1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4 * zsmalloc memory allocator
5 *
6 * Copyright (C) 2011 Nitin Gupta
7 * Copyright (C) 2012, 2013 Minchan Kim
8 *
9 * This code is released using a dual license strategy: BSD/GPL
10 * You can choose the license that better fits your requirements.
11 *
12 * Released under the terms of 3-clause BSD License
13 * Released under the terms of GNU General Public License Version 2.0
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 /*
19 * lock ordering:
20 * page_lock
21 * pool->lock
22 * class->lock
23 * zspage->lock
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/highmem.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 #include <linux/sprintf.h>
35 #include <linux/shrinker.h>
36 #include <linux/types.h>
37 #include <linux/debugfs.h>
38 #include <linux/zsmalloc.h>
39 #include <linux/fs.h>
40 #include <linux/workqueue.h>
41 #include "zpdesc.h"
42
43 #define ZSPAGE_MAGIC 0x58
44
45 /*
46 * This must be power of 2 and greater than or equal to sizeof(link_free).
47 * These two conditions ensure that any 'struct link_free' itself doesn't
48 * span more than 1 page which avoids complex case of mapping 2 pages simply
49 * to restore link_free pointer values.
50 */
51 #define ZS_ALIGN 8
52
53 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
54
55 /*
56 * Object location (<PFN>, <obj_idx>) is encoded as
57 * a single (unsigned long) handle value.
58 *
59 * Note that object index <obj_idx> starts from 0.
60 *
61 * This is made more complicated by various memory models and PAE.
62 */
63
64 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
65 #ifdef MAX_PHYSMEM_BITS
66 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
67 #else
68 /*
69 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
70 * be PAGE_SHIFT
71 */
72 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
73 #endif
74 #endif
75
76 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
77
78 /*
79 * Head in allocated object should have OBJ_ALLOCATED_TAG
80 * to identify the object was allocated or not.
81 * It's okay to add the status bit in the least bit because
82 * header keeps handle which is 4byte-aligned address so we
83 * have room for two bit at least.
84 */
85 #define OBJ_ALLOCATED_TAG 1
86
87 #define OBJ_TAG_BITS 1
88 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
89
90 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
91 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
92
93 #define HUGE_BITS 1
94 #define FULLNESS_BITS 4
95 #define CLASS_BITS 8
96 #define MAGIC_VAL_BITS 8
97
98 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
99
100 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
101 #define ZS_MIN_ALLOC_SIZE \
102 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
103 /* each chunk includes extra space to keep handle */
104 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
105
106 /*
107 * On systems with 4K page size, this gives 255 size classes! There is a
108 * trader-off here:
109 * - Large number of size classes is potentially wasteful as free page are
110 * spread across these classes
111 * - Small number of size classes causes large internal fragmentation
112 * - Probably its better to use specific size classes (empirically
113 * determined). NOTE: all those class sizes must be set as multiple of
114 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
115 *
116 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
117 * (reason above)
118 */
119 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
120 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
121 ZS_SIZE_CLASS_DELTA) + 1)
122
123 /*
124 * Pages are distinguished by the ratio of used memory (that is the ratio
125 * of ->inuse objects to all objects that page can store). For example,
126 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
127 *
128 * The number of fullness groups is not random. It allows us to keep
129 * difference between the least busy page in the group (minimum permitted
130 * number of ->inuse objects) and the most busy page (maximum permitted
131 * number of ->inuse objects) at a reasonable value.
132 */
133 enum fullness_group {
134 ZS_INUSE_RATIO_0,
135 ZS_INUSE_RATIO_10,
136 /* NOTE: 8 more fullness groups here */
137 ZS_INUSE_RATIO_99 = 10,
138 ZS_INUSE_RATIO_100,
139 NR_FULLNESS_GROUPS,
140 };
141
142 enum class_stat_type {
143 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
144 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
145 ZS_OBJS_INUSE,
146 NR_CLASS_STAT_TYPES,
147 };
148
149 struct zs_size_stat {
150 unsigned long objs[NR_CLASS_STAT_TYPES];
151 };
152
153 #ifdef CONFIG_ZSMALLOC_STAT
154 static struct dentry *zs_stat_root;
155 #endif
156
157 static size_t huge_class_size;
158
159 struct size_class {
160 spinlock_t lock;
161 struct list_head fullness_list[NR_FULLNESS_GROUPS];
162 /*
163 * Size of objects stored in this class. Must be multiple
164 * of ZS_ALIGN.
165 */
166 int size;
167 int objs_per_zspage;
168 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
169 int pages_per_zspage;
170
171 unsigned int index;
172 struct zs_size_stat stats;
173 };
174
175 /*
176 * Placed within free objects to form a singly linked list.
177 * For every zspage, zspage->freeobj gives head of this list.
178 *
179 * This must be power of 2 and less than or equal to ZS_ALIGN
180 */
181 struct link_free {
182 union {
183 /*
184 * Free object index;
185 * It's valid for non-allocated object
186 */
187 unsigned long next;
188 /*
189 * Handle of allocated object.
190 */
191 unsigned long handle;
192 };
193 };
194
195 struct zs_pool {
196 const char *name;
197
198 struct size_class *size_class[ZS_SIZE_CLASSES];
199 struct kmem_cache *handle_cachep;
200 struct kmem_cache *zspage_cachep;
201
202 atomic_long_t pages_allocated;
203
204 struct zs_pool_stats stats;
205
206 /* Compact classes */
207 struct shrinker *shrinker;
208
209 #ifdef CONFIG_ZSMALLOC_STAT
210 struct dentry *stat_dentry;
211 #endif
212 #ifdef CONFIG_COMPACTION
213 struct work_struct free_work;
214 #endif
215 /* protect zspage migration/compaction */
216 rwlock_t lock;
217 atomic_t compaction_in_progress;
218 };
219
zpdesc_set_first(struct zpdesc * zpdesc)220 static inline void zpdesc_set_first(struct zpdesc *zpdesc)
221 {
222 SetPagePrivate(zpdesc_page(zpdesc));
223 }
224
zpdesc_inc_zone_page_state(struct zpdesc * zpdesc)225 static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc)
226 {
227 inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
228 }
229
zpdesc_dec_zone_page_state(struct zpdesc * zpdesc)230 static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc)
231 {
232 dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
233 }
234
alloc_zpdesc(gfp_t gfp,const int nid)235 static inline struct zpdesc *alloc_zpdesc(gfp_t gfp, const int nid)
236 {
237 struct page *page = alloc_pages_node(nid, gfp, 0);
238
239 return page_zpdesc(page);
240 }
241
free_zpdesc(struct zpdesc * zpdesc)242 static inline void free_zpdesc(struct zpdesc *zpdesc)
243 {
244 struct page *page = zpdesc_page(zpdesc);
245
246 /* PageZsmalloc is sticky until the page is freed to the buddy. */
247 __free_page(page);
248 }
249
250 #define ZS_PAGE_UNLOCKED 0
251 #define ZS_PAGE_WRLOCKED -1
252
253 struct zspage_lock {
254 spinlock_t lock;
255 int cnt;
256 struct lockdep_map dep_map;
257 };
258
259 struct zspage {
260 struct {
261 unsigned int huge:HUGE_BITS;
262 unsigned int fullness:FULLNESS_BITS;
263 unsigned int class:CLASS_BITS + 1;
264 unsigned int magic:MAGIC_VAL_BITS;
265 };
266 unsigned int inuse;
267 unsigned int freeobj;
268 struct zpdesc *first_zpdesc;
269 struct list_head list; /* fullness list */
270 struct zs_pool *pool;
271 struct zspage_lock zsl;
272 };
273
zspage_lock_init(struct zspage * zspage)274 static void zspage_lock_init(struct zspage *zspage)
275 {
276 static struct lock_class_key __key;
277 struct zspage_lock *zsl = &zspage->zsl;
278
279 lockdep_init_map(&zsl->dep_map, "zspage->lock", &__key, 0);
280 spin_lock_init(&zsl->lock);
281 zsl->cnt = ZS_PAGE_UNLOCKED;
282 }
283
284 /*
285 * The zspage lock can be held from atomic contexts, but it needs to remain
286 * preemptible when held for reading because it remains held outside of those
287 * atomic contexts, otherwise we unnecessarily lose preemptibility.
288 *
289 * To achieve this, the following rules are enforced on readers and writers:
290 *
291 * - Writers are blocked by both writers and readers, while readers are only
292 * blocked by writers (i.e. normal rwlock semantics).
293 *
294 * - Writers are always atomic (to allow readers to spin waiting for them).
295 *
296 * - Writers always use trylock (as the lock may be held be sleeping readers).
297 *
298 * - Readers may spin on the lock (as they can only wait for atomic writers).
299 *
300 * - Readers may sleep while holding the lock (as writes only use trylock).
301 */
zspage_read_lock(struct zspage * zspage)302 static void zspage_read_lock(struct zspage *zspage)
303 {
304 struct zspage_lock *zsl = &zspage->zsl;
305
306 rwsem_acquire_read(&zsl->dep_map, 0, 0, _RET_IP_);
307
308 spin_lock(&zsl->lock);
309 zsl->cnt++;
310 spin_unlock(&zsl->lock);
311
312 lock_acquired(&zsl->dep_map, _RET_IP_);
313 }
314
zspage_read_unlock(struct zspage * zspage)315 static void zspage_read_unlock(struct zspage *zspage)
316 {
317 struct zspage_lock *zsl = &zspage->zsl;
318
319 rwsem_release(&zsl->dep_map, _RET_IP_);
320
321 spin_lock(&zsl->lock);
322 zsl->cnt--;
323 spin_unlock(&zsl->lock);
324 }
325
zspage_write_trylock(struct zspage * zspage)326 static __must_check bool zspage_write_trylock(struct zspage *zspage)
327 {
328 struct zspage_lock *zsl = &zspage->zsl;
329
330 spin_lock(&zsl->lock);
331 if (zsl->cnt == ZS_PAGE_UNLOCKED) {
332 zsl->cnt = ZS_PAGE_WRLOCKED;
333 rwsem_acquire(&zsl->dep_map, 0, 1, _RET_IP_);
334 lock_acquired(&zsl->dep_map, _RET_IP_);
335 return true;
336 }
337
338 spin_unlock(&zsl->lock);
339 return false;
340 }
341
zspage_write_unlock(struct zspage * zspage)342 static void zspage_write_unlock(struct zspage *zspage)
343 {
344 struct zspage_lock *zsl = &zspage->zsl;
345
346 rwsem_release(&zsl->dep_map, _RET_IP_);
347
348 zsl->cnt = ZS_PAGE_UNLOCKED;
349 spin_unlock(&zsl->lock);
350 }
351
352 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetZsHugePage(struct zspage * zspage)353 static void SetZsHugePage(struct zspage *zspage)
354 {
355 zspage->huge = 1;
356 }
357
ZsHugePage(struct zspage * zspage)358 static bool ZsHugePage(struct zspage *zspage)
359 {
360 return zspage->huge;
361 }
362
363 #ifdef CONFIG_COMPACTION
364 static void kick_deferred_free(struct zs_pool *pool);
365 static void init_deferred_free(struct zs_pool *pool);
366 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
367 #else
kick_deferred_free(struct zs_pool * pool)368 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)369 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)370 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
371 #endif
372
create_cache(struct zs_pool * pool)373 static int create_cache(struct zs_pool *pool)
374 {
375 char *name;
376
377 name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
378 if (!name)
379 return -ENOMEM;
380 pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
381 0, 0, NULL);
382 kfree(name);
383 if (!pool->handle_cachep)
384 return -EINVAL;
385
386 name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
387 if (!name)
388 return -ENOMEM;
389 pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
390 0, 0, NULL);
391 kfree(name);
392 if (!pool->zspage_cachep) {
393 kmem_cache_destroy(pool->handle_cachep);
394 pool->handle_cachep = NULL;
395 return -EINVAL;
396 }
397
398 return 0;
399 }
400
destroy_cache(struct zs_pool * pool)401 static void destroy_cache(struct zs_pool *pool)
402 {
403 kmem_cache_destroy(pool->handle_cachep);
404 kmem_cache_destroy(pool->zspage_cachep);
405 }
406
cache_alloc_handle(struct zs_pool * pool,gfp_t gfp)407 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
408 {
409 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
410 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
411 }
412
cache_free_handle(struct zs_pool * pool,unsigned long handle)413 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
414 {
415 kmem_cache_free(pool->handle_cachep, (void *)handle);
416 }
417
cache_alloc_zspage(struct zs_pool * pool,gfp_t flags)418 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
419 {
420 return kmem_cache_zalloc(pool->zspage_cachep,
421 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
422 }
423
cache_free_zspage(struct zs_pool * pool,struct zspage * zspage)424 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
425 {
426 kmem_cache_free(pool->zspage_cachep, zspage);
427 }
428
429 /* class->lock(which owns the handle) synchronizes races */
record_obj(unsigned long handle,unsigned long obj)430 static void record_obj(unsigned long handle, unsigned long obj)
431 {
432 *(unsigned long *)handle = obj;
433 }
434
is_first_zpdesc(struct zpdesc * zpdesc)435 static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc)
436 {
437 return PagePrivate(zpdesc_page(zpdesc));
438 }
439
440 /* Protected by class->lock */
get_zspage_inuse(struct zspage * zspage)441 static inline int get_zspage_inuse(struct zspage *zspage)
442 {
443 return zspage->inuse;
444 }
445
mod_zspage_inuse(struct zspage * zspage,int val)446 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
447 {
448 zspage->inuse += val;
449 }
450
get_first_zpdesc(struct zspage * zspage)451 static struct zpdesc *get_first_zpdesc(struct zspage *zspage)
452 {
453 struct zpdesc *first_zpdesc = zspage->first_zpdesc;
454
455 VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc));
456 return first_zpdesc;
457 }
458
459 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff
460
get_first_obj_offset(struct zpdesc * zpdesc)461 static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc)
462 {
463 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
464 return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK;
465 }
466
set_first_obj_offset(struct zpdesc * zpdesc,unsigned int offset)467 static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset)
468 {
469 /* With 24 bits available, we can support offsets into 16 MiB pages. */
470 BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
471 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
472 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
473 zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK;
474 zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
475 }
476
get_freeobj(struct zspage * zspage)477 static inline unsigned int get_freeobj(struct zspage *zspage)
478 {
479 return zspage->freeobj;
480 }
481
set_freeobj(struct zspage * zspage,unsigned int obj)482 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
483 {
484 zspage->freeobj = obj;
485 }
486
zspage_class(struct zs_pool * pool,struct zspage * zspage)487 static struct size_class *zspage_class(struct zs_pool *pool,
488 struct zspage *zspage)
489 {
490 return pool->size_class[zspage->class];
491 }
492
493 /*
494 * zsmalloc divides the pool into various size classes where each
495 * class maintains a list of zspages where each zspage is divided
496 * into equal sized chunks. Each allocation falls into one of these
497 * classes depending on its size. This function returns index of the
498 * size class which has chunk size big enough to hold the given size.
499 */
get_size_class_index(int size)500 static int get_size_class_index(int size)
501 {
502 int idx = 0;
503
504 if (likely(size > ZS_MIN_ALLOC_SIZE))
505 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
506 ZS_SIZE_CLASS_DELTA);
507
508 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
509 }
510
class_stat_add(struct size_class * class,int type,unsigned long cnt)511 static inline void class_stat_add(struct size_class *class, int type,
512 unsigned long cnt)
513 {
514 class->stats.objs[type] += cnt;
515 }
516
class_stat_sub(struct size_class * class,int type,unsigned long cnt)517 static inline void class_stat_sub(struct size_class *class, int type,
518 unsigned long cnt)
519 {
520 class->stats.objs[type] -= cnt;
521 }
522
class_stat_read(struct size_class * class,int type)523 static inline unsigned long class_stat_read(struct size_class *class, int type)
524 {
525 return class->stats.objs[type];
526 }
527
528 #ifdef CONFIG_ZSMALLOC_STAT
529
zs_stat_init(void)530 static void __init zs_stat_init(void)
531 {
532 if (!debugfs_initialized()) {
533 pr_warn("debugfs not available, stat dir not created\n");
534 return;
535 }
536
537 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
538 }
539
zs_stat_exit(void)540 static void __exit zs_stat_exit(void)
541 {
542 debugfs_remove_recursive(zs_stat_root);
543 }
544
545 static unsigned long zs_can_compact(struct size_class *class);
546
zs_stats_size_show(struct seq_file * s,void * v)547 static int zs_stats_size_show(struct seq_file *s, void *v)
548 {
549 int i, fg;
550 struct zs_pool *pool = s->private;
551 struct size_class *class;
552 int objs_per_zspage;
553 unsigned long obj_allocated, obj_used, pages_used, freeable;
554 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
555 unsigned long total_freeable = 0;
556 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
557
558 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
559 "class", "size", "10%", "20%", "30%", "40%",
560 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
561 "obj_allocated", "obj_used", "pages_used",
562 "pages_per_zspage", "freeable");
563
564 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
565
566 class = pool->size_class[i];
567
568 if (class->index != i)
569 continue;
570
571 spin_lock(&class->lock);
572
573 seq_printf(s, " %5u %5u ", i, class->size);
574 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
575 inuse_totals[fg] += class_stat_read(class, fg);
576 seq_printf(s, "%9lu ", class_stat_read(class, fg));
577 }
578
579 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
580 obj_used = class_stat_read(class, ZS_OBJS_INUSE);
581 freeable = zs_can_compact(class);
582 spin_unlock(&class->lock);
583
584 objs_per_zspage = class->objs_per_zspage;
585 pages_used = obj_allocated / objs_per_zspage *
586 class->pages_per_zspage;
587
588 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
589 obj_allocated, obj_used, pages_used,
590 class->pages_per_zspage, freeable);
591
592 total_objs += obj_allocated;
593 total_used_objs += obj_used;
594 total_pages += pages_used;
595 total_freeable += freeable;
596 }
597
598 seq_puts(s, "\n");
599 seq_printf(s, " %5s %5s ", "Total", "");
600
601 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
602 seq_printf(s, "%9lu ", inuse_totals[fg]);
603
604 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
605 total_objs, total_used_objs, total_pages, "",
606 total_freeable);
607
608 return 0;
609 }
610 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
611
zs_pool_stat_create(struct zs_pool * pool,const char * name)612 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
613 {
614 if (!zs_stat_root) {
615 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
616 return;
617 }
618
619 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
620
621 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
622 &zs_stats_size_fops);
623 }
624
zs_pool_stat_destroy(struct zs_pool * pool)625 static void zs_pool_stat_destroy(struct zs_pool *pool)
626 {
627 debugfs_remove_recursive(pool->stat_dentry);
628 }
629
630 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)631 static void __init zs_stat_init(void)
632 {
633 }
634
zs_stat_exit(void)635 static void __exit zs_stat_exit(void)
636 {
637 }
638
zs_pool_stat_create(struct zs_pool * pool,const char * name)639 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
640 {
641 }
642
zs_pool_stat_destroy(struct zs_pool * pool)643 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
644 {
645 }
646 #endif
647
648
649 /*
650 * For each size class, zspages are divided into different groups
651 * depending on their usage ratio. This function returns fullness
652 * status of the given page.
653 */
get_fullness_group(struct size_class * class,struct zspage * zspage)654 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
655 {
656 int inuse, objs_per_zspage, ratio;
657
658 inuse = get_zspage_inuse(zspage);
659 objs_per_zspage = class->objs_per_zspage;
660
661 if (inuse == 0)
662 return ZS_INUSE_RATIO_0;
663 if (inuse == objs_per_zspage)
664 return ZS_INUSE_RATIO_100;
665
666 ratio = 100 * inuse / objs_per_zspage;
667 /*
668 * Take integer division into consideration: a page with one inuse
669 * object out of 127 possible, will end up having 0 usage ratio,
670 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
671 */
672 return ratio / 10 + 1;
673 }
674
675 /*
676 * Each size class maintains various freelists and zspages are assigned
677 * to one of these freelists based on the number of live objects they
678 * have. This functions inserts the given zspage into the freelist
679 * identified by <class, fullness_group>.
680 */
insert_zspage(struct size_class * class,struct zspage * zspage,int fullness)681 static void insert_zspage(struct size_class *class,
682 struct zspage *zspage,
683 int fullness)
684 {
685 class_stat_add(class, fullness, 1);
686 list_add(&zspage->list, &class->fullness_list[fullness]);
687 zspage->fullness = fullness;
688 }
689
690 /*
691 * This function removes the given zspage from the freelist identified
692 * by <class, fullness_group>.
693 */
remove_zspage(struct size_class * class,struct zspage * zspage)694 static void remove_zspage(struct size_class *class, struct zspage *zspage)
695 {
696 int fullness = zspage->fullness;
697
698 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
699
700 list_del_init(&zspage->list);
701 class_stat_sub(class, fullness, 1);
702 }
703
704 /*
705 * Each size class maintains zspages in different fullness groups depending
706 * on the number of live objects they contain. When allocating or freeing
707 * objects, the fullness status of the page can change, for instance, from
708 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
709 * checks if such a status change has occurred for the given page and
710 * accordingly moves the page from the list of the old fullness group to that
711 * of the new fullness group.
712 */
fix_fullness_group(struct size_class * class,struct zspage * zspage)713 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
714 {
715 int newfg;
716
717 newfg = get_fullness_group(class, zspage);
718 if (newfg == zspage->fullness)
719 goto out;
720
721 remove_zspage(class, zspage);
722 insert_zspage(class, zspage, newfg);
723 out:
724 return newfg;
725 }
726
get_zspage(struct zpdesc * zpdesc)727 static struct zspage *get_zspage(struct zpdesc *zpdesc)
728 {
729 struct zspage *zspage = zpdesc->zspage;
730
731 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
732 return zspage;
733 }
734
get_next_zpdesc(struct zpdesc * zpdesc)735 static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc)
736 {
737 struct zspage *zspage = get_zspage(zpdesc);
738
739 if (unlikely(ZsHugePage(zspage)))
740 return NULL;
741
742 return zpdesc->next;
743 }
744
745 /**
746 * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value
747 * @obj: the encoded object value
748 * @zpdesc: zpdesc object resides in zspage
749 * @obj_idx: object index
750 */
obj_to_location(unsigned long obj,struct zpdesc ** zpdesc,unsigned int * obj_idx)751 static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc,
752 unsigned int *obj_idx)
753 {
754 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
755 *obj_idx = (obj & OBJ_INDEX_MASK);
756 }
757
obj_to_zpdesc(unsigned long obj,struct zpdesc ** zpdesc)758 static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc)
759 {
760 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
761 }
762
763 /**
764 * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>)
765 * @zpdesc: zpdesc object resides in zspage
766 * @obj_idx: object index
767 */
location_to_obj(struct zpdesc * zpdesc,unsigned int obj_idx)768 static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx)
769 {
770 unsigned long obj;
771
772 obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS;
773 obj |= obj_idx & OBJ_INDEX_MASK;
774
775 return obj;
776 }
777
handle_to_obj(unsigned long handle)778 static unsigned long handle_to_obj(unsigned long handle)
779 {
780 return *(unsigned long *)handle;
781 }
782
obj_allocated(struct zpdesc * zpdesc,void * obj,unsigned long * phandle)783 static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj,
784 unsigned long *phandle)
785 {
786 unsigned long handle;
787 struct zspage *zspage = get_zspage(zpdesc);
788
789 if (unlikely(ZsHugePage(zspage))) {
790 VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc));
791 handle = zpdesc->handle;
792 } else
793 handle = *(unsigned long *)obj;
794
795 if (!(handle & OBJ_ALLOCATED_TAG))
796 return false;
797
798 /* Clear all tags before returning the handle */
799 *phandle = handle & ~OBJ_TAG_MASK;
800 return true;
801 }
802
reset_zpdesc(struct zpdesc * zpdesc)803 static void reset_zpdesc(struct zpdesc *zpdesc)
804 {
805 struct page *page = zpdesc_page(zpdesc);
806
807 ClearPagePrivate(page);
808 zpdesc->zspage = NULL;
809 zpdesc->next = NULL;
810 /* PageZsmalloc is sticky until the page is freed to the buddy. */
811 }
812
trylock_zspage(struct zspage * zspage)813 static int trylock_zspage(struct zspage *zspage)
814 {
815 struct zpdesc *cursor, *fail;
816
817 for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor =
818 get_next_zpdesc(cursor)) {
819 if (!zpdesc_trylock(cursor)) {
820 fail = cursor;
821 goto unlock;
822 }
823 }
824
825 return 1;
826 unlock:
827 for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor =
828 get_next_zpdesc(cursor))
829 zpdesc_unlock(cursor);
830
831 return 0;
832 }
833
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)834 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
835 struct zspage *zspage)
836 {
837 struct zpdesc *zpdesc, *next;
838
839 assert_spin_locked(&class->lock);
840
841 VM_BUG_ON(get_zspage_inuse(zspage));
842 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
843
844 next = zpdesc = get_first_zpdesc(zspage);
845 do {
846 VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc));
847 next = get_next_zpdesc(zpdesc);
848 reset_zpdesc(zpdesc);
849 zpdesc_unlock(zpdesc);
850 zpdesc_dec_zone_page_state(zpdesc);
851 zpdesc_put(zpdesc);
852 zpdesc = next;
853 } while (zpdesc != NULL);
854
855 cache_free_zspage(pool, zspage);
856
857 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
858 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
859 }
860
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)861 static void free_zspage(struct zs_pool *pool, struct size_class *class,
862 struct zspage *zspage)
863 {
864 VM_BUG_ON(get_zspage_inuse(zspage));
865 VM_BUG_ON(list_empty(&zspage->list));
866
867 /*
868 * Since zs_free couldn't be sleepable, this function cannot call
869 * lock_page. The page locks trylock_zspage got will be released
870 * by __free_zspage.
871 */
872 if (!trylock_zspage(zspage)) {
873 kick_deferred_free(pool);
874 return;
875 }
876
877 remove_zspage(class, zspage);
878 __free_zspage(pool, class, zspage);
879 }
880
881 /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)882 static void init_zspage(struct size_class *class, struct zspage *zspage)
883 {
884 unsigned int freeobj = 1;
885 unsigned long off = 0;
886 struct zpdesc *zpdesc = get_first_zpdesc(zspage);
887
888 while (zpdesc) {
889 struct zpdesc *next_zpdesc;
890 struct link_free *link;
891 void *vaddr;
892
893 set_first_obj_offset(zpdesc, off);
894
895 vaddr = kmap_local_zpdesc(zpdesc);
896 link = (struct link_free *)vaddr + off / sizeof(*link);
897
898 while ((off += class->size) < PAGE_SIZE) {
899 link->next = freeobj++ << OBJ_TAG_BITS;
900 link += class->size / sizeof(*link);
901 }
902
903 /*
904 * We now come to the last (full or partial) object on this
905 * page, which must point to the first object on the next
906 * page (if present)
907 */
908 next_zpdesc = get_next_zpdesc(zpdesc);
909 if (next_zpdesc) {
910 link->next = freeobj++ << OBJ_TAG_BITS;
911 } else {
912 /*
913 * Reset OBJ_TAG_BITS bit to last link to tell
914 * whether it's allocated object or not.
915 */
916 link->next = -1UL << OBJ_TAG_BITS;
917 }
918 kunmap_local(vaddr);
919 zpdesc = next_zpdesc;
920 off %= PAGE_SIZE;
921 }
922
923 set_freeobj(zspage, 0);
924 }
925
create_page_chain(struct size_class * class,struct zspage * zspage,struct zpdesc * zpdescs[])926 static void create_page_chain(struct size_class *class, struct zspage *zspage,
927 struct zpdesc *zpdescs[])
928 {
929 int i;
930 struct zpdesc *zpdesc;
931 struct zpdesc *prev_zpdesc = NULL;
932 int nr_zpdescs = class->pages_per_zspage;
933
934 /*
935 * Allocate individual pages and link them together as:
936 * 1. all pages are linked together using zpdesc->next
937 * 2. each sub-page point to zspage using zpdesc->zspage
938 *
939 * we set PG_private to identify the first zpdesc (i.e. no other zpdesc
940 * has this flag set).
941 */
942 for (i = 0; i < nr_zpdescs; i++) {
943 zpdesc = zpdescs[i];
944 zpdesc->zspage = zspage;
945 zpdesc->next = NULL;
946 if (i == 0) {
947 zspage->first_zpdesc = zpdesc;
948 zpdesc_set_first(zpdesc);
949 if (unlikely(class->objs_per_zspage == 1 &&
950 class->pages_per_zspage == 1))
951 SetZsHugePage(zspage);
952 } else {
953 prev_zpdesc->next = zpdesc;
954 }
955 prev_zpdesc = zpdesc;
956 }
957 }
958
959 /*
960 * Allocate a zspage for the given size class
961 */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp,const int nid)962 static struct zspage *alloc_zspage(struct zs_pool *pool,
963 struct size_class *class,
964 gfp_t gfp, const int nid)
965 {
966 int i;
967 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE];
968 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
969
970 if (!zspage)
971 return NULL;
972
973 if (!IS_ENABLED(CONFIG_COMPACTION))
974 gfp &= ~__GFP_MOVABLE;
975
976 zspage->magic = ZSPAGE_MAGIC;
977 zspage->pool = pool;
978 zspage->class = class->index;
979 zspage_lock_init(zspage);
980
981 for (i = 0; i < class->pages_per_zspage; i++) {
982 struct zpdesc *zpdesc;
983
984 zpdesc = alloc_zpdesc(gfp, nid);
985 if (!zpdesc) {
986 while (--i >= 0) {
987 zpdesc_dec_zone_page_state(zpdescs[i]);
988 free_zpdesc(zpdescs[i]);
989 }
990 cache_free_zspage(pool, zspage);
991 return NULL;
992 }
993 __zpdesc_set_zsmalloc(zpdesc);
994
995 zpdesc_inc_zone_page_state(zpdesc);
996 zpdescs[i] = zpdesc;
997 }
998
999 create_page_chain(class, zspage, zpdescs);
1000 init_zspage(class, zspage);
1001
1002 return zspage;
1003 }
1004
find_get_zspage(struct size_class * class)1005 static struct zspage *find_get_zspage(struct size_class *class)
1006 {
1007 int i;
1008 struct zspage *zspage;
1009
1010 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1011 zspage = list_first_entry_or_null(&class->fullness_list[i],
1012 struct zspage, list);
1013 if (zspage)
1014 break;
1015 }
1016
1017 return zspage;
1018 }
1019
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)1020 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1021 int objs_per_zspage)
1022 {
1023 if (prev->pages_per_zspage == pages_per_zspage &&
1024 prev->objs_per_zspage == objs_per_zspage)
1025 return true;
1026
1027 return false;
1028 }
1029
zspage_full(struct size_class * class,struct zspage * zspage)1030 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1031 {
1032 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1033 }
1034
zspage_empty(struct zspage * zspage)1035 static bool zspage_empty(struct zspage *zspage)
1036 {
1037 return get_zspage_inuse(zspage) == 0;
1038 }
1039
1040 /**
1041 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1042 * that hold objects of the provided size.
1043 * @pool: zsmalloc pool to use
1044 * @size: object size
1045 *
1046 * Context: Any context.
1047 *
1048 * Return: the index of the zsmalloc &size_class that hold objects of the
1049 * provided size.
1050 */
zs_lookup_class_index(struct zs_pool * pool,unsigned int size)1051 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1052 {
1053 struct size_class *class;
1054
1055 class = pool->size_class[get_size_class_index(size)];
1056
1057 return class->index;
1058 }
1059 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1060
zs_get_total_pages(struct zs_pool * pool)1061 unsigned long zs_get_total_pages(struct zs_pool *pool)
1062 {
1063 return atomic_long_read(&pool->pages_allocated);
1064 }
1065 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1066
zs_obj_read_begin(struct zs_pool * pool,unsigned long handle,void * local_copy)1067 void *zs_obj_read_begin(struct zs_pool *pool, unsigned long handle,
1068 void *local_copy)
1069 {
1070 struct zspage *zspage;
1071 struct zpdesc *zpdesc;
1072 unsigned long obj, off;
1073 unsigned int obj_idx;
1074 struct size_class *class;
1075 void *addr;
1076
1077 /* Guarantee we can get zspage from handle safely */
1078 read_lock(&pool->lock);
1079 obj = handle_to_obj(handle);
1080 obj_to_location(obj, &zpdesc, &obj_idx);
1081 zspage = get_zspage(zpdesc);
1082
1083 /* Make sure migration doesn't move any pages in this zspage */
1084 zspage_read_lock(zspage);
1085 read_unlock(&pool->lock);
1086
1087 class = zspage_class(pool, zspage);
1088 off = offset_in_page(class->size * obj_idx);
1089
1090 if (off + class->size <= PAGE_SIZE) {
1091 /* this object is contained entirely within a page */
1092 addr = kmap_local_zpdesc(zpdesc);
1093 addr += off;
1094 } else {
1095 size_t sizes[2];
1096
1097 /* this object spans two pages */
1098 sizes[0] = PAGE_SIZE - off;
1099 sizes[1] = class->size - sizes[0];
1100 addr = local_copy;
1101
1102 memcpy_from_page(addr, zpdesc_page(zpdesc),
1103 off, sizes[0]);
1104 zpdesc = get_next_zpdesc(zpdesc);
1105 memcpy_from_page(addr + sizes[0],
1106 zpdesc_page(zpdesc),
1107 0, sizes[1]);
1108 }
1109
1110 if (!ZsHugePage(zspage))
1111 addr += ZS_HANDLE_SIZE;
1112
1113 return addr;
1114 }
1115 EXPORT_SYMBOL_GPL(zs_obj_read_begin);
1116
zs_obj_read_end(struct zs_pool * pool,unsigned long handle,void * handle_mem)1117 void zs_obj_read_end(struct zs_pool *pool, unsigned long handle,
1118 void *handle_mem)
1119 {
1120 struct zspage *zspage;
1121 struct zpdesc *zpdesc;
1122 unsigned long obj, off;
1123 unsigned int obj_idx;
1124 struct size_class *class;
1125
1126 obj = handle_to_obj(handle);
1127 obj_to_location(obj, &zpdesc, &obj_idx);
1128 zspage = get_zspage(zpdesc);
1129 class = zspage_class(pool, zspage);
1130 off = offset_in_page(class->size * obj_idx);
1131
1132 if (off + class->size <= PAGE_SIZE) {
1133 if (!ZsHugePage(zspage))
1134 off += ZS_HANDLE_SIZE;
1135 handle_mem -= off;
1136 kunmap_local(handle_mem);
1137 }
1138
1139 zspage_read_unlock(zspage);
1140 }
1141 EXPORT_SYMBOL_GPL(zs_obj_read_end);
1142
zs_obj_write(struct zs_pool * pool,unsigned long handle,void * handle_mem,size_t mem_len)1143 void zs_obj_write(struct zs_pool *pool, unsigned long handle,
1144 void *handle_mem, size_t mem_len)
1145 {
1146 struct zspage *zspage;
1147 struct zpdesc *zpdesc;
1148 unsigned long obj, off;
1149 unsigned int obj_idx;
1150 struct size_class *class;
1151
1152 /* Guarantee we can get zspage from handle safely */
1153 read_lock(&pool->lock);
1154 obj = handle_to_obj(handle);
1155 obj_to_location(obj, &zpdesc, &obj_idx);
1156 zspage = get_zspage(zpdesc);
1157
1158 /* Make sure migration doesn't move any pages in this zspage */
1159 zspage_read_lock(zspage);
1160 read_unlock(&pool->lock);
1161
1162 class = zspage_class(pool, zspage);
1163 off = offset_in_page(class->size * obj_idx);
1164
1165 if (!ZsHugePage(zspage))
1166 off += ZS_HANDLE_SIZE;
1167
1168 if (off + mem_len <= PAGE_SIZE) {
1169 /* this object is contained entirely within a page */
1170 void *dst = kmap_local_zpdesc(zpdesc);
1171
1172 memcpy(dst + off, handle_mem, mem_len);
1173 kunmap_local(dst);
1174 } else {
1175 /* this object spans two pages */
1176 size_t sizes[2];
1177
1178 sizes[0] = PAGE_SIZE - off;
1179 sizes[1] = mem_len - sizes[0];
1180
1181 memcpy_to_page(zpdesc_page(zpdesc), off,
1182 handle_mem, sizes[0]);
1183 zpdesc = get_next_zpdesc(zpdesc);
1184 memcpy_to_page(zpdesc_page(zpdesc), 0,
1185 handle_mem + sizes[0], sizes[1]);
1186 }
1187
1188 zspage_read_unlock(zspage);
1189 }
1190 EXPORT_SYMBOL_GPL(zs_obj_write);
1191
1192 /**
1193 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1194 * zsmalloc &size_class.
1195 * @pool: zsmalloc pool to use
1196 *
1197 * The function returns the size of the first huge class - any object of equal
1198 * or bigger size will be stored in zspage consisting of a single physical
1199 * page.
1200 *
1201 * Context: Any context.
1202 *
1203 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1204 */
zs_huge_class_size(struct zs_pool * pool)1205 size_t zs_huge_class_size(struct zs_pool *pool)
1206 {
1207 return huge_class_size;
1208 }
1209 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1210
obj_malloc(struct zs_pool * pool,struct zspage * zspage,unsigned long handle)1211 static unsigned long obj_malloc(struct zs_pool *pool,
1212 struct zspage *zspage, unsigned long handle)
1213 {
1214 int i, nr_zpdesc, offset;
1215 unsigned long obj;
1216 struct link_free *link;
1217 struct size_class *class;
1218
1219 struct zpdesc *m_zpdesc;
1220 unsigned long m_offset;
1221 void *vaddr;
1222
1223 class = pool->size_class[zspage->class];
1224 obj = get_freeobj(zspage);
1225
1226 offset = obj * class->size;
1227 nr_zpdesc = offset >> PAGE_SHIFT;
1228 m_offset = offset_in_page(offset);
1229 m_zpdesc = get_first_zpdesc(zspage);
1230
1231 for (i = 0; i < nr_zpdesc; i++)
1232 m_zpdesc = get_next_zpdesc(m_zpdesc);
1233
1234 vaddr = kmap_local_zpdesc(m_zpdesc);
1235 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1236 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1237 if (likely(!ZsHugePage(zspage)))
1238 /* record handle in the header of allocated chunk */
1239 link->handle = handle | OBJ_ALLOCATED_TAG;
1240 else
1241 zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG;
1242
1243 kunmap_local(vaddr);
1244 mod_zspage_inuse(zspage, 1);
1245
1246 obj = location_to_obj(m_zpdesc, obj);
1247 record_obj(handle, obj);
1248
1249 return obj;
1250 }
1251
1252
1253 /**
1254 * zs_malloc - Allocate block of given size from pool.
1255 * @pool: pool to allocate from
1256 * @size: size of block to allocate
1257 * @gfp: gfp flags when allocating object
1258 * @nid: The preferred node id to allocate new zspage (if needed)
1259 *
1260 * On success, handle to the allocated object is returned,
1261 * otherwise an ERR_PTR().
1262 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1263 */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp,const int nid)1264 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp,
1265 const int nid)
1266 {
1267 unsigned long handle;
1268 struct size_class *class;
1269 int newfg;
1270 struct zspage *zspage;
1271
1272 if (unlikely(!size))
1273 return (unsigned long)ERR_PTR(-EINVAL);
1274
1275 if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1276 return (unsigned long)ERR_PTR(-ENOSPC);
1277
1278 handle = cache_alloc_handle(pool, gfp);
1279 if (!handle)
1280 return (unsigned long)ERR_PTR(-ENOMEM);
1281
1282 /* extra space in chunk to keep the handle */
1283 size += ZS_HANDLE_SIZE;
1284 class = pool->size_class[get_size_class_index(size)];
1285
1286 /* class->lock effectively protects the zpage migration */
1287 spin_lock(&class->lock);
1288 zspage = find_get_zspage(class);
1289 if (likely(zspage)) {
1290 obj_malloc(pool, zspage, handle);
1291 /* Now move the zspage to another fullness group, if required */
1292 fix_fullness_group(class, zspage);
1293 class_stat_add(class, ZS_OBJS_INUSE, 1);
1294
1295 goto out;
1296 }
1297
1298 spin_unlock(&class->lock);
1299
1300 zspage = alloc_zspage(pool, class, gfp, nid);
1301 if (!zspage) {
1302 cache_free_handle(pool, handle);
1303 return (unsigned long)ERR_PTR(-ENOMEM);
1304 }
1305
1306 spin_lock(&class->lock);
1307 obj_malloc(pool, zspage, handle);
1308 newfg = get_fullness_group(class, zspage);
1309 insert_zspage(class, zspage, newfg);
1310 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1311 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1312 class_stat_add(class, ZS_OBJS_INUSE, 1);
1313
1314 /* We completely set up zspage so mark them as movable */
1315 SetZsPageMovable(pool, zspage);
1316 out:
1317 spin_unlock(&class->lock);
1318
1319 return handle;
1320 }
1321 EXPORT_SYMBOL_GPL(zs_malloc);
1322
obj_free(int class_size,unsigned long obj)1323 static void obj_free(int class_size, unsigned long obj)
1324 {
1325 struct link_free *link;
1326 struct zspage *zspage;
1327 struct zpdesc *f_zpdesc;
1328 unsigned long f_offset;
1329 unsigned int f_objidx;
1330 void *vaddr;
1331
1332
1333 obj_to_location(obj, &f_zpdesc, &f_objidx);
1334 f_offset = offset_in_page(class_size * f_objidx);
1335 zspage = get_zspage(f_zpdesc);
1336
1337 vaddr = kmap_local_zpdesc(f_zpdesc);
1338 link = (struct link_free *)(vaddr + f_offset);
1339
1340 /* Insert this object in containing zspage's freelist */
1341 if (likely(!ZsHugePage(zspage)))
1342 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1343 else
1344 f_zpdesc->handle = 0;
1345 set_freeobj(zspage, f_objidx);
1346
1347 kunmap_local(vaddr);
1348 mod_zspage_inuse(zspage, -1);
1349 }
1350
zs_free(struct zs_pool * pool,unsigned long handle)1351 void zs_free(struct zs_pool *pool, unsigned long handle)
1352 {
1353 struct zspage *zspage;
1354 struct zpdesc *f_zpdesc;
1355 unsigned long obj;
1356 struct size_class *class;
1357 int fullness;
1358
1359 if (IS_ERR_OR_NULL((void *)handle))
1360 return;
1361
1362 /*
1363 * The pool->lock protects the race with zpage's migration
1364 * so it's safe to get the page from handle.
1365 */
1366 read_lock(&pool->lock);
1367 obj = handle_to_obj(handle);
1368 obj_to_zpdesc(obj, &f_zpdesc);
1369 zspage = get_zspage(f_zpdesc);
1370 class = zspage_class(pool, zspage);
1371 spin_lock(&class->lock);
1372 read_unlock(&pool->lock);
1373
1374 class_stat_sub(class, ZS_OBJS_INUSE, 1);
1375 obj_free(class->size, obj);
1376
1377 fullness = fix_fullness_group(class, zspage);
1378 if (fullness == ZS_INUSE_RATIO_0)
1379 free_zspage(pool, class, zspage);
1380
1381 spin_unlock(&class->lock);
1382 cache_free_handle(pool, handle);
1383 }
1384 EXPORT_SYMBOL_GPL(zs_free);
1385
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1386 static void zs_object_copy(struct size_class *class, unsigned long dst,
1387 unsigned long src)
1388 {
1389 struct zpdesc *s_zpdesc, *d_zpdesc;
1390 unsigned int s_objidx, d_objidx;
1391 unsigned long s_off, d_off;
1392 void *s_addr, *d_addr;
1393 int s_size, d_size, size;
1394 int written = 0;
1395
1396 s_size = d_size = class->size;
1397
1398 obj_to_location(src, &s_zpdesc, &s_objidx);
1399 obj_to_location(dst, &d_zpdesc, &d_objidx);
1400
1401 s_off = offset_in_page(class->size * s_objidx);
1402 d_off = offset_in_page(class->size * d_objidx);
1403
1404 if (s_off + class->size > PAGE_SIZE)
1405 s_size = PAGE_SIZE - s_off;
1406
1407 if (d_off + class->size > PAGE_SIZE)
1408 d_size = PAGE_SIZE - d_off;
1409
1410 s_addr = kmap_local_zpdesc(s_zpdesc);
1411 d_addr = kmap_local_zpdesc(d_zpdesc);
1412
1413 while (1) {
1414 size = min(s_size, d_size);
1415 memcpy(d_addr + d_off, s_addr + s_off, size);
1416 written += size;
1417
1418 if (written == class->size)
1419 break;
1420
1421 s_off += size;
1422 s_size -= size;
1423 d_off += size;
1424 d_size -= size;
1425
1426 /*
1427 * Calling kunmap_local(d_addr) is necessary. kunmap_local()
1428 * calls must occurs in reverse order of calls to kmap_local_page().
1429 * So, to call kunmap_local(s_addr) we should first call
1430 * kunmap_local(d_addr). For more details see
1431 * Documentation/mm/highmem.rst.
1432 */
1433 if (s_off >= PAGE_SIZE) {
1434 kunmap_local(d_addr);
1435 kunmap_local(s_addr);
1436 s_zpdesc = get_next_zpdesc(s_zpdesc);
1437 s_addr = kmap_local_zpdesc(s_zpdesc);
1438 d_addr = kmap_local_zpdesc(d_zpdesc);
1439 s_size = class->size - written;
1440 s_off = 0;
1441 }
1442
1443 if (d_off >= PAGE_SIZE) {
1444 kunmap_local(d_addr);
1445 d_zpdesc = get_next_zpdesc(d_zpdesc);
1446 d_addr = kmap_local_zpdesc(d_zpdesc);
1447 d_size = class->size - written;
1448 d_off = 0;
1449 }
1450 }
1451
1452 kunmap_local(d_addr);
1453 kunmap_local(s_addr);
1454 }
1455
1456 /*
1457 * Find alloced object in zspage from index object and
1458 * return handle.
1459 */
find_alloced_obj(struct size_class * class,struct zpdesc * zpdesc,int * obj_idx)1460 static unsigned long find_alloced_obj(struct size_class *class,
1461 struct zpdesc *zpdesc, int *obj_idx)
1462 {
1463 unsigned int offset;
1464 int index = *obj_idx;
1465 unsigned long handle = 0;
1466 void *addr = kmap_local_zpdesc(zpdesc);
1467
1468 offset = get_first_obj_offset(zpdesc);
1469 offset += class->size * index;
1470
1471 while (offset < PAGE_SIZE) {
1472 if (obj_allocated(zpdesc, addr + offset, &handle))
1473 break;
1474
1475 offset += class->size;
1476 index++;
1477 }
1478
1479 kunmap_local(addr);
1480
1481 *obj_idx = index;
1482
1483 return handle;
1484 }
1485
migrate_zspage(struct zs_pool * pool,struct zspage * src_zspage,struct zspage * dst_zspage)1486 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1487 struct zspage *dst_zspage)
1488 {
1489 unsigned long used_obj, free_obj;
1490 unsigned long handle;
1491 int obj_idx = 0;
1492 struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage);
1493 struct size_class *class = pool->size_class[src_zspage->class];
1494
1495 while (1) {
1496 handle = find_alloced_obj(class, s_zpdesc, &obj_idx);
1497 if (!handle) {
1498 s_zpdesc = get_next_zpdesc(s_zpdesc);
1499 if (!s_zpdesc)
1500 break;
1501 obj_idx = 0;
1502 continue;
1503 }
1504
1505 used_obj = handle_to_obj(handle);
1506 free_obj = obj_malloc(pool, dst_zspage, handle);
1507 zs_object_copy(class, free_obj, used_obj);
1508 obj_idx++;
1509 obj_free(class->size, used_obj);
1510
1511 /* Stop if there is no more space */
1512 if (zspage_full(class, dst_zspage))
1513 break;
1514
1515 /* Stop if there are no more objects to migrate */
1516 if (zspage_empty(src_zspage))
1517 break;
1518 }
1519 }
1520
isolate_src_zspage(struct size_class * class)1521 static struct zspage *isolate_src_zspage(struct size_class *class)
1522 {
1523 struct zspage *zspage;
1524 int fg;
1525
1526 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1527 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1528 struct zspage, list);
1529 if (zspage) {
1530 remove_zspage(class, zspage);
1531 return zspage;
1532 }
1533 }
1534
1535 return zspage;
1536 }
1537
isolate_dst_zspage(struct size_class * class)1538 static struct zspage *isolate_dst_zspage(struct size_class *class)
1539 {
1540 struct zspage *zspage;
1541 int fg;
1542
1543 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1544 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1545 struct zspage, list);
1546 if (zspage) {
1547 remove_zspage(class, zspage);
1548 return zspage;
1549 }
1550 }
1551
1552 return zspage;
1553 }
1554
1555 /*
1556 * putback_zspage - add @zspage into right class's fullness list
1557 * @class: destination class
1558 * @zspage: target page
1559 *
1560 * Return @zspage's fullness status
1561 */
putback_zspage(struct size_class * class,struct zspage * zspage)1562 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1563 {
1564 int fullness;
1565
1566 fullness = get_fullness_group(class, zspage);
1567 insert_zspage(class, zspage, fullness);
1568
1569 return fullness;
1570 }
1571
1572 #ifdef CONFIG_COMPACTION
1573 /*
1574 * To prevent zspage destroy during migration, zspage freeing should
1575 * hold locks of all pages in the zspage.
1576 */
lock_zspage(struct zspage * zspage)1577 static void lock_zspage(struct zspage *zspage)
1578 {
1579 struct zpdesc *curr_zpdesc, *zpdesc;
1580
1581 /*
1582 * Pages we haven't locked yet can be migrated off the list while we're
1583 * trying to lock them, so we need to be careful and only attempt to
1584 * lock each page under zspage_read_lock(). Otherwise, the page we lock
1585 * may no longer belong to the zspage. This means that we may wait for
1586 * the wrong page to unlock, so we must take a reference to the page
1587 * prior to waiting for it to unlock outside zspage_read_lock().
1588 */
1589 while (1) {
1590 zspage_read_lock(zspage);
1591 zpdesc = get_first_zpdesc(zspage);
1592 if (zpdesc_trylock(zpdesc))
1593 break;
1594 zpdesc_get(zpdesc);
1595 zspage_read_unlock(zspage);
1596 zpdesc_wait_locked(zpdesc);
1597 zpdesc_put(zpdesc);
1598 }
1599
1600 curr_zpdesc = zpdesc;
1601 while ((zpdesc = get_next_zpdesc(curr_zpdesc))) {
1602 if (zpdesc_trylock(zpdesc)) {
1603 curr_zpdesc = zpdesc;
1604 } else {
1605 zpdesc_get(zpdesc);
1606 zspage_read_unlock(zspage);
1607 zpdesc_wait_locked(zpdesc);
1608 zpdesc_put(zpdesc);
1609 zspage_read_lock(zspage);
1610 }
1611 }
1612 zspage_read_unlock(zspage);
1613 }
1614 #endif /* CONFIG_COMPACTION */
1615
1616 #ifdef CONFIG_COMPACTION
1617
replace_sub_page(struct size_class * class,struct zspage * zspage,struct zpdesc * newzpdesc,struct zpdesc * oldzpdesc)1618 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1619 struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc)
1620 {
1621 struct zpdesc *zpdesc;
1622 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1623 unsigned int first_obj_offset;
1624 int idx = 0;
1625
1626 zpdesc = get_first_zpdesc(zspage);
1627 do {
1628 if (zpdesc == oldzpdesc)
1629 zpdescs[idx] = newzpdesc;
1630 else
1631 zpdescs[idx] = zpdesc;
1632 idx++;
1633 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1634
1635 create_page_chain(class, zspage, zpdescs);
1636 first_obj_offset = get_first_obj_offset(oldzpdesc);
1637 set_first_obj_offset(newzpdesc, first_obj_offset);
1638 if (unlikely(ZsHugePage(zspage)))
1639 newzpdesc->handle = oldzpdesc->handle;
1640 __zpdesc_set_movable(newzpdesc);
1641 }
1642
zs_page_isolate(struct page * page,isolate_mode_t mode)1643 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1644 {
1645 /*
1646 * Page is locked so zspage can't be destroyed concurrently
1647 * (see free_zspage()). But if the page was already destroyed
1648 * (see reset_zpdesc()), refuse isolation here.
1649 */
1650 return page_zpdesc(page)->zspage;
1651 }
1652
zs_page_migrate(struct page * newpage,struct page * page,enum migrate_mode mode)1653 static int zs_page_migrate(struct page *newpage, struct page *page,
1654 enum migrate_mode mode)
1655 {
1656 struct zs_pool *pool;
1657 struct size_class *class;
1658 struct zspage *zspage;
1659 struct zpdesc *dummy;
1660 struct zpdesc *newzpdesc = page_zpdesc(newpage);
1661 struct zpdesc *zpdesc = page_zpdesc(page);
1662 void *s_addr, *d_addr, *addr;
1663 unsigned int offset;
1664 unsigned long handle;
1665 unsigned long old_obj, new_obj;
1666 unsigned int obj_idx;
1667
1668 /*
1669 * TODO: nothing prevents a zspage from getting destroyed while
1670 * it is isolated for migration, as the page lock is temporarily
1671 * dropped after zs_page_isolate() succeeded: we should rework that
1672 * and defer destroying such pages once they are un-isolated (putback)
1673 * instead.
1674 */
1675 if (!zpdesc->zspage)
1676 return 0;
1677
1678 /* The page is locked, so this pointer must remain valid */
1679 zspage = get_zspage(zpdesc);
1680 pool = zspage->pool;
1681
1682 /*
1683 * The pool migrate_lock protects the race between zpage migration
1684 * and zs_free.
1685 */
1686 write_lock(&pool->lock);
1687 class = zspage_class(pool, zspage);
1688
1689 /*
1690 * the class lock protects zpage alloc/free in the zspage.
1691 */
1692 spin_lock(&class->lock);
1693 /* the zspage write_lock protects zpage access via zs_obj_read/write() */
1694 if (!zspage_write_trylock(zspage)) {
1695 spin_unlock(&class->lock);
1696 write_unlock(&pool->lock);
1697 return -EINVAL;
1698 }
1699
1700 /* We're committed, tell the world that this is a Zsmalloc page. */
1701 __zpdesc_set_zsmalloc(newzpdesc);
1702
1703 offset = get_first_obj_offset(zpdesc);
1704 s_addr = kmap_local_zpdesc(zpdesc);
1705
1706 /*
1707 * Here, any user cannot access all objects in the zspage so let's move.
1708 */
1709 d_addr = kmap_local_zpdesc(newzpdesc);
1710 copy_page(d_addr, s_addr);
1711 kunmap_local(d_addr);
1712
1713 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1714 addr += class->size) {
1715 if (obj_allocated(zpdesc, addr, &handle)) {
1716
1717 old_obj = handle_to_obj(handle);
1718 obj_to_location(old_obj, &dummy, &obj_idx);
1719 new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx);
1720 record_obj(handle, new_obj);
1721 }
1722 }
1723 kunmap_local(s_addr);
1724
1725 replace_sub_page(class, zspage, newzpdesc, zpdesc);
1726 /*
1727 * Since we complete the data copy and set up new zspage structure,
1728 * it's okay to release migration_lock.
1729 */
1730 write_unlock(&pool->lock);
1731 spin_unlock(&class->lock);
1732 zspage_write_unlock(zspage);
1733
1734 zpdesc_get(newzpdesc);
1735 if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) {
1736 zpdesc_dec_zone_page_state(zpdesc);
1737 zpdesc_inc_zone_page_state(newzpdesc);
1738 }
1739
1740 reset_zpdesc(zpdesc);
1741 zpdesc_put(zpdesc);
1742
1743 return 0;
1744 }
1745
zs_page_putback(struct page * page)1746 static void zs_page_putback(struct page *page)
1747 {
1748 }
1749
1750 const struct movable_operations zsmalloc_mops = {
1751 .isolate_page = zs_page_isolate,
1752 .migrate_page = zs_page_migrate,
1753 .putback_page = zs_page_putback,
1754 };
1755
1756 /*
1757 * Caller should hold page_lock of all pages in the zspage
1758 * In here, we cannot use zspage meta data.
1759 */
async_free_zspage(struct work_struct * work)1760 static void async_free_zspage(struct work_struct *work)
1761 {
1762 int i;
1763 struct size_class *class;
1764 struct zspage *zspage, *tmp;
1765 LIST_HEAD(free_pages);
1766 struct zs_pool *pool = container_of(work, struct zs_pool,
1767 free_work);
1768
1769 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1770 class = pool->size_class[i];
1771 if (class->index != i)
1772 continue;
1773
1774 spin_lock(&class->lock);
1775 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1776 &free_pages);
1777 spin_unlock(&class->lock);
1778 }
1779
1780 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1781 list_del(&zspage->list);
1782 lock_zspage(zspage);
1783
1784 class = zspage_class(pool, zspage);
1785 spin_lock(&class->lock);
1786 class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1787 __free_zspage(pool, class, zspage);
1788 spin_unlock(&class->lock);
1789 }
1790 };
1791
kick_deferred_free(struct zs_pool * pool)1792 static void kick_deferred_free(struct zs_pool *pool)
1793 {
1794 schedule_work(&pool->free_work);
1795 }
1796
zs_flush_migration(struct zs_pool * pool)1797 static void zs_flush_migration(struct zs_pool *pool)
1798 {
1799 flush_work(&pool->free_work);
1800 }
1801
init_deferred_free(struct zs_pool * pool)1802 static void init_deferred_free(struct zs_pool *pool)
1803 {
1804 INIT_WORK(&pool->free_work, async_free_zspage);
1805 }
1806
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)1807 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1808 {
1809 struct zpdesc *zpdesc = get_first_zpdesc(zspage);
1810
1811 do {
1812 WARN_ON(!zpdesc_trylock(zpdesc));
1813 __zpdesc_set_movable(zpdesc);
1814 zpdesc_unlock(zpdesc);
1815 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1816 }
1817 #else
zs_flush_migration(struct zs_pool * pool)1818 static inline void zs_flush_migration(struct zs_pool *pool) { }
1819 #endif
1820
1821 /*
1822 *
1823 * Based on the number of unused allocated objects calculate
1824 * and return the number of pages that we can free.
1825 */
zs_can_compact(struct size_class * class)1826 static unsigned long zs_can_compact(struct size_class *class)
1827 {
1828 unsigned long obj_wasted;
1829 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1830 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1831
1832 if (obj_allocated <= obj_used)
1833 return 0;
1834
1835 obj_wasted = obj_allocated - obj_used;
1836 obj_wasted /= class->objs_per_zspage;
1837
1838 return obj_wasted * class->pages_per_zspage;
1839 }
1840
__zs_compact(struct zs_pool * pool,struct size_class * class)1841 static unsigned long __zs_compact(struct zs_pool *pool,
1842 struct size_class *class)
1843 {
1844 struct zspage *src_zspage = NULL;
1845 struct zspage *dst_zspage = NULL;
1846 unsigned long pages_freed = 0;
1847
1848 /*
1849 * protect the race between zpage migration and zs_free
1850 * as well as zpage allocation/free
1851 */
1852 write_lock(&pool->lock);
1853 spin_lock(&class->lock);
1854 while (zs_can_compact(class)) {
1855 int fg;
1856
1857 if (!dst_zspage) {
1858 dst_zspage = isolate_dst_zspage(class);
1859 if (!dst_zspage)
1860 break;
1861 }
1862
1863 src_zspage = isolate_src_zspage(class);
1864 if (!src_zspage)
1865 break;
1866
1867 if (!zspage_write_trylock(src_zspage))
1868 break;
1869
1870 migrate_zspage(pool, src_zspage, dst_zspage);
1871 zspage_write_unlock(src_zspage);
1872
1873 fg = putback_zspage(class, src_zspage);
1874 if (fg == ZS_INUSE_RATIO_0) {
1875 free_zspage(pool, class, src_zspage);
1876 pages_freed += class->pages_per_zspage;
1877 }
1878 src_zspage = NULL;
1879
1880 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1881 || rwlock_is_contended(&pool->lock)) {
1882 putback_zspage(class, dst_zspage);
1883 dst_zspage = NULL;
1884
1885 spin_unlock(&class->lock);
1886 write_unlock(&pool->lock);
1887 cond_resched();
1888 write_lock(&pool->lock);
1889 spin_lock(&class->lock);
1890 }
1891 }
1892
1893 if (src_zspage)
1894 putback_zspage(class, src_zspage);
1895
1896 if (dst_zspage)
1897 putback_zspage(class, dst_zspage);
1898
1899 spin_unlock(&class->lock);
1900 write_unlock(&pool->lock);
1901
1902 return pages_freed;
1903 }
1904
zs_compact(struct zs_pool * pool)1905 unsigned long zs_compact(struct zs_pool *pool)
1906 {
1907 int i;
1908 struct size_class *class;
1909 unsigned long pages_freed = 0;
1910
1911 /*
1912 * Pool compaction is performed under pool->lock so it is basically
1913 * single-threaded. Having more than one thread in __zs_compact()
1914 * will increase pool->lock contention, which will impact other
1915 * zsmalloc operations that need pool->lock.
1916 */
1917 if (atomic_xchg(&pool->compaction_in_progress, 1))
1918 return 0;
1919
1920 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1921 class = pool->size_class[i];
1922 if (class->index != i)
1923 continue;
1924 pages_freed += __zs_compact(pool, class);
1925 }
1926 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
1927 atomic_set(&pool->compaction_in_progress, 0);
1928
1929 return pages_freed;
1930 }
1931 EXPORT_SYMBOL_GPL(zs_compact);
1932
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)1933 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1934 {
1935 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1936 }
1937 EXPORT_SYMBOL_GPL(zs_pool_stats);
1938
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)1939 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1940 struct shrink_control *sc)
1941 {
1942 unsigned long pages_freed;
1943 struct zs_pool *pool = shrinker->private_data;
1944
1945 /*
1946 * Compact classes and calculate compaction delta.
1947 * Can run concurrently with a manually triggered
1948 * (by user) compaction.
1949 */
1950 pages_freed = zs_compact(pool);
1951
1952 return pages_freed ? pages_freed : SHRINK_STOP;
1953 }
1954
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)1955 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1956 struct shrink_control *sc)
1957 {
1958 int i;
1959 struct size_class *class;
1960 unsigned long pages_to_free = 0;
1961 struct zs_pool *pool = shrinker->private_data;
1962
1963 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1964 class = pool->size_class[i];
1965 if (class->index != i)
1966 continue;
1967
1968 pages_to_free += zs_can_compact(class);
1969 }
1970
1971 return pages_to_free;
1972 }
1973
zs_unregister_shrinker(struct zs_pool * pool)1974 static void zs_unregister_shrinker(struct zs_pool *pool)
1975 {
1976 shrinker_free(pool->shrinker);
1977 }
1978
zs_register_shrinker(struct zs_pool * pool)1979 static int zs_register_shrinker(struct zs_pool *pool)
1980 {
1981 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
1982 if (!pool->shrinker)
1983 return -ENOMEM;
1984
1985 pool->shrinker->scan_objects = zs_shrinker_scan;
1986 pool->shrinker->count_objects = zs_shrinker_count;
1987 pool->shrinker->batch = 0;
1988 pool->shrinker->private_data = pool;
1989
1990 shrinker_register(pool->shrinker);
1991
1992 return 0;
1993 }
1994
calculate_zspage_chain_size(int class_size)1995 static int calculate_zspage_chain_size(int class_size)
1996 {
1997 int i, min_waste = INT_MAX;
1998 int chain_size = 1;
1999
2000 if (is_power_of_2(class_size))
2001 return chain_size;
2002
2003 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2004 int waste;
2005
2006 waste = (i * PAGE_SIZE) % class_size;
2007 if (waste < min_waste) {
2008 min_waste = waste;
2009 chain_size = i;
2010 }
2011 }
2012
2013 return chain_size;
2014 }
2015
2016 /**
2017 * zs_create_pool - Creates an allocation pool to work from.
2018 * @name: pool name to be created
2019 *
2020 * This function must be called before anything when using
2021 * the zsmalloc allocator.
2022 *
2023 * On success, a pointer to the newly created pool is returned,
2024 * otherwise NULL.
2025 */
zs_create_pool(const char * name)2026 struct zs_pool *zs_create_pool(const char *name)
2027 {
2028 int i;
2029 struct zs_pool *pool;
2030 struct size_class *prev_class = NULL;
2031
2032 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2033 if (!pool)
2034 return NULL;
2035
2036 init_deferred_free(pool);
2037 rwlock_init(&pool->lock);
2038 atomic_set(&pool->compaction_in_progress, 0);
2039
2040 pool->name = kstrdup(name, GFP_KERNEL);
2041 if (!pool->name)
2042 goto err;
2043
2044 if (create_cache(pool))
2045 goto err;
2046
2047 /*
2048 * Iterate reversely, because, size of size_class that we want to use
2049 * for merging should be larger or equal to current size.
2050 */
2051 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2052 int size;
2053 int pages_per_zspage;
2054 int objs_per_zspage;
2055 struct size_class *class;
2056 int fullness;
2057
2058 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2059 if (size > ZS_MAX_ALLOC_SIZE)
2060 size = ZS_MAX_ALLOC_SIZE;
2061 pages_per_zspage = calculate_zspage_chain_size(size);
2062 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2063
2064 /*
2065 * We iterate from biggest down to smallest classes,
2066 * so huge_class_size holds the size of the first huge
2067 * class. Any object bigger than or equal to that will
2068 * endup in the huge class.
2069 */
2070 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2071 !huge_class_size) {
2072 huge_class_size = size;
2073 /*
2074 * The object uses ZS_HANDLE_SIZE bytes to store the
2075 * handle. We need to subtract it, because zs_malloc()
2076 * unconditionally adds handle size before it performs
2077 * size class search - so object may be smaller than
2078 * huge class size, yet it still can end up in the huge
2079 * class because it grows by ZS_HANDLE_SIZE extra bytes
2080 * right before class lookup.
2081 */
2082 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2083 }
2084
2085 /*
2086 * size_class is used for normal zsmalloc operation such
2087 * as alloc/free for that size. Although it is natural that we
2088 * have one size_class for each size, there is a chance that we
2089 * can get more memory utilization if we use one size_class for
2090 * many different sizes whose size_class have same
2091 * characteristics. So, we makes size_class point to
2092 * previous size_class if possible.
2093 */
2094 if (prev_class) {
2095 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2096 pool->size_class[i] = prev_class;
2097 continue;
2098 }
2099 }
2100
2101 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2102 if (!class)
2103 goto err;
2104
2105 class->size = size;
2106 class->index = i;
2107 class->pages_per_zspage = pages_per_zspage;
2108 class->objs_per_zspage = objs_per_zspage;
2109 spin_lock_init(&class->lock);
2110 pool->size_class[i] = class;
2111
2112 fullness = ZS_INUSE_RATIO_0;
2113 while (fullness < NR_FULLNESS_GROUPS) {
2114 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2115 fullness++;
2116 }
2117
2118 prev_class = class;
2119 }
2120
2121 /* debug only, don't abort if it fails */
2122 zs_pool_stat_create(pool, name);
2123
2124 /*
2125 * Not critical since shrinker is only used to trigger internal
2126 * defragmentation of the pool which is pretty optional thing. If
2127 * registration fails we still can use the pool normally and user can
2128 * trigger compaction manually. Thus, ignore return code.
2129 */
2130 zs_register_shrinker(pool);
2131
2132 return pool;
2133
2134 err:
2135 zs_destroy_pool(pool);
2136 return NULL;
2137 }
2138 EXPORT_SYMBOL_GPL(zs_create_pool);
2139
zs_destroy_pool(struct zs_pool * pool)2140 void zs_destroy_pool(struct zs_pool *pool)
2141 {
2142 int i;
2143
2144 zs_unregister_shrinker(pool);
2145 zs_flush_migration(pool);
2146 zs_pool_stat_destroy(pool);
2147
2148 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2149 int fg;
2150 struct size_class *class = pool->size_class[i];
2151
2152 if (!class)
2153 continue;
2154
2155 if (class->index != i)
2156 continue;
2157
2158 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2159 if (list_empty(&class->fullness_list[fg]))
2160 continue;
2161
2162 pr_err("Class-%d fullness group %d is not empty\n",
2163 class->size, fg);
2164 }
2165 kfree(class);
2166 }
2167
2168 destroy_cache(pool);
2169 kfree(pool->name);
2170 kfree(pool);
2171 }
2172 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2173
zs_init(void)2174 static int __init zs_init(void)
2175 {
2176 int rc __maybe_unused;
2177
2178 #ifdef CONFIG_COMPACTION
2179 rc = set_movable_ops(&zsmalloc_mops, PGTY_zsmalloc);
2180 if (rc)
2181 return rc;
2182 #endif
2183 zs_stat_init();
2184 return 0;
2185 }
2186
zs_exit(void)2187 static void __exit zs_exit(void)
2188 {
2189 #ifdef CONFIG_COMPACTION
2190 set_movable_ops(NULL, PGTY_zsmalloc);
2191 #endif
2192 zs_stat_exit();
2193 }
2194
2195 module_init(zs_init);
2196 module_exit(zs_exit);
2197
2198 MODULE_LICENSE("Dual BSD/GPL");
2199 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2200 MODULE_DESCRIPTION("zsmalloc memory allocator");
2201