable(u32 clock_id)714 int zynqmp_pm_clock_disable(u32 clock_id)
715 {
716 return zynqmp_pm_invoke_fn(PM_CLOCK_DISABLE, NULL, 1, clock_id);
717 }
718 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_disable);
719
720 /**
721 * zynqmp_pm_clock_getstate() - Get the clock state for given id
722 * @clock_id: ID of the clock to be queried
723 * @state: 1/0 (Enabled/Disabled)
724 *
725 * This function is used by master to get the state of clock
726 * including peripherals and PLL clocks.
727 *
728 * Return: Returns status, either success or error+reason
729 */
zynqmp_pm_clock_getstate(u32 clock_id,u32 * state)730 int zynqmp_pm_clock_getstate(u32 clock_id, u32 *state)
731 {
732 u32 ret_payload[PAYLOAD_ARG_CNT];
733 int ret;
734
735 ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETSTATE, ret_payload, 1, clock_id);
736 *state = ret_payload[1];
737
738 return ret;
739 }
740 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getstate);
741
742 /**
743 * zynqmp_pm_clock_setdivider() - Set the clock divider for given id
744 * @clock_id: ID of the clock
745 * @divider: divider value
746 *
747 * This function is used by master to set divider for any clock
748 * to achieve desired rate.
749 *
750 * Return: Returns status, either success or error+reason
751 */
zynqmp_pm_clock_setdivider(u32 clock_id,u32 divider)752 int zynqmp_pm_clock_setdivider(u32 clock_id, u32 divider)
753 {
754 return zynqmp_pm_invoke_fn(PM_CLOCK_SETDIVIDER, NULL, 2, clock_id, divider);
755 }
756 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_setdivider);
757
758 /**
759 * zynqmp_pm_clock_getdivider() - Get the clock divider for given id
760 * @clock_id: ID of the clock
761 * @divider: divider value
762 *
763 * This function is used by master to get divider values
764 * for any clock.
765 *
766 * Return: Returns status, either success or error+reason
767 */
zynqmp_pm_clock_getdivider(u32 clock_id,u32 * divider)768 int zynqmp_pm_clock_getdivider(u32 clock_id, u32 *divider)
769 {
770 u32 ret_payload[PAYLOAD_ARG_CNT];
771 int ret;
772
773 ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETDIVIDER, ret_payload, 1, clock_id);
774 *divider = ret_payload[1];
775
776 return ret;
777 }
778 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getdivider);
779
780 /**
781 * zynqmp_pm_clock_setparent() - Set the clock parent for given id
782 * @clock_id: ID of the clock
783 * @parent_id: parent id
784 *
785 * This function is used by master to set parent for any clock.
786 *
787 * Return: Returns status, either success or error+reason
788 */
zynqmp_pm_clock_setparent(u32 clock_id,u32 parent_id)789 int zynqmp_pm_clock_setparent(u32 clock_id, u32 parent_id)
790 {
791 return zynqmp_pm_invoke_fn(PM_CLOCK_SETPARENT, NULL, 2, clock_id, parent_id);
792 }
793 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_setparent);
794
795 /**
796 * zynqmp_pm_clock_getparent() - Get the clock parent for given id
797 * @clock_id: ID of the clock
798 * @parent_id: parent id
799 *
800 * This function is used by master to get parent index
801 * for any clock.
802 *
803 * Return: Returns status, either success or error+reason
804 */
zynqmp_pm_clock_getparent(u32 clock_id,u32 * parent_id)805 int zynqmp_pm_clock_getparent(u32 clock_id, u32 *parent_id)
806 {
807 u32 ret_payload[PAYLOAD_ARG_CNT];
808 int ret;
809
810 ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETPARENT, ret_payload, 1, clock_id);
811 *parent_id = ret_payload[1];
812
813 return ret;
814 }
815 EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getparent);
816
817 /**
818 * zynqmp_pm_set_pll_frac_mode() - PM API for set PLL mode
819 *
820 * @clk_id: PLL clock ID
821 * @mode: PLL mode (PLL_MODE_FRAC/PLL_MODE_INT)
822 *
823 * This function sets PLL mode
824 *
825 * Return: Returns status, either success or error+reason
826 */
zynqmp_pm_set_pll_frac_mode(u32 clk_id,u32 mode)827 int zynqmp_pm_set_pll_frac_mode(u32 clk_id, u32 mode)
828 {
829 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_PLL_FRAC_MODE, clk_id, mode);
830 }
831 EXPORT_SYMBOL_GPL(zynqmp_pm_set_pll_frac_mode);
832
833 /**
834 * zynqmp_pm_get_pll_frac_mode() - PM API for get PLL mode
835 *
836 * @clk_id: PLL clock ID
837 * @mode: PLL mode
838 *
839 * This function return current PLL mode
840 *
841 * Return: Returns status, either success or error+reason
842 */
zynqmp_pm_get_pll_frac_mode(u32 clk_id,u32 * mode)843 int zynqmp_pm_get_pll_frac_mode(u32 clk_id, u32 *mode)
844 {
845 return zynqmp_pm_invoke_fn(PM_IOCTL, mode, 3, 0, IOCTL_GET_PLL_FRAC_MODE, clk_id);
846 }
847 EXPORT_SYMBOL_GPL(zynqmp_pm_get_pll_frac_mode);
848
849 /**
850 * zynqmp_pm_set_pll_frac_data() - PM API for setting pll fraction data
851 *
852 * @clk_id: PLL clock ID
853 * @data: fraction data
854 *
855 * This function sets fraction data.
856 * It is valid for fraction mode only.
857 *
858 * Return: Returns status, either success or error+reason
859 */
zynqmp_pm_set_pll_frac_data(u32 clk_id,u32 data)860 int zynqmp_pm_set_pll_frac_data(u32 clk_id, u32 data)
861 {
862 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_PLL_FRAC_DATA, clk_id, data);
863 }
864 EXPORT_SYMBOL_GPL(zynqmp_pm_set_pll_frac_data);
865
866 /**
867 * zynqmp_pm_get_pll_frac_data() - PM API for getting pll fraction data
868 *
869 * @clk_id: PLL clock ID
870 * @data: fraction data
871 *
872 * This function returns fraction data value.
873 *
874 * Return: Returns status, either success or error+reason
875 */
zynqmp_pm_get_pll_frac_data(u32 clk_id,u32 * data)876 int zynqmp_pm_get_pll_frac_data(u32 clk_id, u32 *data)
877 {
878 return zynqmp_pm_invoke_fn(PM_IOCTL, data, 3, 0, IOCTL_GET_PLL_FRAC_DATA, clk_id);
879 }
880 EXPORT_SYMBOL_GPL(zynqmp_pm_get_pll_frac_data);
881
882 /**
883 * zynqmp_pm_set_sd_tapdelay() - Set tap delay for the SD device
884 *
885 * @node_id: Node ID of the device
886 * @type: Type of tap delay to set (input/output)
887 * @value: Value to set fot the tap delay
888 *
889 * This function sets input/output tap delay for the SD device.
890 *
891 * Return: Returns status, either success or error+reason
892 */
zynqmp_pm_set_sd_tapdelay(u32 node_id,u32 type,u32 value)893 int zynqmp_pm_set_sd_tapdelay(u32 node_id, u32 type, u32 value)
894 {
895 u32 reg = (type == PM_TAPDELAY_INPUT) ? SD_ITAPDLY : SD_OTAPDLYSEL;
896 u32 mask = (node_id == NODE_SD_0) ? GENMASK(15, 0) : GENMASK(31, 16);
897
898 if (value) {
899 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node_id, IOCTL_SET_SD_TAPDELAY, type,
900 value);
901 }
902
903 /*
904 * Work around completely misdesigned firmware API on Xilinx ZynqMP.
905 * The IOCTL_SET_SD_TAPDELAY firmware call allows the caller to only
906 * ever set IOU_SLCR SD_ITAPDLY Register SD0_ITAPDLYENA/SD1_ITAPDLYENA
907 * bits, but there is no matching call to clear those bits. If those
908 * bits are not cleared, SDMMC tuning may fail.
909 *
910 * Luckily, there are PM_MMIO_READ/PM_MMIO_WRITE calls which seem to
911 * allow complete unrestricted access to all address space, including
912 * IOU_SLCR SD_ITAPDLY Register and all the other registers, access
913 * to which was supposed to be protected by the current firmware API.
914 *
915 * Use PM_MMIO_READ/PM_MMIO_WRITE to re-implement the missing counter
916 * part of IOCTL_SET_SD_TAPDELAY which clears SDx_ITAPDLYENA bits.
917 */
918 return zynqmp_pm_invoke_fn(PM_MMIO_WRITE, NULL, 2, reg, mask);
919 }
920 EXPORT_SYMBOL_GPL(zynqmp_pm_set_sd_tapdelay);
921
922 /**
923 * zynqmp_pm_sd_dll_reset() - Reset DLL logic
924 *
925 * @node_id: Node ID of the device
926 * @type: Reset type
927 *
928 * This function resets DLL logic for the SD device.
929 *
930 * Return: Returns status, either success or error+reason
931 */
zynqmp_pm_sd_dll_reset(u32 node_id,u32 type)932 int zynqmp_pm_sd_dll_reset(u32 node_id, u32 type)
933 {
934 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_SD_DLL_RESET, type);
935 }
936 EXPORT_SYMBOL_GPL(zynqmp_pm_sd_dll_reset);
937
938 /**
939 * zynqmp_pm_ospi_mux_select() - OSPI Mux selection
940 *
941 * @dev_id: Device Id of the OSPI device.
942 * @select: OSPI Mux select value.
943 *
944 * This function select the OSPI Mux.
945 *
946 * Return: Returns status, either success or error+reason
947 */
zynqmp_pm_ospi_mux_select(u32 dev_id,u32 select)948 int zynqmp_pm_ospi_mux_select(u32 dev_id, u32 select)
949 {
950 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, dev_id, IOCTL_OSPI_MUX_SELECT, select);
951 }
952 EXPORT_SYMBOL_GPL(zynqmp_pm_ospi_mux_select);
953
954 /**
955 * zynqmp_pm_write_ggs() - PM API for writing global general storage (ggs)
956 * @index: GGS register index
957 * @value: Register value to be written
958 *
959 * This function writes value to GGS register.
960 *
961 * Return: Returns status, either success or error+reason
962 */
zynqmp_pm_write_ggs(u32 index,u32 value)963 int zynqmp_pm_write_ggs(u32 index, u32 value)
964 {
965 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_WRITE_GGS, index, value);
966 }
967 EXPORT_SYMBOL_GPL(zynqmp_pm_write_ggs);
968
969 /**
970 * zynqmp_pm_read_ggs() - PM API for reading global general storage (ggs)
971 * @index: GGS register index
972 * @value: Register value to be written
973 *
974 * This function returns GGS register value.
975 *
976 * Return: Returns status, either success or error+reason
977 */
zynqmp_pm_read_ggs(u32 index,u32 * value)978 int zynqmp_pm_read_ggs(u32 index, u32 *value)
979 {
980 return zynqmp_pm_invoke_fn(PM_IOCTL, value, 3, 0, IOCTL_READ_GGS, index);
981 }
982 EXPORT_SYMBOL_GPL(zynqmp_pm_read_ggs);
983
984 /**
985 * zynqmp_pm_write_pggs() - PM API for writing persistent global general
986 * storage (pggs)
987 * @index: PGGS register index
988 * @value: Register value to be written
989 *
990 * This function writes value to PGGS register.
991 *
992 * Return: Returns status, either success or error+reason
993 */
zynqmp_pm_write_pggs(u32 index,u32 value)994 int zynqmp_pm_write_pggs(u32 index, u32 value)
995 {
996 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_WRITE_PGGS, index, value);
997 }
998 EXPORT_SYMBOL_GPL(zynqmp_pm_write_pggs);
999
1000 /**
1001 * zynqmp_pm_read_pggs() - PM API for reading persistent global general
1002 * storage (pggs)
1003 * @index: PGGS register index
1004 * @value: Register value to be written
1005 *
1006 * This function returns PGGS register value.
1007 *
1008 * Return: Returns status, either success or error+reason
1009 */
zynqmp_pm_read_pggs(u32 index,u32 * value)1010 int zynqmp_pm_read_pggs(u32 index, u32 *value)
1011 {
1012 return zynqmp_pm_invoke_fn(PM_IOCTL, value, 3, 0, IOCTL_READ_PGGS, index);
1013 }
1014 EXPORT_SYMBOL_GPL(zynqmp_pm_read_pggs);
1015
zynqmp_pm_set_tapdelay_bypass(u32 index,u32 value)1016 int zynqmp_pm_set_tapdelay_bypass(u32 index, u32 value)
1017 {
1018 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_TAPDELAY_BYPASS, index, value);
1019 }
1020 EXPORT_SYMBOL_GPL(zynqmp_pm_set_tapdelay_bypass);
1021
1022 /**
1023 * zynqmp_pm_set_boot_health_status() - PM API for setting healthy boot status
1024 * @value: Status value to be written
1025 *
1026 * This function sets healthy bit value to indicate boot health status
1027 * to firmware.
1028 *
1029 * Return: Returns status, either success or error+reason
1030 */
zynqmp_pm_set_boot_health_status(u32 value)1031 int zynqmp_pm_set_boot_health_status(u32 value)
1032 {
1033 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, 0, IOCTL_SET_BOOT_HEALTH_STATUS, value);
1034 }
1035
1036 /**
1037 * zynqmp_pm_reset_assert - Request setting of reset (1 - assert, 0 - release)
1038 * @reset: Reset to be configured
1039 * @assert_flag: Flag stating should reset be asserted (1) or
1040 * released (0)
1041 *
1042 * Return: Returns status, either success or error+reason
1043 */
zynqmp_pm_reset_assert(const u32 reset,const enum zynqmp_pm_reset_action assert_flag)1044 int zynqmp_pm_reset_assert(const u32 reset,
1045 const enum zynqmp_pm_reset_action assert_flag)
1046 {
1047 return zynqmp_pm_invoke_fn(PM_RESET_ASSERT, NULL, 2, reset, assert_flag);
1048 }
1049 EXPORT_SYMBOL_GPL(zynqmp_pm_reset_assert);
1050
1051 /**
1052 * zynqmp_pm_reset_get_status - Get status of the reset
1053 * @reset: Reset whose status should be returned
1054 * @status: Returned status
1055 *
1056 * Return: Returns status, either success or error+reason
1057 */
zynqmp_pm_reset_get_status(const u32 reset,u32 * status)1058 int zynqmp_pm_reset_get_status(const u32 reset, u32 *status)
1059 {
1060 u32 ret_payload[PAYLOAD_ARG_CNT];
1061 int ret;
1062
1063 if (!status)
1064 return -EINVAL;
1065
1066 ret = zynqmp_pm_invoke_fn(PM_RESET_GET_STATUS, ret_payload, 1, reset);
1067 *status = ret_payload[1];
1068
1069 return ret;
1070 }
1071 EXPORT_SYMBOL_GPL(zynqmp_pm_reset_get_status);
1072
1073 /**
1074 * zynqmp_pm_fpga_load - Perform the fpga load
1075 * @address: Address to write to
1076 * @size: pl bitstream size
1077 * @flags: Bitstream type
1078 * -XILINX_ZYNQMP_PM_FPGA_FULL: FPGA full reconfiguration
1079 * -XILINX_ZYNQMP_PM_FPGA_PARTIAL: FPGA partial reconfiguration
1080 *
1081 * This function provides access to pmufw. To transfer
1082 * the required bitstream into PL.
1083 *
1084 * Return: Returns status, either success or error+reason
1085 */
zynqmp_pm_fpga_load(const u64 address,const u32 size,const u32 flags)1086 int zynqmp_pm_fpga_load(const u64 address, const u32 size, const u32 flags)
1087 {
1088 u32 ret_payload[PAYLOAD_ARG_CNT];
1089 int ret;
1090
1091 ret = zynqmp_pm_invoke_fn(PM_FPGA_LOAD, ret_payload, 4, lower_32_bits(address),
1092 upper_32_bits(address), size, flags);
1093 if (ret_payload[0])
1094 return -ret_payload[0];
1095
1096 return ret;
1097 }
1098 EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_load);
1099
1100 /**
1101 * zynqmp_pm_fpga_get_status - Read value from PCAP status register
1102 * @value: Value to read
1103 *
1104 * This function provides access to the pmufw to get the PCAP
1105 * status
1106 *
1107 * Return: Returns status, either success or error+reason
1108 */
zynqmp_pm_fpga_get_status(u32 * value)1109 int zynqmp_pm_fpga_get_status(u32 *value)
1110 {
1111 u32 ret_payload[PAYLOAD_ARG_CNT];
1112 int ret;
1113
1114 if (!value)
1115 return -EINVAL;
1116
1117 ret = zynqmp_pm_invoke_fn(PM_FPGA_GET_STATUS, ret_payload, 0);
1118 *value = ret_payload[1];
1119
1120 return ret;
1121 }
1122 EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_get_status);
1123
1124 /**
1125 * zynqmp_pm_fpga_get_config_status - Get the FPGA configuration status.
1126 * @value: Buffer to store FPGA configuration status.
1127 *
1128 * This function provides access to the pmufw to get the FPGA configuration
1129 * status
1130 *
1131 * Return: 0 on success, a negative value on error
1132 */
zynqmp_pm_fpga_get_config_status(u32 * value)1133 int zynqmp_pm_fpga_get_config_status(u32 *value)
1134 {
1135 u32 ret_payload[PAYLOAD_ARG_CNT];
1136 int ret;
1137
1138 if (!value)
1139 return -EINVAL;
1140
1141 ret = zynqmp_pm_invoke_fn(PM_FPGA_READ, ret_payload, 4,
1142 XILINX_ZYNQMP_PM_FPGA_CONFIG_STAT_OFFSET, 0, 0,
1143 XILINX_ZYNQMP_PM_FPGA_READ_CONFIG_REG);
1144
1145 *value = ret_payload[1];
1146
1147 return ret;
1148 }
1149 EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_get_config_status);
1150
1151 /**
1152 * zynqmp_pm_pinctrl_request - Request Pin from firmware
1153 * @pin: Pin number to request
1154 *
1155 * This function requests pin from firmware.
1156 *
1157 * Return: Returns status, either success or error+reason.
1158 */
zynqmp_pm_pinctrl_request(const u32 pin)1159 int zynqmp_pm_pinctrl_request(const u32 pin)
1160 {
1161 return zynqmp_pm_invoke_fn(PM_PINCTRL_REQUEST, NULL, 1, pin);
1162 }
1163 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_request);
1164
1165 /**
1166 * zynqmp_pm_pinctrl_release - Inform firmware that Pin control is released
1167 * @pin: Pin number to release
1168 *
1169 * This function release pin from firmware.
1170 *
1171 * Return: Returns status, either success or error+reason.
1172 */
zynqmp_pm_pinctrl_release(const u32 pin)1173 int zynqmp_pm_pinctrl_release(const u32 pin)
1174 {
1175 return zynqmp_pm_invoke_fn(PM_PINCTRL_RELEASE, NULL, 1, pin);
1176 }
1177 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_release);
1178
1179 /**
1180 * zynqmp_pm_pinctrl_set_function - Set requested function for the pin
1181 * @pin: Pin number
1182 * @id: Function ID to set
1183 *
1184 * This function sets requested function for the given pin.
1185 *
1186 * Return: Returns status, either success or error+reason.
1187 */
zynqmp_pm_pinctrl_set_function(const u32 pin,const u32 id)1188 int zynqmp_pm_pinctrl_set_function(const u32 pin, const u32 id)
1189 {
1190 return zynqmp_pm_invoke_fn(PM_PINCTRL_SET_FUNCTION, NULL, 2, pin, id);
1191 }
1192 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_set_function);
1193
1194 /**
1195 * zynqmp_pm_pinctrl_get_config - Get configuration parameter for the pin
1196 * @pin: Pin number
1197 * @param: Parameter to get
1198 * @value: Buffer to store parameter value
1199 *
1200 * This function gets requested configuration parameter for the given pin.
1201 *
1202 * Return: Returns status, either success or error+reason.
1203 */
zynqmp_pm_pinctrl_get_config(const u32 pin,const u32 param,u32 * value)1204 int zynqmp_pm_pinctrl_get_config(const u32 pin, const u32 param,
1205 u32 *value)
1206 {
1207 u32 ret_payload[PAYLOAD_ARG_CNT];
1208 int ret;
1209
1210 if (!value)
1211 return -EINVAL;
1212
1213 ret = zynqmp_pm_invoke_fn(PM_PINCTRL_CONFIG_PARAM_GET, ret_payload, 2, pin, param);
1214 *value = ret_payload[1];
1215
1216 return ret;
1217 }
1218 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_get_config);
1219
1220 /**
1221 * zynqmp_pm_pinctrl_set_config - Set configuration parameter for the pin
1222 * @pin: Pin number
1223 * @param: Parameter to set
1224 * @value: Parameter value to set
1225 *
1226 * This function sets requested configuration parameter for the given pin.
1227 *
1228 * Return: Returns status, either success or error+reason.
1229 */
zynqmp_pm_pinctrl_set_config(const u32 pin,const u32 param,u32 value)1230 int zynqmp_pm_pinctrl_set_config(const u32 pin, const u32 param,
1231 u32 value)
1232 {
1233 int ret;
1234 u32 pm_family_code;
1235
1236 ret = zynqmp_pm_get_family_info(&pm_family_code);
1237 if (ret)
1238 return ret;
1239
1240 if (pm_family_code == PM_ZYNQMP_FAMILY_CODE &&
1241 param == PM_PINCTRL_CONFIG_TRI_STATE) {
1242 ret = zynqmp_pm_feature(PM_PINCTRL_CONFIG_PARAM_SET);
1243 if (ret < PM_PINCTRL_PARAM_SET_VERSION) {
1244 pr_warn("The requested pinctrl feature is not supported in the current firmware.\n"
1245 "Expected firmware version is 2023.1 and above for this feature to work.\r\n");
1246 return -EOPNOTSUPP;
1247 }
1248 }
1249
1250 return zynqmp_pm_invoke_fn(PM_PINCTRL_CONFIG_PARAM_SET, NULL, 3, pin, param, value);
1251 }
1252 EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_set_config);
1253
1254 /**
1255 * zynqmp_pm_bootmode_read() - PM Config API for read bootpin status
1256 * @ps_mode: Returned output value of ps_mode
1257 *
1258 * This API function is to be used for notify the power management controller
1259 * to read bootpin status.
1260 *
1261 * Return: status, either success or error+reason
1262 */
zynqmp_pm_bootmode_read(u32 * ps_mode)1263 unsigned int zynqmp_pm_bootmode_read(u32 *ps_mode)
1264 {
1265 unsigned int ret;
1266 u32 ret_payload[PAYLOAD_ARG_CNT];
1267
1268 ret = zynqmp_pm_invoke_fn(PM_MMIO_READ, ret_payload, 1, CRL_APB_BOOT_PIN_CTRL);
1269
1270 *ps_mode = ret_payload[1];
1271
1272 return ret;
1273 }
1274 EXPORT_SYMBOL_GPL(zynqmp_pm_bootmode_read);
1275
1276 /**
1277 * zynqmp_pm_bootmode_write() - PM Config API for Configure bootpin
1278 * @ps_mode: Value to be written to the bootpin ctrl register
1279 *
1280 * This API function is to be used for notify the power management controller
1281 * to configure bootpin.
1282 *
1283 * Return: Returns status, either success or error+reason
1284 */
zynqmp_pm_bootmode_write(u32 ps_mode)1285 int zynqmp_pm_bootmode_write(u32 ps_mode)
1286 {
1287 return zynqmp_pm_invoke_fn(PM_MMIO_WRITE, NULL, 3, CRL_APB_BOOT_PIN_CTRL,
1288 CRL_APB_BOOTPIN_CTRL_MASK, ps_mode);
1289 }
1290 EXPORT_SYMBOL_GPL(zynqmp_pm_bootmode_write);
1291
1292 /**
1293 * zynqmp_pm_init_finalize() - PM call to inform firmware that the caller
1294 * master has initialized its own power management
1295 *
1296 * Return: Returns status, either success or error+reason
1297 *
1298 * This API function is to be used for notify the power management controller
1299 * about the completed power management initialization.
1300 */
zynqmp_pm_init_finalize(void)1301 static int zynqmp_pm_init_finalize(void)
1302 {
1303 return zynqmp_pm_invoke_fn(PM_PM_INIT_FINALIZE, NULL, 0);
1304 }
1305
1306 /**
1307 * zynqmp_pm_set_suspend_mode() - Set system suspend mode
1308 * @mode: Mode to set for system suspend
1309 *
1310 * This API function is used to set mode of system suspend.
1311 *
1312 * Return: Returns status, either success or error+reason
1313 */
zynqmp_pm_set_suspend_mode(u32 mode)1314 int zynqmp_pm_set_suspend_mode(u32 mode)
1315 {
1316 return zynqmp_pm_invoke_fn(PM_SET_SUSPEND_MODE, NULL, 1, mode);
1317 }
1318 EXPORT_SYMBOL_GPL(zynqmp_pm_set_suspend_mode);
1319
1320 /**
1321 * zynqmp_pm_request_node() - Request a node with specific capabilities
1322 * @node: Node ID of the slave
1323 * @capabilities: Requested capabilities of the slave
1324 * @qos: Quality of service (not supported)
1325 * @ack: Flag to specify whether acknowledge is requested
1326 *
1327 * This function is used by master to request particular node from firmware.
1328 * Every master must request node before using it.
1329 *
1330 * Return: Returns status, either success or error+reason
1331 */
zynqmp_pm_request_node(const u32 node,const u32 capabilities,const u32 qos,const enum zynqmp_pm_request_ack ack)1332 int zynqmp_pm_request_node(const u32 node, const u32 capabilities,
1333 const u32 qos, const enum zynqmp_pm_request_ack ack)
1334 {
1335 return zynqmp_pm_invoke_fn(PM_REQUEST_NODE, NULL, 4, node, capabilities, qos, ack);
1336 }
1337 EXPORT_SYMBOL_GPL(zynqmp_pm_request_node);
1338
1339 /**
1340 * zynqmp_pm_release_node() - Release a node
1341 * @node: Node ID of the slave
1342 *
1343 * This function is used by master to inform firmware that master
1344 * has released node. Once released, master must not use that node
1345 * without re-request.
1346 *
1347 * Return: Returns status, either success or error+reason
1348 */
zynqmp_pm_release_node(const u32 node)1349 int zynqmp_pm_release_node(const u32 node)
1350 {
1351 return zynqmp_pm_invoke_fn(PM_RELEASE_NODE, NULL, 1, node);
1352 }
1353 EXPORT_SYMBOL_GPL(zynqmp_pm_release_node);
1354
1355 /**
1356 * zynqmp_pm_get_rpu_mode() - Get RPU mode
1357 * @node_id: Node ID of the device
1358 * @rpu_mode: return by reference value
1359 * either split or lockstep
1360 *
1361 * Return: return 0 on success or error+reason.
1362 * if success, then rpu_mode will be set
1363 * to current rpu mode.
1364 */
zynqmp_pm_get_rpu_mode(u32 node_id,enum rpu_oper_mode * rpu_mode)1365 int zynqmp_pm_get_rpu_mode(u32 node_id, enum rpu_oper_mode *rpu_mode)
1366 {
1367 u32 ret_payload[PAYLOAD_ARG_CNT];
1368 int ret;
1369
1370 ret = zynqmp_pm_invoke_fn(PM_IOCTL, ret_payload, 2, node_id, IOCTL_GET_RPU_OPER_MODE);
1371
1372 /* only set rpu_mode if no error */
1373 if (ret == XST_PM_SUCCESS)
1374 *rpu_mode = ret_payload[0];
1375
1376 return ret;
1377 }
1378 EXPORT_SYMBOL_GPL(zynqmp_pm_get_rpu_mode);
1379
1380 /**
1381 * zynqmp_pm_set_rpu_mode() - Set RPU mode
1382 * @node_id: Node ID of the device
1383 * @rpu_mode: Argument 1 to requested IOCTL call. either split or lockstep
1384 *
1385 * This function is used to set RPU mode to split or
1386 * lockstep
1387 *
1388 * Return: Returns status, either success or error+reason
1389 */
zynqmp_pm_set_rpu_mode(u32 node_id,enum rpu_oper_mode rpu_mode)1390 int zynqmp_pm_set_rpu_mode(u32 node_id, enum rpu_oper_mode rpu_mode)
1391 {
1392 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_SET_RPU_OPER_MODE,
1393 (u32)rpu_mode);
1394 }
1395 EXPORT_SYMBOL_GPL(zynqmp_pm_set_rpu_mode);
1396
1397 /**
1398 * zynqmp_pm_set_tcm_config - configure TCM
1399 * @node_id: Firmware specific TCM subsystem ID
1400 * @tcm_mode: Argument 1 to requested IOCTL call
1401 * either PM_RPU_TCM_COMB or PM_RPU_TCM_SPLIT
1402 *
1403 * This function is used to set RPU mode to split or combined
1404 *
1405 * Return: status: 0 for success, else failure
1406 */
zynqmp_pm_set_tcm_config(u32 node_id,enum rpu_tcm_comb tcm_mode)1407 int zynqmp_pm_set_tcm_config(u32 node_id, enum rpu_tcm_comb tcm_mode)
1408 {
1409 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_TCM_COMB_CONFIG,
1410 (u32)tcm_mode);
1411 }
1412 EXPORT_SYMBOL_GPL(zynqmp_pm_set_tcm_config);
1413
1414 /**
1415 * zynqmp_pm_get_node_status - PM call to request a node's current power state
1416 * @node: ID of the component or sub-system in question
1417 * @status: Current operating state of the requested node
1418 * @requirements: Current requirements asserted on the node,
1419 * used for slave nodes only.
1420 * @usage: Usage information, used for slave nodes only:
1421 * PM_USAGE_NO_MASTER - No master is currently using
1422 * the node
1423 * PM_USAGE_CURRENT_MASTER - Only requesting master is
1424 * currently using the node
1425 * PM_USAGE_OTHER_MASTER - Only other masters are
1426 * currently using the node
1427 * PM_USAGE_BOTH_MASTERS - Both the current and at least
1428 * one other master is currently
1429 * using the node
1430 *
1431 * Return: Returns status, either success or error+reason
1432 */
zynqmp_pm_get_node_status(const u32 node,u32 * const status,u32 * const requirements,u32 * const usage)1433 int zynqmp_pm_get_node_status(const u32 node, u32 *const status,
1434 u32 *const requirements, u32 *const usage)
1435 {
1436 u32 ret_payload[PAYLOAD_ARG_CNT];
1437 int ret;
1438
1439 if (!status || !requirements || !usage)
1440 return -EINVAL;
1441
1442 ret = zynqmp_pm_invoke_fn(PM_GET_NODE_STATUS, ret_payload, 1, node);
1443 if (ret_payload[0] == XST_PM_SUCCESS) {
1444 *status = ret_payload[1];
1445 *requirements = ret_payload[2];
1446 *usage = ret_payload[3];
1447 }
1448
1449 return ret;
1450 }
1451 EXPORT_SYMBOL_GPL(zynqmp_pm_get_node_status);
1452
1453 /**
1454 * zynqmp_pm_force_pwrdwn - PM call to request for another PU or subsystem to
1455 * be powered down forcefully
1456 * @node: Node ID of the targeted PU or subsystem
1457 * @ack: Flag to specify whether acknowledge is requested
1458 *
1459 * Return: status, either success or error+reason
1460 */
zynqmp_pm_force_pwrdwn(const u32 node,const enum zynqmp_pm_request_ack ack)1461 int zynqmp_pm_force_pwrdwn(const u32 node,
1462 const enum zynqmp_pm_request_ack ack)
1463 {
1464 return zynqmp_pm_invoke_fn(PM_FORCE_POWERDOWN, NULL, 2, node, ack);
1465 }
1466 EXPORT_SYMBOL_GPL(zynqmp_pm_force_pwrdwn);
1467
1468 /**
1469 * zynqmp_pm_request_wake - PM call to wake up selected master or subsystem
1470 * @node: Node ID of the master or subsystem
1471 * @set_addr: Specifies whether the address argument is relevant
1472 * @address: Address from which to resume when woken up
1473 * @ack: Flag to specify whether acknowledge requested
1474 *
1475 * Return: status, either success or error+reason
1476 */
zynqmp_pm_request_wake(const u32 node,const bool set_addr,const u64 address,const enum zynqmp_pm_request_ack ack)1477 int zynqmp_pm_request_wake(const u32 node,
1478 const bool set_addr,
1479 const u64 address,
1480 const enum zynqmp_pm_request_ack ack)
1481 {
1482 /* set_addr flag is encoded into 1st bit of address */
1483 return zynqmp_pm_invoke_fn(PM_REQUEST_WAKEUP, NULL, 4, node, address | set_addr,
1484 address >> 32, ack);
1485 }
1486 EXPORT_SYMBOL_GPL(zynqmp_pm_request_wake);
1487
1488 /**
1489 * zynqmp_pm_set_requirement() - PM call to set requirement for PM slaves
1490 * @node: Node ID of the slave
1491 * @capabilities: Requested capabilities of the slave
1492 * @qos: Quality of service (not supported)
1493 * @ack: Flag to specify whether acknowledge is requested
1494 *
1495 * This API function is to be used for slaves a PU already has requested
1496 * to change its capabilities.
1497 *
1498 * Return: Returns status, either success or error+reason
1499 */
zynqmp_pm_set_requirement(const u32 node,const u32 capabilities,const u32 qos,const enum zynqmp_pm_request_ack ack)1500 int zynqmp_pm_set_requirement(const u32 node, const u32 capabilities,
1501 const u32 qos,
1502 const enum zynqmp_pm_request_ack ack)
1503 {
1504 return zynqmp_pm_invoke_fn(PM_SET_REQUIREMENT, NULL, 4, node, capabilities, qos, ack);
1505 }
1506 EXPORT_SYMBOL_GPL(zynqmp_pm_set_requirement);
1507
1508 /**
1509 * zynqmp_pm_load_pdi - Load and process PDI
1510 * @src: Source device where PDI is located
1511 * @address: PDI src address
1512 *
1513 * This function provides support to load PDI from linux
1514 *
1515 * Return: Returns status, either success or error+reason
1516 */
zynqmp_pm_load_pdi(const u32 src,const u64 address)1517 int zynqmp_pm_load_pdi(const u32 src, const u64 address)
1518 {
1519 return zynqmp_pm_invoke_fn(PM_LOAD_PDI, NULL, 3, src, lower_32_bits(address),
1520 upper_32_bits(address));
1521 }
1522 EXPORT_SYMBOL_GPL(zynqmp_pm_load_pdi);
1523
1524 /**
1525 * zynqmp_pm_aes_engine - Access AES hardware to encrypt/decrypt the data using
1526 * AES-GCM core.
1527 * @address: Address of the AesParams structure.
1528 * @out: Returned output value
1529 *
1530 * Return: Returns status, either success or error code.
1531 */
zynqmp_pm_aes_engine(const u64 address,u32 * out)1532 int zynqmp_pm_aes_engine(const u64 address, u32 *out)
1533 {
1534 u32 ret_payload[PAYLOAD_ARG_CNT];
1535 int ret;
1536
1537 if (!out)
1538 return -EINVAL;
1539
1540 ret = zynqmp_pm_invoke_fn(PM_SECURE_AES, ret_payload, 2, upper_32_bits(address),
1541 lower_32_bits(address));
1542 *out = ret_payload[1];
1543
1544 return ret;
1545 }
1546 EXPORT_SYMBOL_GPL(zynqmp_pm_aes_engine);
1547
1548 /**
1549 * zynqmp_pm_efuse_access - Provides access to efuse memory.
1550 * @address: Address of the efuse params structure
1551 * @out: Returned output value
1552 *
1553 * Return: Returns status, either success or error code.
1554 */
zynqmp_pm_efuse_access(const u64 address,u32 * out)1555 int zynqmp_pm_efuse_access(const u64 address, u32 *out)
1556 {
1557 u32 ret_payload[PAYLOAD_ARG_CNT];
1558 int ret;
1559
1560 if (!out)
1561 return -EINVAL;
1562
1563 ret = zynqmp_pm_invoke_fn(PM_EFUSE_ACCESS, ret_payload, 2,
1564 upper_32_bits(address),
1565 lower_32_bits(address));
1566 *out = ret_payload[1];
1567
1568 return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(zynqmp_pm_efuse_access);
1571
1572 /**
1573 * zynqmp_pm_sha_hash - Access the SHA engine to calculate the hash
1574 * @address: Address of the data/ Address of output buffer where
1575 * hash should be stored.
1576 * @size: Size of the data.
1577 * @flags:
1578 * BIT(0) - for initializing csudma driver and SHA3(Here address
1579 * and size inputs can be NULL).
1580 * BIT(1) - to call Sha3_Update API which can be called multiple
1581 * times when data is not contiguous.
1582 * BIT(2) - to get final hash of the whole updated data.
1583 * Hash will be overwritten at provided address with
1584 * 48 bytes.
1585 *
1586 * Return: Returns status, either success or error code.
1587 */
zynqmp_pm_sha_hash(const u64 address,const u32 size,const u32 flags)1588 int zynqmp_pm_sha_hash(const u64 address, const u32 size, const u32 flags)
1589 {
1590 u32 lower_addr = lower_32_bits(address);
1591 u32 upper_addr = upper_32_bits(address);
1592
1593 return zynqmp_pm_invoke_fn(PM_SECURE_SHA, NULL, 4, upper_addr, lower_addr, size, flags);
1594 }
1595 EXPORT_SYMBOL_GPL(zynqmp_pm_sha_hash);
1596
1597 /**
1598 * zynqmp_pm_register_notifier() - PM API for register a subsystem
1599 * to be notified about specific
1600 * event/error.
1601 * @node: Node ID to which the event is related.
1602 * @event: Event Mask of Error events for which wants to get notified.
1603 * @wake: Wake subsystem upon capturing the event if value 1
1604 * @enable: Enable the registration for value 1, disable for value 0
1605 *
1606 * This function is used to register/un-register for particular node-event
1607 * combination in firmware.
1608 *
1609 * Return: Returns status, either success or error+reason
1610 */
1611
zynqmp_pm_register_notifier(const u32 node,const u32 event,const u32 wake,const u32 enable)1612 int zynqmp_pm_register_notifier(const u32 node, const u32 event,
1613 const u32 wake, const u32 enable)
1614 {
1615 return zynqmp_pm_invoke_fn(PM_REGISTER_NOTIFIER, NULL, 4, node, event, wake, enable);
1616 }
1617 EXPORT_SYMBOL_GPL(zynqmp_pm_register_notifier);
1618
1619 /**
1620 * zynqmp_pm_system_shutdown - PM call to request a system shutdown or restart
1621 * @type: Shutdown or restart? 0 for shutdown, 1 for restart
1622 * @subtype: Specifies which system should be restarted or shut down
1623 *
1624 * Return: Returns status, either success or error+reason
1625 */
zynqmp_pm_system_shutdown(const u32 type,const u32 subtype)1626 int zynqmp_pm_system_shutdown(const u32 type, const u32 subtype)
1627 {
1628 return zynqmp_pm_invoke_fn(PM_SYSTEM_SHUTDOWN, NULL, 2, type, subtype);
1629 }
1630
1631 /**
1632 * zynqmp_pm_set_feature_config - PM call to request IOCTL for feature config
1633 * @id: The config ID of the feature to be configured
1634 * @value: The config value of the feature to be configured
1635 *
1636 * Return: Returns 0 on success or error value on failure.
1637 */
zynqmp_pm_set_feature_config(enum pm_feature_config_id id,u32 value)1638 int zynqmp_pm_set_feature_config(enum pm_feature_config_id id, u32 value)
1639 {
1640 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_FEATURE_CONFIG, id, value);
1641 }
1642
1643 /**
1644 * zynqmp_pm_get_feature_config - PM call to get value of configured feature
1645 * @id: The config id of the feature to be queried
1646 * @payload: Returned value array
1647 *
1648 * Return: Returns 0 on success or error value on failure.
1649 */
zynqmp_pm_get_feature_config(enum pm_feature_config_id id,u32 * payload)1650 int zynqmp_pm_get_feature_config(enum pm_feature_config_id id,
1651 u32 *payload)
1652 {
1653 return zynqmp_pm_invoke_fn(PM_IOCTL, payload, 3, 0, IOCTL_GET_FEATURE_CONFIG, id);
1654 }
1655
1656 /**
1657 * zynqmp_pm_sec_read_reg - PM call to securely read from given offset
1658 * of the node
1659 * @node_id: Node Id of the device
1660 * @offset: Offset to be used (20-bit)
1661 * @ret_value: Output data read from the given offset after
1662 * firmware access policy is successfully enforced
1663 *
1664 * Return: Returns 0 on success or error value on failure
1665 */
zynqmp_pm_sec_read_reg(u32 node_id,u32 offset,u32 * ret_value)1666 int zynqmp_pm_sec_read_reg(u32 node_id, u32 offset, u32 *ret_value)
1667 {
1668 u32 ret_payload[PAYLOAD_ARG_CNT];
1669 u32 count = 1;
1670 int ret;
1671
1672 if (!ret_value)
1673 return -EINVAL;
1674
1675 ret = zynqmp_pm_invoke_fn(PM_IOCTL, ret_payload, 4, node_id, IOCTL_READ_REG,
1676 offset, count);
1677
1678 *ret_value = ret_payload[1];
1679
1680 return ret;
1681 }
1682 EXPORT_SYMBOL_GPL(zynqmp_pm_sec_read_reg);
1683
1684 /**
1685 * zynqmp_pm_sec_mask_write_reg - PM call to securely write to given offset
1686 * of the node
1687 * @node_id: Node Id of the device
1688 * @offset: Offset to be used (20-bit)
1689 * @mask: Mask to be used
1690 * @value: Value to be written
1691 *
1692 * Return: Returns 0 on success or error value on failure
1693 */
zynqmp_pm_sec_mask_write_reg(const u32 node_id,const u32 offset,u32 mask,u32 value)1694 int zynqmp_pm_sec_mask_write_reg(const u32 node_id, const u32 offset, u32 mask,
1695 u32 value)
1696 {
1697 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 5, node_id, IOCTL_MASK_WRITE_REG,
1698 offset, mask, value);
1699 }
1700 EXPORT_SYMBOL_GPL(zynqmp_pm_sec_mask_write_reg);
1701
1702 /**
1703 * zynqmp_pm_set_sd_config - PM call to set value of SD config registers
1704 * @node: SD node ID
1705 * @config: The config type of SD registers
1706 * @value: Value to be set
1707 *
1708 * Return: Returns 0 on success or error value on failure.
1709 */
zynqmp_pm_set_sd_config(u32 node,enum pm_sd_config_type config,u32 value)1710 int zynqmp_pm_set_sd_config(u32 node, enum pm_sd_config_type config, u32 value)
1711 {
1712 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node, IOCTL_SET_SD_CONFIG, config, value);
1713 }
1714 EXPORT_SYMBOL_GPL(zynqmp_pm_set_sd_config);
1715
1716 /**
1717 * zynqmp_pm_set_gem_config - PM call to set value of GEM config registers
1718 * @node: GEM node ID
1719 * @config: The config type of GEM registers
1720 * @value: Value to be set
1721 *
1722 * Return: Returns 0 on success or error value on failure.
1723 */
zynqmp_pm_set_gem_config(u32 node,enum pm_gem_config_type config,u32 value)1724 int zynqmp_pm_set_gem_config(u32 node, enum pm_gem_config_type config,
1725 u32 value)
1726 {
1727 return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node, IOCTL_SET_GEM_CONFIG, config, value);
1728 }
1729 EXPORT_SYMBOL_GPL(zynqmp_pm_set_gem_config);
1730
1731 /**
1732 * struct zynqmp_pm_shutdown_scope - Struct for shutdown scope
1733 * @subtype: Shutdown subtype
1734 * @name: Matching string for scope argument
1735 *
1736 * This struct encapsulates mapping between shutdown scope ID and string.
1737 */
1738 struct zynqmp_pm_shutdown_scope {
1739 const enum zynqmp_pm_shutdown_subtype subtype;
1740 const char *name;
1741 };
1742
1743 static struct zynqmp_pm_shutdown_scope shutdown_scopes[] = {
1744 [ZYNQMP_PM_SHUTDOWN_SUBTYPE_SUBSYSTEM] = {
1745 .subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_SUBSYSTEM,
1746 .name = "subsystem",
1747 },
1748 [ZYNQMP_PM_SHUTDOWN_SUBTYPE_PS_ONLY] = {
1749 .subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_PS_ONLY,
1750 .name = "ps_only",
1751 },
1752 [ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM] = {
1753 .subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM,
1754 .name = "system",
1755 },
1756 };
1757
1758 static struct zynqmp_pm_shutdown_scope *selected_scope =
1759 &shutdown_scopes[ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM];
1760
1761 /**
1762 * zynqmp_pm_is_shutdown_scope_valid - Check if shutdown scope string is valid
1763 * @scope_string: Shutdown scope string
1764 *
1765 * Return: Return pointer to matching shutdown scope struct from
1766 * array of available options in system if string is valid,
1767 * otherwise returns NULL.
1768 */
1769 static struct zynqmp_pm_shutdown_scope*
zynqmp_pm_is_shutdown_scope_valid(const char * scope_string)1770 zynqmp_pm_is_shutdown_scope_valid(const char *scope_string)
1771 {
1772 int count;
1773
1774 for (count = 0; count < ARRAY_SIZE(shutdown_scopes); count++)
1775 if (sysfs_streq(scope_string, shutdown_scopes[count].name))
1776 return &shutdown_scopes[count];
1777
1778 return NULL;
1779 }
1780
shutdown_scope_show(struct device * device,struct device_attribute * attr,char * buf)1781 static ssize_t shutdown_scope_show(struct device *device,
1782 struct device_attribute *attr,
1783 char *buf)
1784 {
1785 int i;
1786
1787 for (i = 0; i < ARRAY_SIZE(shutdown_scopes); i++) {
1788 if (&shutdown_scopes[i] == selected_scope) {
1789 strcat(buf, "[");
1790 strcat(buf, shutdown_scopes[i].name);
1791 strcat(buf, "]");
1792 } else {
1793 strcat(buf, shutdown_scopes[i].name);
1794 }
1795 strcat(buf, " ");
1796 }
1797 strcat(buf, "\n");
1798
1799 return strlen(buf);
1800 }
1801
shutdown_scope_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)1802 static ssize_t shutdown_scope_store(struct device *device,
1803 struct device_attribute *attr,
1804 const char *buf, size_t count)
1805 {
1806 int ret;
1807 struct zynqmp_pm_shutdown_scope *scope;
1808
1809 scope = zynqmp_pm_is_shutdown_scope_valid(buf);
1810 if (!scope)
1811 return -EINVAL;
1812
1813 ret = zynqmp_pm_system_shutdown(ZYNQMP_PM_SHUTDOWN_TYPE_SETSCOPE_ONLY,
1814 scope->subtype);
1815 if (ret) {
1816 pr_err("unable to set shutdown scope %s\n", buf);
1817 return ret;
1818 }
1819
1820 selected_scope = scope;
1821
1822 return count;
1823 }
1824
1825 static DEVICE_ATTR_RW(shutdown_scope);
1826
health_status_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)1827 static ssize_t health_status_store(struct device *device,
1828 struct device_attribute *attr,
1829 const char *buf, size_t count)
1830 {
1831 int ret;
1832 unsigned int value;
1833
1834 ret = kstrtouint(buf, 10, &value);
1835 if (ret)
1836 return ret;
1837
1838 ret = zynqmp_pm_set_boot_health_status(value);
1839 if (ret) {
1840 dev_err(device, "unable to set healthy bit value to %u\n",
1841 value);
1842 return ret;
1843 }
1844
1845 return count;
1846 }
1847
1848 static DEVICE_ATTR_WO(health_status);
1849
ggs_show(struct device * device,struct device_attribute * attr,char * buf,u32 reg)1850 static ssize_t ggs_show(struct device *device,
1851 struct device_attribute *attr,
1852 char *buf,
1853 u32 reg)
1854 {
1855 int ret;
1856 u32 ret_payload[PAYLOAD_ARG_CNT];
1857
1858 ret = zynqmp_pm_read_ggs(reg, ret_payload);
1859 if (ret)
1860 return ret;
1861
1862 return sprintf(buf, "0x%x\n", ret_payload[1]);
1863 }
1864
ggs_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count,u32 reg)1865 static ssize_t ggs_store(struct device *device,
1866 struct device_attribute *attr,
1867 const char *buf, size_t count,
1868 u32 reg)
1869 {
1870 long value;
1871 int ret;
1872
1873 if (reg >= GSS_NUM_REGS)
1874 return -EINVAL;
1875
1876 ret = kstrtol(buf, 16, &value);
1877 if (ret) {
1878 count = -EFAULT;
1879 goto err;
1880 }
1881
1882 ret = zynqmp_pm_write_ggs(reg, value);
1883 if (ret)
1884 count = -EFAULT;
1885 err:
1886 return count;
1887 }
1888
1889 /* GGS register show functions */
1890 #define GGS0_SHOW(N) \
1891 ssize_t ggs##N##_show(struct device *device, \
1892 struct device_attribute *attr, \
1893 char *buf) \
1894 { \
1895 return ggs_show(device, attr, buf, N); \
1896 }
1897
1898 static GGS0_SHOW(0);
1899 static GGS0_SHOW(1);
1900 static GGS0_SHOW(2);
1901 static GGS0_SHOW(3);
1902
1903 /* GGS register store function */
1904 #define GGS0_STORE(N) \
1905 ssize_t ggs##N##_store(struct device *device, \
1906 struct device_attribute *attr, \
1907 const char *buf, \
1908 size_t count) \
1909 { \
1910 return ggs_store(device, attr, buf, count, N); \
1911 }
1912
1913 static GGS0_STORE(0);
1914 static GGS0_STORE(1);
1915 static GGS0_STORE(2);
1916 static GGS0_STORE(3);
1917
pggs_show(struct device * device,struct device_attribute * attr,char * buf,u32 reg)1918 static ssize_t pggs_show(struct device *device,
1919 struct device_attribute *attr,
1920 char *buf,
1921 u32 reg)
1922 {
1923 int ret;
1924 u32 ret_payload[PAYLOAD_ARG_CNT];
1925
1926 ret = zynqmp_pm_read_pggs(reg, ret_payload);
1927 if (ret)
1928 return ret;
1929
1930 return sprintf(buf, "0x%x\n", ret_payload[1]);
1931 }
1932
pggs_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count,u32 reg)1933 static ssize_t pggs_store(struct device *device,
1934 struct device_attribute *attr,
1935 const char *buf, size_t count,
1936 u32 reg)
1937 {
1938 long value;
1939 int ret;
1940
1941 if (reg >= GSS_NUM_REGS)
1942 return -EINVAL;
1943
1944 ret = kstrtol(buf, 16, &value);
1945 if (ret) {
1946 count = -EFAULT;
1947 goto err;
1948 }
1949
1950 ret = zynqmp_pm_write_pggs(reg, value);
1951 if (ret)
1952 count = -EFAULT;
1953
1954 err:
1955 return count;
1956 }
1957
1958 #define PGGS0_SHOW(N) \
1959 ssize_t pggs##N##_show(struct device *device, \
1960 struct device_attribute *attr, \
1961 char *buf) \
1962 { \
1963 return pggs_show(device, attr, buf, N); \
1964 }
1965
1966 #define PGGS0_STORE(N) \
1967 ssize_t pggs##N##_store(struct device *device, \
1968 struct device_attribute *attr, \
1969 const char *buf, \
1970 size_t count) \
1971 { \
1972 return pggs_store(device, attr, buf, count, N); \
1973 }
1974
1975 /* PGGS register show functions */
1976 static PGGS0_SHOW(0);
1977 static PGGS0_SHOW(1);
1978 static PGGS0_SHOW(2);
1979 static PGGS0_SHOW(3);
1980
1981 /* PGGS register store functions */
1982 static PGGS0_STORE(0);
1983 static PGGS0_STORE(1);
1984 static PGGS0_STORE(2);
1985 static PGGS0_STORE(3);
1986
1987 /* GGS register attributes */
1988 static DEVICE_ATTR_RW(ggs0);
1989 static DEVICE_ATTR_RW(ggs1);
1990 static DEVICE_ATTR_RW(ggs2);
1991 static DEVICE_ATTR_RW(ggs3);
1992
1993 /* PGGS register attributes */
1994 static DEVICE_ATTR_RW(pggs0);
1995 static DEVICE_ATTR_RW(pggs1);
1996 static DEVICE_ATTR_RW(pggs2);
1997 static DEVICE_ATTR_RW(pggs3);
1998
feature_config_id_show(struct device * device,struct device_attribute * attr,char * buf)1999 static ssize_t feature_config_id_show(struct device *device,
2000 struct device_attribute *attr,
2001 char *buf)
2002 {
2003 struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
2004
2005 return sysfs_emit(buf, "%d\n", devinfo->feature_conf_id);
2006 }
2007
feature_config_id_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)2008 static ssize_t feature_config_id_store(struct device *device,
2009 struct device_attribute *attr,
2010 const char *buf, size_t count)
2011 {
2012 u32 config_id;
2013 int ret;
2014 struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
2015
2016 if (!buf)
2017 return -EINVAL;
2018
2019 ret = kstrtou32(buf, 10, &config_id);
2020 if (ret)
2021 return ret;
2022
2023 devinfo->feature_conf_id = config_id;
2024
2025 return count;
2026 }
2027
2028 static DEVICE_ATTR_RW(feature_config_id);
2029
feature_config_value_show(struct device * device,struct device_attribute * attr,char * buf)2030 static ssize_t feature_config_value_show(struct device *device,
2031 struct device_attribute *attr,
2032 char *buf)
2033 {
2034 int ret;
2035 u32 ret_payload[PAYLOAD_ARG_CNT];
2036 struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
2037
2038 ret = zynqmp_pm_get_feature_config(devinfo->feature_conf_id,
2039 ret_payload);
2040 if (ret)
2041 return ret;
2042
2043 return sysfs_emit(buf, "%d\n", ret_payload[1]);
2044 }
2045
feature_config_value_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)2046 static ssize_t feature_config_value_store(struct device *device,
2047 struct device_attribute *attr,
2048 const char *buf, size_t count)
2049 {
2050 u32 value;
2051 int ret;
2052 struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
2053
2054 if (!buf)
2055 return -EINVAL;
2056
2057 ret = kstrtou32(buf, 10, &value);
2058 if (ret)
2059 return ret;
2060
2061 ret = zynqmp_pm_set_feature_config(devinfo->feature_conf_id,
2062 value);
2063 if (ret)
2064 return ret;
2065
2066 return count;
2067 }
2068
2069 static DEVICE_ATTR_RW(feature_config_value);
2070
2071 static struct attribute *zynqmp_firmware_attrs[] = {
2072 &dev_attr_ggs0.attr,
2073 &dev_attr_ggs1.attr,
2074 &dev_attr_ggs2.attr,
2075 &dev_attr_ggs3.attr,
2076 &dev_attr_pggs0.attr,
2077 &dev_attr_pggs1.attr,
2078 &dev_attr_pggs2.attr,
2079 &dev_attr_pggs3.attr,
2080 &dev_attr_shutdown_scope.attr,
2081 &dev_attr_health_status.attr,
2082 &dev_attr_feature_config_id.attr,
2083 &dev_attr_feature_config_value.attr,
2084 NULL,
2085 };
2086
2087 ATTRIBUTE_GROUPS(zynqmp_firmware);
2088
zynqmp_firmware_probe(struct platform_device * pdev)2089 static int zynqmp_firmware_probe(struct platform_device *pdev)
2090 {
2091 struct device *dev = &pdev->dev;
2092 struct zynqmp_devinfo *devinfo;
2093 u32 pm_family_code;
2094 int ret;
2095
2096 ret = get_set_conduit_method(dev->of_node);
2097 if (ret)
2098 return ret;
2099
2100 /* Get platform-specific firmware data from device tree match */
2101 active_platform_fw_data = (struct platform_fw_data *)device_get_match_data(dev);
2102 if (!active_platform_fw_data)
2103 return -EINVAL;
2104
2105 /* Get SiP SVC version number */
2106 ret = zynqmp_pm_get_sip_svc_version(&sip_svc_version);
2107 if (ret)
2108 return ret;
2109
2110 ret = do_feature_check_call(PM_FEATURE_CHECK);
2111 if (ret >= 0 && ((ret & FIRMWARE_VERSION_MASK) >= PM_API_VERSION_1))
2112 feature_check_enabled = true;
2113
2114 devinfo = devm_kzalloc(dev, sizeof(*devinfo), GFP_KERNEL);
2115 if (!devinfo)
2116 return -ENOMEM;
2117
2118 devinfo->dev = dev;
2119
2120 platform_set_drvdata(pdev, devinfo);
2121
2122 /* Check PM API version number */
2123 ret = zynqmp_pm_get_api_version(&pm_api_version);
2124 if (ret)
2125 return ret;
2126
2127 if (pm_api_version < ZYNQMP_PM_VERSION) {
2128 panic("%s Platform Management API version error. Expected: v%d.%d - Found: v%d.%d\n",
2129 __func__,
2130 ZYNQMP_PM_VERSION_MAJOR, ZYNQMP_PM_VERSION_MINOR,
2131 pm_api_version >> 16, pm_api_version & 0xFFFF);
2132 }
2133
2134 pr_info("%s Platform Management API v%d.%d\n", __func__,
2135 pm_api_version >> 16, pm_api_version & 0xFFFF);
2136
2137 /* Get the Family code of platform */
2138 ret = zynqmp_pm_get_family_info(&pm_family_code);
2139 if (ret < 0)
2140 return ret;
2141
2142 /* Check trustzone version number */
2143 ret = zynqmp_pm_get_trustzone_version(&pm_tz_version);
2144 if (ret)
2145 panic("Legacy trustzone found without version support\n");
2146
2147 if (pm_tz_version < ZYNQMP_TZ_VERSION)
2148 panic("%s Trustzone version error. Expected: v%d.%d - Found: v%d.%d\n",
2149 __func__,
2150 ZYNQMP_TZ_VERSION_MAJOR, ZYNQMP_TZ_VERSION_MINOR,
2151 pm_tz_version >> 16, pm_tz_version & 0xFFFF);
2152
2153 pr_info("%s Trustzone version v%d.%d\n", __func__,
2154 pm_tz_version >> 16, pm_tz_version & 0xFFFF);
2155
2156 ret = mfd_add_devices(&pdev->dev, PLATFORM_DEVID_NONE, firmware_devs,
2157 ARRAY_SIZE(firmware_devs), NULL, 0, NULL);
2158 if (ret) {
2159 dev_err(&pdev->dev, "failed to add MFD devices %d\n", ret);
2160 return ret;
2161 }
2162
2163 zynqmp_pm_api_debugfs_init();
2164
2165 if (pm_family_code != PM_ZYNQMP_FAMILY_CODE) {
2166 em_dev = platform_device_register_data(&pdev->dev, "xlnx_event_manager",
2167 -1, NULL, 0);
2168 if (IS_ERR(em_dev))
2169 dev_err_probe(&pdev->dev, PTR_ERR(em_dev), "EM register fail with error\n");
2170 }
2171
2172 return of_platform_populate(dev->of_node, NULL, NULL, dev);
2173 }
2174
zynqmp_firmware_remove(struct platform_device * pdev)2175 static void zynqmp_firmware_remove(struct platform_device *pdev)
2176 {
2177 struct pm_api_feature_data *feature_data;
2178 struct hlist_node *tmp;
2179 int i;
2180
2181 mfd_remove_devices(&pdev->dev);
2182 zynqmp_pm_api_debugfs_exit();
2183
2184 hash_for_each_safe(pm_api_features_map, i, tmp, feature_data, hentry) {
2185 hash_del(&feature_data->hentry);
2186 kfree(feature_data);
2187 }
2188
2189 platform_device_unregister(em_dev);
2190 }
2191
zynqmp_firmware_sync_state(struct device * dev)2192 static void zynqmp_firmware_sync_state(struct device *dev)
2193 {
2194 struct device_node *np = dev->of_node;
2195
2196 if (!of_device_is_compatible(np, "xlnx,zynqmp-firmware"))
2197 return;
2198
2199 of_genpd_sync_state(np);
2200
2201 if (zynqmp_pm_init_finalize())
2202 dev_warn(dev, "failed to release power management to firmware\n");
2203 }
2204
2205 static const struct platform_fw_data platform_fw_data_versal = {
2206 .family_code = PM_VERSAL_FAMILY_CODE,
2207 };
2208
2209 static const struct platform_fw_data platform_fw_data_versal_net = {
2210 .family_code = PM_VERSAL_NET_FAMILY_CODE,
2211 };
2212
2213 static const struct platform_fw_data platform_fw_data_zynqmp = {
2214 .family_code = PM_ZYNQMP_FAMILY_CODE,
2215 };
2216
2217 static const struct of_device_id zynqmp_firmware_of_match[] = {
2218 {.compatible = "xlnx,zynqmp-firmware", .data = &platform_fw_data_zynqmp},
2219 {.compatible = "xlnx,versal-firmware", .data = &platform_fw_data_versal},
2220 {.compatible = "xlnx,versal-net-firmware", .data = &platform_fw_data_versal_net},
2221 {},
2222 };
2223 MODULE_DEVICE_TABLE(of, zynqmp_firmware_of_match);
2224
2225 static struct platform_driver zynqmp_firmware_driver = {
2226 .driver = {
2227 .name = "zynqmp_firmware",
2228 .of_match_table = zynqmp_firmware_of_match,
2229 .dev_groups = zynqmp_firmware_groups,
2230 .sync_state = zynqmp_firmware_sync_state,
2231 },
2232 .probe = zynqmp_firmware_probe,
2233 .remove = zynqmp_firmware_remove,
2234 };
2235 module_platform_driver(zynqmp_firmware_driver);
2236