1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4 * zsmalloc memory allocator
5 *
6 * Copyright (C) 2011 Nitin Gupta
7 * Copyright (C) 2012, 2013 Minchan Kim
8 *
9 * This code is released using a dual license strategy: BSD/GPL
10 * You can choose the license that better fits your requirements.
11 *
12 * Released under the terms of 3-clause BSD License
13 * Released under the terms of GNU General Public License Version 2.0
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 /*
19 * lock ordering:
20 * page_lock
21 * pool->lock
22 * class->lock
23 * zspage->lock
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/highmem.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 #include <linux/sprintf.h>
35 #include <linux/shrinker.h>
36 #include <linux/types.h>
37 #include <linux/debugfs.h>
38 #include <linux/zsmalloc.h>
39 #include <linux/zpool.h>
40 #include <linux/fs.h>
41 #include <linux/workqueue.h>
42 #include "zpdesc.h"
43
44 #define ZSPAGE_MAGIC 0x58
45
46 /*
47 * This must be power of 2 and greater than or equal to sizeof(link_free).
48 * These two conditions ensure that any 'struct link_free' itself doesn't
49 * span more than 1 page which avoids complex case of mapping 2 pages simply
50 * to restore link_free pointer values.
51 */
52 #define ZS_ALIGN 8
53
54 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
55
56 /*
57 * Object location (<PFN>, <obj_idx>) is encoded as
58 * a single (unsigned long) handle value.
59 *
60 * Note that object index <obj_idx> starts from 0.
61 *
62 * This is made more complicated by various memory models and PAE.
63 */
64
65 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
66 #ifdef MAX_PHYSMEM_BITS
67 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
68 #else
69 /*
70 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
71 * be PAGE_SHIFT
72 */
73 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
74 #endif
75 #endif
76
77 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
78
79 /*
80 * Head in allocated object should have OBJ_ALLOCATED_TAG
81 * to identify the object was allocated or not.
82 * It's okay to add the status bit in the least bit because
83 * header keeps handle which is 4byte-aligned address so we
84 * have room for two bit at least.
85 */
86 #define OBJ_ALLOCATED_TAG 1
87
88 #define OBJ_TAG_BITS 1
89 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
90
91 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
92 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
93
94 #define HUGE_BITS 1
95 #define FULLNESS_BITS 4
96 #define CLASS_BITS 8
97 #define MAGIC_VAL_BITS 8
98
99 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
100
101 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
102 #define ZS_MIN_ALLOC_SIZE \
103 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
104 /* each chunk includes extra space to keep handle */
105 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
106
107 /*
108 * On systems with 4K page size, this gives 255 size classes! There is a
109 * trader-off here:
110 * - Large number of size classes is potentially wasteful as free page are
111 * spread across these classes
112 * - Small number of size classes causes large internal fragmentation
113 * - Probably its better to use specific size classes (empirically
114 * determined). NOTE: all those class sizes must be set as multiple of
115 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
116 *
117 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
118 * (reason above)
119 */
120 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
121 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
122 ZS_SIZE_CLASS_DELTA) + 1)
123
124 /*
125 * Pages are distinguished by the ratio of used memory (that is the ratio
126 * of ->inuse objects to all objects that page can store). For example,
127 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
128 *
129 * The number of fullness groups is not random. It allows us to keep
130 * difference between the least busy page in the group (minimum permitted
131 * number of ->inuse objects) and the most busy page (maximum permitted
132 * number of ->inuse objects) at a reasonable value.
133 */
134 enum fullness_group {
135 ZS_INUSE_RATIO_0,
136 ZS_INUSE_RATIO_10,
137 /* NOTE: 8 more fullness groups here */
138 ZS_INUSE_RATIO_99 = 10,
139 ZS_INUSE_RATIO_100,
140 NR_FULLNESS_GROUPS,
141 };
142
143 enum class_stat_type {
144 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
145 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
146 ZS_OBJS_INUSE,
147 NR_CLASS_STAT_TYPES,
148 };
149
150 struct zs_size_stat {
151 unsigned long objs[NR_CLASS_STAT_TYPES];
152 };
153
154 #ifdef CONFIG_ZSMALLOC_STAT
155 static struct dentry *zs_stat_root;
156 #endif
157
158 static size_t huge_class_size;
159
160 struct size_class {
161 spinlock_t lock;
162 struct list_head fullness_list[NR_FULLNESS_GROUPS];
163 /*
164 * Size of objects stored in this class. Must be multiple
165 * of ZS_ALIGN.
166 */
167 int size;
168 int objs_per_zspage;
169 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
170 int pages_per_zspage;
171
172 unsigned int index;
173 struct zs_size_stat stats;
174 };
175
176 /*
177 * Placed within free objects to form a singly linked list.
178 * For every zspage, zspage->freeobj gives head of this list.
179 *
180 * This must be power of 2 and less than or equal to ZS_ALIGN
181 */
182 struct link_free {
183 union {
184 /*
185 * Free object index;
186 * It's valid for non-allocated object
187 */
188 unsigned long next;
189 /*
190 * Handle of allocated object.
191 */
192 unsigned long handle;
193 };
194 };
195
196 struct zs_pool {
197 const char *name;
198
199 struct size_class *size_class[ZS_SIZE_CLASSES];
200 struct kmem_cache *handle_cachep;
201 struct kmem_cache *zspage_cachep;
202
203 atomic_long_t pages_allocated;
204
205 struct zs_pool_stats stats;
206
207 /* Compact classes */
208 struct shrinker *shrinker;
209
210 #ifdef CONFIG_ZSMALLOC_STAT
211 struct dentry *stat_dentry;
212 #endif
213 #ifdef CONFIG_COMPACTION
214 struct work_struct free_work;
215 #endif
216 /* protect zspage migration/compaction */
217 rwlock_t lock;
218 atomic_t compaction_in_progress;
219 };
220
zpdesc_set_first(struct zpdesc * zpdesc)221 static inline void zpdesc_set_first(struct zpdesc *zpdesc)
222 {
223 SetPagePrivate(zpdesc_page(zpdesc));
224 }
225
zpdesc_inc_zone_page_state(struct zpdesc * zpdesc)226 static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc)
227 {
228 inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
229 }
230
zpdesc_dec_zone_page_state(struct zpdesc * zpdesc)231 static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc)
232 {
233 dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
234 }
235
alloc_zpdesc(gfp_t gfp,const int nid)236 static inline struct zpdesc *alloc_zpdesc(gfp_t gfp, const int nid)
237 {
238 struct page *page = alloc_pages_node(nid, gfp, 0);
239
240 return page_zpdesc(page);
241 }
242
free_zpdesc(struct zpdesc * zpdesc)243 static inline void free_zpdesc(struct zpdesc *zpdesc)
244 {
245 struct page *page = zpdesc_page(zpdesc);
246
247 /* PageZsmalloc is sticky until the page is freed to the buddy. */
248 __free_page(page);
249 }
250
251 #define ZS_PAGE_UNLOCKED 0
252 #define ZS_PAGE_WRLOCKED -1
253
254 struct zspage_lock {
255 spinlock_t lock;
256 int cnt;
257 struct lockdep_map dep_map;
258 };
259
260 struct zspage {
261 struct {
262 unsigned int huge:HUGE_BITS;
263 unsigned int fullness:FULLNESS_BITS;
264 unsigned int class:CLASS_BITS + 1;
265 unsigned int magic:MAGIC_VAL_BITS;
266 };
267 unsigned int inuse;
268 unsigned int freeobj;
269 struct zpdesc *first_zpdesc;
270 struct list_head list; /* fullness list */
271 struct zs_pool *pool;
272 struct zspage_lock zsl;
273 };
274
zspage_lock_init(struct zspage * zspage)275 static void zspage_lock_init(struct zspage *zspage)
276 {
277 static struct lock_class_key __key;
278 struct zspage_lock *zsl = &zspage->zsl;
279
280 lockdep_init_map(&zsl->dep_map, "zspage->lock", &__key, 0);
281 spin_lock_init(&zsl->lock);
282 zsl->cnt = ZS_PAGE_UNLOCKED;
283 }
284
285 /*
286 * The zspage lock can be held from atomic contexts, but it needs to remain
287 * preemptible when held for reading because it remains held outside of those
288 * atomic contexts, otherwise we unnecessarily lose preemptibility.
289 *
290 * To achieve this, the following rules are enforced on readers and writers:
291 *
292 * - Writers are blocked by both writers and readers, while readers are only
293 * blocked by writers (i.e. normal rwlock semantics).
294 *
295 * - Writers are always atomic (to allow readers to spin waiting for them).
296 *
297 * - Writers always use trylock (as the lock may be held be sleeping readers).
298 *
299 * - Readers may spin on the lock (as they can only wait for atomic writers).
300 *
301 * - Readers may sleep while holding the lock (as writes only use trylock).
302 */
zspage_read_lock(struct zspage * zspage)303 static void zspage_read_lock(struct zspage *zspage)
304 {
305 struct zspage_lock *zsl = &zspage->zsl;
306
307 rwsem_acquire_read(&zsl->dep_map, 0, 0, _RET_IP_);
308
309 spin_lock(&zsl->lock);
310 zsl->cnt++;
311 spin_unlock(&zsl->lock);
312
313 lock_acquired(&zsl->dep_map, _RET_IP_);
314 }
315
zspage_read_unlock(struct zspage * zspage)316 static void zspage_read_unlock(struct zspage *zspage)
317 {
318 struct zspage_lock *zsl = &zspage->zsl;
319
320 rwsem_release(&zsl->dep_map, _RET_IP_);
321
322 spin_lock(&zsl->lock);
323 zsl->cnt--;
324 spin_unlock(&zsl->lock);
325 }
326
zspage_write_trylock(struct zspage * zspage)327 static __must_check bool zspage_write_trylock(struct zspage *zspage)
328 {
329 struct zspage_lock *zsl = &zspage->zsl;
330
331 spin_lock(&zsl->lock);
332 if (zsl->cnt == ZS_PAGE_UNLOCKED) {
333 zsl->cnt = ZS_PAGE_WRLOCKED;
334 rwsem_acquire(&zsl->dep_map, 0, 1, _RET_IP_);
335 lock_acquired(&zsl->dep_map, _RET_IP_);
336 return true;
337 }
338
339 spin_unlock(&zsl->lock);
340 return false;
341 }
342
zspage_write_unlock(struct zspage * zspage)343 static void zspage_write_unlock(struct zspage *zspage)
344 {
345 struct zspage_lock *zsl = &zspage->zsl;
346
347 rwsem_release(&zsl->dep_map, _RET_IP_);
348
349 zsl->cnt = ZS_PAGE_UNLOCKED;
350 spin_unlock(&zsl->lock);
351 }
352
353 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetZsHugePage(struct zspage * zspage)354 static void SetZsHugePage(struct zspage *zspage)
355 {
356 zspage->huge = 1;
357 }
358
ZsHugePage(struct zspage * zspage)359 static bool ZsHugePage(struct zspage *zspage)
360 {
361 return zspage->huge;
362 }
363
364 #ifdef CONFIG_COMPACTION
365 static void kick_deferred_free(struct zs_pool *pool);
366 static void init_deferred_free(struct zs_pool *pool);
367 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
368 #else
kick_deferred_free(struct zs_pool * pool)369 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)370 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)371 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
372 #endif
373
create_cache(struct zs_pool * pool)374 static int create_cache(struct zs_pool *pool)
375 {
376 char *name;
377
378 name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
379 if (!name)
380 return -ENOMEM;
381 pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
382 0, 0, NULL);
383 kfree(name);
384 if (!pool->handle_cachep)
385 return -EINVAL;
386
387 name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
388 if (!name)
389 return -ENOMEM;
390 pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
391 0, 0, NULL);
392 kfree(name);
393 if (!pool->zspage_cachep) {
394 kmem_cache_destroy(pool->handle_cachep);
395 pool->handle_cachep = NULL;
396 return -EINVAL;
397 }
398
399 return 0;
400 }
401
destroy_cache(struct zs_pool * pool)402 static void destroy_cache(struct zs_pool *pool)
403 {
404 kmem_cache_destroy(pool->handle_cachep);
405 kmem_cache_destroy(pool->zspage_cachep);
406 }
407
cache_alloc_handle(struct zs_pool * pool,gfp_t gfp)408 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
409 {
410 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
411 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
412 }
413
cache_free_handle(struct zs_pool * pool,unsigned long handle)414 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
415 {
416 kmem_cache_free(pool->handle_cachep, (void *)handle);
417 }
418
cache_alloc_zspage(struct zs_pool * pool,gfp_t flags)419 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
420 {
421 return kmem_cache_zalloc(pool->zspage_cachep,
422 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
423 }
424
cache_free_zspage(struct zs_pool * pool,struct zspage * zspage)425 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
426 {
427 kmem_cache_free(pool->zspage_cachep, zspage);
428 }
429
430 /* class->lock(which owns the handle) synchronizes races */
record_obj(unsigned long handle,unsigned long obj)431 static void record_obj(unsigned long handle, unsigned long obj)
432 {
433 *(unsigned long *)handle = obj;
434 }
435
436 /* zpool driver */
437
438 #ifdef CONFIG_ZPOOL
439
zs_zpool_create(const char * name,gfp_t gfp)440 static void *zs_zpool_create(const char *name, gfp_t gfp)
441 {
442 /*
443 * Ignore global gfp flags: zs_malloc() may be invoked from
444 * different contexts and its caller must provide a valid
445 * gfp mask.
446 */
447 return zs_create_pool(name);
448 }
449
zs_zpool_destroy(void * pool)450 static void zs_zpool_destroy(void *pool)
451 {
452 zs_destroy_pool(pool);
453 }
454
zs_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle,const int nid)455 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
456 unsigned long *handle, const int nid)
457 {
458 *handle = zs_malloc(pool, size, gfp, nid);
459
460 if (IS_ERR_VALUE(*handle))
461 return PTR_ERR((void *)*handle);
462 return 0;
463 }
zs_zpool_free(void * pool,unsigned long handle)464 static void zs_zpool_free(void *pool, unsigned long handle)
465 {
466 zs_free(pool, handle);
467 }
468
zs_zpool_obj_read_begin(void * pool,unsigned long handle,void * local_copy)469 static void *zs_zpool_obj_read_begin(void *pool, unsigned long handle,
470 void *local_copy)
471 {
472 return zs_obj_read_begin(pool, handle, local_copy);
473 }
474
zs_zpool_obj_read_end(void * pool,unsigned long handle,void * handle_mem)475 static void zs_zpool_obj_read_end(void *pool, unsigned long handle,
476 void *handle_mem)
477 {
478 zs_obj_read_end(pool, handle, handle_mem);
479 }
480
zs_zpool_obj_write(void * pool,unsigned long handle,void * handle_mem,size_t mem_len)481 static void zs_zpool_obj_write(void *pool, unsigned long handle,
482 void *handle_mem, size_t mem_len)
483 {
484 zs_obj_write(pool, handle, handle_mem, mem_len);
485 }
486
zs_zpool_total_pages(void * pool)487 static u64 zs_zpool_total_pages(void *pool)
488 {
489 return zs_get_total_pages(pool);
490 }
491
492 static struct zpool_driver zs_zpool_driver = {
493 .type = "zsmalloc",
494 .owner = THIS_MODULE,
495 .create = zs_zpool_create,
496 .destroy = zs_zpool_destroy,
497 .malloc = zs_zpool_malloc,
498 .free = zs_zpool_free,
499 .obj_read_begin = zs_zpool_obj_read_begin,
500 .obj_read_end = zs_zpool_obj_read_end,
501 .obj_write = zs_zpool_obj_write,
502 .total_pages = zs_zpool_total_pages,
503 };
504
505 MODULE_ALIAS("zpool-zsmalloc");
506 #endif /* CONFIG_ZPOOL */
507
is_first_zpdesc(struct zpdesc * zpdesc)508 static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc)
509 {
510 return PagePrivate(zpdesc_page(zpdesc));
511 }
512
513 /* Protected by class->lock */
get_zspage_inuse(struct zspage * zspage)514 static inline int get_zspage_inuse(struct zspage *zspage)
515 {
516 return zspage->inuse;
517 }
518
mod_zspage_inuse(struct zspage * zspage,int val)519 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
520 {
521 zspage->inuse += val;
522 }
523
get_first_zpdesc(struct zspage * zspage)524 static struct zpdesc *get_first_zpdesc(struct zspage *zspage)
525 {
526 struct zpdesc *first_zpdesc = zspage->first_zpdesc;
527
528 VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc));
529 return first_zpdesc;
530 }
531
532 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff
533
get_first_obj_offset(struct zpdesc * zpdesc)534 static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc)
535 {
536 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
537 return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK;
538 }
539
set_first_obj_offset(struct zpdesc * zpdesc,unsigned int offset)540 static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset)
541 {
542 /* With 24 bits available, we can support offsets into 16 MiB pages. */
543 BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
544 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
545 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
546 zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK;
547 zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
548 }
549
get_freeobj(struct zspage * zspage)550 static inline unsigned int get_freeobj(struct zspage *zspage)
551 {
552 return zspage->freeobj;
553 }
554
set_freeobj(struct zspage * zspage,unsigned int obj)555 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
556 {
557 zspage->freeobj = obj;
558 }
559
zspage_class(struct zs_pool * pool,struct zspage * zspage)560 static struct size_class *zspage_class(struct zs_pool *pool,
561 struct zspage *zspage)
562 {
563 return pool->size_class[zspage->class];
564 }
565
566 /*
567 * zsmalloc divides the pool into various size classes where each
568 * class maintains a list of zspages where each zspage is divided
569 * into equal sized chunks. Each allocation falls into one of these
570 * classes depending on its size. This function returns index of the
571 * size class which has chunk size big enough to hold the given size.
572 */
get_size_class_index(int size)573 static int get_size_class_index(int size)
574 {
575 int idx = 0;
576
577 if (likely(size > ZS_MIN_ALLOC_SIZE))
578 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
579 ZS_SIZE_CLASS_DELTA);
580
581 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
582 }
583
class_stat_add(struct size_class * class,int type,unsigned long cnt)584 static inline void class_stat_add(struct size_class *class, int type,
585 unsigned long cnt)
586 {
587 class->stats.objs[type] += cnt;
588 }
589
class_stat_sub(struct size_class * class,int type,unsigned long cnt)590 static inline void class_stat_sub(struct size_class *class, int type,
591 unsigned long cnt)
592 {
593 class->stats.objs[type] -= cnt;
594 }
595
class_stat_read(struct size_class * class,int type)596 static inline unsigned long class_stat_read(struct size_class *class, int type)
597 {
598 return class->stats.objs[type];
599 }
600
601 #ifdef CONFIG_ZSMALLOC_STAT
602
zs_stat_init(void)603 static void __init zs_stat_init(void)
604 {
605 if (!debugfs_initialized()) {
606 pr_warn("debugfs not available, stat dir not created\n");
607 return;
608 }
609
610 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
611 }
612
zs_stat_exit(void)613 static void __exit zs_stat_exit(void)
614 {
615 debugfs_remove_recursive(zs_stat_root);
616 }
617
618 static unsigned long zs_can_compact(struct size_class *class);
619
zs_stats_size_show(struct seq_file * s,void * v)620 static int zs_stats_size_show(struct seq_file *s, void *v)
621 {
622 int i, fg;
623 struct zs_pool *pool = s->private;
624 struct size_class *class;
625 int objs_per_zspage;
626 unsigned long obj_allocated, obj_used, pages_used, freeable;
627 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
628 unsigned long total_freeable = 0;
629 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
630
631 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
632 "class", "size", "10%", "20%", "30%", "40%",
633 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
634 "obj_allocated", "obj_used", "pages_used",
635 "pages_per_zspage", "freeable");
636
637 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
638
639 class = pool->size_class[i];
640
641 if (class->index != i)
642 continue;
643
644 spin_lock(&class->lock);
645
646 seq_printf(s, " %5u %5u ", i, class->size);
647 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
648 inuse_totals[fg] += class_stat_read(class, fg);
649 seq_printf(s, "%9lu ", class_stat_read(class, fg));
650 }
651
652 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
653 obj_used = class_stat_read(class, ZS_OBJS_INUSE);
654 freeable = zs_can_compact(class);
655 spin_unlock(&class->lock);
656
657 objs_per_zspage = class->objs_per_zspage;
658 pages_used = obj_allocated / objs_per_zspage *
659 class->pages_per_zspage;
660
661 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
662 obj_allocated, obj_used, pages_used,
663 class->pages_per_zspage, freeable);
664
665 total_objs += obj_allocated;
666 total_used_objs += obj_used;
667 total_pages += pages_used;
668 total_freeable += freeable;
669 }
670
671 seq_puts(s, "\n");
672 seq_printf(s, " %5s %5s ", "Total", "");
673
674 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
675 seq_printf(s, "%9lu ", inuse_totals[fg]);
676
677 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
678 total_objs, total_used_objs, total_pages, "",
679 total_freeable);
680
681 return 0;
682 }
683 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
684
zs_pool_stat_create(struct zs_pool * pool,const char * name)685 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
686 {
687 if (!zs_stat_root) {
688 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
689 return;
690 }
691
692 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
693
694 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
695 &zs_stats_size_fops);
696 }
697
zs_pool_stat_destroy(struct zs_pool * pool)698 static void zs_pool_stat_destroy(struct zs_pool *pool)
699 {
700 debugfs_remove_recursive(pool->stat_dentry);
701 }
702
703 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)704 static void __init zs_stat_init(void)
705 {
706 }
707
zs_stat_exit(void)708 static void __exit zs_stat_exit(void)
709 {
710 }
711
zs_pool_stat_create(struct zs_pool * pool,const char * name)712 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
713 {
714 }
715
zs_pool_stat_destroy(struct zs_pool * pool)716 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
717 {
718 }
719 #endif
720
721
722 /*
723 * For each size class, zspages are divided into different groups
724 * depending on their usage ratio. This function returns fullness
725 * status of the given page.
726 */
get_fullness_group(struct size_class * class,struct zspage * zspage)727 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
728 {
729 int inuse, objs_per_zspage, ratio;
730
731 inuse = get_zspage_inuse(zspage);
732 objs_per_zspage = class->objs_per_zspage;
733
734 if (inuse == 0)
735 return ZS_INUSE_RATIO_0;
736 if (inuse == objs_per_zspage)
737 return ZS_INUSE_RATIO_100;
738
739 ratio = 100 * inuse / objs_per_zspage;
740 /*
741 * Take integer division into consideration: a page with one inuse
742 * object out of 127 possible, will end up having 0 usage ratio,
743 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
744 */
745 return ratio / 10 + 1;
746 }
747
748 /*
749 * Each size class maintains various freelists and zspages are assigned
750 * to one of these freelists based on the number of live objects they
751 * have. This functions inserts the given zspage into the freelist
752 * identified by <class, fullness_group>.
753 */
insert_zspage(struct size_class * class,struct zspage * zspage,int fullness)754 static void insert_zspage(struct size_class *class,
755 struct zspage *zspage,
756 int fullness)
757 {
758 class_stat_add(class, fullness, 1);
759 list_add(&zspage->list, &class->fullness_list[fullness]);
760 zspage->fullness = fullness;
761 }
762
763 /*
764 * This function removes the given zspage from the freelist identified
765 * by <class, fullness_group>.
766 */
remove_zspage(struct size_class * class,struct zspage * zspage)767 static void remove_zspage(struct size_class *class, struct zspage *zspage)
768 {
769 int fullness = zspage->fullness;
770
771 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
772
773 list_del_init(&zspage->list);
774 class_stat_sub(class, fullness, 1);
775 }
776
777 /*
778 * Each size class maintains zspages in different fullness groups depending
779 * on the number of live objects they contain. When allocating or freeing
780 * objects, the fullness status of the page can change, for instance, from
781 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
782 * checks if such a status change has occurred for the given page and
783 * accordingly moves the page from the list of the old fullness group to that
784 * of the new fullness group.
785 */
fix_fullness_group(struct size_class * class,struct zspage * zspage)786 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
787 {
788 int newfg;
789
790 newfg = get_fullness_group(class, zspage);
791 if (newfg == zspage->fullness)
792 goto out;
793
794 remove_zspage(class, zspage);
795 insert_zspage(class, zspage, newfg);
796 out:
797 return newfg;
798 }
799
get_zspage(struct zpdesc * zpdesc)800 static struct zspage *get_zspage(struct zpdesc *zpdesc)
801 {
802 struct zspage *zspage = zpdesc->zspage;
803
804 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
805 return zspage;
806 }
807
get_next_zpdesc(struct zpdesc * zpdesc)808 static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc)
809 {
810 struct zspage *zspage = get_zspage(zpdesc);
811
812 if (unlikely(ZsHugePage(zspage)))
813 return NULL;
814
815 return zpdesc->next;
816 }
817
818 /**
819 * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value
820 * @obj: the encoded object value
821 * @zpdesc: zpdesc object resides in zspage
822 * @obj_idx: object index
823 */
obj_to_location(unsigned long obj,struct zpdesc ** zpdesc,unsigned int * obj_idx)824 static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc,
825 unsigned int *obj_idx)
826 {
827 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
828 *obj_idx = (obj & OBJ_INDEX_MASK);
829 }
830
obj_to_zpdesc(unsigned long obj,struct zpdesc ** zpdesc)831 static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc)
832 {
833 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
834 }
835
836 /**
837 * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>)
838 * @zpdesc: zpdesc object resides in zspage
839 * @obj_idx: object index
840 */
location_to_obj(struct zpdesc * zpdesc,unsigned int obj_idx)841 static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx)
842 {
843 unsigned long obj;
844
845 obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS;
846 obj |= obj_idx & OBJ_INDEX_MASK;
847
848 return obj;
849 }
850
handle_to_obj(unsigned long handle)851 static unsigned long handle_to_obj(unsigned long handle)
852 {
853 return *(unsigned long *)handle;
854 }
855
obj_allocated(struct zpdesc * zpdesc,void * obj,unsigned long * phandle)856 static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj,
857 unsigned long *phandle)
858 {
859 unsigned long handle;
860 struct zspage *zspage = get_zspage(zpdesc);
861
862 if (unlikely(ZsHugePage(zspage))) {
863 VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc));
864 handle = zpdesc->handle;
865 } else
866 handle = *(unsigned long *)obj;
867
868 if (!(handle & OBJ_ALLOCATED_TAG))
869 return false;
870
871 /* Clear all tags before returning the handle */
872 *phandle = handle & ~OBJ_TAG_MASK;
873 return true;
874 }
875
reset_zpdesc(struct zpdesc * zpdesc)876 static void reset_zpdesc(struct zpdesc *zpdesc)
877 {
878 struct page *page = zpdesc_page(zpdesc);
879
880 ClearPagePrivate(page);
881 zpdesc->zspage = NULL;
882 zpdesc->next = NULL;
883 /* PageZsmalloc is sticky until the page is freed to the buddy. */
884 }
885
trylock_zspage(struct zspage * zspage)886 static int trylock_zspage(struct zspage *zspage)
887 {
888 struct zpdesc *cursor, *fail;
889
890 for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor =
891 get_next_zpdesc(cursor)) {
892 if (!zpdesc_trylock(cursor)) {
893 fail = cursor;
894 goto unlock;
895 }
896 }
897
898 return 1;
899 unlock:
900 for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor =
901 get_next_zpdesc(cursor))
902 zpdesc_unlock(cursor);
903
904 return 0;
905 }
906
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)907 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
908 struct zspage *zspage)
909 {
910 struct zpdesc *zpdesc, *next;
911
912 assert_spin_locked(&class->lock);
913
914 VM_BUG_ON(get_zspage_inuse(zspage));
915 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
916
917 next = zpdesc = get_first_zpdesc(zspage);
918 do {
919 VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc));
920 next = get_next_zpdesc(zpdesc);
921 reset_zpdesc(zpdesc);
922 zpdesc_unlock(zpdesc);
923 zpdesc_dec_zone_page_state(zpdesc);
924 zpdesc_put(zpdesc);
925 zpdesc = next;
926 } while (zpdesc != NULL);
927
928 cache_free_zspage(pool, zspage);
929
930 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
931 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
932 }
933
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)934 static void free_zspage(struct zs_pool *pool, struct size_class *class,
935 struct zspage *zspage)
936 {
937 VM_BUG_ON(get_zspage_inuse(zspage));
938 VM_BUG_ON(list_empty(&zspage->list));
939
940 /*
941 * Since zs_free couldn't be sleepable, this function cannot call
942 * lock_page. The page locks trylock_zspage got will be released
943 * by __free_zspage.
944 */
945 if (!trylock_zspage(zspage)) {
946 kick_deferred_free(pool);
947 return;
948 }
949
950 remove_zspage(class, zspage);
951 __free_zspage(pool, class, zspage);
952 }
953
954 /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)955 static void init_zspage(struct size_class *class, struct zspage *zspage)
956 {
957 unsigned int freeobj = 1;
958 unsigned long off = 0;
959 struct zpdesc *zpdesc = get_first_zpdesc(zspage);
960
961 while (zpdesc) {
962 struct zpdesc *next_zpdesc;
963 struct link_free *link;
964 void *vaddr;
965
966 set_first_obj_offset(zpdesc, off);
967
968 vaddr = kmap_local_zpdesc(zpdesc);
969 link = (struct link_free *)vaddr + off / sizeof(*link);
970
971 while ((off += class->size) < PAGE_SIZE) {
972 link->next = freeobj++ << OBJ_TAG_BITS;
973 link += class->size / sizeof(*link);
974 }
975
976 /*
977 * We now come to the last (full or partial) object on this
978 * page, which must point to the first object on the next
979 * page (if present)
980 */
981 next_zpdesc = get_next_zpdesc(zpdesc);
982 if (next_zpdesc) {
983 link->next = freeobj++ << OBJ_TAG_BITS;
984 } else {
985 /*
986 * Reset OBJ_TAG_BITS bit to last link to tell
987 * whether it's allocated object or not.
988 */
989 link->next = -1UL << OBJ_TAG_BITS;
990 }
991 kunmap_local(vaddr);
992 zpdesc = next_zpdesc;
993 off %= PAGE_SIZE;
994 }
995
996 set_freeobj(zspage, 0);
997 }
998
create_page_chain(struct size_class * class,struct zspage * zspage,struct zpdesc * zpdescs[])999 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1000 struct zpdesc *zpdescs[])
1001 {
1002 int i;
1003 struct zpdesc *zpdesc;
1004 struct zpdesc *prev_zpdesc = NULL;
1005 int nr_zpdescs = class->pages_per_zspage;
1006
1007 /*
1008 * Allocate individual pages and link them together as:
1009 * 1. all pages are linked together using zpdesc->next
1010 * 2. each sub-page point to zspage using zpdesc->zspage
1011 *
1012 * we set PG_private to identify the first zpdesc (i.e. no other zpdesc
1013 * has this flag set).
1014 */
1015 for (i = 0; i < nr_zpdescs; i++) {
1016 zpdesc = zpdescs[i];
1017 zpdesc->zspage = zspage;
1018 zpdesc->next = NULL;
1019 if (i == 0) {
1020 zspage->first_zpdesc = zpdesc;
1021 zpdesc_set_first(zpdesc);
1022 if (unlikely(class->objs_per_zspage == 1 &&
1023 class->pages_per_zspage == 1))
1024 SetZsHugePage(zspage);
1025 } else {
1026 prev_zpdesc->next = zpdesc;
1027 }
1028 prev_zpdesc = zpdesc;
1029 }
1030 }
1031
1032 /*
1033 * Allocate a zspage for the given size class
1034 */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp,const int nid)1035 static struct zspage *alloc_zspage(struct zs_pool *pool,
1036 struct size_class *class,
1037 gfp_t gfp, const int nid)
1038 {
1039 int i;
1040 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE];
1041 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1042
1043 if (!zspage)
1044 return NULL;
1045
1046 if (!IS_ENABLED(CONFIG_COMPACTION))
1047 gfp &= ~__GFP_MOVABLE;
1048
1049 zspage->magic = ZSPAGE_MAGIC;
1050 zspage->pool = pool;
1051 zspage->class = class->index;
1052 zspage_lock_init(zspage);
1053
1054 for (i = 0; i < class->pages_per_zspage; i++) {
1055 struct zpdesc *zpdesc;
1056
1057 zpdesc = alloc_zpdesc(gfp, nid);
1058 if (!zpdesc) {
1059 while (--i >= 0) {
1060 zpdesc_dec_zone_page_state(zpdescs[i]);
1061 free_zpdesc(zpdescs[i]);
1062 }
1063 cache_free_zspage(pool, zspage);
1064 return NULL;
1065 }
1066 __zpdesc_set_zsmalloc(zpdesc);
1067
1068 zpdesc_inc_zone_page_state(zpdesc);
1069 zpdescs[i] = zpdesc;
1070 }
1071
1072 create_page_chain(class, zspage, zpdescs);
1073 init_zspage(class, zspage);
1074
1075 return zspage;
1076 }
1077
find_get_zspage(struct size_class * class)1078 static struct zspage *find_get_zspage(struct size_class *class)
1079 {
1080 int i;
1081 struct zspage *zspage;
1082
1083 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1084 zspage = list_first_entry_or_null(&class->fullness_list[i],
1085 struct zspage, list);
1086 if (zspage)
1087 break;
1088 }
1089
1090 return zspage;
1091 }
1092
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)1093 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1094 int objs_per_zspage)
1095 {
1096 if (prev->pages_per_zspage == pages_per_zspage &&
1097 prev->objs_per_zspage == objs_per_zspage)
1098 return true;
1099
1100 return false;
1101 }
1102
zspage_full(struct size_class * class,struct zspage * zspage)1103 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1104 {
1105 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1106 }
1107
zspage_empty(struct zspage * zspage)1108 static bool zspage_empty(struct zspage *zspage)
1109 {
1110 return get_zspage_inuse(zspage) == 0;
1111 }
1112
1113 /**
1114 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1115 * that hold objects of the provided size.
1116 * @pool: zsmalloc pool to use
1117 * @size: object size
1118 *
1119 * Context: Any context.
1120 *
1121 * Return: the index of the zsmalloc &size_class that hold objects of the
1122 * provided size.
1123 */
zs_lookup_class_index(struct zs_pool * pool,unsigned int size)1124 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1125 {
1126 struct size_class *class;
1127
1128 class = pool->size_class[get_size_class_index(size)];
1129
1130 return class->index;
1131 }
1132 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1133
zs_get_total_pages(struct zs_pool * pool)1134 unsigned long zs_get_total_pages(struct zs_pool *pool)
1135 {
1136 return atomic_long_read(&pool->pages_allocated);
1137 }
1138 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1139
zs_obj_read_begin(struct zs_pool * pool,unsigned long handle,void * local_copy)1140 void *zs_obj_read_begin(struct zs_pool *pool, unsigned long handle,
1141 void *local_copy)
1142 {
1143 struct zspage *zspage;
1144 struct zpdesc *zpdesc;
1145 unsigned long obj, off;
1146 unsigned int obj_idx;
1147 struct size_class *class;
1148 void *addr;
1149
1150 /* Guarantee we can get zspage from handle safely */
1151 read_lock(&pool->lock);
1152 obj = handle_to_obj(handle);
1153 obj_to_location(obj, &zpdesc, &obj_idx);
1154 zspage = get_zspage(zpdesc);
1155
1156 /* Make sure migration doesn't move any pages in this zspage */
1157 zspage_read_lock(zspage);
1158 read_unlock(&pool->lock);
1159
1160 class = zspage_class(pool, zspage);
1161 off = offset_in_page(class->size * obj_idx);
1162
1163 if (off + class->size <= PAGE_SIZE) {
1164 /* this object is contained entirely within a page */
1165 addr = kmap_local_zpdesc(zpdesc);
1166 addr += off;
1167 } else {
1168 size_t sizes[2];
1169
1170 /* this object spans two pages */
1171 sizes[0] = PAGE_SIZE - off;
1172 sizes[1] = class->size - sizes[0];
1173 addr = local_copy;
1174
1175 memcpy_from_page(addr, zpdesc_page(zpdesc),
1176 off, sizes[0]);
1177 zpdesc = get_next_zpdesc(zpdesc);
1178 memcpy_from_page(addr + sizes[0],
1179 zpdesc_page(zpdesc),
1180 0, sizes[1]);
1181 }
1182
1183 if (!ZsHugePage(zspage))
1184 addr += ZS_HANDLE_SIZE;
1185
1186 return addr;
1187 }
1188 EXPORT_SYMBOL_GPL(zs_obj_read_begin);
1189
zs_obj_read_end(struct zs_pool * pool,unsigned long handle,void * handle_mem)1190 void zs_obj_read_end(struct zs_pool *pool, unsigned long handle,
1191 void *handle_mem)
1192 {
1193 struct zspage *zspage;
1194 struct zpdesc *zpdesc;
1195 unsigned long obj, off;
1196 unsigned int obj_idx;
1197 struct size_class *class;
1198
1199 obj = handle_to_obj(handle);
1200 obj_to_location(obj, &zpdesc, &obj_idx);
1201 zspage = get_zspage(zpdesc);
1202 class = zspage_class(pool, zspage);
1203 off = offset_in_page(class->size * obj_idx);
1204
1205 if (off + class->size <= PAGE_SIZE) {
1206 if (!ZsHugePage(zspage))
1207 off += ZS_HANDLE_SIZE;
1208 handle_mem -= off;
1209 kunmap_local(handle_mem);
1210 }
1211
1212 zspage_read_unlock(zspage);
1213 }
1214 EXPORT_SYMBOL_GPL(zs_obj_read_end);
1215
zs_obj_write(struct zs_pool * pool,unsigned long handle,void * handle_mem,size_t mem_len)1216 void zs_obj_write(struct zs_pool *pool, unsigned long handle,
1217 void *handle_mem, size_t mem_len)
1218 {
1219 struct zspage *zspage;
1220 struct zpdesc *zpdesc;
1221 unsigned long obj, off;
1222 unsigned int obj_idx;
1223 struct size_class *class;
1224
1225 /* Guarantee we can get zspage from handle safely */
1226 read_lock(&pool->lock);
1227 obj = handle_to_obj(handle);
1228 obj_to_location(obj, &zpdesc, &obj_idx);
1229 zspage = get_zspage(zpdesc);
1230
1231 /* Make sure migration doesn't move any pages in this zspage */
1232 zspage_read_lock(zspage);
1233 read_unlock(&pool->lock);
1234
1235 class = zspage_class(pool, zspage);
1236 off = offset_in_page(class->size * obj_idx);
1237
1238 if (!ZsHugePage(zspage))
1239 off += ZS_HANDLE_SIZE;
1240
1241 if (off + mem_len <= PAGE_SIZE) {
1242 /* this object is contained entirely within a page */
1243 void *dst = kmap_local_zpdesc(zpdesc);
1244
1245 memcpy(dst + off, handle_mem, mem_len);
1246 kunmap_local(dst);
1247 } else {
1248 /* this object spans two pages */
1249 size_t sizes[2];
1250
1251 sizes[0] = PAGE_SIZE - off;
1252 sizes[1] = mem_len - sizes[0];
1253
1254 memcpy_to_page(zpdesc_page(zpdesc), off,
1255 handle_mem, sizes[0]);
1256 zpdesc = get_next_zpdesc(zpdesc);
1257 memcpy_to_page(zpdesc_page(zpdesc), 0,
1258 handle_mem + sizes[0], sizes[1]);
1259 }
1260
1261 zspage_read_unlock(zspage);
1262 }
1263 EXPORT_SYMBOL_GPL(zs_obj_write);
1264
1265 /**
1266 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1267 * zsmalloc &size_class.
1268 * @pool: zsmalloc pool to use
1269 *
1270 * The function returns the size of the first huge class - any object of equal
1271 * or bigger size will be stored in zspage consisting of a single physical
1272 * page.
1273 *
1274 * Context: Any context.
1275 *
1276 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1277 */
zs_huge_class_size(struct zs_pool * pool)1278 size_t zs_huge_class_size(struct zs_pool *pool)
1279 {
1280 return huge_class_size;
1281 }
1282 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1283
obj_malloc(struct zs_pool * pool,struct zspage * zspage,unsigned long handle)1284 static unsigned long obj_malloc(struct zs_pool *pool,
1285 struct zspage *zspage, unsigned long handle)
1286 {
1287 int i, nr_zpdesc, offset;
1288 unsigned long obj;
1289 struct link_free *link;
1290 struct size_class *class;
1291
1292 struct zpdesc *m_zpdesc;
1293 unsigned long m_offset;
1294 void *vaddr;
1295
1296 class = pool->size_class[zspage->class];
1297 obj = get_freeobj(zspage);
1298
1299 offset = obj * class->size;
1300 nr_zpdesc = offset >> PAGE_SHIFT;
1301 m_offset = offset_in_page(offset);
1302 m_zpdesc = get_first_zpdesc(zspage);
1303
1304 for (i = 0; i < nr_zpdesc; i++)
1305 m_zpdesc = get_next_zpdesc(m_zpdesc);
1306
1307 vaddr = kmap_local_zpdesc(m_zpdesc);
1308 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1309 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1310 if (likely(!ZsHugePage(zspage)))
1311 /* record handle in the header of allocated chunk */
1312 link->handle = handle | OBJ_ALLOCATED_TAG;
1313 else
1314 zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG;
1315
1316 kunmap_local(vaddr);
1317 mod_zspage_inuse(zspage, 1);
1318
1319 obj = location_to_obj(m_zpdesc, obj);
1320 record_obj(handle, obj);
1321
1322 return obj;
1323 }
1324
1325
1326 /**
1327 * zs_malloc - Allocate block of given size from pool.
1328 * @pool: pool to allocate from
1329 * @size: size of block to allocate
1330 * @gfp: gfp flags when allocating object
1331 * @nid: The preferred node id to allocate new zspage (if needed)
1332 *
1333 * On success, handle to the allocated object is returned,
1334 * otherwise an ERR_PTR().
1335 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1336 */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp,const int nid)1337 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp,
1338 const int nid)
1339 {
1340 unsigned long handle;
1341 struct size_class *class;
1342 int newfg;
1343 struct zspage *zspage;
1344
1345 if (unlikely(!size))
1346 return (unsigned long)ERR_PTR(-EINVAL);
1347
1348 if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1349 return (unsigned long)ERR_PTR(-ENOSPC);
1350
1351 handle = cache_alloc_handle(pool, gfp);
1352 if (!handle)
1353 return (unsigned long)ERR_PTR(-ENOMEM);
1354
1355 /* extra space in chunk to keep the handle */
1356 size += ZS_HANDLE_SIZE;
1357 class = pool->size_class[get_size_class_index(size)];
1358
1359 /* class->lock effectively protects the zpage migration */
1360 spin_lock(&class->lock);
1361 zspage = find_get_zspage(class);
1362 if (likely(zspage)) {
1363 obj_malloc(pool, zspage, handle);
1364 /* Now move the zspage to another fullness group, if required */
1365 fix_fullness_group(class, zspage);
1366 class_stat_add(class, ZS_OBJS_INUSE, 1);
1367
1368 goto out;
1369 }
1370
1371 spin_unlock(&class->lock);
1372
1373 zspage = alloc_zspage(pool, class, gfp, nid);
1374 if (!zspage) {
1375 cache_free_handle(pool, handle);
1376 return (unsigned long)ERR_PTR(-ENOMEM);
1377 }
1378
1379 spin_lock(&class->lock);
1380 obj_malloc(pool, zspage, handle);
1381 newfg = get_fullness_group(class, zspage);
1382 insert_zspage(class, zspage, newfg);
1383 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1384 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1385 class_stat_add(class, ZS_OBJS_INUSE, 1);
1386
1387 /* We completely set up zspage so mark them as movable */
1388 SetZsPageMovable(pool, zspage);
1389 out:
1390 spin_unlock(&class->lock);
1391
1392 return handle;
1393 }
1394 EXPORT_SYMBOL_GPL(zs_malloc);
1395
obj_free(int class_size,unsigned long obj)1396 static void obj_free(int class_size, unsigned long obj)
1397 {
1398 struct link_free *link;
1399 struct zspage *zspage;
1400 struct zpdesc *f_zpdesc;
1401 unsigned long f_offset;
1402 unsigned int f_objidx;
1403 void *vaddr;
1404
1405
1406 obj_to_location(obj, &f_zpdesc, &f_objidx);
1407 f_offset = offset_in_page(class_size * f_objidx);
1408 zspage = get_zspage(f_zpdesc);
1409
1410 vaddr = kmap_local_zpdesc(f_zpdesc);
1411 link = (struct link_free *)(vaddr + f_offset);
1412
1413 /* Insert this object in containing zspage's freelist */
1414 if (likely(!ZsHugePage(zspage)))
1415 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1416 else
1417 f_zpdesc->handle = 0;
1418 set_freeobj(zspage, f_objidx);
1419
1420 kunmap_local(vaddr);
1421 mod_zspage_inuse(zspage, -1);
1422 }
1423
zs_free(struct zs_pool * pool,unsigned long handle)1424 void zs_free(struct zs_pool *pool, unsigned long handle)
1425 {
1426 struct zspage *zspage;
1427 struct zpdesc *f_zpdesc;
1428 unsigned long obj;
1429 struct size_class *class;
1430 int fullness;
1431
1432 if (IS_ERR_OR_NULL((void *)handle))
1433 return;
1434
1435 /*
1436 * The pool->lock protects the race with zpage's migration
1437 * so it's safe to get the page from handle.
1438 */
1439 read_lock(&pool->lock);
1440 obj = handle_to_obj(handle);
1441 obj_to_zpdesc(obj, &f_zpdesc);
1442 zspage = get_zspage(f_zpdesc);
1443 class = zspage_class(pool, zspage);
1444 spin_lock(&class->lock);
1445 read_unlock(&pool->lock);
1446
1447 class_stat_sub(class, ZS_OBJS_INUSE, 1);
1448 obj_free(class->size, obj);
1449
1450 fullness = fix_fullness_group(class, zspage);
1451 if (fullness == ZS_INUSE_RATIO_0)
1452 free_zspage(pool, class, zspage);
1453
1454 spin_unlock(&class->lock);
1455 cache_free_handle(pool, handle);
1456 }
1457 EXPORT_SYMBOL_GPL(zs_free);
1458
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1459 static void zs_object_copy(struct size_class *class, unsigned long dst,
1460 unsigned long src)
1461 {
1462 struct zpdesc *s_zpdesc, *d_zpdesc;
1463 unsigned int s_objidx, d_objidx;
1464 unsigned long s_off, d_off;
1465 void *s_addr, *d_addr;
1466 int s_size, d_size, size;
1467 int written = 0;
1468
1469 s_size = d_size = class->size;
1470
1471 obj_to_location(src, &s_zpdesc, &s_objidx);
1472 obj_to_location(dst, &d_zpdesc, &d_objidx);
1473
1474 s_off = offset_in_page(class->size * s_objidx);
1475 d_off = offset_in_page(class->size * d_objidx);
1476
1477 if (s_off + class->size > PAGE_SIZE)
1478 s_size = PAGE_SIZE - s_off;
1479
1480 if (d_off + class->size > PAGE_SIZE)
1481 d_size = PAGE_SIZE - d_off;
1482
1483 s_addr = kmap_local_zpdesc(s_zpdesc);
1484 d_addr = kmap_local_zpdesc(d_zpdesc);
1485
1486 while (1) {
1487 size = min(s_size, d_size);
1488 memcpy(d_addr + d_off, s_addr + s_off, size);
1489 written += size;
1490
1491 if (written == class->size)
1492 break;
1493
1494 s_off += size;
1495 s_size -= size;
1496 d_off += size;
1497 d_size -= size;
1498
1499 /*
1500 * Calling kunmap_local(d_addr) is necessary. kunmap_local()
1501 * calls must occurs in reverse order of calls to kmap_local_page().
1502 * So, to call kunmap_local(s_addr) we should first call
1503 * kunmap_local(d_addr). For more details see
1504 * Documentation/mm/highmem.rst.
1505 */
1506 if (s_off >= PAGE_SIZE) {
1507 kunmap_local(d_addr);
1508 kunmap_local(s_addr);
1509 s_zpdesc = get_next_zpdesc(s_zpdesc);
1510 s_addr = kmap_local_zpdesc(s_zpdesc);
1511 d_addr = kmap_local_zpdesc(d_zpdesc);
1512 s_size = class->size - written;
1513 s_off = 0;
1514 }
1515
1516 if (d_off >= PAGE_SIZE) {
1517 kunmap_local(d_addr);
1518 d_zpdesc = get_next_zpdesc(d_zpdesc);
1519 d_addr = kmap_local_zpdesc(d_zpdesc);
1520 d_size = class->size - written;
1521 d_off = 0;
1522 }
1523 }
1524
1525 kunmap_local(d_addr);
1526 kunmap_local(s_addr);
1527 }
1528
1529 /*
1530 * Find alloced object in zspage from index object and
1531 * return handle.
1532 */
find_alloced_obj(struct size_class * class,struct zpdesc * zpdesc,int * obj_idx)1533 static unsigned long find_alloced_obj(struct size_class *class,
1534 struct zpdesc *zpdesc, int *obj_idx)
1535 {
1536 unsigned int offset;
1537 int index = *obj_idx;
1538 unsigned long handle = 0;
1539 void *addr = kmap_local_zpdesc(zpdesc);
1540
1541 offset = get_first_obj_offset(zpdesc);
1542 offset += class->size * index;
1543
1544 while (offset < PAGE_SIZE) {
1545 if (obj_allocated(zpdesc, addr + offset, &handle))
1546 break;
1547
1548 offset += class->size;
1549 index++;
1550 }
1551
1552 kunmap_local(addr);
1553
1554 *obj_idx = index;
1555
1556 return handle;
1557 }
1558
migrate_zspage(struct zs_pool * pool,struct zspage * src_zspage,struct zspage * dst_zspage)1559 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1560 struct zspage *dst_zspage)
1561 {
1562 unsigned long used_obj, free_obj;
1563 unsigned long handle;
1564 int obj_idx = 0;
1565 struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage);
1566 struct size_class *class = pool->size_class[src_zspage->class];
1567
1568 while (1) {
1569 handle = find_alloced_obj(class, s_zpdesc, &obj_idx);
1570 if (!handle) {
1571 s_zpdesc = get_next_zpdesc(s_zpdesc);
1572 if (!s_zpdesc)
1573 break;
1574 obj_idx = 0;
1575 continue;
1576 }
1577
1578 used_obj = handle_to_obj(handle);
1579 free_obj = obj_malloc(pool, dst_zspage, handle);
1580 zs_object_copy(class, free_obj, used_obj);
1581 obj_idx++;
1582 obj_free(class->size, used_obj);
1583
1584 /* Stop if there is no more space */
1585 if (zspage_full(class, dst_zspage))
1586 break;
1587
1588 /* Stop if there are no more objects to migrate */
1589 if (zspage_empty(src_zspage))
1590 break;
1591 }
1592 }
1593
isolate_src_zspage(struct size_class * class)1594 static struct zspage *isolate_src_zspage(struct size_class *class)
1595 {
1596 struct zspage *zspage;
1597 int fg;
1598
1599 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1600 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1601 struct zspage, list);
1602 if (zspage) {
1603 remove_zspage(class, zspage);
1604 return zspage;
1605 }
1606 }
1607
1608 return zspage;
1609 }
1610
isolate_dst_zspage(struct size_class * class)1611 static struct zspage *isolate_dst_zspage(struct size_class *class)
1612 {
1613 struct zspage *zspage;
1614 int fg;
1615
1616 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1617 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1618 struct zspage, list);
1619 if (zspage) {
1620 remove_zspage(class, zspage);
1621 return zspage;
1622 }
1623 }
1624
1625 return zspage;
1626 }
1627
1628 /*
1629 * putback_zspage - add @zspage into right class's fullness list
1630 * @class: destination class
1631 * @zspage: target page
1632 *
1633 * Return @zspage's fullness status
1634 */
putback_zspage(struct size_class * class,struct zspage * zspage)1635 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1636 {
1637 int fullness;
1638
1639 fullness = get_fullness_group(class, zspage);
1640 insert_zspage(class, zspage, fullness);
1641
1642 return fullness;
1643 }
1644
1645 #ifdef CONFIG_COMPACTION
1646 /*
1647 * To prevent zspage destroy during migration, zspage freeing should
1648 * hold locks of all pages in the zspage.
1649 */
lock_zspage(struct zspage * zspage)1650 static void lock_zspage(struct zspage *zspage)
1651 {
1652 struct zpdesc *curr_zpdesc, *zpdesc;
1653
1654 /*
1655 * Pages we haven't locked yet can be migrated off the list while we're
1656 * trying to lock them, so we need to be careful and only attempt to
1657 * lock each page under zspage_read_lock(). Otherwise, the page we lock
1658 * may no longer belong to the zspage. This means that we may wait for
1659 * the wrong page to unlock, so we must take a reference to the page
1660 * prior to waiting for it to unlock outside zspage_read_lock().
1661 */
1662 while (1) {
1663 zspage_read_lock(zspage);
1664 zpdesc = get_first_zpdesc(zspage);
1665 if (zpdesc_trylock(zpdesc))
1666 break;
1667 zpdesc_get(zpdesc);
1668 zspage_read_unlock(zspage);
1669 zpdesc_wait_locked(zpdesc);
1670 zpdesc_put(zpdesc);
1671 }
1672
1673 curr_zpdesc = zpdesc;
1674 while ((zpdesc = get_next_zpdesc(curr_zpdesc))) {
1675 if (zpdesc_trylock(zpdesc)) {
1676 curr_zpdesc = zpdesc;
1677 } else {
1678 zpdesc_get(zpdesc);
1679 zspage_read_unlock(zspage);
1680 zpdesc_wait_locked(zpdesc);
1681 zpdesc_put(zpdesc);
1682 zspage_read_lock(zspage);
1683 }
1684 }
1685 zspage_read_unlock(zspage);
1686 }
1687 #endif /* CONFIG_COMPACTION */
1688
1689 #ifdef CONFIG_COMPACTION
1690
replace_sub_page(struct size_class * class,struct zspage * zspage,struct zpdesc * newzpdesc,struct zpdesc * oldzpdesc)1691 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1692 struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc)
1693 {
1694 struct zpdesc *zpdesc;
1695 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1696 unsigned int first_obj_offset;
1697 int idx = 0;
1698
1699 zpdesc = get_first_zpdesc(zspage);
1700 do {
1701 if (zpdesc == oldzpdesc)
1702 zpdescs[idx] = newzpdesc;
1703 else
1704 zpdescs[idx] = zpdesc;
1705 idx++;
1706 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1707
1708 create_page_chain(class, zspage, zpdescs);
1709 first_obj_offset = get_first_obj_offset(oldzpdesc);
1710 set_first_obj_offset(newzpdesc, first_obj_offset);
1711 if (unlikely(ZsHugePage(zspage)))
1712 newzpdesc->handle = oldzpdesc->handle;
1713 __zpdesc_set_movable(newzpdesc);
1714 }
1715
zs_page_isolate(struct page * page,isolate_mode_t mode)1716 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1717 {
1718 /*
1719 * Page is locked so zspage can't be destroyed concurrently
1720 * (see free_zspage()). But if the page was already destroyed
1721 * (see reset_zpdesc()), refuse isolation here.
1722 */
1723 return page_zpdesc(page)->zspage;
1724 }
1725
zs_page_migrate(struct page * newpage,struct page * page,enum migrate_mode mode)1726 static int zs_page_migrate(struct page *newpage, struct page *page,
1727 enum migrate_mode mode)
1728 {
1729 struct zs_pool *pool;
1730 struct size_class *class;
1731 struct zspage *zspage;
1732 struct zpdesc *dummy;
1733 struct zpdesc *newzpdesc = page_zpdesc(newpage);
1734 struct zpdesc *zpdesc = page_zpdesc(page);
1735 void *s_addr, *d_addr, *addr;
1736 unsigned int offset;
1737 unsigned long handle;
1738 unsigned long old_obj, new_obj;
1739 unsigned int obj_idx;
1740
1741 /*
1742 * TODO: nothing prevents a zspage from getting destroyed while
1743 * it is isolated for migration, as the page lock is temporarily
1744 * dropped after zs_page_isolate() succeeded: we should rework that
1745 * and defer destroying such pages once they are un-isolated (putback)
1746 * instead.
1747 */
1748 if (!zpdesc->zspage)
1749 return MIGRATEPAGE_SUCCESS;
1750
1751 /* The page is locked, so this pointer must remain valid */
1752 zspage = get_zspage(zpdesc);
1753 pool = zspage->pool;
1754
1755 /*
1756 * The pool migrate_lock protects the race between zpage migration
1757 * and zs_free.
1758 */
1759 write_lock(&pool->lock);
1760 class = zspage_class(pool, zspage);
1761
1762 /*
1763 * the class lock protects zpage alloc/free in the zspage.
1764 */
1765 spin_lock(&class->lock);
1766 /* the zspage write_lock protects zpage access via zs_obj_read/write() */
1767 if (!zspage_write_trylock(zspage)) {
1768 spin_unlock(&class->lock);
1769 write_unlock(&pool->lock);
1770 return -EINVAL;
1771 }
1772
1773 /* We're committed, tell the world that this is a Zsmalloc page. */
1774 __zpdesc_set_zsmalloc(newzpdesc);
1775
1776 offset = get_first_obj_offset(zpdesc);
1777 s_addr = kmap_local_zpdesc(zpdesc);
1778
1779 /*
1780 * Here, any user cannot access all objects in the zspage so let's move.
1781 */
1782 d_addr = kmap_local_zpdesc(newzpdesc);
1783 copy_page(d_addr, s_addr);
1784 kunmap_local(d_addr);
1785
1786 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1787 addr += class->size) {
1788 if (obj_allocated(zpdesc, addr, &handle)) {
1789
1790 old_obj = handle_to_obj(handle);
1791 obj_to_location(old_obj, &dummy, &obj_idx);
1792 new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx);
1793 record_obj(handle, new_obj);
1794 }
1795 }
1796 kunmap_local(s_addr);
1797
1798 replace_sub_page(class, zspage, newzpdesc, zpdesc);
1799 /*
1800 * Since we complete the data copy and set up new zspage structure,
1801 * it's okay to release migration_lock.
1802 */
1803 write_unlock(&pool->lock);
1804 spin_unlock(&class->lock);
1805 zspage_write_unlock(zspage);
1806
1807 zpdesc_get(newzpdesc);
1808 if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) {
1809 zpdesc_dec_zone_page_state(zpdesc);
1810 zpdesc_inc_zone_page_state(newzpdesc);
1811 }
1812
1813 reset_zpdesc(zpdesc);
1814 zpdesc_put(zpdesc);
1815
1816 return MIGRATEPAGE_SUCCESS;
1817 }
1818
zs_page_putback(struct page * page)1819 static void zs_page_putback(struct page *page)
1820 {
1821 }
1822
1823 const struct movable_operations zsmalloc_mops = {
1824 .isolate_page = zs_page_isolate,
1825 .migrate_page = zs_page_migrate,
1826 .putback_page = zs_page_putback,
1827 };
1828
1829 /*
1830 * Caller should hold page_lock of all pages in the zspage
1831 * In here, we cannot use zspage meta data.
1832 */
async_free_zspage(struct work_struct * work)1833 static void async_free_zspage(struct work_struct *work)
1834 {
1835 int i;
1836 struct size_class *class;
1837 struct zspage *zspage, *tmp;
1838 LIST_HEAD(free_pages);
1839 struct zs_pool *pool = container_of(work, struct zs_pool,
1840 free_work);
1841
1842 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1843 class = pool->size_class[i];
1844 if (class->index != i)
1845 continue;
1846
1847 spin_lock(&class->lock);
1848 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1849 &free_pages);
1850 spin_unlock(&class->lock);
1851 }
1852
1853 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1854 list_del(&zspage->list);
1855 lock_zspage(zspage);
1856
1857 class = zspage_class(pool, zspage);
1858 spin_lock(&class->lock);
1859 class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1860 __free_zspage(pool, class, zspage);
1861 spin_unlock(&class->lock);
1862 }
1863 };
1864
kick_deferred_free(struct zs_pool * pool)1865 static void kick_deferred_free(struct zs_pool *pool)
1866 {
1867 schedule_work(&pool->free_work);
1868 }
1869
zs_flush_migration(struct zs_pool * pool)1870 static void zs_flush_migration(struct zs_pool *pool)
1871 {
1872 flush_work(&pool->free_work);
1873 }
1874
init_deferred_free(struct zs_pool * pool)1875 static void init_deferred_free(struct zs_pool *pool)
1876 {
1877 INIT_WORK(&pool->free_work, async_free_zspage);
1878 }
1879
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)1880 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1881 {
1882 struct zpdesc *zpdesc = get_first_zpdesc(zspage);
1883
1884 do {
1885 WARN_ON(!zpdesc_trylock(zpdesc));
1886 __zpdesc_set_movable(zpdesc);
1887 zpdesc_unlock(zpdesc);
1888 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1889 }
1890 #else
zs_flush_migration(struct zs_pool * pool)1891 static inline void zs_flush_migration(struct zs_pool *pool) { }
1892 #endif
1893
1894 /*
1895 *
1896 * Based on the number of unused allocated objects calculate
1897 * and return the number of pages that we can free.
1898 */
zs_can_compact(struct size_class * class)1899 static unsigned long zs_can_compact(struct size_class *class)
1900 {
1901 unsigned long obj_wasted;
1902 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1903 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1904
1905 if (obj_allocated <= obj_used)
1906 return 0;
1907
1908 obj_wasted = obj_allocated - obj_used;
1909 obj_wasted /= class->objs_per_zspage;
1910
1911 return obj_wasted * class->pages_per_zspage;
1912 }
1913
__zs_compact(struct zs_pool * pool,struct size_class * class)1914 static unsigned long __zs_compact(struct zs_pool *pool,
1915 struct size_class *class)
1916 {
1917 struct zspage *src_zspage = NULL;
1918 struct zspage *dst_zspage = NULL;
1919 unsigned long pages_freed = 0;
1920
1921 /*
1922 * protect the race between zpage migration and zs_free
1923 * as well as zpage allocation/free
1924 */
1925 write_lock(&pool->lock);
1926 spin_lock(&class->lock);
1927 while (zs_can_compact(class)) {
1928 int fg;
1929
1930 if (!dst_zspage) {
1931 dst_zspage = isolate_dst_zspage(class);
1932 if (!dst_zspage)
1933 break;
1934 }
1935
1936 src_zspage = isolate_src_zspage(class);
1937 if (!src_zspage)
1938 break;
1939
1940 if (!zspage_write_trylock(src_zspage))
1941 break;
1942
1943 migrate_zspage(pool, src_zspage, dst_zspage);
1944 zspage_write_unlock(src_zspage);
1945
1946 fg = putback_zspage(class, src_zspage);
1947 if (fg == ZS_INUSE_RATIO_0) {
1948 free_zspage(pool, class, src_zspage);
1949 pages_freed += class->pages_per_zspage;
1950 }
1951 src_zspage = NULL;
1952
1953 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1954 || rwlock_is_contended(&pool->lock)) {
1955 putback_zspage(class, dst_zspage);
1956 dst_zspage = NULL;
1957
1958 spin_unlock(&class->lock);
1959 write_unlock(&pool->lock);
1960 cond_resched();
1961 write_lock(&pool->lock);
1962 spin_lock(&class->lock);
1963 }
1964 }
1965
1966 if (src_zspage)
1967 putback_zspage(class, src_zspage);
1968
1969 if (dst_zspage)
1970 putback_zspage(class, dst_zspage);
1971
1972 spin_unlock(&class->lock);
1973 write_unlock(&pool->lock);
1974
1975 return pages_freed;
1976 }
1977
zs_compact(struct zs_pool * pool)1978 unsigned long zs_compact(struct zs_pool *pool)
1979 {
1980 int i;
1981 struct size_class *class;
1982 unsigned long pages_freed = 0;
1983
1984 /*
1985 * Pool compaction is performed under pool->lock so it is basically
1986 * single-threaded. Having more than one thread in __zs_compact()
1987 * will increase pool->lock contention, which will impact other
1988 * zsmalloc operations that need pool->lock.
1989 */
1990 if (atomic_xchg(&pool->compaction_in_progress, 1))
1991 return 0;
1992
1993 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1994 class = pool->size_class[i];
1995 if (class->index != i)
1996 continue;
1997 pages_freed += __zs_compact(pool, class);
1998 }
1999 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2000 atomic_set(&pool->compaction_in_progress, 0);
2001
2002 return pages_freed;
2003 }
2004 EXPORT_SYMBOL_GPL(zs_compact);
2005
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)2006 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2007 {
2008 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2009 }
2010 EXPORT_SYMBOL_GPL(zs_pool_stats);
2011
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)2012 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2013 struct shrink_control *sc)
2014 {
2015 unsigned long pages_freed;
2016 struct zs_pool *pool = shrinker->private_data;
2017
2018 /*
2019 * Compact classes and calculate compaction delta.
2020 * Can run concurrently with a manually triggered
2021 * (by user) compaction.
2022 */
2023 pages_freed = zs_compact(pool);
2024
2025 return pages_freed ? pages_freed : SHRINK_STOP;
2026 }
2027
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)2028 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2029 struct shrink_control *sc)
2030 {
2031 int i;
2032 struct size_class *class;
2033 unsigned long pages_to_free = 0;
2034 struct zs_pool *pool = shrinker->private_data;
2035
2036 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2037 class = pool->size_class[i];
2038 if (class->index != i)
2039 continue;
2040
2041 pages_to_free += zs_can_compact(class);
2042 }
2043
2044 return pages_to_free;
2045 }
2046
zs_unregister_shrinker(struct zs_pool * pool)2047 static void zs_unregister_shrinker(struct zs_pool *pool)
2048 {
2049 shrinker_free(pool->shrinker);
2050 }
2051
zs_register_shrinker(struct zs_pool * pool)2052 static int zs_register_shrinker(struct zs_pool *pool)
2053 {
2054 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2055 if (!pool->shrinker)
2056 return -ENOMEM;
2057
2058 pool->shrinker->scan_objects = zs_shrinker_scan;
2059 pool->shrinker->count_objects = zs_shrinker_count;
2060 pool->shrinker->batch = 0;
2061 pool->shrinker->private_data = pool;
2062
2063 shrinker_register(pool->shrinker);
2064
2065 return 0;
2066 }
2067
calculate_zspage_chain_size(int class_size)2068 static int calculate_zspage_chain_size(int class_size)
2069 {
2070 int i, min_waste = INT_MAX;
2071 int chain_size = 1;
2072
2073 if (is_power_of_2(class_size))
2074 return chain_size;
2075
2076 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2077 int waste;
2078
2079 waste = (i * PAGE_SIZE) % class_size;
2080 if (waste < min_waste) {
2081 min_waste = waste;
2082 chain_size = i;
2083 }
2084 }
2085
2086 return chain_size;
2087 }
2088
2089 /**
2090 * zs_create_pool - Creates an allocation pool to work from.
2091 * @name: pool name to be created
2092 *
2093 * This function must be called before anything when using
2094 * the zsmalloc allocator.
2095 *
2096 * On success, a pointer to the newly created pool is returned,
2097 * otherwise NULL.
2098 */
zs_create_pool(const char * name)2099 struct zs_pool *zs_create_pool(const char *name)
2100 {
2101 int i;
2102 struct zs_pool *pool;
2103 struct size_class *prev_class = NULL;
2104
2105 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2106 if (!pool)
2107 return NULL;
2108
2109 init_deferred_free(pool);
2110 rwlock_init(&pool->lock);
2111 atomic_set(&pool->compaction_in_progress, 0);
2112
2113 pool->name = kstrdup(name, GFP_KERNEL);
2114 if (!pool->name)
2115 goto err;
2116
2117 if (create_cache(pool))
2118 goto err;
2119
2120 /*
2121 * Iterate reversely, because, size of size_class that we want to use
2122 * for merging should be larger or equal to current size.
2123 */
2124 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2125 int size;
2126 int pages_per_zspage;
2127 int objs_per_zspage;
2128 struct size_class *class;
2129 int fullness;
2130
2131 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2132 if (size > ZS_MAX_ALLOC_SIZE)
2133 size = ZS_MAX_ALLOC_SIZE;
2134 pages_per_zspage = calculate_zspage_chain_size(size);
2135 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2136
2137 /*
2138 * We iterate from biggest down to smallest classes,
2139 * so huge_class_size holds the size of the first huge
2140 * class. Any object bigger than or equal to that will
2141 * endup in the huge class.
2142 */
2143 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2144 !huge_class_size) {
2145 huge_class_size = size;
2146 /*
2147 * The object uses ZS_HANDLE_SIZE bytes to store the
2148 * handle. We need to subtract it, because zs_malloc()
2149 * unconditionally adds handle size before it performs
2150 * size class search - so object may be smaller than
2151 * huge class size, yet it still can end up in the huge
2152 * class because it grows by ZS_HANDLE_SIZE extra bytes
2153 * right before class lookup.
2154 */
2155 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2156 }
2157
2158 /*
2159 * size_class is used for normal zsmalloc operation such
2160 * as alloc/free for that size. Although it is natural that we
2161 * have one size_class for each size, there is a chance that we
2162 * can get more memory utilization if we use one size_class for
2163 * many different sizes whose size_class have same
2164 * characteristics. So, we makes size_class point to
2165 * previous size_class if possible.
2166 */
2167 if (prev_class) {
2168 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2169 pool->size_class[i] = prev_class;
2170 continue;
2171 }
2172 }
2173
2174 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2175 if (!class)
2176 goto err;
2177
2178 class->size = size;
2179 class->index = i;
2180 class->pages_per_zspage = pages_per_zspage;
2181 class->objs_per_zspage = objs_per_zspage;
2182 spin_lock_init(&class->lock);
2183 pool->size_class[i] = class;
2184
2185 fullness = ZS_INUSE_RATIO_0;
2186 while (fullness < NR_FULLNESS_GROUPS) {
2187 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2188 fullness++;
2189 }
2190
2191 prev_class = class;
2192 }
2193
2194 /* debug only, don't abort if it fails */
2195 zs_pool_stat_create(pool, name);
2196
2197 /*
2198 * Not critical since shrinker is only used to trigger internal
2199 * defragmentation of the pool which is pretty optional thing. If
2200 * registration fails we still can use the pool normally and user can
2201 * trigger compaction manually. Thus, ignore return code.
2202 */
2203 zs_register_shrinker(pool);
2204
2205 return pool;
2206
2207 err:
2208 zs_destroy_pool(pool);
2209 return NULL;
2210 }
2211 EXPORT_SYMBOL_GPL(zs_create_pool);
2212
zs_destroy_pool(struct zs_pool * pool)2213 void zs_destroy_pool(struct zs_pool *pool)
2214 {
2215 int i;
2216
2217 zs_unregister_shrinker(pool);
2218 zs_flush_migration(pool);
2219 zs_pool_stat_destroy(pool);
2220
2221 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2222 int fg;
2223 struct size_class *class = pool->size_class[i];
2224
2225 if (!class)
2226 continue;
2227
2228 if (class->index != i)
2229 continue;
2230
2231 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2232 if (list_empty(&class->fullness_list[fg]))
2233 continue;
2234
2235 pr_err("Class-%d fullness group %d is not empty\n",
2236 class->size, fg);
2237 }
2238 kfree(class);
2239 }
2240
2241 destroy_cache(pool);
2242 kfree(pool->name);
2243 kfree(pool);
2244 }
2245 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2246
zs_init(void)2247 static int __init zs_init(void)
2248 {
2249 int rc __maybe_unused;
2250
2251 #ifdef CONFIG_ZPOOL
2252 zpool_register_driver(&zs_zpool_driver);
2253 #endif
2254 #ifdef CONFIG_COMPACTION
2255 rc = set_movable_ops(&zsmalloc_mops, PGTY_zsmalloc);
2256 if (rc)
2257 return rc;
2258 #endif
2259 zs_stat_init();
2260 return 0;
2261 }
2262
zs_exit(void)2263 static void __exit zs_exit(void)
2264 {
2265 #ifdef CONFIG_ZPOOL
2266 zpool_unregister_driver(&zs_zpool_driver);
2267 #endif
2268 #ifdef CONFIG_COMPACTION
2269 set_movable_ops(NULL, PGTY_zsmalloc);
2270 #endif
2271 zs_stat_exit();
2272 }
2273
2274 module_init(zs_init);
2275 module_exit(zs_exit);
2276
2277 MODULE_LICENSE("Dual BSD/GPL");
2278 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2279 MODULE_DESCRIPTION("zsmalloc memory allocator");
2280