xref: /linux/mm/zsmalloc.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /*
4  * zsmalloc memory allocator
5  *
6  * Copyright (C) 2011  Nitin Gupta
7  * Copyright (C) 2012, 2013 Minchan Kim
8  *
9  * This code is released using a dual license strategy: BSD/GPL
10  * You can choose the license that better fits your requirements.
11  *
12  * Released under the terms of 3-clause BSD License
13  * Released under the terms of GNU General Public License Version 2.0
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 /*
19  * lock ordering:
20  *	page_lock
21  *	pool->lock
22  *	class->lock
23  *	zspage->lock
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/highmem.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 #include <linux/sprintf.h>
35 #include <linux/shrinker.h>
36 #include <linux/types.h>
37 #include <linux/debugfs.h>
38 #include <linux/zsmalloc.h>
39 #include <linux/fs.h>
40 #include <linux/workqueue.h>
41 #include "zpdesc.h"
42 
43 #define ZSPAGE_MAGIC	0x58
44 
45 /*
46  * This must be power of 2 and greater than or equal to sizeof(link_free).
47  * These two conditions ensure that any 'struct link_free' itself doesn't
48  * span more than 1 page which avoids complex case of mapping 2 pages simply
49  * to restore link_free pointer values.
50  */
51 #define ZS_ALIGN		8
52 
53 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
54 
55 /*
56  * Object location (<PFN>, <obj_idx>) is encoded as
57  * a single (unsigned long) handle value.
58  *
59  * Note that object index <obj_idx> starts from 0.
60  *
61  * This is made more complicated by various memory models and PAE.
62  */
63 
64 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
65 #ifdef MAX_PHYSMEM_BITS
66 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
67 #else
68 /*
69  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
70  * be PAGE_SHIFT
71  */
72 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
73 #endif
74 #endif
75 
76 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
77 
78 /*
79  * Head in allocated object should have OBJ_ALLOCATED_TAG
80  * to identify the object was allocated or not.
81  * It's okay to add the status bit in the least bit because
82  * header keeps handle which is 4byte-aligned address so we
83  * have room for two bit at least.
84  */
85 #define OBJ_ALLOCATED_TAG 1
86 
87 #define OBJ_TAG_BITS	1
88 #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
89 
90 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
91 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
92 
93 #define HUGE_BITS	1
94 #define FULLNESS_BITS	4
95 #define CLASS_BITS	8
96 #define MAGIC_VAL_BITS	8
97 
98 #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
99 
100 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
101 #define ZS_MIN_ALLOC_SIZE \
102 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
103 /* each chunk includes extra space to keep handle */
104 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
105 
106 /*
107  * On systems with 4K page size, this gives 255 size classes! There is a
108  * trader-off here:
109  *  - Large number of size classes is potentially wasteful as free page are
110  *    spread across these classes
111  *  - Small number of size classes causes large internal fragmentation
112  *  - Probably its better to use specific size classes (empirically
113  *    determined). NOTE: all those class sizes must be set as multiple of
114  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
115  *
116  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
117  *  (reason above)
118  */
119 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
120 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
121 				      ZS_SIZE_CLASS_DELTA) + 1)
122 
123 /*
124  * Pages are distinguished by the ratio of used memory (that is the ratio
125  * of ->inuse objects to all objects that page can store). For example,
126  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
127  *
128  * The number of fullness groups is not random. It allows us to keep
129  * difference between the least busy page in the group (minimum permitted
130  * number of ->inuse objects) and the most busy page (maximum permitted
131  * number of ->inuse objects) at a reasonable value.
132  */
133 enum fullness_group {
134 	ZS_INUSE_RATIO_0,
135 	ZS_INUSE_RATIO_10,
136 	/* NOTE: 8 more fullness groups here */
137 	ZS_INUSE_RATIO_99       = 10,
138 	ZS_INUSE_RATIO_100,
139 	NR_FULLNESS_GROUPS,
140 };
141 
142 enum class_stat_type {
143 	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
144 	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
145 	ZS_OBJS_INUSE,
146 	NR_CLASS_STAT_TYPES,
147 };
148 
149 struct zs_size_stat {
150 	unsigned long objs[NR_CLASS_STAT_TYPES];
151 };
152 
153 #ifdef CONFIG_ZSMALLOC_STAT
154 static struct dentry *zs_stat_root;
155 #endif
156 
157 static size_t huge_class_size;
158 
159 struct size_class {
160 	spinlock_t lock;
161 	struct list_head fullness_list[NR_FULLNESS_GROUPS];
162 	/*
163 	 * Size of objects stored in this class. Must be multiple
164 	 * of ZS_ALIGN.
165 	 */
166 	int size;
167 	int objs_per_zspage;
168 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
169 	int pages_per_zspage;
170 
171 	unsigned int index;
172 	struct zs_size_stat stats;
173 };
174 
175 /*
176  * Placed within free objects to form a singly linked list.
177  * For every zspage, zspage->freeobj gives head of this list.
178  *
179  * This must be power of 2 and less than or equal to ZS_ALIGN
180  */
181 struct link_free {
182 	union {
183 		/*
184 		 * Free object index;
185 		 * It's valid for non-allocated object
186 		 */
187 		unsigned long next;
188 		/*
189 		 * Handle of allocated object.
190 		 */
191 		unsigned long handle;
192 	};
193 };
194 
195 struct zs_pool {
196 	const char *name;
197 
198 	struct size_class *size_class[ZS_SIZE_CLASSES];
199 	struct kmem_cache *handle_cachep;
200 	struct kmem_cache *zspage_cachep;
201 
202 	atomic_long_t pages_allocated;
203 
204 	struct zs_pool_stats stats;
205 
206 	/* Compact classes */
207 	struct shrinker *shrinker;
208 
209 #ifdef CONFIG_ZSMALLOC_STAT
210 	struct dentry *stat_dentry;
211 #endif
212 #ifdef CONFIG_COMPACTION
213 	struct work_struct free_work;
214 #endif
215 	/* protect zspage migration/compaction */
216 	rwlock_t lock;
217 	atomic_t compaction_in_progress;
218 };
219 
zpdesc_set_first(struct zpdesc * zpdesc)220 static inline void zpdesc_set_first(struct zpdesc *zpdesc)
221 {
222 	SetPagePrivate(zpdesc_page(zpdesc));
223 }
224 
zpdesc_inc_zone_page_state(struct zpdesc * zpdesc)225 static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc)
226 {
227 	inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
228 }
229 
zpdesc_dec_zone_page_state(struct zpdesc * zpdesc)230 static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc)
231 {
232 	dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
233 }
234 
alloc_zpdesc(gfp_t gfp,const int nid)235 static inline struct zpdesc *alloc_zpdesc(gfp_t gfp, const int nid)
236 {
237 	struct page *page = alloc_pages_node(nid, gfp, 0);
238 
239 	return page_zpdesc(page);
240 }
241 
free_zpdesc(struct zpdesc * zpdesc)242 static inline void free_zpdesc(struct zpdesc *zpdesc)
243 {
244 	struct page *page = zpdesc_page(zpdesc);
245 
246 	/* PageZsmalloc is sticky until the page is freed to the buddy. */
247 	__free_page(page);
248 }
249 
250 #define ZS_PAGE_UNLOCKED	0
251 #define ZS_PAGE_WRLOCKED	-1
252 
253 struct zspage_lock {
254 	spinlock_t lock;
255 	int cnt;
256 	struct lockdep_map dep_map;
257 };
258 
259 struct zspage {
260 	struct {
261 		unsigned int huge:HUGE_BITS;
262 		unsigned int fullness:FULLNESS_BITS;
263 		unsigned int class:CLASS_BITS + 1;
264 		unsigned int magic:MAGIC_VAL_BITS;
265 	};
266 	unsigned int inuse;
267 	unsigned int freeobj;
268 	struct zpdesc *first_zpdesc;
269 	struct list_head list; /* fullness list */
270 	struct zs_pool *pool;
271 	struct zspage_lock zsl;
272 };
273 
zspage_lock_init(struct zspage * zspage)274 static void zspage_lock_init(struct zspage *zspage)
275 {
276 	static struct lock_class_key __key;
277 	struct zspage_lock *zsl = &zspage->zsl;
278 
279 	lockdep_init_map(&zsl->dep_map, "zspage->lock", &__key, 0);
280 	spin_lock_init(&zsl->lock);
281 	zsl->cnt = ZS_PAGE_UNLOCKED;
282 }
283 
284 /*
285  * The zspage lock can be held from atomic contexts, but it needs to remain
286  * preemptible when held for reading because it remains held outside of those
287  * atomic contexts, otherwise we unnecessarily lose preemptibility.
288  *
289  * To achieve this, the following rules are enforced on readers and writers:
290  *
291  * - Writers are blocked by both writers and readers, while readers are only
292  *   blocked by writers (i.e. normal rwlock semantics).
293  *
294  * - Writers are always atomic (to allow readers to spin waiting for them).
295  *
296  * - Writers always use trylock (as the lock may be held be sleeping readers).
297  *
298  * - Readers may spin on the lock (as they can only wait for atomic writers).
299  *
300  * - Readers may sleep while holding the lock (as writes only use trylock).
301  */
zspage_read_lock(struct zspage * zspage)302 static void zspage_read_lock(struct zspage *zspage)
303 {
304 	struct zspage_lock *zsl = &zspage->zsl;
305 
306 	rwsem_acquire_read(&zsl->dep_map, 0, 0, _RET_IP_);
307 
308 	spin_lock(&zsl->lock);
309 	zsl->cnt++;
310 	spin_unlock(&zsl->lock);
311 
312 	lock_acquired(&zsl->dep_map, _RET_IP_);
313 }
314 
zspage_read_unlock(struct zspage * zspage)315 static void zspage_read_unlock(struct zspage *zspage)
316 {
317 	struct zspage_lock *zsl = &zspage->zsl;
318 
319 	rwsem_release(&zsl->dep_map, _RET_IP_);
320 
321 	spin_lock(&zsl->lock);
322 	zsl->cnt--;
323 	spin_unlock(&zsl->lock);
324 }
325 
zspage_write_trylock(struct zspage * zspage)326 static __must_check bool zspage_write_trylock(struct zspage *zspage)
327 {
328 	struct zspage_lock *zsl = &zspage->zsl;
329 
330 	spin_lock(&zsl->lock);
331 	if (zsl->cnt == ZS_PAGE_UNLOCKED) {
332 		zsl->cnt = ZS_PAGE_WRLOCKED;
333 		rwsem_acquire(&zsl->dep_map, 0, 1, _RET_IP_);
334 		lock_acquired(&zsl->dep_map, _RET_IP_);
335 		return true;
336 	}
337 
338 	spin_unlock(&zsl->lock);
339 	return false;
340 }
341 
zspage_write_unlock(struct zspage * zspage)342 static void zspage_write_unlock(struct zspage *zspage)
343 {
344 	struct zspage_lock *zsl = &zspage->zsl;
345 
346 	rwsem_release(&zsl->dep_map, _RET_IP_);
347 
348 	zsl->cnt = ZS_PAGE_UNLOCKED;
349 	spin_unlock(&zsl->lock);
350 }
351 
352 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetZsHugePage(struct zspage * zspage)353 static void SetZsHugePage(struct zspage *zspage)
354 {
355 	zspage->huge = 1;
356 }
357 
ZsHugePage(struct zspage * zspage)358 static bool ZsHugePage(struct zspage *zspage)
359 {
360 	return zspage->huge;
361 }
362 
363 #ifdef CONFIG_COMPACTION
364 static void kick_deferred_free(struct zs_pool *pool);
365 static void init_deferred_free(struct zs_pool *pool);
366 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
367 #else
kick_deferred_free(struct zs_pool * pool)368 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)369 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)370 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
371 #endif
372 
create_cache(struct zs_pool * pool)373 static int create_cache(struct zs_pool *pool)
374 {
375 	char *name;
376 
377 	name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
378 	if (!name)
379 		return -ENOMEM;
380 	pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
381 						0, 0, NULL);
382 	kfree(name);
383 	if (!pool->handle_cachep)
384 		return -EINVAL;
385 
386 	name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
387 	if (!name)
388 		return -ENOMEM;
389 	pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
390 						0, 0, NULL);
391 	kfree(name);
392 	if (!pool->zspage_cachep) {
393 		kmem_cache_destroy(pool->handle_cachep);
394 		pool->handle_cachep = NULL;
395 		return -EINVAL;
396 	}
397 
398 	return 0;
399 }
400 
destroy_cache(struct zs_pool * pool)401 static void destroy_cache(struct zs_pool *pool)
402 {
403 	kmem_cache_destroy(pool->handle_cachep);
404 	kmem_cache_destroy(pool->zspage_cachep);
405 }
406 
cache_alloc_handle(struct zs_pool * pool,gfp_t gfp)407 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
408 {
409 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
410 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
411 }
412 
cache_free_handle(struct zs_pool * pool,unsigned long handle)413 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
414 {
415 	kmem_cache_free(pool->handle_cachep, (void *)handle);
416 }
417 
cache_alloc_zspage(struct zs_pool * pool,gfp_t flags)418 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
419 {
420 	return kmem_cache_zalloc(pool->zspage_cachep,
421 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
422 }
423 
cache_free_zspage(struct zs_pool * pool,struct zspage * zspage)424 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
425 {
426 	kmem_cache_free(pool->zspage_cachep, zspage);
427 }
428 
429 /* class->lock(which owns the handle) synchronizes races */
record_obj(unsigned long handle,unsigned long obj)430 static void record_obj(unsigned long handle, unsigned long obj)
431 {
432 	*(unsigned long *)handle = obj;
433 }
434 
is_first_zpdesc(struct zpdesc * zpdesc)435 static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc)
436 {
437 	return PagePrivate(zpdesc_page(zpdesc));
438 }
439 
440 /* Protected by class->lock */
get_zspage_inuse(struct zspage * zspage)441 static inline int get_zspage_inuse(struct zspage *zspage)
442 {
443 	return zspage->inuse;
444 }
445 
mod_zspage_inuse(struct zspage * zspage,int val)446 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
447 {
448 	zspage->inuse += val;
449 }
450 
get_first_zpdesc(struct zspage * zspage)451 static struct zpdesc *get_first_zpdesc(struct zspage *zspage)
452 {
453 	struct zpdesc *first_zpdesc = zspage->first_zpdesc;
454 
455 	VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc));
456 	return first_zpdesc;
457 }
458 
459 #define FIRST_OBJ_PAGE_TYPE_MASK	0xffffff
460 
get_first_obj_offset(struct zpdesc * zpdesc)461 static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc)
462 {
463 	VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
464 	return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK;
465 }
466 
set_first_obj_offset(struct zpdesc * zpdesc,unsigned int offset)467 static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset)
468 {
469 	/* With 24 bits available, we can support offsets into 16 MiB pages. */
470 	BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
471 	VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
472 	VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
473 	zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK;
474 	zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
475 }
476 
get_freeobj(struct zspage * zspage)477 static inline unsigned int get_freeobj(struct zspage *zspage)
478 {
479 	return zspage->freeobj;
480 }
481 
set_freeobj(struct zspage * zspage,unsigned int obj)482 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
483 {
484 	zspage->freeobj = obj;
485 }
486 
zspage_class(struct zs_pool * pool,struct zspage * zspage)487 static struct size_class *zspage_class(struct zs_pool *pool,
488 				       struct zspage *zspage)
489 {
490 	return pool->size_class[zspage->class];
491 }
492 
493 /*
494  * zsmalloc divides the pool into various size classes where each
495  * class maintains a list of zspages where each zspage is divided
496  * into equal sized chunks. Each allocation falls into one of these
497  * classes depending on its size. This function returns index of the
498  * size class which has chunk size big enough to hold the given size.
499  */
get_size_class_index(int size)500 static int get_size_class_index(int size)
501 {
502 	int idx = 0;
503 
504 	if (likely(size > ZS_MIN_ALLOC_SIZE))
505 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
506 				ZS_SIZE_CLASS_DELTA);
507 
508 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
509 }
510 
class_stat_add(struct size_class * class,int type,unsigned long cnt)511 static inline void class_stat_add(struct size_class *class, int type,
512 				  unsigned long cnt)
513 {
514 	class->stats.objs[type] += cnt;
515 }
516 
class_stat_sub(struct size_class * class,int type,unsigned long cnt)517 static inline void class_stat_sub(struct size_class *class, int type,
518 				  unsigned long cnt)
519 {
520 	class->stats.objs[type] -= cnt;
521 }
522 
class_stat_read(struct size_class * class,int type)523 static inline unsigned long class_stat_read(struct size_class *class, int type)
524 {
525 	return class->stats.objs[type];
526 }
527 
528 #ifdef CONFIG_ZSMALLOC_STAT
529 
zs_stat_init(void)530 static void __init zs_stat_init(void)
531 {
532 	if (!debugfs_initialized()) {
533 		pr_warn("debugfs not available, stat dir not created\n");
534 		return;
535 	}
536 
537 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
538 }
539 
zs_stat_exit(void)540 static void __exit zs_stat_exit(void)
541 {
542 	debugfs_remove_recursive(zs_stat_root);
543 }
544 
545 static unsigned long zs_can_compact(struct size_class *class);
546 
zs_stats_size_show(struct seq_file * s,void * v)547 static int zs_stats_size_show(struct seq_file *s, void *v)
548 {
549 	int i, fg;
550 	struct zs_pool *pool = s->private;
551 	struct size_class *class;
552 	int objs_per_zspage;
553 	unsigned long obj_allocated, obj_used, pages_used, freeable;
554 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
555 	unsigned long total_freeable = 0;
556 	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
557 
558 	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
559 			"class", "size", "10%", "20%", "30%", "40%",
560 			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
561 			"obj_allocated", "obj_used", "pages_used",
562 			"pages_per_zspage", "freeable");
563 
564 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
565 
566 		class = pool->size_class[i];
567 
568 		if (class->index != i)
569 			continue;
570 
571 		spin_lock(&class->lock);
572 
573 		seq_printf(s, " %5u %5u ", i, class->size);
574 		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
575 			inuse_totals[fg] += class_stat_read(class, fg);
576 			seq_printf(s, "%9lu ", class_stat_read(class, fg));
577 		}
578 
579 		obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
580 		obj_used = class_stat_read(class, ZS_OBJS_INUSE);
581 		freeable = zs_can_compact(class);
582 		spin_unlock(&class->lock);
583 
584 		objs_per_zspage = class->objs_per_zspage;
585 		pages_used = obj_allocated / objs_per_zspage *
586 				class->pages_per_zspage;
587 
588 		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
589 			   obj_allocated, obj_used, pages_used,
590 			   class->pages_per_zspage, freeable);
591 
592 		total_objs += obj_allocated;
593 		total_used_objs += obj_used;
594 		total_pages += pages_used;
595 		total_freeable += freeable;
596 	}
597 
598 	seq_puts(s, "\n");
599 	seq_printf(s, " %5s %5s ", "Total", "");
600 
601 	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
602 		seq_printf(s, "%9lu ", inuse_totals[fg]);
603 
604 	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
605 		   total_objs, total_used_objs, total_pages, "",
606 		   total_freeable);
607 
608 	return 0;
609 }
610 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
611 
zs_pool_stat_create(struct zs_pool * pool,const char * name)612 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
613 {
614 	if (!zs_stat_root) {
615 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
616 		return;
617 	}
618 
619 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
620 
621 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
622 			    &zs_stats_size_fops);
623 }
624 
zs_pool_stat_destroy(struct zs_pool * pool)625 static void zs_pool_stat_destroy(struct zs_pool *pool)
626 {
627 	debugfs_remove_recursive(pool->stat_dentry);
628 }
629 
630 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)631 static void __init zs_stat_init(void)
632 {
633 }
634 
zs_stat_exit(void)635 static void __exit zs_stat_exit(void)
636 {
637 }
638 
zs_pool_stat_create(struct zs_pool * pool,const char * name)639 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
640 {
641 }
642 
zs_pool_stat_destroy(struct zs_pool * pool)643 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
644 {
645 }
646 #endif
647 
648 
649 /*
650  * For each size class, zspages are divided into different groups
651  * depending on their usage ratio. This function returns fullness
652  * status of the given page.
653  */
get_fullness_group(struct size_class * class,struct zspage * zspage)654 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
655 {
656 	int inuse, objs_per_zspage, ratio;
657 
658 	inuse = get_zspage_inuse(zspage);
659 	objs_per_zspage = class->objs_per_zspage;
660 
661 	if (inuse == 0)
662 		return ZS_INUSE_RATIO_0;
663 	if (inuse == objs_per_zspage)
664 		return ZS_INUSE_RATIO_100;
665 
666 	ratio = 100 * inuse / objs_per_zspage;
667 	/*
668 	 * Take integer division into consideration: a page with one inuse
669 	 * object out of 127 possible, will end up having 0 usage ratio,
670 	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
671 	 */
672 	return ratio / 10 + 1;
673 }
674 
675 /*
676  * Each size class maintains various freelists and zspages are assigned
677  * to one of these freelists based on the number of live objects they
678  * have. This functions inserts the given zspage into the freelist
679  * identified by <class, fullness_group>.
680  */
insert_zspage(struct size_class * class,struct zspage * zspage,int fullness)681 static void insert_zspage(struct size_class *class,
682 				struct zspage *zspage,
683 				int fullness)
684 {
685 	class_stat_add(class, fullness, 1);
686 	list_add(&zspage->list, &class->fullness_list[fullness]);
687 	zspage->fullness = fullness;
688 }
689 
690 /*
691  * This function removes the given zspage from the freelist identified
692  * by <class, fullness_group>.
693  */
remove_zspage(struct size_class * class,struct zspage * zspage)694 static void remove_zspage(struct size_class *class, struct zspage *zspage)
695 {
696 	int fullness = zspage->fullness;
697 
698 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
699 
700 	list_del_init(&zspage->list);
701 	class_stat_sub(class, fullness, 1);
702 }
703 
704 /*
705  * Each size class maintains zspages in different fullness groups depending
706  * on the number of live objects they contain. When allocating or freeing
707  * objects, the fullness status of the page can change, for instance, from
708  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
709  * checks if such a status change has occurred for the given page and
710  * accordingly moves the page from the list of the old fullness group to that
711  * of the new fullness group.
712  */
fix_fullness_group(struct size_class * class,struct zspage * zspage)713 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
714 {
715 	int newfg;
716 
717 	newfg = get_fullness_group(class, zspage);
718 	if (newfg == zspage->fullness)
719 		goto out;
720 
721 	remove_zspage(class, zspage);
722 	insert_zspage(class, zspage, newfg);
723 out:
724 	return newfg;
725 }
726 
get_zspage(struct zpdesc * zpdesc)727 static struct zspage *get_zspage(struct zpdesc *zpdesc)
728 {
729 	struct zspage *zspage = zpdesc->zspage;
730 
731 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
732 	return zspage;
733 }
734 
get_next_zpdesc(struct zpdesc * zpdesc)735 static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc)
736 {
737 	struct zspage *zspage = get_zspage(zpdesc);
738 
739 	if (unlikely(ZsHugePage(zspage)))
740 		return NULL;
741 
742 	return zpdesc->next;
743 }
744 
745 /**
746  * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value
747  * @obj: the encoded object value
748  * @zpdesc: zpdesc object resides in zspage
749  * @obj_idx: object index
750  */
obj_to_location(unsigned long obj,struct zpdesc ** zpdesc,unsigned int * obj_idx)751 static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc,
752 				unsigned int *obj_idx)
753 {
754 	*zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
755 	*obj_idx = (obj & OBJ_INDEX_MASK);
756 }
757 
obj_to_zpdesc(unsigned long obj,struct zpdesc ** zpdesc)758 static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc)
759 {
760 	*zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
761 }
762 
763 /**
764  * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>)
765  * @zpdesc: zpdesc object resides in zspage
766  * @obj_idx: object index
767  */
location_to_obj(struct zpdesc * zpdesc,unsigned int obj_idx)768 static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx)
769 {
770 	unsigned long obj;
771 
772 	obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS;
773 	obj |= obj_idx & OBJ_INDEX_MASK;
774 
775 	return obj;
776 }
777 
handle_to_obj(unsigned long handle)778 static unsigned long handle_to_obj(unsigned long handle)
779 {
780 	return *(unsigned long *)handle;
781 }
782 
obj_allocated(struct zpdesc * zpdesc,void * obj,unsigned long * phandle)783 static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj,
784 				 unsigned long *phandle)
785 {
786 	unsigned long handle;
787 	struct zspage *zspage = get_zspage(zpdesc);
788 
789 	if (unlikely(ZsHugePage(zspage))) {
790 		VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc));
791 		handle = zpdesc->handle;
792 	} else
793 		handle = *(unsigned long *)obj;
794 
795 	if (!(handle & OBJ_ALLOCATED_TAG))
796 		return false;
797 
798 	/* Clear all tags before returning the handle */
799 	*phandle = handle & ~OBJ_TAG_MASK;
800 	return true;
801 }
802 
reset_zpdesc(struct zpdesc * zpdesc)803 static void reset_zpdesc(struct zpdesc *zpdesc)
804 {
805 	struct page *page = zpdesc_page(zpdesc);
806 
807 	ClearPagePrivate(page);
808 	zpdesc->zspage = NULL;
809 	zpdesc->next = NULL;
810 	/* PageZsmalloc is sticky until the page is freed to the buddy. */
811 }
812 
trylock_zspage(struct zspage * zspage)813 static int trylock_zspage(struct zspage *zspage)
814 {
815 	struct zpdesc *cursor, *fail;
816 
817 	for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor =
818 					get_next_zpdesc(cursor)) {
819 		if (!zpdesc_trylock(cursor)) {
820 			fail = cursor;
821 			goto unlock;
822 		}
823 	}
824 
825 	return 1;
826 unlock:
827 	for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor =
828 					get_next_zpdesc(cursor))
829 		zpdesc_unlock(cursor);
830 
831 	return 0;
832 }
833 
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)834 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
835 				struct zspage *zspage)
836 {
837 	struct zpdesc *zpdesc, *next;
838 
839 	assert_spin_locked(&class->lock);
840 
841 	VM_BUG_ON(get_zspage_inuse(zspage));
842 	VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
843 
844 	next = zpdesc = get_first_zpdesc(zspage);
845 	do {
846 		VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc));
847 		next = get_next_zpdesc(zpdesc);
848 		reset_zpdesc(zpdesc);
849 		zpdesc_unlock(zpdesc);
850 		zpdesc_dec_zone_page_state(zpdesc);
851 		zpdesc_put(zpdesc);
852 		zpdesc = next;
853 	} while (zpdesc != NULL);
854 
855 	cache_free_zspage(pool, zspage);
856 
857 	class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
858 	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
859 }
860 
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)861 static void free_zspage(struct zs_pool *pool, struct size_class *class,
862 				struct zspage *zspage)
863 {
864 	VM_BUG_ON(get_zspage_inuse(zspage));
865 	VM_BUG_ON(list_empty(&zspage->list));
866 
867 	/*
868 	 * Since zs_free couldn't be sleepable, this function cannot call
869 	 * lock_page. The page locks trylock_zspage got will be released
870 	 * by __free_zspage.
871 	 */
872 	if (!trylock_zspage(zspage)) {
873 		kick_deferred_free(pool);
874 		return;
875 	}
876 
877 	remove_zspage(class, zspage);
878 	__free_zspage(pool, class, zspage);
879 }
880 
881 /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)882 static void init_zspage(struct size_class *class, struct zspage *zspage)
883 {
884 	unsigned int freeobj = 1;
885 	unsigned long off = 0;
886 	struct zpdesc *zpdesc = get_first_zpdesc(zspage);
887 
888 	while (zpdesc) {
889 		struct zpdesc *next_zpdesc;
890 		struct link_free *link;
891 		void *vaddr;
892 
893 		set_first_obj_offset(zpdesc, off);
894 
895 		vaddr = kmap_local_zpdesc(zpdesc);
896 		link = (struct link_free *)vaddr + off / sizeof(*link);
897 
898 		while ((off += class->size) < PAGE_SIZE) {
899 			link->next = freeobj++ << OBJ_TAG_BITS;
900 			link += class->size / sizeof(*link);
901 		}
902 
903 		/*
904 		 * We now come to the last (full or partial) object on this
905 		 * page, which must point to the first object on the next
906 		 * page (if present)
907 		 */
908 		next_zpdesc = get_next_zpdesc(zpdesc);
909 		if (next_zpdesc) {
910 			link->next = freeobj++ << OBJ_TAG_BITS;
911 		} else {
912 			/*
913 			 * Reset OBJ_TAG_BITS bit to last link to tell
914 			 * whether it's allocated object or not.
915 			 */
916 			link->next = -1UL << OBJ_TAG_BITS;
917 		}
918 		kunmap_local(vaddr);
919 		zpdesc = next_zpdesc;
920 		off %= PAGE_SIZE;
921 	}
922 
923 	set_freeobj(zspage, 0);
924 }
925 
create_page_chain(struct size_class * class,struct zspage * zspage,struct zpdesc * zpdescs[])926 static void create_page_chain(struct size_class *class, struct zspage *zspage,
927 				struct zpdesc *zpdescs[])
928 {
929 	int i;
930 	struct zpdesc *zpdesc;
931 	struct zpdesc *prev_zpdesc = NULL;
932 	int nr_zpdescs = class->pages_per_zspage;
933 
934 	/*
935 	 * Allocate individual pages and link them together as:
936 	 * 1. all pages are linked together using zpdesc->next
937 	 * 2. each sub-page point to zspage using zpdesc->zspage
938 	 *
939 	 * we set PG_private to identify the first zpdesc (i.e. no other zpdesc
940 	 * has this flag set).
941 	 */
942 	for (i = 0; i < nr_zpdescs; i++) {
943 		zpdesc = zpdescs[i];
944 		zpdesc->zspage = zspage;
945 		zpdesc->next = NULL;
946 		if (i == 0) {
947 			zspage->first_zpdesc = zpdesc;
948 			zpdesc_set_first(zpdesc);
949 			if (unlikely(class->objs_per_zspage == 1 &&
950 					class->pages_per_zspage == 1))
951 				SetZsHugePage(zspage);
952 		} else {
953 			prev_zpdesc->next = zpdesc;
954 		}
955 		prev_zpdesc = zpdesc;
956 	}
957 }
958 
959 /*
960  * Allocate a zspage for the given size class
961  */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp,const int nid)962 static struct zspage *alloc_zspage(struct zs_pool *pool,
963 				   struct size_class *class,
964 				   gfp_t gfp, const int nid)
965 {
966 	int i;
967 	struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE];
968 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
969 
970 	if (!zspage)
971 		return NULL;
972 
973 	if (!IS_ENABLED(CONFIG_COMPACTION))
974 		gfp &= ~__GFP_MOVABLE;
975 
976 	zspage->magic = ZSPAGE_MAGIC;
977 	zspage->pool = pool;
978 	zspage->class = class->index;
979 	zspage_lock_init(zspage);
980 
981 	for (i = 0; i < class->pages_per_zspage; i++) {
982 		struct zpdesc *zpdesc;
983 
984 		zpdesc = alloc_zpdesc(gfp, nid);
985 		if (!zpdesc) {
986 			while (--i >= 0) {
987 				zpdesc_dec_zone_page_state(zpdescs[i]);
988 				free_zpdesc(zpdescs[i]);
989 			}
990 			cache_free_zspage(pool, zspage);
991 			return NULL;
992 		}
993 		__zpdesc_set_zsmalloc(zpdesc);
994 
995 		zpdesc_inc_zone_page_state(zpdesc);
996 		zpdescs[i] = zpdesc;
997 	}
998 
999 	create_page_chain(class, zspage, zpdescs);
1000 	init_zspage(class, zspage);
1001 
1002 	return zspage;
1003 }
1004 
find_get_zspage(struct size_class * class)1005 static struct zspage *find_get_zspage(struct size_class *class)
1006 {
1007 	int i;
1008 	struct zspage *zspage;
1009 
1010 	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1011 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1012 						  struct zspage, list);
1013 		if (zspage)
1014 			break;
1015 	}
1016 
1017 	return zspage;
1018 }
1019 
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)1020 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1021 					int objs_per_zspage)
1022 {
1023 	if (prev->pages_per_zspage == pages_per_zspage &&
1024 		prev->objs_per_zspage == objs_per_zspage)
1025 		return true;
1026 
1027 	return false;
1028 }
1029 
zspage_full(struct size_class * class,struct zspage * zspage)1030 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1031 {
1032 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1033 }
1034 
zspage_empty(struct zspage * zspage)1035 static bool zspage_empty(struct zspage *zspage)
1036 {
1037 	return get_zspage_inuse(zspage) == 0;
1038 }
1039 
1040 /**
1041  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1042  * that hold objects of the provided size.
1043  * @pool: zsmalloc pool to use
1044  * @size: object size
1045  *
1046  * Context: Any context.
1047  *
1048  * Return: the index of the zsmalloc &size_class that hold objects of the
1049  * provided size.
1050  */
zs_lookup_class_index(struct zs_pool * pool,unsigned int size)1051 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1052 {
1053 	struct size_class *class;
1054 
1055 	class = pool->size_class[get_size_class_index(size)];
1056 
1057 	return class->index;
1058 }
1059 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1060 
zs_get_total_pages(struct zs_pool * pool)1061 unsigned long zs_get_total_pages(struct zs_pool *pool)
1062 {
1063 	return atomic_long_read(&pool->pages_allocated);
1064 }
1065 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1066 
zs_obj_read_begin(struct zs_pool * pool,unsigned long handle,void * local_copy)1067 void *zs_obj_read_begin(struct zs_pool *pool, unsigned long handle,
1068 			void *local_copy)
1069 {
1070 	struct zspage *zspage;
1071 	struct zpdesc *zpdesc;
1072 	unsigned long obj, off;
1073 	unsigned int obj_idx;
1074 	struct size_class *class;
1075 	void *addr;
1076 
1077 	/* Guarantee we can get zspage from handle safely */
1078 	read_lock(&pool->lock);
1079 	obj = handle_to_obj(handle);
1080 	obj_to_location(obj, &zpdesc, &obj_idx);
1081 	zspage = get_zspage(zpdesc);
1082 
1083 	/* Make sure migration doesn't move any pages in this zspage */
1084 	zspage_read_lock(zspage);
1085 	read_unlock(&pool->lock);
1086 
1087 	class = zspage_class(pool, zspage);
1088 	off = offset_in_page(class->size * obj_idx);
1089 
1090 	if (off + class->size <= PAGE_SIZE) {
1091 		/* this object is contained entirely within a page */
1092 		addr = kmap_local_zpdesc(zpdesc);
1093 		addr += off;
1094 	} else {
1095 		size_t sizes[2];
1096 
1097 		/* this object spans two pages */
1098 		sizes[0] = PAGE_SIZE - off;
1099 		sizes[1] = class->size - sizes[0];
1100 		addr = local_copy;
1101 
1102 		memcpy_from_page(addr, zpdesc_page(zpdesc),
1103 				 off, sizes[0]);
1104 		zpdesc = get_next_zpdesc(zpdesc);
1105 		memcpy_from_page(addr + sizes[0],
1106 				 zpdesc_page(zpdesc),
1107 				 0, sizes[1]);
1108 	}
1109 
1110 	if (!ZsHugePage(zspage))
1111 		addr += ZS_HANDLE_SIZE;
1112 
1113 	return addr;
1114 }
1115 EXPORT_SYMBOL_GPL(zs_obj_read_begin);
1116 
zs_obj_read_end(struct zs_pool * pool,unsigned long handle,void * handle_mem)1117 void zs_obj_read_end(struct zs_pool *pool, unsigned long handle,
1118 		     void *handle_mem)
1119 {
1120 	struct zspage *zspage;
1121 	struct zpdesc *zpdesc;
1122 	unsigned long obj, off;
1123 	unsigned int obj_idx;
1124 	struct size_class *class;
1125 
1126 	obj = handle_to_obj(handle);
1127 	obj_to_location(obj, &zpdesc, &obj_idx);
1128 	zspage = get_zspage(zpdesc);
1129 	class = zspage_class(pool, zspage);
1130 	off = offset_in_page(class->size * obj_idx);
1131 
1132 	if (off + class->size <= PAGE_SIZE) {
1133 		if (!ZsHugePage(zspage))
1134 			off += ZS_HANDLE_SIZE;
1135 		handle_mem -= off;
1136 		kunmap_local(handle_mem);
1137 	}
1138 
1139 	zspage_read_unlock(zspage);
1140 }
1141 EXPORT_SYMBOL_GPL(zs_obj_read_end);
1142 
zs_obj_write(struct zs_pool * pool,unsigned long handle,void * handle_mem,size_t mem_len)1143 void zs_obj_write(struct zs_pool *pool, unsigned long handle,
1144 		  void *handle_mem, size_t mem_len)
1145 {
1146 	struct zspage *zspage;
1147 	struct zpdesc *zpdesc;
1148 	unsigned long obj, off;
1149 	unsigned int obj_idx;
1150 	struct size_class *class;
1151 
1152 	/* Guarantee we can get zspage from handle safely */
1153 	read_lock(&pool->lock);
1154 	obj = handle_to_obj(handle);
1155 	obj_to_location(obj, &zpdesc, &obj_idx);
1156 	zspage = get_zspage(zpdesc);
1157 
1158 	/* Make sure migration doesn't move any pages in this zspage */
1159 	zspage_read_lock(zspage);
1160 	read_unlock(&pool->lock);
1161 
1162 	class = zspage_class(pool, zspage);
1163 	off = offset_in_page(class->size * obj_idx);
1164 
1165 	if (!ZsHugePage(zspage))
1166 		off += ZS_HANDLE_SIZE;
1167 
1168 	if (off + mem_len <= PAGE_SIZE) {
1169 		/* this object is contained entirely within a page */
1170 		void *dst = kmap_local_zpdesc(zpdesc);
1171 
1172 		memcpy(dst + off, handle_mem, mem_len);
1173 		kunmap_local(dst);
1174 	} else {
1175 		/* this object spans two pages */
1176 		size_t sizes[2];
1177 
1178 		sizes[0] = PAGE_SIZE - off;
1179 		sizes[1] = mem_len - sizes[0];
1180 
1181 		memcpy_to_page(zpdesc_page(zpdesc), off,
1182 			       handle_mem, sizes[0]);
1183 		zpdesc = get_next_zpdesc(zpdesc);
1184 		memcpy_to_page(zpdesc_page(zpdesc), 0,
1185 			       handle_mem + sizes[0], sizes[1]);
1186 	}
1187 
1188 	zspage_read_unlock(zspage);
1189 }
1190 EXPORT_SYMBOL_GPL(zs_obj_write);
1191 
1192 /**
1193  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1194  *                        zsmalloc &size_class.
1195  * @pool: zsmalloc pool to use
1196  *
1197  * The function returns the size of the first huge class - any object of equal
1198  * or bigger size will be stored in zspage consisting of a single physical
1199  * page.
1200  *
1201  * Context: Any context.
1202  *
1203  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1204  */
zs_huge_class_size(struct zs_pool * pool)1205 size_t zs_huge_class_size(struct zs_pool *pool)
1206 {
1207 	return huge_class_size;
1208 }
1209 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1210 
obj_malloc(struct zs_pool * pool,struct zspage * zspage,unsigned long handle)1211 static unsigned long obj_malloc(struct zs_pool *pool,
1212 				struct zspage *zspage, unsigned long handle)
1213 {
1214 	int i, nr_zpdesc, offset;
1215 	unsigned long obj;
1216 	struct link_free *link;
1217 	struct size_class *class;
1218 
1219 	struct zpdesc *m_zpdesc;
1220 	unsigned long m_offset;
1221 	void *vaddr;
1222 
1223 	class = pool->size_class[zspage->class];
1224 	obj = get_freeobj(zspage);
1225 
1226 	offset = obj * class->size;
1227 	nr_zpdesc = offset >> PAGE_SHIFT;
1228 	m_offset = offset_in_page(offset);
1229 	m_zpdesc = get_first_zpdesc(zspage);
1230 
1231 	for (i = 0; i < nr_zpdesc; i++)
1232 		m_zpdesc = get_next_zpdesc(m_zpdesc);
1233 
1234 	vaddr = kmap_local_zpdesc(m_zpdesc);
1235 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1236 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1237 	if (likely(!ZsHugePage(zspage)))
1238 		/* record handle in the header of allocated chunk */
1239 		link->handle = handle | OBJ_ALLOCATED_TAG;
1240 	else
1241 		zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG;
1242 
1243 	kunmap_local(vaddr);
1244 	mod_zspage_inuse(zspage, 1);
1245 
1246 	obj = location_to_obj(m_zpdesc, obj);
1247 	record_obj(handle, obj);
1248 
1249 	return obj;
1250 }
1251 
1252 
1253 /**
1254  * zs_malloc - Allocate block of given size from pool.
1255  * @pool: pool to allocate from
1256  * @size: size of block to allocate
1257  * @gfp: gfp flags when allocating object
1258  * @nid: The preferred node id to allocate new zspage (if needed)
1259  *
1260  * On success, handle to the allocated object is returned,
1261  * otherwise an ERR_PTR().
1262  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1263  */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp,const int nid)1264 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp,
1265 			const int nid)
1266 {
1267 	unsigned long handle;
1268 	struct size_class *class;
1269 	int newfg;
1270 	struct zspage *zspage;
1271 
1272 	if (unlikely(!size))
1273 		return (unsigned long)ERR_PTR(-EINVAL);
1274 
1275 	if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1276 		return (unsigned long)ERR_PTR(-ENOSPC);
1277 
1278 	handle = cache_alloc_handle(pool, gfp);
1279 	if (!handle)
1280 		return (unsigned long)ERR_PTR(-ENOMEM);
1281 
1282 	/* extra space in chunk to keep the handle */
1283 	size += ZS_HANDLE_SIZE;
1284 	class = pool->size_class[get_size_class_index(size)];
1285 
1286 	/* class->lock effectively protects the zpage migration */
1287 	spin_lock(&class->lock);
1288 	zspage = find_get_zspage(class);
1289 	if (likely(zspage)) {
1290 		obj_malloc(pool, zspage, handle);
1291 		/* Now move the zspage to another fullness group, if required */
1292 		fix_fullness_group(class, zspage);
1293 		class_stat_add(class, ZS_OBJS_INUSE, 1);
1294 
1295 		goto out;
1296 	}
1297 
1298 	spin_unlock(&class->lock);
1299 
1300 	zspage = alloc_zspage(pool, class, gfp, nid);
1301 	if (!zspage) {
1302 		cache_free_handle(pool, handle);
1303 		return (unsigned long)ERR_PTR(-ENOMEM);
1304 	}
1305 
1306 	spin_lock(&class->lock);
1307 	obj_malloc(pool, zspage, handle);
1308 	newfg = get_fullness_group(class, zspage);
1309 	insert_zspage(class, zspage, newfg);
1310 	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1311 	class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1312 	class_stat_add(class, ZS_OBJS_INUSE, 1);
1313 
1314 	/* We completely set up zspage so mark them as movable */
1315 	SetZsPageMovable(pool, zspage);
1316 out:
1317 	spin_unlock(&class->lock);
1318 
1319 	return handle;
1320 }
1321 EXPORT_SYMBOL_GPL(zs_malloc);
1322 
obj_free(int class_size,unsigned long obj)1323 static void obj_free(int class_size, unsigned long obj)
1324 {
1325 	struct link_free *link;
1326 	struct zspage *zspage;
1327 	struct zpdesc *f_zpdesc;
1328 	unsigned long f_offset;
1329 	unsigned int f_objidx;
1330 	void *vaddr;
1331 
1332 
1333 	obj_to_location(obj, &f_zpdesc, &f_objidx);
1334 	f_offset = offset_in_page(class_size * f_objidx);
1335 	zspage = get_zspage(f_zpdesc);
1336 
1337 	vaddr = kmap_local_zpdesc(f_zpdesc);
1338 	link = (struct link_free *)(vaddr + f_offset);
1339 
1340 	/* Insert this object in containing zspage's freelist */
1341 	if (likely(!ZsHugePage(zspage)))
1342 		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1343 	else
1344 		f_zpdesc->handle = 0;
1345 	set_freeobj(zspage, f_objidx);
1346 
1347 	kunmap_local(vaddr);
1348 	mod_zspage_inuse(zspage, -1);
1349 }
1350 
zs_free(struct zs_pool * pool,unsigned long handle)1351 void zs_free(struct zs_pool *pool, unsigned long handle)
1352 {
1353 	struct zspage *zspage;
1354 	struct zpdesc *f_zpdesc;
1355 	unsigned long obj;
1356 	struct size_class *class;
1357 	int fullness;
1358 
1359 	if (IS_ERR_OR_NULL((void *)handle))
1360 		return;
1361 
1362 	/*
1363 	 * The pool->lock protects the race with zpage's migration
1364 	 * so it's safe to get the page from handle.
1365 	 */
1366 	read_lock(&pool->lock);
1367 	obj = handle_to_obj(handle);
1368 	obj_to_zpdesc(obj, &f_zpdesc);
1369 	zspage = get_zspage(f_zpdesc);
1370 	class = zspage_class(pool, zspage);
1371 	spin_lock(&class->lock);
1372 	read_unlock(&pool->lock);
1373 
1374 	class_stat_sub(class, ZS_OBJS_INUSE, 1);
1375 	obj_free(class->size, obj);
1376 
1377 	fullness = fix_fullness_group(class, zspage);
1378 	if (fullness == ZS_INUSE_RATIO_0)
1379 		free_zspage(pool, class, zspage);
1380 
1381 	spin_unlock(&class->lock);
1382 	cache_free_handle(pool, handle);
1383 }
1384 EXPORT_SYMBOL_GPL(zs_free);
1385 
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1386 static void zs_object_copy(struct size_class *class, unsigned long dst,
1387 				unsigned long src)
1388 {
1389 	struct zpdesc *s_zpdesc, *d_zpdesc;
1390 	unsigned int s_objidx, d_objidx;
1391 	unsigned long s_off, d_off;
1392 	void *s_addr, *d_addr;
1393 	int s_size, d_size, size;
1394 	int written = 0;
1395 
1396 	s_size = d_size = class->size;
1397 
1398 	obj_to_location(src, &s_zpdesc, &s_objidx);
1399 	obj_to_location(dst, &d_zpdesc, &d_objidx);
1400 
1401 	s_off = offset_in_page(class->size * s_objidx);
1402 	d_off = offset_in_page(class->size * d_objidx);
1403 
1404 	if (s_off + class->size > PAGE_SIZE)
1405 		s_size = PAGE_SIZE - s_off;
1406 
1407 	if (d_off + class->size > PAGE_SIZE)
1408 		d_size = PAGE_SIZE - d_off;
1409 
1410 	s_addr = kmap_local_zpdesc(s_zpdesc);
1411 	d_addr = kmap_local_zpdesc(d_zpdesc);
1412 
1413 	while (1) {
1414 		size = min(s_size, d_size);
1415 		memcpy(d_addr + d_off, s_addr + s_off, size);
1416 		written += size;
1417 
1418 		if (written == class->size)
1419 			break;
1420 
1421 		s_off += size;
1422 		s_size -= size;
1423 		d_off += size;
1424 		d_size -= size;
1425 
1426 		/*
1427 		 * Calling kunmap_local(d_addr) is necessary. kunmap_local()
1428 		 * calls must occurs in reverse order of calls to kmap_local_page().
1429 		 * So, to call kunmap_local(s_addr) we should first call
1430 		 * kunmap_local(d_addr). For more details see
1431 		 * Documentation/mm/highmem.rst.
1432 		 */
1433 		if (s_off >= PAGE_SIZE) {
1434 			kunmap_local(d_addr);
1435 			kunmap_local(s_addr);
1436 			s_zpdesc = get_next_zpdesc(s_zpdesc);
1437 			s_addr = kmap_local_zpdesc(s_zpdesc);
1438 			d_addr = kmap_local_zpdesc(d_zpdesc);
1439 			s_size = class->size - written;
1440 			s_off = 0;
1441 		}
1442 
1443 		if (d_off >= PAGE_SIZE) {
1444 			kunmap_local(d_addr);
1445 			d_zpdesc = get_next_zpdesc(d_zpdesc);
1446 			d_addr = kmap_local_zpdesc(d_zpdesc);
1447 			d_size = class->size - written;
1448 			d_off = 0;
1449 		}
1450 	}
1451 
1452 	kunmap_local(d_addr);
1453 	kunmap_local(s_addr);
1454 }
1455 
1456 /*
1457  * Find alloced object in zspage from index object and
1458  * return handle.
1459  */
find_alloced_obj(struct size_class * class,struct zpdesc * zpdesc,int * obj_idx)1460 static unsigned long find_alloced_obj(struct size_class *class,
1461 				      struct zpdesc *zpdesc, int *obj_idx)
1462 {
1463 	unsigned int offset;
1464 	int index = *obj_idx;
1465 	unsigned long handle = 0;
1466 	void *addr = kmap_local_zpdesc(zpdesc);
1467 
1468 	offset = get_first_obj_offset(zpdesc);
1469 	offset += class->size * index;
1470 
1471 	while (offset < PAGE_SIZE) {
1472 		if (obj_allocated(zpdesc, addr + offset, &handle))
1473 			break;
1474 
1475 		offset += class->size;
1476 		index++;
1477 	}
1478 
1479 	kunmap_local(addr);
1480 
1481 	*obj_idx = index;
1482 
1483 	return handle;
1484 }
1485 
migrate_zspage(struct zs_pool * pool,struct zspage * src_zspage,struct zspage * dst_zspage)1486 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1487 			   struct zspage *dst_zspage)
1488 {
1489 	unsigned long used_obj, free_obj;
1490 	unsigned long handle;
1491 	int obj_idx = 0;
1492 	struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage);
1493 	struct size_class *class = pool->size_class[src_zspage->class];
1494 
1495 	while (1) {
1496 		handle = find_alloced_obj(class, s_zpdesc, &obj_idx);
1497 		if (!handle) {
1498 			s_zpdesc = get_next_zpdesc(s_zpdesc);
1499 			if (!s_zpdesc)
1500 				break;
1501 			obj_idx = 0;
1502 			continue;
1503 		}
1504 
1505 		used_obj = handle_to_obj(handle);
1506 		free_obj = obj_malloc(pool, dst_zspage, handle);
1507 		zs_object_copy(class, free_obj, used_obj);
1508 		obj_idx++;
1509 		obj_free(class->size, used_obj);
1510 
1511 		/* Stop if there is no more space */
1512 		if (zspage_full(class, dst_zspage))
1513 			break;
1514 
1515 		/* Stop if there are no more objects to migrate */
1516 		if (zspage_empty(src_zspage))
1517 			break;
1518 	}
1519 }
1520 
isolate_src_zspage(struct size_class * class)1521 static struct zspage *isolate_src_zspage(struct size_class *class)
1522 {
1523 	struct zspage *zspage;
1524 	int fg;
1525 
1526 	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1527 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1528 						  struct zspage, list);
1529 		if (zspage) {
1530 			remove_zspage(class, zspage);
1531 			return zspage;
1532 		}
1533 	}
1534 
1535 	return zspage;
1536 }
1537 
isolate_dst_zspage(struct size_class * class)1538 static struct zspage *isolate_dst_zspage(struct size_class *class)
1539 {
1540 	struct zspage *zspage;
1541 	int fg;
1542 
1543 	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1544 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1545 						  struct zspage, list);
1546 		if (zspage) {
1547 			remove_zspage(class, zspage);
1548 			return zspage;
1549 		}
1550 	}
1551 
1552 	return zspage;
1553 }
1554 
1555 /*
1556  * putback_zspage - add @zspage into right class's fullness list
1557  * @class: destination class
1558  * @zspage: target page
1559  *
1560  * Return @zspage's fullness status
1561  */
putback_zspage(struct size_class * class,struct zspage * zspage)1562 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1563 {
1564 	int fullness;
1565 
1566 	fullness = get_fullness_group(class, zspage);
1567 	insert_zspage(class, zspage, fullness);
1568 
1569 	return fullness;
1570 }
1571 
1572 #ifdef CONFIG_COMPACTION
1573 /*
1574  * To prevent zspage destroy during migration, zspage freeing should
1575  * hold locks of all pages in the zspage.
1576  */
lock_zspage(struct zspage * zspage)1577 static void lock_zspage(struct zspage *zspage)
1578 {
1579 	struct zpdesc *curr_zpdesc, *zpdesc;
1580 
1581 	/*
1582 	 * Pages we haven't locked yet can be migrated off the list while we're
1583 	 * trying to lock them, so we need to be careful and only attempt to
1584 	 * lock each page under zspage_read_lock(). Otherwise, the page we lock
1585 	 * may no longer belong to the zspage. This means that we may wait for
1586 	 * the wrong page to unlock, so we must take a reference to the page
1587 	 * prior to waiting for it to unlock outside zspage_read_lock().
1588 	 */
1589 	while (1) {
1590 		zspage_read_lock(zspage);
1591 		zpdesc = get_first_zpdesc(zspage);
1592 		if (zpdesc_trylock(zpdesc))
1593 			break;
1594 		zpdesc_get(zpdesc);
1595 		zspage_read_unlock(zspage);
1596 		zpdesc_wait_locked(zpdesc);
1597 		zpdesc_put(zpdesc);
1598 	}
1599 
1600 	curr_zpdesc = zpdesc;
1601 	while ((zpdesc = get_next_zpdesc(curr_zpdesc))) {
1602 		if (zpdesc_trylock(zpdesc)) {
1603 			curr_zpdesc = zpdesc;
1604 		} else {
1605 			zpdesc_get(zpdesc);
1606 			zspage_read_unlock(zspage);
1607 			zpdesc_wait_locked(zpdesc);
1608 			zpdesc_put(zpdesc);
1609 			zspage_read_lock(zspage);
1610 		}
1611 	}
1612 	zspage_read_unlock(zspage);
1613 }
1614 #endif /* CONFIG_COMPACTION */
1615 
1616 #ifdef CONFIG_COMPACTION
1617 
replace_sub_page(struct size_class * class,struct zspage * zspage,struct zpdesc * newzpdesc,struct zpdesc * oldzpdesc)1618 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1619 				struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc)
1620 {
1621 	struct zpdesc *zpdesc;
1622 	struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1623 	unsigned int first_obj_offset;
1624 	int idx = 0;
1625 
1626 	zpdesc = get_first_zpdesc(zspage);
1627 	do {
1628 		if (zpdesc == oldzpdesc)
1629 			zpdescs[idx] = newzpdesc;
1630 		else
1631 			zpdescs[idx] = zpdesc;
1632 		idx++;
1633 	} while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1634 
1635 	create_page_chain(class, zspage, zpdescs);
1636 	first_obj_offset = get_first_obj_offset(oldzpdesc);
1637 	set_first_obj_offset(newzpdesc, first_obj_offset);
1638 	if (unlikely(ZsHugePage(zspage)))
1639 		newzpdesc->handle = oldzpdesc->handle;
1640 	__zpdesc_set_movable(newzpdesc);
1641 }
1642 
zs_page_isolate(struct page * page,isolate_mode_t mode)1643 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1644 {
1645 	/*
1646 	 * Page is locked so zspage can't be destroyed concurrently
1647 	 * (see free_zspage()). But if the page was already destroyed
1648 	 * (see reset_zpdesc()), refuse isolation here.
1649 	 */
1650 	return page_zpdesc(page)->zspage;
1651 }
1652 
zs_page_migrate(struct page * newpage,struct page * page,enum migrate_mode mode)1653 static int zs_page_migrate(struct page *newpage, struct page *page,
1654 		enum migrate_mode mode)
1655 {
1656 	struct zs_pool *pool;
1657 	struct size_class *class;
1658 	struct zspage *zspage;
1659 	struct zpdesc *dummy;
1660 	struct zpdesc *newzpdesc = page_zpdesc(newpage);
1661 	struct zpdesc *zpdesc = page_zpdesc(page);
1662 	void *s_addr, *d_addr, *addr;
1663 	unsigned int offset;
1664 	unsigned long handle;
1665 	unsigned long old_obj, new_obj;
1666 	unsigned int obj_idx;
1667 
1668 	/*
1669 	 * TODO: nothing prevents a zspage from getting destroyed while
1670 	 * it is isolated for migration, as the page lock is temporarily
1671 	 * dropped after zs_page_isolate() succeeded: we should rework that
1672 	 * and defer destroying such pages once they are un-isolated (putback)
1673 	 * instead.
1674 	 */
1675 	if (!zpdesc->zspage)
1676 		return 0;
1677 
1678 	/* The page is locked, so this pointer must remain valid */
1679 	zspage = get_zspage(zpdesc);
1680 	pool = zspage->pool;
1681 
1682 	/*
1683 	 * The pool migrate_lock protects the race between zpage migration
1684 	 * and zs_free.
1685 	 */
1686 	write_lock(&pool->lock);
1687 	class = zspage_class(pool, zspage);
1688 
1689 	/*
1690 	 * the class lock protects zpage alloc/free in the zspage.
1691 	 */
1692 	spin_lock(&class->lock);
1693 	/* the zspage write_lock protects zpage access via zs_obj_read/write() */
1694 	if (!zspage_write_trylock(zspage)) {
1695 		spin_unlock(&class->lock);
1696 		write_unlock(&pool->lock);
1697 		return -EINVAL;
1698 	}
1699 
1700 	/* We're committed, tell the world that this is a Zsmalloc page. */
1701 	__zpdesc_set_zsmalloc(newzpdesc);
1702 
1703 	offset = get_first_obj_offset(zpdesc);
1704 	s_addr = kmap_local_zpdesc(zpdesc);
1705 
1706 	/*
1707 	 * Here, any user cannot access all objects in the zspage so let's move.
1708 	 */
1709 	d_addr = kmap_local_zpdesc(newzpdesc);
1710 	copy_page(d_addr, s_addr);
1711 	kunmap_local(d_addr);
1712 
1713 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1714 					addr += class->size) {
1715 		if (obj_allocated(zpdesc, addr, &handle)) {
1716 
1717 			old_obj = handle_to_obj(handle);
1718 			obj_to_location(old_obj, &dummy, &obj_idx);
1719 			new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx);
1720 			record_obj(handle, new_obj);
1721 		}
1722 	}
1723 	kunmap_local(s_addr);
1724 
1725 	replace_sub_page(class, zspage, newzpdesc, zpdesc);
1726 	/*
1727 	 * Since we complete the data copy and set up new zspage structure,
1728 	 * it's okay to release migration_lock.
1729 	 */
1730 	write_unlock(&pool->lock);
1731 	spin_unlock(&class->lock);
1732 	zspage_write_unlock(zspage);
1733 
1734 	zpdesc_get(newzpdesc);
1735 	if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) {
1736 		zpdesc_dec_zone_page_state(zpdesc);
1737 		zpdesc_inc_zone_page_state(newzpdesc);
1738 	}
1739 
1740 	reset_zpdesc(zpdesc);
1741 	zpdesc_put(zpdesc);
1742 
1743 	return 0;
1744 }
1745 
zs_page_putback(struct page * page)1746 static void zs_page_putback(struct page *page)
1747 {
1748 }
1749 
1750 const struct movable_operations zsmalloc_mops = {
1751 	.isolate_page = zs_page_isolate,
1752 	.migrate_page = zs_page_migrate,
1753 	.putback_page = zs_page_putback,
1754 };
1755 
1756 /*
1757  * Caller should hold page_lock of all pages in the zspage
1758  * In here, we cannot use zspage meta data.
1759  */
async_free_zspage(struct work_struct * work)1760 static void async_free_zspage(struct work_struct *work)
1761 {
1762 	int i;
1763 	struct size_class *class;
1764 	struct zspage *zspage, *tmp;
1765 	LIST_HEAD(free_pages);
1766 	struct zs_pool *pool = container_of(work, struct zs_pool,
1767 					free_work);
1768 
1769 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1770 		class = pool->size_class[i];
1771 		if (class->index != i)
1772 			continue;
1773 
1774 		spin_lock(&class->lock);
1775 		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1776 				 &free_pages);
1777 		spin_unlock(&class->lock);
1778 	}
1779 
1780 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1781 		list_del(&zspage->list);
1782 		lock_zspage(zspage);
1783 
1784 		class = zspage_class(pool, zspage);
1785 		spin_lock(&class->lock);
1786 		class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1787 		__free_zspage(pool, class, zspage);
1788 		spin_unlock(&class->lock);
1789 	}
1790 };
1791 
kick_deferred_free(struct zs_pool * pool)1792 static void kick_deferred_free(struct zs_pool *pool)
1793 {
1794 	schedule_work(&pool->free_work);
1795 }
1796 
zs_flush_migration(struct zs_pool * pool)1797 static void zs_flush_migration(struct zs_pool *pool)
1798 {
1799 	flush_work(&pool->free_work);
1800 }
1801 
init_deferred_free(struct zs_pool * pool)1802 static void init_deferred_free(struct zs_pool *pool)
1803 {
1804 	INIT_WORK(&pool->free_work, async_free_zspage);
1805 }
1806 
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)1807 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1808 {
1809 	struct zpdesc *zpdesc = get_first_zpdesc(zspage);
1810 
1811 	do {
1812 		WARN_ON(!zpdesc_trylock(zpdesc));
1813 		__zpdesc_set_movable(zpdesc);
1814 		zpdesc_unlock(zpdesc);
1815 	} while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1816 }
1817 #else
zs_flush_migration(struct zs_pool * pool)1818 static inline void zs_flush_migration(struct zs_pool *pool) { }
1819 #endif
1820 
1821 /*
1822  *
1823  * Based on the number of unused allocated objects calculate
1824  * and return the number of pages that we can free.
1825  */
zs_can_compact(struct size_class * class)1826 static unsigned long zs_can_compact(struct size_class *class)
1827 {
1828 	unsigned long obj_wasted;
1829 	unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1830 	unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1831 
1832 	if (obj_allocated <= obj_used)
1833 		return 0;
1834 
1835 	obj_wasted = obj_allocated - obj_used;
1836 	obj_wasted /= class->objs_per_zspage;
1837 
1838 	return obj_wasted * class->pages_per_zspage;
1839 }
1840 
__zs_compact(struct zs_pool * pool,struct size_class * class)1841 static unsigned long __zs_compact(struct zs_pool *pool,
1842 				  struct size_class *class)
1843 {
1844 	struct zspage *src_zspage = NULL;
1845 	struct zspage *dst_zspage = NULL;
1846 	unsigned long pages_freed = 0;
1847 
1848 	/*
1849 	 * protect the race between zpage migration and zs_free
1850 	 * as well as zpage allocation/free
1851 	 */
1852 	write_lock(&pool->lock);
1853 	spin_lock(&class->lock);
1854 	while (zs_can_compact(class)) {
1855 		int fg;
1856 
1857 		if (!dst_zspage) {
1858 			dst_zspage = isolate_dst_zspage(class);
1859 			if (!dst_zspage)
1860 				break;
1861 		}
1862 
1863 		src_zspage = isolate_src_zspage(class);
1864 		if (!src_zspage)
1865 			break;
1866 
1867 		if (!zspage_write_trylock(src_zspage))
1868 			break;
1869 
1870 		migrate_zspage(pool, src_zspage, dst_zspage);
1871 		zspage_write_unlock(src_zspage);
1872 
1873 		fg = putback_zspage(class, src_zspage);
1874 		if (fg == ZS_INUSE_RATIO_0) {
1875 			free_zspage(pool, class, src_zspage);
1876 			pages_freed += class->pages_per_zspage;
1877 		}
1878 		src_zspage = NULL;
1879 
1880 		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1881 		    || rwlock_is_contended(&pool->lock)) {
1882 			putback_zspage(class, dst_zspage);
1883 			dst_zspage = NULL;
1884 
1885 			spin_unlock(&class->lock);
1886 			write_unlock(&pool->lock);
1887 			cond_resched();
1888 			write_lock(&pool->lock);
1889 			spin_lock(&class->lock);
1890 		}
1891 	}
1892 
1893 	if (src_zspage)
1894 		putback_zspage(class, src_zspage);
1895 
1896 	if (dst_zspage)
1897 		putback_zspage(class, dst_zspage);
1898 
1899 	spin_unlock(&class->lock);
1900 	write_unlock(&pool->lock);
1901 
1902 	return pages_freed;
1903 }
1904 
zs_compact(struct zs_pool * pool)1905 unsigned long zs_compact(struct zs_pool *pool)
1906 {
1907 	int i;
1908 	struct size_class *class;
1909 	unsigned long pages_freed = 0;
1910 
1911 	/*
1912 	 * Pool compaction is performed under pool->lock so it is basically
1913 	 * single-threaded. Having more than one thread in __zs_compact()
1914 	 * will increase pool->lock contention, which will impact other
1915 	 * zsmalloc operations that need pool->lock.
1916 	 */
1917 	if (atomic_xchg(&pool->compaction_in_progress, 1))
1918 		return 0;
1919 
1920 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1921 		class = pool->size_class[i];
1922 		if (class->index != i)
1923 			continue;
1924 		pages_freed += __zs_compact(pool, class);
1925 	}
1926 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
1927 	atomic_set(&pool->compaction_in_progress, 0);
1928 
1929 	return pages_freed;
1930 }
1931 EXPORT_SYMBOL_GPL(zs_compact);
1932 
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)1933 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1934 {
1935 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1936 }
1937 EXPORT_SYMBOL_GPL(zs_pool_stats);
1938 
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)1939 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1940 		struct shrink_control *sc)
1941 {
1942 	unsigned long pages_freed;
1943 	struct zs_pool *pool = shrinker->private_data;
1944 
1945 	/*
1946 	 * Compact classes and calculate compaction delta.
1947 	 * Can run concurrently with a manually triggered
1948 	 * (by user) compaction.
1949 	 */
1950 	pages_freed = zs_compact(pool);
1951 
1952 	return pages_freed ? pages_freed : SHRINK_STOP;
1953 }
1954 
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)1955 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1956 		struct shrink_control *sc)
1957 {
1958 	int i;
1959 	struct size_class *class;
1960 	unsigned long pages_to_free = 0;
1961 	struct zs_pool *pool = shrinker->private_data;
1962 
1963 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1964 		class = pool->size_class[i];
1965 		if (class->index != i)
1966 			continue;
1967 
1968 		pages_to_free += zs_can_compact(class);
1969 	}
1970 
1971 	return pages_to_free;
1972 }
1973 
zs_unregister_shrinker(struct zs_pool * pool)1974 static void zs_unregister_shrinker(struct zs_pool *pool)
1975 {
1976 	shrinker_free(pool->shrinker);
1977 }
1978 
zs_register_shrinker(struct zs_pool * pool)1979 static int zs_register_shrinker(struct zs_pool *pool)
1980 {
1981 	pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
1982 	if (!pool->shrinker)
1983 		return -ENOMEM;
1984 
1985 	pool->shrinker->scan_objects = zs_shrinker_scan;
1986 	pool->shrinker->count_objects = zs_shrinker_count;
1987 	pool->shrinker->batch = 0;
1988 	pool->shrinker->private_data = pool;
1989 
1990 	shrinker_register(pool->shrinker);
1991 
1992 	return 0;
1993 }
1994 
calculate_zspage_chain_size(int class_size)1995 static int calculate_zspage_chain_size(int class_size)
1996 {
1997 	int i, min_waste = INT_MAX;
1998 	int chain_size = 1;
1999 
2000 	if (is_power_of_2(class_size))
2001 		return chain_size;
2002 
2003 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2004 		int waste;
2005 
2006 		waste = (i * PAGE_SIZE) % class_size;
2007 		if (waste < min_waste) {
2008 			min_waste = waste;
2009 			chain_size = i;
2010 		}
2011 	}
2012 
2013 	return chain_size;
2014 }
2015 
2016 /**
2017  * zs_create_pool - Creates an allocation pool to work from.
2018  * @name: pool name to be created
2019  *
2020  * This function must be called before anything when using
2021  * the zsmalloc allocator.
2022  *
2023  * On success, a pointer to the newly created pool is returned,
2024  * otherwise NULL.
2025  */
zs_create_pool(const char * name)2026 struct zs_pool *zs_create_pool(const char *name)
2027 {
2028 	int i;
2029 	struct zs_pool *pool;
2030 	struct size_class *prev_class = NULL;
2031 
2032 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2033 	if (!pool)
2034 		return NULL;
2035 
2036 	init_deferred_free(pool);
2037 	rwlock_init(&pool->lock);
2038 	atomic_set(&pool->compaction_in_progress, 0);
2039 
2040 	pool->name = kstrdup(name, GFP_KERNEL);
2041 	if (!pool->name)
2042 		goto err;
2043 
2044 	if (create_cache(pool))
2045 		goto err;
2046 
2047 	/*
2048 	 * Iterate reversely, because, size of size_class that we want to use
2049 	 * for merging should be larger or equal to current size.
2050 	 */
2051 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2052 		int size;
2053 		int pages_per_zspage;
2054 		int objs_per_zspage;
2055 		struct size_class *class;
2056 		int fullness;
2057 
2058 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2059 		if (size > ZS_MAX_ALLOC_SIZE)
2060 			size = ZS_MAX_ALLOC_SIZE;
2061 		pages_per_zspage = calculate_zspage_chain_size(size);
2062 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2063 
2064 		/*
2065 		 * We iterate from biggest down to smallest classes,
2066 		 * so huge_class_size holds the size of the first huge
2067 		 * class. Any object bigger than or equal to that will
2068 		 * endup in the huge class.
2069 		 */
2070 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2071 				!huge_class_size) {
2072 			huge_class_size = size;
2073 			/*
2074 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2075 			 * handle. We need to subtract it, because zs_malloc()
2076 			 * unconditionally adds handle size before it performs
2077 			 * size class search - so object may be smaller than
2078 			 * huge class size, yet it still can end up in the huge
2079 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2080 			 * right before class lookup.
2081 			 */
2082 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2083 		}
2084 
2085 		/*
2086 		 * size_class is used for normal zsmalloc operation such
2087 		 * as alloc/free for that size. Although it is natural that we
2088 		 * have one size_class for each size, there is a chance that we
2089 		 * can get more memory utilization if we use one size_class for
2090 		 * many different sizes whose size_class have same
2091 		 * characteristics. So, we makes size_class point to
2092 		 * previous size_class if possible.
2093 		 */
2094 		if (prev_class) {
2095 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2096 				pool->size_class[i] = prev_class;
2097 				continue;
2098 			}
2099 		}
2100 
2101 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2102 		if (!class)
2103 			goto err;
2104 
2105 		class->size = size;
2106 		class->index = i;
2107 		class->pages_per_zspage = pages_per_zspage;
2108 		class->objs_per_zspage = objs_per_zspage;
2109 		spin_lock_init(&class->lock);
2110 		pool->size_class[i] = class;
2111 
2112 		fullness = ZS_INUSE_RATIO_0;
2113 		while (fullness < NR_FULLNESS_GROUPS) {
2114 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2115 			fullness++;
2116 		}
2117 
2118 		prev_class = class;
2119 	}
2120 
2121 	/* debug only, don't abort if it fails */
2122 	zs_pool_stat_create(pool, name);
2123 
2124 	/*
2125 	 * Not critical since shrinker is only used to trigger internal
2126 	 * defragmentation of the pool which is pretty optional thing.  If
2127 	 * registration fails we still can use the pool normally and user can
2128 	 * trigger compaction manually. Thus, ignore return code.
2129 	 */
2130 	zs_register_shrinker(pool);
2131 
2132 	return pool;
2133 
2134 err:
2135 	zs_destroy_pool(pool);
2136 	return NULL;
2137 }
2138 EXPORT_SYMBOL_GPL(zs_create_pool);
2139 
zs_destroy_pool(struct zs_pool * pool)2140 void zs_destroy_pool(struct zs_pool *pool)
2141 {
2142 	int i;
2143 
2144 	zs_unregister_shrinker(pool);
2145 	zs_flush_migration(pool);
2146 	zs_pool_stat_destroy(pool);
2147 
2148 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2149 		int fg;
2150 		struct size_class *class = pool->size_class[i];
2151 
2152 		if (!class)
2153 			continue;
2154 
2155 		if (class->index != i)
2156 			continue;
2157 
2158 		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2159 			if (list_empty(&class->fullness_list[fg]))
2160 				continue;
2161 
2162 			pr_err("Class-%d fullness group %d is not empty\n",
2163 			       class->size, fg);
2164 		}
2165 		kfree(class);
2166 	}
2167 
2168 	destroy_cache(pool);
2169 	kfree(pool->name);
2170 	kfree(pool);
2171 }
2172 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2173 
zs_init(void)2174 static int __init zs_init(void)
2175 {
2176 	int rc __maybe_unused;
2177 
2178 #ifdef CONFIG_COMPACTION
2179 	rc = set_movable_ops(&zsmalloc_mops, PGTY_zsmalloc);
2180 	if (rc)
2181 		return rc;
2182 #endif
2183 	zs_stat_init();
2184 	return 0;
2185 }
2186 
zs_exit(void)2187 static void __exit zs_exit(void)
2188 {
2189 #ifdef CONFIG_COMPACTION
2190 	set_movable_ops(NULL, PGTY_zsmalloc);
2191 #endif
2192 	zs_stat_exit();
2193 }
2194 
2195 module_init(zs_init);
2196 module_exit(zs_exit);
2197 
2198 MODULE_LICENSE("Dual BSD/GPL");
2199 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2200 MODULE_DESCRIPTION("zsmalloc memory allocator");
2201