xref: /linux/drivers/block/zram/zram_drv.c (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 #include <linux/debugfs.h>
34 #include <linux/cpuhotplug.h>
35 #include <linux/part_stat.h>
36 #include <linux/kernel_read_file.h>
37 
38 #include "zram_drv.h"
39 
40 static DEFINE_IDR(zram_index_idr);
41 /* idr index must be protected */
42 static DEFINE_MUTEX(zram_index_mutex);
43 
44 static int zram_major;
45 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
46 
47 #define ZRAM_MAX_ALGO_NAME_SZ	128
48 
49 /* Module params (documentation at end) */
50 static unsigned int num_devices = 1;
51 /*
52  * Pages that compress to sizes equals or greater than this are stored
53  * uncompressed in memory.
54  */
55 static size_t huge_class_size;
56 
57 static const struct block_device_operations zram_devops;
58 
59 static void zram_free_page(struct zram *zram, size_t index);
60 static int zram_read_from_zspool(struct zram *zram, struct page *page,
61 				 u32 index);
62 
63 #define slot_dep_map(zram, index) (&(zram)->table[(index)].dep_map)
64 
zram_slot_lock_init(struct zram * zram,u32 index)65 static void zram_slot_lock_init(struct zram *zram, u32 index)
66 {
67 	static struct lock_class_key __key;
68 
69 	lockdep_init_map(slot_dep_map(zram, index), "zram->table[index].lock",
70 			 &__key, 0);
71 }
72 
73 /*
74  * entry locking rules:
75  *
76  * 1) Lock is exclusive
77  *
78  * 2) lock() function can sleep waiting for the lock
79  *
80  * 3) Lock owner can sleep
81  *
82  * 4) Use TRY lock variant when in atomic context
83  *    - must check return value and handle locking failers
84  */
zram_slot_trylock(struct zram * zram,u32 index)85 static __must_check bool zram_slot_trylock(struct zram *zram, u32 index)
86 {
87 	unsigned long *lock = &zram->table[index].flags;
88 
89 	if (!test_and_set_bit_lock(ZRAM_ENTRY_LOCK, lock)) {
90 		mutex_acquire(slot_dep_map(zram, index), 0, 1, _RET_IP_);
91 		lock_acquired(slot_dep_map(zram, index), _RET_IP_);
92 		return true;
93 	}
94 
95 	return false;
96 }
97 
zram_slot_lock(struct zram * zram,u32 index)98 static void zram_slot_lock(struct zram *zram, u32 index)
99 {
100 	unsigned long *lock = &zram->table[index].flags;
101 
102 	mutex_acquire(slot_dep_map(zram, index), 0, 0, _RET_IP_);
103 	wait_on_bit_lock(lock, ZRAM_ENTRY_LOCK, TASK_UNINTERRUPTIBLE);
104 	lock_acquired(slot_dep_map(zram, index), _RET_IP_);
105 }
106 
zram_slot_unlock(struct zram * zram,u32 index)107 static void zram_slot_unlock(struct zram *zram, u32 index)
108 {
109 	unsigned long *lock = &zram->table[index].flags;
110 
111 	mutex_release(slot_dep_map(zram, index), _RET_IP_);
112 	clear_and_wake_up_bit(ZRAM_ENTRY_LOCK, lock);
113 }
114 
init_done(struct zram * zram)115 static inline bool init_done(struct zram *zram)
116 {
117 	return zram->disksize;
118 }
119 
dev_to_zram(struct device * dev)120 static inline struct zram *dev_to_zram(struct device *dev)
121 {
122 	return (struct zram *)dev_to_disk(dev)->private_data;
123 }
124 
zram_get_handle(struct zram * zram,u32 index)125 static unsigned long zram_get_handle(struct zram *zram, u32 index)
126 {
127 	return zram->table[index].handle;
128 }
129 
zram_set_handle(struct zram * zram,u32 index,unsigned long handle)130 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
131 {
132 	zram->table[index].handle = handle;
133 }
134 
zram_test_flag(struct zram * zram,u32 index,enum zram_pageflags flag)135 static bool zram_test_flag(struct zram *zram, u32 index,
136 			enum zram_pageflags flag)
137 {
138 	return zram->table[index].flags & BIT(flag);
139 }
140 
zram_set_flag(struct zram * zram,u32 index,enum zram_pageflags flag)141 static void zram_set_flag(struct zram *zram, u32 index,
142 			enum zram_pageflags flag)
143 {
144 	zram->table[index].flags |= BIT(flag);
145 }
146 
zram_clear_flag(struct zram * zram,u32 index,enum zram_pageflags flag)147 static void zram_clear_flag(struct zram *zram, u32 index,
148 			enum zram_pageflags flag)
149 {
150 	zram->table[index].flags &= ~BIT(flag);
151 }
152 
zram_get_obj_size(struct zram * zram,u32 index)153 static size_t zram_get_obj_size(struct zram *zram, u32 index)
154 {
155 	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
156 }
157 
zram_set_obj_size(struct zram * zram,u32 index,size_t size)158 static void zram_set_obj_size(struct zram *zram,
159 					u32 index, size_t size)
160 {
161 	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
162 
163 	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
164 }
165 
zram_allocated(struct zram * zram,u32 index)166 static inline bool zram_allocated(struct zram *zram, u32 index)
167 {
168 	return zram_get_obj_size(zram, index) ||
169 			zram_test_flag(zram, index, ZRAM_SAME) ||
170 			zram_test_flag(zram, index, ZRAM_WB);
171 }
172 
update_used_max(struct zram * zram,const unsigned long pages)173 static inline void update_used_max(struct zram *zram, const unsigned long pages)
174 {
175 	unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages);
176 
177 	do {
178 		if (cur_max >= pages)
179 			return;
180 	} while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages,
181 					  &cur_max, pages));
182 }
183 
zram_can_store_page(struct zram * zram)184 static bool zram_can_store_page(struct zram *zram)
185 {
186 	unsigned long alloced_pages;
187 
188 	alloced_pages = zs_get_total_pages(zram->mem_pool);
189 	update_used_max(zram, alloced_pages);
190 
191 	return !zram->limit_pages || alloced_pages <= zram->limit_pages;
192 }
193 
194 #if PAGE_SIZE != 4096
is_partial_io(struct bio_vec * bvec)195 static inline bool is_partial_io(struct bio_vec *bvec)
196 {
197 	return bvec->bv_len != PAGE_SIZE;
198 }
199 #define ZRAM_PARTIAL_IO		1
200 #else
is_partial_io(struct bio_vec * bvec)201 static inline bool is_partial_io(struct bio_vec *bvec)
202 {
203 	return false;
204 }
205 #endif
206 
zram_set_priority(struct zram * zram,u32 index,u32 prio)207 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio)
208 {
209 	prio &= ZRAM_COMP_PRIORITY_MASK;
210 	/*
211 	 * Clear previous priority value first, in case if we recompress
212 	 * further an already recompressed page
213 	 */
214 	zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK <<
215 				      ZRAM_COMP_PRIORITY_BIT1);
216 	zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1);
217 }
218 
zram_get_priority(struct zram * zram,u32 index)219 static inline u32 zram_get_priority(struct zram *zram, u32 index)
220 {
221 	u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1;
222 
223 	return prio & ZRAM_COMP_PRIORITY_MASK;
224 }
225 
zram_accessed(struct zram * zram,u32 index)226 static void zram_accessed(struct zram *zram, u32 index)
227 {
228 	zram_clear_flag(zram, index, ZRAM_IDLE);
229 	zram_clear_flag(zram, index, ZRAM_PP_SLOT);
230 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
231 	zram->table[index].ac_time = ktime_get_boottime();
232 #endif
233 }
234 
235 #if defined CONFIG_ZRAM_WRITEBACK || defined CONFIG_ZRAM_MULTI_COMP
236 struct zram_pp_slot {
237 	unsigned long		index;
238 	struct list_head	entry;
239 };
240 
241 /*
242  * A post-processing bucket is, essentially, a size class, this defines
243  * the range (in bytes) of pp-slots sizes in particular bucket.
244  */
245 #define PP_BUCKET_SIZE_RANGE	64
246 #define NUM_PP_BUCKETS		((PAGE_SIZE / PP_BUCKET_SIZE_RANGE) + 1)
247 
248 struct zram_pp_ctl {
249 	struct list_head	pp_buckets[NUM_PP_BUCKETS];
250 };
251 
init_pp_ctl(void)252 static struct zram_pp_ctl *init_pp_ctl(void)
253 {
254 	struct zram_pp_ctl *ctl;
255 	u32 idx;
256 
257 	ctl = kmalloc(sizeof(*ctl), GFP_KERNEL);
258 	if (!ctl)
259 		return NULL;
260 
261 	for (idx = 0; idx < NUM_PP_BUCKETS; idx++)
262 		INIT_LIST_HEAD(&ctl->pp_buckets[idx]);
263 	return ctl;
264 }
265 
release_pp_slot(struct zram * zram,struct zram_pp_slot * pps)266 static void release_pp_slot(struct zram *zram, struct zram_pp_slot *pps)
267 {
268 	list_del_init(&pps->entry);
269 
270 	zram_slot_lock(zram, pps->index);
271 	zram_clear_flag(zram, pps->index, ZRAM_PP_SLOT);
272 	zram_slot_unlock(zram, pps->index);
273 
274 	kfree(pps);
275 }
276 
release_pp_ctl(struct zram * zram,struct zram_pp_ctl * ctl)277 static void release_pp_ctl(struct zram *zram, struct zram_pp_ctl *ctl)
278 {
279 	u32 idx;
280 
281 	if (!ctl)
282 		return;
283 
284 	for (idx = 0; idx < NUM_PP_BUCKETS; idx++) {
285 		while (!list_empty(&ctl->pp_buckets[idx])) {
286 			struct zram_pp_slot *pps;
287 
288 			pps = list_first_entry(&ctl->pp_buckets[idx],
289 					       struct zram_pp_slot,
290 					       entry);
291 			release_pp_slot(zram, pps);
292 		}
293 	}
294 
295 	kfree(ctl);
296 }
297 
place_pp_slot(struct zram * zram,struct zram_pp_ctl * ctl,u32 index)298 static bool place_pp_slot(struct zram *zram, struct zram_pp_ctl *ctl,
299 			  u32 index)
300 {
301 	struct zram_pp_slot *pps;
302 	u32 bid;
303 
304 	pps = kmalloc(sizeof(*pps), GFP_NOIO | __GFP_NOWARN);
305 	if (!pps)
306 		return false;
307 
308 	INIT_LIST_HEAD(&pps->entry);
309 	pps->index = index;
310 
311 	bid = zram_get_obj_size(zram, pps->index) / PP_BUCKET_SIZE_RANGE;
312 	list_add(&pps->entry, &ctl->pp_buckets[bid]);
313 
314 	zram_set_flag(zram, pps->index, ZRAM_PP_SLOT);
315 	return true;
316 }
317 
select_pp_slot(struct zram_pp_ctl * ctl)318 static struct zram_pp_slot *select_pp_slot(struct zram_pp_ctl *ctl)
319 {
320 	struct zram_pp_slot *pps = NULL;
321 	s32 idx = NUM_PP_BUCKETS - 1;
322 
323 	/* The higher the bucket id the more optimal slot post-processing is */
324 	while (idx >= 0) {
325 		pps = list_first_entry_or_null(&ctl->pp_buckets[idx],
326 					       struct zram_pp_slot,
327 					       entry);
328 		if (pps)
329 			break;
330 
331 		idx--;
332 	}
333 	return pps;
334 }
335 #endif
336 
zram_fill_page(void * ptr,unsigned long len,unsigned long value)337 static inline void zram_fill_page(void *ptr, unsigned long len,
338 					unsigned long value)
339 {
340 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
341 	memset_l(ptr, value, len / sizeof(unsigned long));
342 }
343 
page_same_filled(void * ptr,unsigned long * element)344 static bool page_same_filled(void *ptr, unsigned long *element)
345 {
346 	unsigned long *page;
347 	unsigned long val;
348 	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
349 
350 	page = (unsigned long *)ptr;
351 	val = page[0];
352 
353 	if (val != page[last_pos])
354 		return false;
355 
356 	for (pos = 1; pos < last_pos; pos++) {
357 		if (val != page[pos])
358 			return false;
359 	}
360 
361 	*element = val;
362 
363 	return true;
364 }
365 
initstate_show(struct device * dev,struct device_attribute * attr,char * buf)366 static ssize_t initstate_show(struct device *dev,
367 		struct device_attribute *attr, char *buf)
368 {
369 	u32 val;
370 	struct zram *zram = dev_to_zram(dev);
371 
372 	down_read(&zram->init_lock);
373 	val = init_done(zram);
374 	up_read(&zram->init_lock);
375 
376 	return sysfs_emit(buf, "%u\n", val);
377 }
378 
disksize_show(struct device * dev,struct device_attribute * attr,char * buf)379 static ssize_t disksize_show(struct device *dev,
380 		struct device_attribute *attr, char *buf)
381 {
382 	struct zram *zram = dev_to_zram(dev);
383 
384 	return sysfs_emit(buf, "%llu\n", zram->disksize);
385 }
386 
mem_limit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)387 static ssize_t mem_limit_store(struct device *dev,
388 		struct device_attribute *attr, const char *buf, size_t len)
389 {
390 	u64 limit;
391 	char *tmp;
392 	struct zram *zram = dev_to_zram(dev);
393 
394 	limit = memparse(buf, &tmp);
395 	if (buf == tmp) /* no chars parsed, invalid input */
396 		return -EINVAL;
397 
398 	down_write(&zram->init_lock);
399 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
400 	up_write(&zram->init_lock);
401 
402 	return len;
403 }
404 
mem_used_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)405 static ssize_t mem_used_max_store(struct device *dev,
406 		struct device_attribute *attr, const char *buf, size_t len)
407 {
408 	int err;
409 	unsigned long val;
410 	struct zram *zram = dev_to_zram(dev);
411 
412 	err = kstrtoul(buf, 10, &val);
413 	if (err || val != 0)
414 		return -EINVAL;
415 
416 	down_read(&zram->init_lock);
417 	if (init_done(zram)) {
418 		atomic_long_set(&zram->stats.max_used_pages,
419 				zs_get_total_pages(zram->mem_pool));
420 	}
421 	up_read(&zram->init_lock);
422 
423 	return len;
424 }
425 
426 /*
427  * Mark all pages which are older than or equal to cutoff as IDLE.
428  * Callers should hold the zram init lock in read mode
429  */
mark_idle(struct zram * zram,ktime_t cutoff)430 static void mark_idle(struct zram *zram, ktime_t cutoff)
431 {
432 	int is_idle = 1;
433 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
434 	int index;
435 
436 	for (index = 0; index < nr_pages; index++) {
437 		/*
438 		 * Do not mark ZRAM_SAME slots as ZRAM_IDLE, because no
439 		 * post-processing (recompress, writeback) happens to the
440 		 * ZRAM_SAME slot.
441 		 *
442 		 * And ZRAM_WB slots simply cannot be ZRAM_IDLE.
443 		 */
444 		zram_slot_lock(zram, index);
445 		if (!zram_allocated(zram, index) ||
446 		    zram_test_flag(zram, index, ZRAM_WB) ||
447 		    zram_test_flag(zram, index, ZRAM_SAME)) {
448 			zram_slot_unlock(zram, index);
449 			continue;
450 		}
451 
452 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
453 		is_idle = !cutoff ||
454 			ktime_after(cutoff, zram->table[index].ac_time);
455 #endif
456 		if (is_idle)
457 			zram_set_flag(zram, index, ZRAM_IDLE);
458 		else
459 			zram_clear_flag(zram, index, ZRAM_IDLE);
460 		zram_slot_unlock(zram, index);
461 	}
462 }
463 
idle_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)464 static ssize_t idle_store(struct device *dev,
465 		struct device_attribute *attr, const char *buf, size_t len)
466 {
467 	struct zram *zram = dev_to_zram(dev);
468 	ktime_t cutoff_time = 0;
469 	ssize_t rv = -EINVAL;
470 
471 	if (!sysfs_streq(buf, "all")) {
472 		/*
473 		 * If it did not parse as 'all' try to treat it as an integer
474 		 * when we have memory tracking enabled.
475 		 */
476 		u64 age_sec;
477 
478 		if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec))
479 			cutoff_time = ktime_sub(ktime_get_boottime(),
480 					ns_to_ktime(age_sec * NSEC_PER_SEC));
481 		else
482 			goto out;
483 	}
484 
485 	down_read(&zram->init_lock);
486 	if (!init_done(zram))
487 		goto out_unlock;
488 
489 	/*
490 	 * A cutoff_time of 0 marks everything as idle, this is the
491 	 * "all" behavior.
492 	 */
493 	mark_idle(zram, cutoff_time);
494 	rv = len;
495 
496 out_unlock:
497 	up_read(&zram->init_lock);
498 out:
499 	return rv;
500 }
501 
502 #ifdef CONFIG_ZRAM_WRITEBACK
503 #define INVALID_BDEV_BLOCK		(~0UL)
504 
505 struct zram_wb_ctl {
506 	/* idle list is accessed only by the writeback task, no concurency */
507 	struct list_head idle_reqs;
508 	/* done list is accessed concurrently, protect by done_lock */
509 	struct list_head done_reqs;
510 	wait_queue_head_t done_wait;
511 	spinlock_t done_lock;
512 	atomic_t num_inflight;
513 };
514 
515 struct zram_wb_req {
516 	unsigned long blk_idx;
517 	struct page *page;
518 	struct zram_pp_slot *pps;
519 	struct bio_vec bio_vec;
520 	struct bio bio;
521 
522 	struct list_head entry;
523 };
524 
writeback_limit_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)525 static ssize_t writeback_limit_enable_store(struct device *dev,
526 					    struct device_attribute *attr,
527 					    const char *buf, size_t len)
528 {
529 	struct zram *zram = dev_to_zram(dev);
530 	u64 val;
531 	ssize_t ret = -EINVAL;
532 
533 	if (kstrtoull(buf, 10, &val))
534 		return ret;
535 
536 	down_write(&zram->init_lock);
537 	zram->wb_limit_enable = val;
538 	up_write(&zram->init_lock);
539 	ret = len;
540 
541 	return ret;
542 }
543 
writeback_limit_enable_show(struct device * dev,struct device_attribute * attr,char * buf)544 static ssize_t writeback_limit_enable_show(struct device *dev,
545 					   struct device_attribute *attr,
546 					   char *buf)
547 {
548 	bool val;
549 	struct zram *zram = dev_to_zram(dev);
550 
551 	down_read(&zram->init_lock);
552 	val = zram->wb_limit_enable;
553 	up_read(&zram->init_lock);
554 
555 	return sysfs_emit(buf, "%d\n", val);
556 }
557 
writeback_limit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)558 static ssize_t writeback_limit_store(struct device *dev,
559 				     struct device_attribute *attr,
560 				     const char *buf, size_t len)
561 {
562 	struct zram *zram = dev_to_zram(dev);
563 	u64 val;
564 	ssize_t ret = -EINVAL;
565 
566 	if (kstrtoull(buf, 10, &val))
567 		return ret;
568 
569 	/*
570 	 * When the page size is greater than 4KB, if bd_wb_limit is set to
571 	 * a value that is not page - size aligned, it will cause value
572 	 * wrapping. For example, when the page size is set to 16KB and
573 	 * bd_wb_limit is set to 3, a single write - back operation will
574 	 * cause bd_wb_limit to become -1. Even more terrifying is that
575 	 * bd_wb_limit is an unsigned number.
576 	 */
577 	val = rounddown(val, PAGE_SIZE / 4096);
578 
579 	down_write(&zram->init_lock);
580 	zram->bd_wb_limit = val;
581 	up_write(&zram->init_lock);
582 	ret = len;
583 
584 	return ret;
585 }
586 
writeback_limit_show(struct device * dev,struct device_attribute * attr,char * buf)587 static ssize_t writeback_limit_show(struct device *dev,
588 				    struct device_attribute *attr, char *buf)
589 {
590 	u64 val;
591 	struct zram *zram = dev_to_zram(dev);
592 
593 	down_read(&zram->init_lock);
594 	val = zram->bd_wb_limit;
595 	up_read(&zram->init_lock);
596 
597 	return sysfs_emit(buf, "%llu\n", val);
598 }
599 
writeback_batch_size_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)600 static ssize_t writeback_batch_size_store(struct device *dev,
601 					  struct device_attribute *attr,
602 					  const char *buf, size_t len)
603 {
604 	struct zram *zram = dev_to_zram(dev);
605 	u32 val;
606 
607 	if (kstrtouint(buf, 10, &val))
608 		return -EINVAL;
609 
610 	if (!val)
611 		return -EINVAL;
612 
613 	down_write(&zram->init_lock);
614 	zram->wb_batch_size = val;
615 	up_write(&zram->init_lock);
616 
617 	return len;
618 }
619 
writeback_batch_size_show(struct device * dev,struct device_attribute * attr,char * buf)620 static ssize_t writeback_batch_size_show(struct device *dev,
621 					 struct device_attribute *attr,
622 					 char *buf)
623 {
624 	u32 val;
625 	struct zram *zram = dev_to_zram(dev);
626 
627 	down_read(&zram->init_lock);
628 	val = zram->wb_batch_size;
629 	up_read(&zram->init_lock);
630 
631 	return sysfs_emit(buf, "%u\n", val);
632 }
633 
reset_bdev(struct zram * zram)634 static void reset_bdev(struct zram *zram)
635 {
636 	if (!zram->backing_dev)
637 		return;
638 
639 	/* hope filp_close flush all of IO */
640 	filp_close(zram->backing_dev, NULL);
641 	zram->backing_dev = NULL;
642 	zram->bdev = NULL;
643 	zram->disk->fops = &zram_devops;
644 	kvfree(zram->bitmap);
645 	zram->bitmap = NULL;
646 }
647 
backing_dev_show(struct device * dev,struct device_attribute * attr,char * buf)648 static ssize_t backing_dev_show(struct device *dev,
649 		struct device_attribute *attr, char *buf)
650 {
651 	struct file *file;
652 	struct zram *zram = dev_to_zram(dev);
653 	char *p;
654 	ssize_t ret;
655 
656 	down_read(&zram->init_lock);
657 	file = zram->backing_dev;
658 	if (!file) {
659 		memcpy(buf, "none\n", 5);
660 		up_read(&zram->init_lock);
661 		return 5;
662 	}
663 
664 	p = file_path(file, buf, PAGE_SIZE - 1);
665 	if (IS_ERR(p)) {
666 		ret = PTR_ERR(p);
667 		goto out;
668 	}
669 
670 	ret = strlen(p);
671 	memmove(buf, p, ret);
672 	buf[ret++] = '\n';
673 out:
674 	up_read(&zram->init_lock);
675 	return ret;
676 }
677 
backing_dev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)678 static ssize_t backing_dev_store(struct device *dev,
679 		struct device_attribute *attr, const char *buf, size_t len)
680 {
681 	char *file_name;
682 	size_t sz;
683 	struct file *backing_dev = NULL;
684 	struct inode *inode;
685 	unsigned int bitmap_sz;
686 	unsigned long nr_pages, *bitmap = NULL;
687 	int err;
688 	struct zram *zram = dev_to_zram(dev);
689 
690 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
691 	if (!file_name)
692 		return -ENOMEM;
693 
694 	down_write(&zram->init_lock);
695 	if (init_done(zram)) {
696 		pr_info("Can't setup backing device for initialized device\n");
697 		err = -EBUSY;
698 		goto out;
699 	}
700 
701 	strscpy(file_name, buf, PATH_MAX);
702 	/* ignore trailing newline */
703 	sz = strlen(file_name);
704 	if (sz > 0 && file_name[sz - 1] == '\n')
705 		file_name[sz - 1] = 0x00;
706 
707 	backing_dev = filp_open(file_name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
708 	if (IS_ERR(backing_dev)) {
709 		err = PTR_ERR(backing_dev);
710 		backing_dev = NULL;
711 		goto out;
712 	}
713 
714 	inode = backing_dev->f_mapping->host;
715 
716 	/* Support only block device in this moment */
717 	if (!S_ISBLK(inode->i_mode)) {
718 		err = -ENOTBLK;
719 		goto out;
720 	}
721 
722 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
723 	/* Refuse to use zero sized device (also prevents self reference) */
724 	if (!nr_pages) {
725 		err = -EINVAL;
726 		goto out;
727 	}
728 
729 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
730 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
731 	if (!bitmap) {
732 		err = -ENOMEM;
733 		goto out;
734 	}
735 
736 	reset_bdev(zram);
737 
738 	zram->bdev = I_BDEV(inode);
739 	zram->backing_dev = backing_dev;
740 	zram->bitmap = bitmap;
741 	zram->nr_pages = nr_pages;
742 	up_write(&zram->init_lock);
743 
744 	pr_info("setup backing device %s\n", file_name);
745 	kfree(file_name);
746 
747 	return len;
748 out:
749 	kvfree(bitmap);
750 
751 	if (backing_dev)
752 		filp_close(backing_dev, NULL);
753 
754 	up_write(&zram->init_lock);
755 
756 	kfree(file_name);
757 
758 	return err;
759 }
760 
zram_reserve_bdev_block(struct zram * zram)761 static unsigned long zram_reserve_bdev_block(struct zram *zram)
762 {
763 	unsigned long blk_idx;
764 
765 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, 0);
766 	if (blk_idx == zram->nr_pages)
767 		return INVALID_BDEV_BLOCK;
768 
769 	set_bit(blk_idx, zram->bitmap);
770 	atomic64_inc(&zram->stats.bd_count);
771 	return blk_idx;
772 }
773 
zram_release_bdev_block(struct zram * zram,unsigned long blk_idx)774 static void zram_release_bdev_block(struct zram *zram, unsigned long blk_idx)
775 {
776 	int was_set;
777 
778 	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
779 	WARN_ON_ONCE(!was_set);
780 	atomic64_dec(&zram->stats.bd_count);
781 }
782 
read_from_bdev_async(struct zram * zram,struct page * page,unsigned long entry,struct bio * parent)783 static void read_from_bdev_async(struct zram *zram, struct page *page,
784 			unsigned long entry, struct bio *parent)
785 {
786 	struct bio *bio;
787 
788 	bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO);
789 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
790 	__bio_add_page(bio, page, PAGE_SIZE, 0);
791 	bio_chain(bio, parent);
792 	submit_bio(bio);
793 }
794 
release_wb_req(struct zram_wb_req * req)795 static void release_wb_req(struct zram_wb_req *req)
796 {
797 	__free_page(req->page);
798 	kfree(req);
799 }
800 
release_wb_ctl(struct zram_wb_ctl * wb_ctl)801 static void release_wb_ctl(struct zram_wb_ctl *wb_ctl)
802 {
803 	if (!wb_ctl)
804 		return;
805 
806 	/* We should never have inflight requests at this point */
807 	WARN_ON(atomic_read(&wb_ctl->num_inflight));
808 	WARN_ON(!list_empty(&wb_ctl->done_reqs));
809 
810 	while (!list_empty(&wb_ctl->idle_reqs)) {
811 		struct zram_wb_req *req;
812 
813 		req = list_first_entry(&wb_ctl->idle_reqs,
814 				       struct zram_wb_req, entry);
815 		list_del(&req->entry);
816 		release_wb_req(req);
817 	}
818 
819 	kfree(wb_ctl);
820 }
821 
init_wb_ctl(struct zram * zram)822 static struct zram_wb_ctl *init_wb_ctl(struct zram *zram)
823 {
824 	struct zram_wb_ctl *wb_ctl;
825 	int i;
826 
827 	wb_ctl = kmalloc(sizeof(*wb_ctl), GFP_KERNEL);
828 	if (!wb_ctl)
829 		return NULL;
830 
831 	INIT_LIST_HEAD(&wb_ctl->idle_reqs);
832 	INIT_LIST_HEAD(&wb_ctl->done_reqs);
833 	atomic_set(&wb_ctl->num_inflight, 0);
834 	init_waitqueue_head(&wb_ctl->done_wait);
835 	spin_lock_init(&wb_ctl->done_lock);
836 
837 	for (i = 0; i < zram->wb_batch_size; i++) {
838 		struct zram_wb_req *req;
839 
840 		/*
841 		 * This is fatal condition only if we couldn't allocate
842 		 * any requests at all.  Otherwise we just work with the
843 		 * requests that we have successfully allocated, so that
844 		 * writeback can still proceed, even if there is only one
845 		 * request on the idle list.
846 		 */
847 		req = kzalloc(sizeof(*req), GFP_KERNEL | __GFP_NOWARN);
848 		if (!req)
849 			break;
850 
851 		req->page = alloc_page(GFP_KERNEL | __GFP_NOWARN);
852 		if (!req->page) {
853 			kfree(req);
854 			break;
855 		}
856 
857 		list_add(&req->entry, &wb_ctl->idle_reqs);
858 	}
859 
860 	/* We couldn't allocate any requests, so writeabck is not possible */
861 	if (list_empty(&wb_ctl->idle_reqs))
862 		goto release_wb_ctl;
863 
864 	return wb_ctl;
865 
866 release_wb_ctl:
867 	release_wb_ctl(wb_ctl);
868 	return NULL;
869 }
870 
zram_account_writeback_rollback(struct zram * zram)871 static void zram_account_writeback_rollback(struct zram *zram)
872 {
873 	lockdep_assert_held_read(&zram->init_lock);
874 
875 	if (zram->wb_limit_enable)
876 		zram->bd_wb_limit +=  1UL << (PAGE_SHIFT - 12);
877 }
878 
zram_account_writeback_submit(struct zram * zram)879 static void zram_account_writeback_submit(struct zram *zram)
880 {
881 	lockdep_assert_held_read(&zram->init_lock);
882 
883 	if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
884 		zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
885 }
886 
zram_writeback_complete(struct zram * zram,struct zram_wb_req * req)887 static int zram_writeback_complete(struct zram *zram, struct zram_wb_req *req)
888 {
889 	u32 index = req->pps->index;
890 	int err;
891 
892 	err = blk_status_to_errno(req->bio.bi_status);
893 	if (err) {
894 		/*
895 		 * Failed wb requests should not be accounted in wb_limit
896 		 * (if enabled).
897 		 */
898 		zram_account_writeback_rollback(zram);
899 		zram_release_bdev_block(zram, req->blk_idx);
900 		return err;
901 	}
902 
903 	atomic64_inc(&zram->stats.bd_writes);
904 	zram_slot_lock(zram, index);
905 	/*
906 	 * We release slot lock during writeback so slot can change under us:
907 	 * slot_free() or slot_free() and zram_write_page(). In both cases
908 	 * slot loses ZRAM_PP_SLOT flag. No concurrent post-processing can
909 	 * set ZRAM_PP_SLOT on such slots until current post-processing
910 	 * finishes.
911 	 */
912 	if (!zram_test_flag(zram, index, ZRAM_PP_SLOT)) {
913 		zram_release_bdev_block(zram, req->blk_idx);
914 		goto out;
915 	}
916 
917 	zram_free_page(zram, index);
918 	zram_set_flag(zram, index, ZRAM_WB);
919 	zram_set_handle(zram, index, req->blk_idx);
920 	atomic64_inc(&zram->stats.pages_stored);
921 
922 out:
923 	zram_slot_unlock(zram, index);
924 	return 0;
925 }
926 
zram_writeback_endio(struct bio * bio)927 static void zram_writeback_endio(struct bio *bio)
928 {
929 	struct zram_wb_req *req = container_of(bio, struct zram_wb_req, bio);
930 	struct zram_wb_ctl *wb_ctl = bio->bi_private;
931 	unsigned long flags;
932 
933 	spin_lock_irqsave(&wb_ctl->done_lock, flags);
934 	list_add(&req->entry, &wb_ctl->done_reqs);
935 	spin_unlock_irqrestore(&wb_ctl->done_lock, flags);
936 
937 	wake_up(&wb_ctl->done_wait);
938 }
939 
zram_submit_wb_request(struct zram * zram,struct zram_wb_ctl * wb_ctl,struct zram_wb_req * req)940 static void zram_submit_wb_request(struct zram *zram,
941 				   struct zram_wb_ctl *wb_ctl,
942 				   struct zram_wb_req *req)
943 {
944 	/*
945 	 * wb_limit (if enabled) should be adjusted before submission,
946 	 * so that we don't over-submit.
947 	 */
948 	zram_account_writeback_submit(zram);
949 	atomic_inc(&wb_ctl->num_inflight);
950 	req->bio.bi_private = wb_ctl;
951 	submit_bio(&req->bio);
952 }
953 
zram_complete_done_reqs(struct zram * zram,struct zram_wb_ctl * wb_ctl)954 static int zram_complete_done_reqs(struct zram *zram,
955 				   struct zram_wb_ctl *wb_ctl)
956 {
957 	struct zram_wb_req *req;
958 	unsigned long flags;
959 	int ret = 0, err;
960 
961 	while (atomic_read(&wb_ctl->num_inflight) > 0) {
962 		spin_lock_irqsave(&wb_ctl->done_lock, flags);
963 		req = list_first_entry_or_null(&wb_ctl->done_reqs,
964 					       struct zram_wb_req, entry);
965 		if (req)
966 			list_del(&req->entry);
967 		spin_unlock_irqrestore(&wb_ctl->done_lock, flags);
968 
969 		/* ->num_inflight > 0 doesn't mean we have done requests */
970 		if (!req)
971 			break;
972 
973 		err = zram_writeback_complete(zram, req);
974 		if (err)
975 			ret = err;
976 
977 		atomic_dec(&wb_ctl->num_inflight);
978 		release_pp_slot(zram, req->pps);
979 		req->pps = NULL;
980 
981 		list_add(&req->entry, &wb_ctl->idle_reqs);
982 	}
983 
984 	return ret;
985 }
986 
zram_select_idle_req(struct zram_wb_ctl * wb_ctl)987 static struct zram_wb_req *zram_select_idle_req(struct zram_wb_ctl *wb_ctl)
988 {
989 	struct zram_wb_req *req;
990 
991 	req = list_first_entry_or_null(&wb_ctl->idle_reqs,
992 				       struct zram_wb_req, entry);
993 	if (req)
994 		list_del(&req->entry);
995 	return req;
996 }
997 
zram_writeback_slots(struct zram * zram,struct zram_pp_ctl * ctl,struct zram_wb_ctl * wb_ctl)998 static int zram_writeback_slots(struct zram *zram,
999 				struct zram_pp_ctl *ctl,
1000 				struct zram_wb_ctl *wb_ctl)
1001 {
1002 	unsigned long blk_idx = INVALID_BDEV_BLOCK;
1003 	struct zram_wb_req *req = NULL;
1004 	struct zram_pp_slot *pps;
1005 	int ret = 0, err = 0;
1006 	u32 index = 0;
1007 
1008 	while ((pps = select_pp_slot(ctl))) {
1009 		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
1010 			ret = -EIO;
1011 			break;
1012 		}
1013 
1014 		while (!req) {
1015 			req = zram_select_idle_req(wb_ctl);
1016 			if (req)
1017 				break;
1018 
1019 			wait_event(wb_ctl->done_wait,
1020 				   !list_empty(&wb_ctl->done_reqs));
1021 
1022 			err = zram_complete_done_reqs(zram, wb_ctl);
1023 			/*
1024 			 * BIO errors are not fatal, we continue and simply
1025 			 * attempt to writeback the remaining objects (pages).
1026 			 * At the same time we need to signal user-space that
1027 			 * some writes (at least one, but also could be all of
1028 			 * them) were not successful and we do so by returning
1029 			 * the most recent BIO error.
1030 			 */
1031 			if (err)
1032 				ret = err;
1033 		}
1034 
1035 		if (blk_idx == INVALID_BDEV_BLOCK) {
1036 			blk_idx = zram_reserve_bdev_block(zram);
1037 			if (blk_idx == INVALID_BDEV_BLOCK) {
1038 				ret = -ENOSPC;
1039 				break;
1040 			}
1041 		}
1042 
1043 		index = pps->index;
1044 		zram_slot_lock(zram, index);
1045 		/*
1046 		 * scan_slots() sets ZRAM_PP_SLOT and releases slot lock, so
1047 		 * slots can change in the meantime. If slots are accessed or
1048 		 * freed they lose ZRAM_PP_SLOT flag and hence we don't
1049 		 * post-process them.
1050 		 */
1051 		if (!zram_test_flag(zram, index, ZRAM_PP_SLOT))
1052 			goto next;
1053 		if (zram_read_from_zspool(zram, req->page, index))
1054 			goto next;
1055 		zram_slot_unlock(zram, index);
1056 
1057 		/*
1058 		 * From now on pp-slot is owned by the req, remove it from
1059 		 * its pp bucket.
1060 		 */
1061 		list_del_init(&pps->entry);
1062 
1063 		req->blk_idx = blk_idx;
1064 		req->pps = pps;
1065 		bio_init(&req->bio, zram->bdev, &req->bio_vec, 1, REQ_OP_WRITE);
1066 		req->bio.bi_iter.bi_sector = req->blk_idx * (PAGE_SIZE >> 9);
1067 		req->bio.bi_end_io = zram_writeback_endio;
1068 		__bio_add_page(&req->bio, req->page, PAGE_SIZE, 0);
1069 
1070 		zram_submit_wb_request(zram, wb_ctl, req);
1071 		blk_idx = INVALID_BDEV_BLOCK;
1072 		req = NULL;
1073 		cond_resched();
1074 		continue;
1075 
1076 next:
1077 		zram_slot_unlock(zram, index);
1078 		release_pp_slot(zram, pps);
1079 	}
1080 
1081 	/*
1082 	 * Selected idle req, but never submitted it due to some error or
1083 	 * wb limit.
1084 	 */
1085 	if (req)
1086 		release_wb_req(req);
1087 
1088 	while (atomic_read(&wb_ctl->num_inflight) > 0) {
1089 		wait_event(wb_ctl->done_wait, !list_empty(&wb_ctl->done_reqs));
1090 		err = zram_complete_done_reqs(zram, wb_ctl);
1091 		if (err)
1092 			ret = err;
1093 	}
1094 
1095 	return ret;
1096 }
1097 
1098 #define PAGE_WRITEBACK			0
1099 #define HUGE_WRITEBACK			(1 << 0)
1100 #define IDLE_WRITEBACK			(1 << 1)
1101 #define INCOMPRESSIBLE_WRITEBACK	(1 << 2)
1102 
parse_page_index(char * val,unsigned long nr_pages,unsigned long * lo,unsigned long * hi)1103 static int parse_page_index(char *val, unsigned long nr_pages,
1104 			    unsigned long *lo, unsigned long *hi)
1105 {
1106 	int ret;
1107 
1108 	ret = kstrtoul(val, 10, lo);
1109 	if (ret)
1110 		return ret;
1111 	if (*lo >= nr_pages)
1112 		return -ERANGE;
1113 	*hi = *lo + 1;
1114 	return 0;
1115 }
1116 
parse_page_indexes(char * val,unsigned long nr_pages,unsigned long * lo,unsigned long * hi)1117 static int parse_page_indexes(char *val, unsigned long nr_pages,
1118 			      unsigned long *lo, unsigned long *hi)
1119 {
1120 	char *delim;
1121 	int ret;
1122 
1123 	delim = strchr(val, '-');
1124 	if (!delim)
1125 		return -EINVAL;
1126 
1127 	*delim = 0x00;
1128 	ret = kstrtoul(val, 10, lo);
1129 	if (ret)
1130 		return ret;
1131 	if (*lo >= nr_pages)
1132 		return -ERANGE;
1133 
1134 	ret = kstrtoul(delim + 1, 10, hi);
1135 	if (ret)
1136 		return ret;
1137 	if (*hi >= nr_pages || *lo > *hi)
1138 		return -ERANGE;
1139 	*hi += 1;
1140 	return 0;
1141 }
1142 
parse_mode(char * val,u32 * mode)1143 static int parse_mode(char *val, u32 *mode)
1144 {
1145 	*mode = 0;
1146 
1147 	if (!strcmp(val, "idle"))
1148 		*mode = IDLE_WRITEBACK;
1149 	if (!strcmp(val, "huge"))
1150 		*mode = HUGE_WRITEBACK;
1151 	if (!strcmp(val, "huge_idle"))
1152 		*mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
1153 	if (!strcmp(val, "incompressible"))
1154 		*mode = INCOMPRESSIBLE_WRITEBACK;
1155 
1156 	if (*mode == 0)
1157 		return -EINVAL;
1158 	return 0;
1159 }
1160 
scan_slots_for_writeback(struct zram * zram,u32 mode,unsigned long lo,unsigned long hi,struct zram_pp_ctl * ctl)1161 static int scan_slots_for_writeback(struct zram *zram, u32 mode,
1162 				    unsigned long lo, unsigned long hi,
1163 				    struct zram_pp_ctl *ctl)
1164 {
1165 	u32 index = lo;
1166 
1167 	while (index < hi) {
1168 		bool ok = true;
1169 
1170 		zram_slot_lock(zram, index);
1171 		if (!zram_allocated(zram, index))
1172 			goto next;
1173 
1174 		if (zram_test_flag(zram, index, ZRAM_WB) ||
1175 		    zram_test_flag(zram, index, ZRAM_SAME))
1176 			goto next;
1177 
1178 		if (mode & IDLE_WRITEBACK &&
1179 		    !zram_test_flag(zram, index, ZRAM_IDLE))
1180 			goto next;
1181 		if (mode & HUGE_WRITEBACK &&
1182 		    !zram_test_flag(zram, index, ZRAM_HUGE))
1183 			goto next;
1184 		if (mode & INCOMPRESSIBLE_WRITEBACK &&
1185 		    !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
1186 			goto next;
1187 
1188 		ok = place_pp_slot(zram, ctl, index);
1189 next:
1190 		zram_slot_unlock(zram, index);
1191 		if (!ok)
1192 			break;
1193 		index++;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
writeback_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1199 static ssize_t writeback_store(struct device *dev,
1200 			       struct device_attribute *attr,
1201 			       const char *buf, size_t len)
1202 {
1203 	struct zram *zram = dev_to_zram(dev);
1204 	u64 nr_pages = zram->disksize >> PAGE_SHIFT;
1205 	unsigned long lo = 0, hi = nr_pages;
1206 	struct zram_pp_ctl *pp_ctl = NULL;
1207 	struct zram_wb_ctl *wb_ctl = NULL;
1208 	char *args, *param, *val;
1209 	ssize_t ret = len;
1210 	int err, mode = 0;
1211 
1212 	down_read(&zram->init_lock);
1213 	if (!init_done(zram)) {
1214 		up_read(&zram->init_lock);
1215 		return -EINVAL;
1216 	}
1217 
1218 	/* Do not permit concurrent post-processing actions. */
1219 	if (atomic_xchg(&zram->pp_in_progress, 1)) {
1220 		up_read(&zram->init_lock);
1221 		return -EAGAIN;
1222 	}
1223 
1224 	if (!zram->backing_dev) {
1225 		ret = -ENODEV;
1226 		goto release_init_lock;
1227 	}
1228 
1229 	pp_ctl = init_pp_ctl();
1230 	if (!pp_ctl) {
1231 		ret = -ENOMEM;
1232 		goto release_init_lock;
1233 	}
1234 
1235 	wb_ctl = init_wb_ctl(zram);
1236 	if (!wb_ctl) {
1237 		ret = -ENOMEM;
1238 		goto release_init_lock;
1239 	}
1240 
1241 	args = skip_spaces(buf);
1242 	while (*args) {
1243 		args = next_arg(args, &param, &val);
1244 
1245 		/*
1246 		 * Workaround to support the old writeback interface.
1247 		 *
1248 		 * The old writeback interface has a minor inconsistency and
1249 		 * requires key=value only for page_index parameter, while the
1250 		 * writeback mode is a valueless parameter.
1251 		 *
1252 		 * This is not the case anymore and now all parameters are
1253 		 * required to have values, however, we need to support the
1254 		 * legacy writeback interface format so we check if we can
1255 		 * recognize a valueless parameter as the (legacy) writeback
1256 		 * mode.
1257 		 */
1258 		if (!val || !*val) {
1259 			err = parse_mode(param, &mode);
1260 			if (err) {
1261 				ret = err;
1262 				goto release_init_lock;
1263 			}
1264 
1265 			scan_slots_for_writeback(zram, mode, lo, hi, pp_ctl);
1266 			break;
1267 		}
1268 
1269 		if (!strcmp(param, "type")) {
1270 			err = parse_mode(val, &mode);
1271 			if (err) {
1272 				ret = err;
1273 				goto release_init_lock;
1274 			}
1275 
1276 			scan_slots_for_writeback(zram, mode, lo, hi, pp_ctl);
1277 			break;
1278 		}
1279 
1280 		if (!strcmp(param, "page_index")) {
1281 			err = parse_page_index(val, nr_pages, &lo, &hi);
1282 			if (err) {
1283 				ret = err;
1284 				goto release_init_lock;
1285 			}
1286 
1287 			scan_slots_for_writeback(zram, mode, lo, hi, pp_ctl);
1288 			continue;
1289 		}
1290 
1291 		if (!strcmp(param, "page_indexes")) {
1292 			err = parse_page_indexes(val, nr_pages, &lo, &hi);
1293 			if (err) {
1294 				ret = err;
1295 				goto release_init_lock;
1296 			}
1297 
1298 			scan_slots_for_writeback(zram, mode, lo, hi, pp_ctl);
1299 			continue;
1300 		}
1301 	}
1302 
1303 	err = zram_writeback_slots(zram, pp_ctl, wb_ctl);
1304 	if (err)
1305 		ret = err;
1306 
1307 release_init_lock:
1308 	release_pp_ctl(zram, pp_ctl);
1309 	release_wb_ctl(wb_ctl);
1310 	atomic_set(&zram->pp_in_progress, 0);
1311 	up_read(&zram->init_lock);
1312 
1313 	return ret;
1314 }
1315 
1316 struct zram_work {
1317 	struct work_struct work;
1318 	struct zram *zram;
1319 	unsigned long entry;
1320 	struct page *page;
1321 	int error;
1322 };
1323 
zram_sync_read(struct work_struct * work)1324 static void zram_sync_read(struct work_struct *work)
1325 {
1326 	struct zram_work *zw = container_of(work, struct zram_work, work);
1327 	struct bio_vec bv;
1328 	struct bio bio;
1329 
1330 	bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ);
1331 	bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9);
1332 	__bio_add_page(&bio, zw->page, PAGE_SIZE, 0);
1333 	zw->error = submit_bio_wait(&bio);
1334 }
1335 
1336 /*
1337  * Block layer want one ->submit_bio to be active at a time, so if we use
1338  * chained IO with parent IO in same context, it's a deadlock. To avoid that,
1339  * use a worker thread context.
1340  */
read_from_bdev_sync(struct zram * zram,struct page * page,unsigned long entry)1341 static int read_from_bdev_sync(struct zram *zram, struct page *page,
1342 				unsigned long entry)
1343 {
1344 	struct zram_work work;
1345 
1346 	work.page = page;
1347 	work.zram = zram;
1348 	work.entry = entry;
1349 
1350 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
1351 	queue_work(system_dfl_wq, &work.work);
1352 	flush_work(&work.work);
1353 	destroy_work_on_stack(&work.work);
1354 
1355 	return work.error;
1356 }
1357 
read_from_bdev(struct zram * zram,struct page * page,unsigned long entry,struct bio * parent)1358 static int read_from_bdev(struct zram *zram, struct page *page,
1359 			unsigned long entry, struct bio *parent)
1360 {
1361 	atomic64_inc(&zram->stats.bd_reads);
1362 	if (!parent) {
1363 		if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO)))
1364 			return -EIO;
1365 		return read_from_bdev_sync(zram, page, entry);
1366 	}
1367 	read_from_bdev_async(zram, page, entry, parent);
1368 	return 0;
1369 }
1370 #else
reset_bdev(struct zram * zram)1371 static inline void reset_bdev(struct zram *zram) {};
read_from_bdev(struct zram * zram,struct page * page,unsigned long entry,struct bio * parent)1372 static int read_from_bdev(struct zram *zram, struct page *page,
1373 			unsigned long entry, struct bio *parent)
1374 {
1375 	return -EIO;
1376 }
1377 
zram_release_bdev_block(struct zram * zram,unsigned long blk_idx)1378 static void zram_release_bdev_block(struct zram *zram, unsigned long blk_idx)
1379 {
1380 }
1381 #endif
1382 
1383 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1384 
1385 static struct dentry *zram_debugfs_root;
1386 
zram_debugfs_create(void)1387 static void zram_debugfs_create(void)
1388 {
1389 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
1390 }
1391 
zram_debugfs_destroy(void)1392 static void zram_debugfs_destroy(void)
1393 {
1394 	debugfs_remove_recursive(zram_debugfs_root);
1395 }
1396 
read_block_state(struct file * file,char __user * buf,size_t count,loff_t * ppos)1397 static ssize_t read_block_state(struct file *file, char __user *buf,
1398 				size_t count, loff_t *ppos)
1399 {
1400 	char *kbuf;
1401 	ssize_t index, written = 0;
1402 	struct zram *zram = file->private_data;
1403 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
1404 	struct timespec64 ts;
1405 
1406 	kbuf = kvmalloc(count, GFP_KERNEL);
1407 	if (!kbuf)
1408 		return -ENOMEM;
1409 
1410 	down_read(&zram->init_lock);
1411 	if (!init_done(zram)) {
1412 		up_read(&zram->init_lock);
1413 		kvfree(kbuf);
1414 		return -EINVAL;
1415 	}
1416 
1417 	for (index = *ppos; index < nr_pages; index++) {
1418 		int copied;
1419 
1420 		zram_slot_lock(zram, index);
1421 		if (!zram_allocated(zram, index))
1422 			goto next;
1423 
1424 		ts = ktime_to_timespec64(zram->table[index].ac_time);
1425 		copied = snprintf(kbuf + written, count,
1426 			"%12zd %12lld.%06lu %c%c%c%c%c%c\n",
1427 			index, (s64)ts.tv_sec,
1428 			ts.tv_nsec / NSEC_PER_USEC,
1429 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
1430 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
1431 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
1432 			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.',
1433 			zram_get_priority(zram, index) ? 'r' : '.',
1434 			zram_test_flag(zram, index,
1435 				       ZRAM_INCOMPRESSIBLE) ? 'n' : '.');
1436 
1437 		if (count <= copied) {
1438 			zram_slot_unlock(zram, index);
1439 			break;
1440 		}
1441 		written += copied;
1442 		count -= copied;
1443 next:
1444 		zram_slot_unlock(zram, index);
1445 		*ppos += 1;
1446 	}
1447 
1448 	up_read(&zram->init_lock);
1449 	if (copy_to_user(buf, kbuf, written))
1450 		written = -EFAULT;
1451 	kvfree(kbuf);
1452 
1453 	return written;
1454 }
1455 
1456 static const struct file_operations proc_zram_block_state_op = {
1457 	.open = simple_open,
1458 	.read = read_block_state,
1459 	.llseek = default_llseek,
1460 };
1461 
zram_debugfs_register(struct zram * zram)1462 static void zram_debugfs_register(struct zram *zram)
1463 {
1464 	if (!zram_debugfs_root)
1465 		return;
1466 
1467 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
1468 						zram_debugfs_root);
1469 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
1470 				zram, &proc_zram_block_state_op);
1471 }
1472 
zram_debugfs_unregister(struct zram * zram)1473 static void zram_debugfs_unregister(struct zram *zram)
1474 {
1475 	debugfs_remove_recursive(zram->debugfs_dir);
1476 }
1477 #else
zram_debugfs_create(void)1478 static void zram_debugfs_create(void) {};
zram_debugfs_destroy(void)1479 static void zram_debugfs_destroy(void) {};
zram_debugfs_register(struct zram * zram)1480 static void zram_debugfs_register(struct zram *zram) {};
zram_debugfs_unregister(struct zram * zram)1481 static void zram_debugfs_unregister(struct zram *zram) {};
1482 #endif
1483 
comp_algorithm_set(struct zram * zram,u32 prio,const char * alg)1484 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg)
1485 {
1486 	/* Do not free statically defined compression algorithms */
1487 	if (zram->comp_algs[prio] != default_compressor)
1488 		kfree(zram->comp_algs[prio]);
1489 
1490 	zram->comp_algs[prio] = alg;
1491 }
1492 
__comp_algorithm_store(struct zram * zram,u32 prio,const char * buf)1493 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf)
1494 {
1495 	char *compressor;
1496 	size_t sz;
1497 
1498 	sz = strlen(buf);
1499 	if (sz >= ZRAM_MAX_ALGO_NAME_SZ)
1500 		return -E2BIG;
1501 
1502 	compressor = kstrdup(buf, GFP_KERNEL);
1503 	if (!compressor)
1504 		return -ENOMEM;
1505 
1506 	/* ignore trailing newline */
1507 	if (sz > 0 && compressor[sz - 1] == '\n')
1508 		compressor[sz - 1] = 0x00;
1509 
1510 	if (!zcomp_available_algorithm(compressor)) {
1511 		kfree(compressor);
1512 		return -EINVAL;
1513 	}
1514 
1515 	down_write(&zram->init_lock);
1516 	if (init_done(zram)) {
1517 		up_write(&zram->init_lock);
1518 		kfree(compressor);
1519 		pr_info("Can't change algorithm for initialized device\n");
1520 		return -EBUSY;
1521 	}
1522 
1523 	comp_algorithm_set(zram, prio, compressor);
1524 	up_write(&zram->init_lock);
1525 	return 0;
1526 }
1527 
comp_params_reset(struct zram * zram,u32 prio)1528 static void comp_params_reset(struct zram *zram, u32 prio)
1529 {
1530 	struct zcomp_params *params = &zram->params[prio];
1531 
1532 	vfree(params->dict);
1533 	params->level = ZCOMP_PARAM_NOT_SET;
1534 	params->deflate.winbits = ZCOMP_PARAM_NOT_SET;
1535 	params->dict_sz = 0;
1536 	params->dict = NULL;
1537 }
1538 
comp_params_store(struct zram * zram,u32 prio,s32 level,const char * dict_path,struct deflate_params * deflate_params)1539 static int comp_params_store(struct zram *zram, u32 prio, s32 level,
1540 			     const char *dict_path,
1541 			     struct deflate_params *deflate_params)
1542 {
1543 	ssize_t sz = 0;
1544 
1545 	comp_params_reset(zram, prio);
1546 
1547 	if (dict_path) {
1548 		sz = kernel_read_file_from_path(dict_path, 0,
1549 						&zram->params[prio].dict,
1550 						INT_MAX,
1551 						NULL,
1552 						READING_POLICY);
1553 		if (sz < 0)
1554 			return -EINVAL;
1555 	}
1556 
1557 	zram->params[prio].dict_sz = sz;
1558 	zram->params[prio].level = level;
1559 	zram->params[prio].deflate.winbits = deflate_params->winbits;
1560 	return 0;
1561 }
1562 
algorithm_params_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1563 static ssize_t algorithm_params_store(struct device *dev,
1564 				      struct device_attribute *attr,
1565 				      const char *buf,
1566 				      size_t len)
1567 {
1568 	s32 prio = ZRAM_PRIMARY_COMP, level = ZCOMP_PARAM_NOT_SET;
1569 	char *args, *param, *val, *algo = NULL, *dict_path = NULL;
1570 	struct deflate_params deflate_params;
1571 	struct zram *zram = dev_to_zram(dev);
1572 	int ret;
1573 
1574 	deflate_params.winbits = ZCOMP_PARAM_NOT_SET;
1575 
1576 	args = skip_spaces(buf);
1577 	while (*args) {
1578 		args = next_arg(args, &param, &val);
1579 
1580 		if (!val || !*val)
1581 			return -EINVAL;
1582 
1583 		if (!strcmp(param, "priority")) {
1584 			ret = kstrtoint(val, 10, &prio);
1585 			if (ret)
1586 				return ret;
1587 			continue;
1588 		}
1589 
1590 		if (!strcmp(param, "level")) {
1591 			ret = kstrtoint(val, 10, &level);
1592 			if (ret)
1593 				return ret;
1594 			continue;
1595 		}
1596 
1597 		if (!strcmp(param, "algo")) {
1598 			algo = val;
1599 			continue;
1600 		}
1601 
1602 		if (!strcmp(param, "dict")) {
1603 			dict_path = val;
1604 			continue;
1605 		}
1606 
1607 		if (!strcmp(param, "deflate.winbits")) {
1608 			ret = kstrtoint(val, 10, &deflate_params.winbits);
1609 			if (ret)
1610 				return ret;
1611 			continue;
1612 		}
1613 	}
1614 
1615 	/* Lookup priority by algorithm name */
1616 	if (algo) {
1617 		s32 p;
1618 
1619 		prio = -EINVAL;
1620 		for (p = ZRAM_PRIMARY_COMP; p < ZRAM_MAX_COMPS; p++) {
1621 			if (!zram->comp_algs[p])
1622 				continue;
1623 
1624 			if (!strcmp(zram->comp_algs[p], algo)) {
1625 				prio = p;
1626 				break;
1627 			}
1628 		}
1629 	}
1630 
1631 	if (prio < ZRAM_PRIMARY_COMP || prio >= ZRAM_MAX_COMPS)
1632 		return -EINVAL;
1633 
1634 	ret = comp_params_store(zram, prio, level, dict_path, &deflate_params);
1635 	return ret ? ret : len;
1636 }
1637 
comp_algorithm_show(struct device * dev,struct device_attribute * attr,char * buf)1638 static ssize_t comp_algorithm_show(struct device *dev,
1639 				   struct device_attribute *attr,
1640 				   char *buf)
1641 {
1642 	struct zram *zram = dev_to_zram(dev);
1643 	ssize_t sz;
1644 
1645 	down_read(&zram->init_lock);
1646 	sz = zcomp_available_show(zram->comp_algs[ZRAM_PRIMARY_COMP], buf, 0);
1647 	up_read(&zram->init_lock);
1648 	return sz;
1649 }
1650 
comp_algorithm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1651 static ssize_t comp_algorithm_store(struct device *dev,
1652 				    struct device_attribute *attr,
1653 				    const char *buf,
1654 				    size_t len)
1655 {
1656 	struct zram *zram = dev_to_zram(dev);
1657 	int ret;
1658 
1659 	ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf);
1660 	return ret ? ret : len;
1661 }
1662 
1663 #ifdef CONFIG_ZRAM_MULTI_COMP
recomp_algorithm_show(struct device * dev,struct device_attribute * attr,char * buf)1664 static ssize_t recomp_algorithm_show(struct device *dev,
1665 				     struct device_attribute *attr,
1666 				     char *buf)
1667 {
1668 	struct zram *zram = dev_to_zram(dev);
1669 	ssize_t sz = 0;
1670 	u32 prio;
1671 
1672 	down_read(&zram->init_lock);
1673 	for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
1674 		if (!zram->comp_algs[prio])
1675 			continue;
1676 
1677 		sz += sysfs_emit_at(buf, sz, "#%d: ", prio);
1678 		sz += zcomp_available_show(zram->comp_algs[prio], buf, sz);
1679 	}
1680 	up_read(&zram->init_lock);
1681 	return sz;
1682 }
1683 
recomp_algorithm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1684 static ssize_t recomp_algorithm_store(struct device *dev,
1685 				      struct device_attribute *attr,
1686 				      const char *buf,
1687 				      size_t len)
1688 {
1689 	struct zram *zram = dev_to_zram(dev);
1690 	int prio = ZRAM_SECONDARY_COMP;
1691 	char *args, *param, *val;
1692 	char *alg = NULL;
1693 	int ret;
1694 
1695 	args = skip_spaces(buf);
1696 	while (*args) {
1697 		args = next_arg(args, &param, &val);
1698 
1699 		if (!val || !*val)
1700 			return -EINVAL;
1701 
1702 		if (!strcmp(param, "algo")) {
1703 			alg = val;
1704 			continue;
1705 		}
1706 
1707 		if (!strcmp(param, "priority")) {
1708 			ret = kstrtoint(val, 10, &prio);
1709 			if (ret)
1710 				return ret;
1711 			continue;
1712 		}
1713 	}
1714 
1715 	if (!alg)
1716 		return -EINVAL;
1717 
1718 	if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS)
1719 		return -EINVAL;
1720 
1721 	ret = __comp_algorithm_store(zram, prio, alg);
1722 	return ret ? ret : len;
1723 }
1724 #endif
1725 
compact_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1726 static ssize_t compact_store(struct device *dev,
1727 		struct device_attribute *attr, const char *buf, size_t len)
1728 {
1729 	struct zram *zram = dev_to_zram(dev);
1730 
1731 	down_read(&zram->init_lock);
1732 	if (!init_done(zram)) {
1733 		up_read(&zram->init_lock);
1734 		return -EINVAL;
1735 	}
1736 
1737 	zs_compact(zram->mem_pool);
1738 	up_read(&zram->init_lock);
1739 
1740 	return len;
1741 }
1742 
io_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1743 static ssize_t io_stat_show(struct device *dev,
1744 		struct device_attribute *attr, char *buf)
1745 {
1746 	struct zram *zram = dev_to_zram(dev);
1747 	ssize_t ret;
1748 
1749 	down_read(&zram->init_lock);
1750 	ret = sysfs_emit(buf,
1751 			"%8llu %8llu 0 %8llu\n",
1752 			(u64)atomic64_read(&zram->stats.failed_reads),
1753 			(u64)atomic64_read(&zram->stats.failed_writes),
1754 			(u64)atomic64_read(&zram->stats.notify_free));
1755 	up_read(&zram->init_lock);
1756 
1757 	return ret;
1758 }
1759 
mm_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1760 static ssize_t mm_stat_show(struct device *dev,
1761 		struct device_attribute *attr, char *buf)
1762 {
1763 	struct zram *zram = dev_to_zram(dev);
1764 	struct zs_pool_stats pool_stats;
1765 	u64 orig_size, mem_used = 0;
1766 	long max_used;
1767 	ssize_t ret;
1768 
1769 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1770 
1771 	down_read(&zram->init_lock);
1772 	if (init_done(zram)) {
1773 		mem_used = zs_get_total_pages(zram->mem_pool);
1774 		zs_pool_stats(zram->mem_pool, &pool_stats);
1775 	}
1776 
1777 	orig_size = atomic64_read(&zram->stats.pages_stored);
1778 	max_used = atomic_long_read(&zram->stats.max_used_pages);
1779 
1780 	ret = sysfs_emit(buf,
1781 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1782 			orig_size << PAGE_SHIFT,
1783 			(u64)atomic64_read(&zram->stats.compr_data_size),
1784 			mem_used << PAGE_SHIFT,
1785 			zram->limit_pages << PAGE_SHIFT,
1786 			max_used << PAGE_SHIFT,
1787 			(u64)atomic64_read(&zram->stats.same_pages),
1788 			atomic_long_read(&pool_stats.pages_compacted),
1789 			(u64)atomic64_read(&zram->stats.huge_pages),
1790 			(u64)atomic64_read(&zram->stats.huge_pages_since));
1791 	up_read(&zram->init_lock);
1792 
1793 	return ret;
1794 }
1795 
1796 #ifdef CONFIG_ZRAM_WRITEBACK
1797 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
bd_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1798 static ssize_t bd_stat_show(struct device *dev,
1799 		struct device_attribute *attr, char *buf)
1800 {
1801 	struct zram *zram = dev_to_zram(dev);
1802 	ssize_t ret;
1803 
1804 	down_read(&zram->init_lock);
1805 	ret = sysfs_emit(buf,
1806 			"%8llu %8llu %8llu\n",
1807 			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1808 			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1809 			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1810 	up_read(&zram->init_lock);
1811 
1812 	return ret;
1813 }
1814 #endif
1815 
debug_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1816 static ssize_t debug_stat_show(struct device *dev,
1817 		struct device_attribute *attr, char *buf)
1818 {
1819 	int version = 1;
1820 	struct zram *zram = dev_to_zram(dev);
1821 	ssize_t ret;
1822 
1823 	down_read(&zram->init_lock);
1824 	ret = sysfs_emit(buf,
1825 			"version: %d\n0 %8llu\n",
1826 			version,
1827 			(u64)atomic64_read(&zram->stats.miss_free));
1828 	up_read(&zram->init_lock);
1829 
1830 	return ret;
1831 }
1832 
1833 static DEVICE_ATTR_RO(io_stat);
1834 static DEVICE_ATTR_RO(mm_stat);
1835 #ifdef CONFIG_ZRAM_WRITEBACK
1836 static DEVICE_ATTR_RO(bd_stat);
1837 #endif
1838 static DEVICE_ATTR_RO(debug_stat);
1839 
zram_meta_free(struct zram * zram,u64 disksize)1840 static void zram_meta_free(struct zram *zram, u64 disksize)
1841 {
1842 	size_t num_pages = disksize >> PAGE_SHIFT;
1843 	size_t index;
1844 
1845 	if (!zram->table)
1846 		return;
1847 
1848 	/* Free all pages that are still in this zram device */
1849 	for (index = 0; index < num_pages; index++)
1850 		zram_free_page(zram, index);
1851 
1852 	zs_destroy_pool(zram->mem_pool);
1853 	vfree(zram->table);
1854 	zram->table = NULL;
1855 }
1856 
zram_meta_alloc(struct zram * zram,u64 disksize)1857 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1858 {
1859 	size_t num_pages, index;
1860 
1861 	num_pages = disksize >> PAGE_SHIFT;
1862 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1863 	if (!zram->table)
1864 		return false;
1865 
1866 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1867 	if (!zram->mem_pool) {
1868 		vfree(zram->table);
1869 		zram->table = NULL;
1870 		return false;
1871 	}
1872 
1873 	if (!huge_class_size)
1874 		huge_class_size = zs_huge_class_size(zram->mem_pool);
1875 
1876 	for (index = 0; index < num_pages; index++)
1877 		zram_slot_lock_init(zram, index);
1878 
1879 	return true;
1880 }
1881 
zram_free_page(struct zram * zram,size_t index)1882 static void zram_free_page(struct zram *zram, size_t index)
1883 {
1884 	unsigned long handle;
1885 
1886 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
1887 	zram->table[index].ac_time = 0;
1888 #endif
1889 
1890 	zram_clear_flag(zram, index, ZRAM_IDLE);
1891 	zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE);
1892 	zram_clear_flag(zram, index, ZRAM_PP_SLOT);
1893 	zram_set_priority(zram, index, 0);
1894 
1895 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1896 		zram_clear_flag(zram, index, ZRAM_HUGE);
1897 		atomic64_dec(&zram->stats.huge_pages);
1898 	}
1899 
1900 	if (zram_test_flag(zram, index, ZRAM_WB)) {
1901 		zram_clear_flag(zram, index, ZRAM_WB);
1902 		zram_release_bdev_block(zram, zram_get_handle(zram, index));
1903 		goto out;
1904 	}
1905 
1906 	/*
1907 	 * No memory is allocated for same element filled pages.
1908 	 * Simply clear same page flag.
1909 	 */
1910 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
1911 		zram_clear_flag(zram, index, ZRAM_SAME);
1912 		atomic64_dec(&zram->stats.same_pages);
1913 		goto out;
1914 	}
1915 
1916 	handle = zram_get_handle(zram, index);
1917 	if (!handle)
1918 		return;
1919 
1920 	zs_free(zram->mem_pool, handle);
1921 
1922 	atomic64_sub(zram_get_obj_size(zram, index),
1923 		     &zram->stats.compr_data_size);
1924 out:
1925 	atomic64_dec(&zram->stats.pages_stored);
1926 	zram_set_handle(zram, index, 0);
1927 	zram_set_obj_size(zram, index, 0);
1928 }
1929 
read_same_filled_page(struct zram * zram,struct page * page,u32 index)1930 static int read_same_filled_page(struct zram *zram, struct page *page,
1931 				 u32 index)
1932 {
1933 	void *mem;
1934 
1935 	mem = kmap_local_page(page);
1936 	zram_fill_page(mem, PAGE_SIZE, zram_get_handle(zram, index));
1937 	kunmap_local(mem);
1938 	return 0;
1939 }
1940 
read_incompressible_page(struct zram * zram,struct page * page,u32 index)1941 static int read_incompressible_page(struct zram *zram, struct page *page,
1942 				    u32 index)
1943 {
1944 	unsigned long handle;
1945 	void *src, *dst;
1946 
1947 	handle = zram_get_handle(zram, index);
1948 	src = zs_obj_read_begin(zram->mem_pool, handle, NULL);
1949 	dst = kmap_local_page(page);
1950 	copy_page(dst, src);
1951 	kunmap_local(dst);
1952 	zs_obj_read_end(zram->mem_pool, handle, src);
1953 
1954 	return 0;
1955 }
1956 
read_compressed_page(struct zram * zram,struct page * page,u32 index)1957 static int read_compressed_page(struct zram *zram, struct page *page, u32 index)
1958 {
1959 	struct zcomp_strm *zstrm;
1960 	unsigned long handle;
1961 	unsigned int size;
1962 	void *src, *dst;
1963 	int ret, prio;
1964 
1965 	handle = zram_get_handle(zram, index);
1966 	size = zram_get_obj_size(zram, index);
1967 	prio = zram_get_priority(zram, index);
1968 
1969 	zstrm = zcomp_stream_get(zram->comps[prio]);
1970 	src = zs_obj_read_begin(zram->mem_pool, handle, zstrm->local_copy);
1971 	dst = kmap_local_page(page);
1972 	ret = zcomp_decompress(zram->comps[prio], zstrm, src, size, dst);
1973 	kunmap_local(dst);
1974 	zs_obj_read_end(zram->mem_pool, handle, src);
1975 	zcomp_stream_put(zstrm);
1976 
1977 	return ret;
1978 }
1979 
1980 /*
1981  * Reads (decompresses if needed) a page from zspool (zsmalloc).
1982  * Corresponding ZRAM slot should be locked.
1983  */
zram_read_from_zspool(struct zram * zram,struct page * page,u32 index)1984 static int zram_read_from_zspool(struct zram *zram, struct page *page,
1985 				 u32 index)
1986 {
1987 	if (zram_test_flag(zram, index, ZRAM_SAME) ||
1988 	    !zram_get_handle(zram, index))
1989 		return read_same_filled_page(zram, page, index);
1990 
1991 	if (!zram_test_flag(zram, index, ZRAM_HUGE))
1992 		return read_compressed_page(zram, page, index);
1993 	else
1994 		return read_incompressible_page(zram, page, index);
1995 }
1996 
zram_read_page(struct zram * zram,struct page * page,u32 index,struct bio * parent)1997 static int zram_read_page(struct zram *zram, struct page *page, u32 index,
1998 			  struct bio *parent)
1999 {
2000 	int ret;
2001 
2002 	zram_slot_lock(zram, index);
2003 	if (!zram_test_flag(zram, index, ZRAM_WB)) {
2004 		/* Slot should be locked through out the function call */
2005 		ret = zram_read_from_zspool(zram, page, index);
2006 		zram_slot_unlock(zram, index);
2007 	} else {
2008 		unsigned long blk_idx = zram_get_handle(zram, index);
2009 
2010 		/*
2011 		 * The slot should be unlocked before reading from the backing
2012 		 * device.
2013 		 */
2014 		zram_slot_unlock(zram, index);
2015 		ret = read_from_bdev(zram, page, blk_idx, parent);
2016 	}
2017 
2018 	/* Should NEVER happen. Return bio error if it does. */
2019 	if (WARN_ON(ret < 0))
2020 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
2021 
2022 	return ret;
2023 }
2024 
2025 /*
2026  * Use a temporary buffer to decompress the page, as the decompressor
2027  * always expects a full page for the output.
2028  */
zram_bvec_read_partial(struct zram * zram,struct bio_vec * bvec,u32 index,int offset)2029 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec,
2030 				  u32 index, int offset)
2031 {
2032 	struct page *page = alloc_page(GFP_NOIO);
2033 	int ret;
2034 
2035 	if (!page)
2036 		return -ENOMEM;
2037 	ret = zram_read_page(zram, page, index, NULL);
2038 	if (likely(!ret))
2039 		memcpy_to_bvec(bvec, page_address(page) + offset);
2040 	__free_page(page);
2041 	return ret;
2042 }
2043 
zram_bvec_read(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)2044 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
2045 			  u32 index, int offset, struct bio *bio)
2046 {
2047 	if (is_partial_io(bvec))
2048 		return zram_bvec_read_partial(zram, bvec, index, offset);
2049 	return zram_read_page(zram, bvec->bv_page, index, bio);
2050 }
2051 
write_same_filled_page(struct zram * zram,unsigned long fill,u32 index)2052 static int write_same_filled_page(struct zram *zram, unsigned long fill,
2053 				  u32 index)
2054 {
2055 	zram_slot_lock(zram, index);
2056 	zram_free_page(zram, index);
2057 	zram_set_flag(zram, index, ZRAM_SAME);
2058 	zram_set_handle(zram, index, fill);
2059 	zram_slot_unlock(zram, index);
2060 
2061 	atomic64_inc(&zram->stats.same_pages);
2062 	atomic64_inc(&zram->stats.pages_stored);
2063 
2064 	return 0;
2065 }
2066 
write_incompressible_page(struct zram * zram,struct page * page,u32 index)2067 static int write_incompressible_page(struct zram *zram, struct page *page,
2068 				     u32 index)
2069 {
2070 	unsigned long handle;
2071 	void *src;
2072 
2073 	/*
2074 	 * This function is called from preemptible context so we don't need
2075 	 * to do optimistic and fallback to pessimistic handle allocation,
2076 	 * like we do for compressible pages.
2077 	 */
2078 	handle = zs_malloc(zram->mem_pool, PAGE_SIZE,
2079 			   GFP_NOIO | __GFP_NOWARN |
2080 			   __GFP_HIGHMEM | __GFP_MOVABLE, page_to_nid(page));
2081 	if (IS_ERR_VALUE(handle))
2082 		return PTR_ERR((void *)handle);
2083 
2084 	if (!zram_can_store_page(zram)) {
2085 		zs_free(zram->mem_pool, handle);
2086 		return -ENOMEM;
2087 	}
2088 
2089 	src = kmap_local_page(page);
2090 	zs_obj_write(zram->mem_pool, handle, src, PAGE_SIZE);
2091 	kunmap_local(src);
2092 
2093 	zram_slot_lock(zram, index);
2094 	zram_free_page(zram, index);
2095 	zram_set_flag(zram, index, ZRAM_HUGE);
2096 	zram_set_handle(zram, index, handle);
2097 	zram_set_obj_size(zram, index, PAGE_SIZE);
2098 	zram_slot_unlock(zram, index);
2099 
2100 	atomic64_add(PAGE_SIZE, &zram->stats.compr_data_size);
2101 	atomic64_inc(&zram->stats.huge_pages);
2102 	atomic64_inc(&zram->stats.huge_pages_since);
2103 	atomic64_inc(&zram->stats.pages_stored);
2104 
2105 	return 0;
2106 }
2107 
zram_write_page(struct zram * zram,struct page * page,u32 index)2108 static int zram_write_page(struct zram *zram, struct page *page, u32 index)
2109 {
2110 	int ret = 0;
2111 	unsigned long handle;
2112 	unsigned int comp_len;
2113 	void *mem;
2114 	struct zcomp_strm *zstrm;
2115 	unsigned long element;
2116 	bool same_filled;
2117 
2118 	mem = kmap_local_page(page);
2119 	same_filled = page_same_filled(mem, &element);
2120 	kunmap_local(mem);
2121 	if (same_filled)
2122 		return write_same_filled_page(zram, element, index);
2123 
2124 	zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
2125 	mem = kmap_local_page(page);
2126 	ret = zcomp_compress(zram->comps[ZRAM_PRIMARY_COMP], zstrm,
2127 			     mem, &comp_len);
2128 	kunmap_local(mem);
2129 
2130 	if (unlikely(ret)) {
2131 		zcomp_stream_put(zstrm);
2132 		pr_err("Compression failed! err=%d\n", ret);
2133 		return ret;
2134 	}
2135 
2136 	if (comp_len >= huge_class_size) {
2137 		zcomp_stream_put(zstrm);
2138 		return write_incompressible_page(zram, page, index);
2139 	}
2140 
2141 	handle = zs_malloc(zram->mem_pool, comp_len,
2142 			   GFP_NOIO | __GFP_NOWARN |
2143 			   __GFP_HIGHMEM | __GFP_MOVABLE, page_to_nid(page));
2144 	if (IS_ERR_VALUE(handle)) {
2145 		zcomp_stream_put(zstrm);
2146 		return PTR_ERR((void *)handle);
2147 	}
2148 
2149 	if (!zram_can_store_page(zram)) {
2150 		zcomp_stream_put(zstrm);
2151 		zs_free(zram->mem_pool, handle);
2152 		return -ENOMEM;
2153 	}
2154 
2155 	zs_obj_write(zram->mem_pool, handle, zstrm->buffer, comp_len);
2156 	zcomp_stream_put(zstrm);
2157 
2158 	zram_slot_lock(zram, index);
2159 	zram_free_page(zram, index);
2160 	zram_set_handle(zram, index, handle);
2161 	zram_set_obj_size(zram, index, comp_len);
2162 	zram_slot_unlock(zram, index);
2163 
2164 	/* Update stats */
2165 	atomic64_inc(&zram->stats.pages_stored);
2166 	atomic64_add(comp_len, &zram->stats.compr_data_size);
2167 
2168 	return ret;
2169 }
2170 
2171 /*
2172  * This is a partial IO. Read the full page before writing the changes.
2173  */
zram_bvec_write_partial(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)2174 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec,
2175 				   u32 index, int offset, struct bio *bio)
2176 {
2177 	struct page *page = alloc_page(GFP_NOIO);
2178 	int ret;
2179 
2180 	if (!page)
2181 		return -ENOMEM;
2182 
2183 	ret = zram_read_page(zram, page, index, bio);
2184 	if (!ret) {
2185 		memcpy_from_bvec(page_address(page) + offset, bvec);
2186 		ret = zram_write_page(zram, page, index);
2187 	}
2188 	__free_page(page);
2189 	return ret;
2190 }
2191 
zram_bvec_write(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)2192 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
2193 			   u32 index, int offset, struct bio *bio)
2194 {
2195 	if (is_partial_io(bvec))
2196 		return zram_bvec_write_partial(zram, bvec, index, offset, bio);
2197 	return zram_write_page(zram, bvec->bv_page, index);
2198 }
2199 
2200 #ifdef CONFIG_ZRAM_MULTI_COMP
2201 #define RECOMPRESS_IDLE		(1 << 0)
2202 #define RECOMPRESS_HUGE		(1 << 1)
2203 
scan_slots_for_recompress(struct zram * zram,u32 mode,u32 prio_max,struct zram_pp_ctl * ctl)2204 static int scan_slots_for_recompress(struct zram *zram, u32 mode, u32 prio_max,
2205 				     struct zram_pp_ctl *ctl)
2206 {
2207 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
2208 	unsigned long index;
2209 
2210 	for (index = 0; index < nr_pages; index++) {
2211 		bool ok = true;
2212 
2213 		zram_slot_lock(zram, index);
2214 		if (!zram_allocated(zram, index))
2215 			goto next;
2216 
2217 		if (mode & RECOMPRESS_IDLE &&
2218 		    !zram_test_flag(zram, index, ZRAM_IDLE))
2219 			goto next;
2220 
2221 		if (mode & RECOMPRESS_HUGE &&
2222 		    !zram_test_flag(zram, index, ZRAM_HUGE))
2223 			goto next;
2224 
2225 		if (zram_test_flag(zram, index, ZRAM_WB) ||
2226 		    zram_test_flag(zram, index, ZRAM_SAME) ||
2227 		    zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
2228 			goto next;
2229 
2230 		/* Already compressed with same of higher priority */
2231 		if (zram_get_priority(zram, index) + 1 >= prio_max)
2232 			goto next;
2233 
2234 		ok = place_pp_slot(zram, ctl, index);
2235 next:
2236 		zram_slot_unlock(zram, index);
2237 		if (!ok)
2238 			break;
2239 	}
2240 
2241 	return 0;
2242 }
2243 
2244 /*
2245  * This function will decompress (unless it's ZRAM_HUGE) the page and then
2246  * attempt to compress it using provided compression algorithm priority
2247  * (which is potentially more effective).
2248  *
2249  * Corresponding ZRAM slot should be locked.
2250  */
recompress_slot(struct zram * zram,u32 index,struct page * page,u64 * num_recomp_pages,u32 threshold,u32 prio,u32 prio_max)2251 static int recompress_slot(struct zram *zram, u32 index, struct page *page,
2252 			   u64 *num_recomp_pages, u32 threshold, u32 prio,
2253 			   u32 prio_max)
2254 {
2255 	struct zcomp_strm *zstrm = NULL;
2256 	unsigned long handle_old;
2257 	unsigned long handle_new;
2258 	unsigned int comp_len_old;
2259 	unsigned int comp_len_new;
2260 	unsigned int class_index_old;
2261 	unsigned int class_index_new;
2262 	void *src;
2263 	int ret = 0;
2264 
2265 	handle_old = zram_get_handle(zram, index);
2266 	if (!handle_old)
2267 		return -EINVAL;
2268 
2269 	comp_len_old = zram_get_obj_size(zram, index);
2270 	/*
2271 	 * Do not recompress objects that are already "small enough".
2272 	 */
2273 	if (comp_len_old < threshold)
2274 		return 0;
2275 
2276 	ret = zram_read_from_zspool(zram, page, index);
2277 	if (ret)
2278 		return ret;
2279 
2280 	/*
2281 	 * We touched this entry so mark it as non-IDLE. This makes sure that
2282 	 * we don't preserve IDLE flag and don't incorrectly pick this entry
2283 	 * for different post-processing type (e.g. writeback).
2284 	 */
2285 	zram_clear_flag(zram, index, ZRAM_IDLE);
2286 
2287 	class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old);
2288 
2289 	prio = max(prio, zram_get_priority(zram, index) + 1);
2290 	/*
2291 	 * Recompression slots scan should not select slots that are
2292 	 * already compressed with a higher priority algorithm, but
2293 	 * just in case
2294 	 */
2295 	if (prio >= prio_max)
2296 		return 0;
2297 
2298 	/*
2299 	 * Iterate the secondary comp algorithms list (in order of priority)
2300 	 * and try to recompress the page.
2301 	 */
2302 	for (; prio < prio_max; prio++) {
2303 		if (!zram->comps[prio])
2304 			continue;
2305 
2306 		zstrm = zcomp_stream_get(zram->comps[prio]);
2307 		src = kmap_local_page(page);
2308 		ret = zcomp_compress(zram->comps[prio], zstrm,
2309 				     src, &comp_len_new);
2310 		kunmap_local(src);
2311 
2312 		if (ret) {
2313 			zcomp_stream_put(zstrm);
2314 			zstrm = NULL;
2315 			break;
2316 		}
2317 
2318 		class_index_new = zs_lookup_class_index(zram->mem_pool,
2319 							comp_len_new);
2320 
2321 		/* Continue until we make progress */
2322 		if (class_index_new >= class_index_old ||
2323 		    (threshold && comp_len_new >= threshold)) {
2324 			zcomp_stream_put(zstrm);
2325 			zstrm = NULL;
2326 			continue;
2327 		}
2328 
2329 		/* Recompression was successful so break out */
2330 		break;
2331 	}
2332 
2333 	/*
2334 	 * Decrement the limit (if set) on pages we can recompress, even
2335 	 * when current recompression was unsuccessful or did not compress
2336 	 * the page below the threshold, because we still spent resources
2337 	 * on it.
2338 	 */
2339 	if (*num_recomp_pages)
2340 		*num_recomp_pages -= 1;
2341 
2342 	/* Compression error */
2343 	if (ret)
2344 		return ret;
2345 
2346 	if (!zstrm) {
2347 		/*
2348 		 * Secondary algorithms failed to re-compress the page
2349 		 * in a way that would save memory.
2350 		 *
2351 		 * Mark the object incompressible if the max-priority
2352 		 * algorithm couldn't re-compress it.
2353 		 */
2354 		if (prio < zram->num_active_comps)
2355 			return 0;
2356 		zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE);
2357 		return 0;
2358 	}
2359 
2360 	/*
2361 	 * We are holding per-CPU stream mutex and entry lock so better
2362 	 * avoid direct reclaim.  Allocation error is not fatal since
2363 	 * we still have the old object in the mem_pool.
2364 	 *
2365 	 * XXX: technically, the node we really want here is the node that holds
2366 	 * the original compressed data. But that would require us to modify
2367 	 * zsmalloc API to return this information. For now, we will make do with
2368 	 * the node of the page allocated for recompression.
2369 	 */
2370 	handle_new = zs_malloc(zram->mem_pool, comp_len_new,
2371 			       GFP_NOIO | __GFP_NOWARN |
2372 			       __GFP_HIGHMEM | __GFP_MOVABLE, page_to_nid(page));
2373 	if (IS_ERR_VALUE(handle_new)) {
2374 		zcomp_stream_put(zstrm);
2375 		return PTR_ERR((void *)handle_new);
2376 	}
2377 
2378 	zs_obj_write(zram->mem_pool, handle_new, zstrm->buffer, comp_len_new);
2379 	zcomp_stream_put(zstrm);
2380 
2381 	zram_free_page(zram, index);
2382 	zram_set_handle(zram, index, handle_new);
2383 	zram_set_obj_size(zram, index, comp_len_new);
2384 	zram_set_priority(zram, index, prio);
2385 
2386 	atomic64_add(comp_len_new, &zram->stats.compr_data_size);
2387 	atomic64_inc(&zram->stats.pages_stored);
2388 
2389 	return 0;
2390 }
2391 
recompress_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)2392 static ssize_t recompress_store(struct device *dev,
2393 				struct device_attribute *attr,
2394 				const char *buf, size_t len)
2395 {
2396 	struct zram *zram = dev_to_zram(dev);
2397 	char *args, *param, *val, *algo = NULL;
2398 	u64 num_recomp_pages = ULLONG_MAX;
2399 	struct zram_pp_ctl *ctl = NULL;
2400 	struct zram_pp_slot *pps;
2401 	u32 mode = 0, threshold = 0;
2402 	u32 prio, prio_max;
2403 	struct page *page = NULL;
2404 	ssize_t ret;
2405 
2406 	prio = ZRAM_SECONDARY_COMP;
2407 	prio_max = zram->num_active_comps;
2408 
2409 	args = skip_spaces(buf);
2410 	while (*args) {
2411 		args = next_arg(args, &param, &val);
2412 
2413 		if (!val || !*val)
2414 			return -EINVAL;
2415 
2416 		if (!strcmp(param, "type")) {
2417 			if (!strcmp(val, "idle"))
2418 				mode = RECOMPRESS_IDLE;
2419 			if (!strcmp(val, "huge"))
2420 				mode = RECOMPRESS_HUGE;
2421 			if (!strcmp(val, "huge_idle"))
2422 				mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE;
2423 			continue;
2424 		}
2425 
2426 		if (!strcmp(param, "max_pages")) {
2427 			/*
2428 			 * Limit the number of entries (pages) we attempt to
2429 			 * recompress.
2430 			 */
2431 			ret = kstrtoull(val, 10, &num_recomp_pages);
2432 			if (ret)
2433 				return ret;
2434 			continue;
2435 		}
2436 
2437 		if (!strcmp(param, "threshold")) {
2438 			/*
2439 			 * We will re-compress only idle objects equal or
2440 			 * greater in size than watermark.
2441 			 */
2442 			ret = kstrtouint(val, 10, &threshold);
2443 			if (ret)
2444 				return ret;
2445 			continue;
2446 		}
2447 
2448 		if (!strcmp(param, "algo")) {
2449 			algo = val;
2450 			continue;
2451 		}
2452 
2453 		if (!strcmp(param, "priority")) {
2454 			ret = kstrtouint(val, 10, &prio);
2455 			if (ret)
2456 				return ret;
2457 
2458 			if (prio == ZRAM_PRIMARY_COMP)
2459 				prio = ZRAM_SECONDARY_COMP;
2460 
2461 			prio_max = prio + 1;
2462 			continue;
2463 		}
2464 	}
2465 
2466 	if (threshold >= huge_class_size)
2467 		return -EINVAL;
2468 
2469 	down_read(&zram->init_lock);
2470 	if (!init_done(zram)) {
2471 		ret = -EINVAL;
2472 		goto release_init_lock;
2473 	}
2474 
2475 	/* Do not permit concurrent post-processing actions. */
2476 	if (atomic_xchg(&zram->pp_in_progress, 1)) {
2477 		up_read(&zram->init_lock);
2478 		return -EAGAIN;
2479 	}
2480 
2481 	if (algo) {
2482 		bool found = false;
2483 
2484 		for (; prio < ZRAM_MAX_COMPS; prio++) {
2485 			if (!zram->comp_algs[prio])
2486 				continue;
2487 
2488 			if (!strcmp(zram->comp_algs[prio], algo)) {
2489 				prio_max = prio + 1;
2490 				found = true;
2491 				break;
2492 			}
2493 		}
2494 
2495 		if (!found) {
2496 			ret = -EINVAL;
2497 			goto release_init_lock;
2498 		}
2499 	}
2500 
2501 	prio_max = min(prio_max, (u32)zram->num_active_comps);
2502 	if (prio >= prio_max) {
2503 		ret = -EINVAL;
2504 		goto release_init_lock;
2505 	}
2506 
2507 	page = alloc_page(GFP_KERNEL);
2508 	if (!page) {
2509 		ret = -ENOMEM;
2510 		goto release_init_lock;
2511 	}
2512 
2513 	ctl = init_pp_ctl();
2514 	if (!ctl) {
2515 		ret = -ENOMEM;
2516 		goto release_init_lock;
2517 	}
2518 
2519 	scan_slots_for_recompress(zram, mode, prio_max, ctl);
2520 
2521 	ret = len;
2522 	while ((pps = select_pp_slot(ctl))) {
2523 		int err = 0;
2524 
2525 		if (!num_recomp_pages)
2526 			break;
2527 
2528 		zram_slot_lock(zram, pps->index);
2529 		if (!zram_test_flag(zram, pps->index, ZRAM_PP_SLOT))
2530 			goto next;
2531 
2532 		err = recompress_slot(zram, pps->index, page,
2533 				      &num_recomp_pages, threshold,
2534 				      prio, prio_max);
2535 next:
2536 		zram_slot_unlock(zram, pps->index);
2537 		release_pp_slot(zram, pps);
2538 
2539 		if (err) {
2540 			ret = err;
2541 			break;
2542 		}
2543 
2544 		cond_resched();
2545 	}
2546 
2547 release_init_lock:
2548 	if (page)
2549 		__free_page(page);
2550 	release_pp_ctl(zram, ctl);
2551 	atomic_set(&zram->pp_in_progress, 0);
2552 	up_read(&zram->init_lock);
2553 	return ret;
2554 }
2555 #endif
2556 
zram_bio_discard(struct zram * zram,struct bio * bio)2557 static void zram_bio_discard(struct zram *zram, struct bio *bio)
2558 {
2559 	size_t n = bio->bi_iter.bi_size;
2560 	u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2561 	u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2562 			SECTOR_SHIFT;
2563 
2564 	/*
2565 	 * zram manages data in physical block size units. Because logical block
2566 	 * size isn't identical with physical block size on some arch, we
2567 	 * could get a discard request pointing to a specific offset within a
2568 	 * certain physical block.  Although we can handle this request by
2569 	 * reading that physiclal block and decompressing and partially zeroing
2570 	 * and re-compressing and then re-storing it, this isn't reasonable
2571 	 * because our intent with a discard request is to save memory.  So
2572 	 * skipping this logical block is appropriate here.
2573 	 */
2574 	if (offset) {
2575 		if (n <= (PAGE_SIZE - offset))
2576 			return;
2577 
2578 		n -= (PAGE_SIZE - offset);
2579 		index++;
2580 	}
2581 
2582 	while (n >= PAGE_SIZE) {
2583 		zram_slot_lock(zram, index);
2584 		zram_free_page(zram, index);
2585 		zram_slot_unlock(zram, index);
2586 		atomic64_inc(&zram->stats.notify_free);
2587 		index++;
2588 		n -= PAGE_SIZE;
2589 	}
2590 
2591 	bio_endio(bio);
2592 }
2593 
zram_bio_read(struct zram * zram,struct bio * bio)2594 static void zram_bio_read(struct zram *zram, struct bio *bio)
2595 {
2596 	unsigned long start_time = bio_start_io_acct(bio);
2597 	struct bvec_iter iter = bio->bi_iter;
2598 
2599 	do {
2600 		u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2601 		u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2602 				SECTOR_SHIFT;
2603 		struct bio_vec bv = bio_iter_iovec(bio, iter);
2604 
2605 		bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
2606 
2607 		if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) {
2608 			atomic64_inc(&zram->stats.failed_reads);
2609 			bio->bi_status = BLK_STS_IOERR;
2610 			break;
2611 		}
2612 		flush_dcache_page(bv.bv_page);
2613 
2614 		zram_slot_lock(zram, index);
2615 		zram_accessed(zram, index);
2616 		zram_slot_unlock(zram, index);
2617 
2618 		bio_advance_iter_single(bio, &iter, bv.bv_len);
2619 	} while (iter.bi_size);
2620 
2621 	bio_end_io_acct(bio, start_time);
2622 	bio_endio(bio);
2623 }
2624 
zram_bio_write(struct zram * zram,struct bio * bio)2625 static void zram_bio_write(struct zram *zram, struct bio *bio)
2626 {
2627 	unsigned long start_time = bio_start_io_acct(bio);
2628 	struct bvec_iter iter = bio->bi_iter;
2629 
2630 	do {
2631 		u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2632 		u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2633 				SECTOR_SHIFT;
2634 		struct bio_vec bv = bio_iter_iovec(bio, iter);
2635 
2636 		bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
2637 
2638 		if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) {
2639 			atomic64_inc(&zram->stats.failed_writes);
2640 			bio->bi_status = BLK_STS_IOERR;
2641 			break;
2642 		}
2643 
2644 		zram_slot_lock(zram, index);
2645 		zram_accessed(zram, index);
2646 		zram_slot_unlock(zram, index);
2647 
2648 		bio_advance_iter_single(bio, &iter, bv.bv_len);
2649 	} while (iter.bi_size);
2650 
2651 	bio_end_io_acct(bio, start_time);
2652 	bio_endio(bio);
2653 }
2654 
2655 /*
2656  * Handler function for all zram I/O requests.
2657  */
zram_submit_bio(struct bio * bio)2658 static void zram_submit_bio(struct bio *bio)
2659 {
2660 	struct zram *zram = bio->bi_bdev->bd_disk->private_data;
2661 
2662 	switch (bio_op(bio)) {
2663 	case REQ_OP_READ:
2664 		zram_bio_read(zram, bio);
2665 		break;
2666 	case REQ_OP_WRITE:
2667 		zram_bio_write(zram, bio);
2668 		break;
2669 	case REQ_OP_DISCARD:
2670 	case REQ_OP_WRITE_ZEROES:
2671 		zram_bio_discard(zram, bio);
2672 		break;
2673 	default:
2674 		WARN_ON_ONCE(1);
2675 		bio_endio(bio);
2676 	}
2677 }
2678 
zram_slot_free_notify(struct block_device * bdev,unsigned long index)2679 static void zram_slot_free_notify(struct block_device *bdev,
2680 				unsigned long index)
2681 {
2682 	struct zram *zram;
2683 
2684 	zram = bdev->bd_disk->private_data;
2685 
2686 	atomic64_inc(&zram->stats.notify_free);
2687 	if (!zram_slot_trylock(zram, index)) {
2688 		atomic64_inc(&zram->stats.miss_free);
2689 		return;
2690 	}
2691 
2692 	zram_free_page(zram, index);
2693 	zram_slot_unlock(zram, index);
2694 }
2695 
zram_comp_params_reset(struct zram * zram)2696 static void zram_comp_params_reset(struct zram *zram)
2697 {
2698 	u32 prio;
2699 
2700 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2701 		comp_params_reset(zram, prio);
2702 	}
2703 }
2704 
zram_destroy_comps(struct zram * zram)2705 static void zram_destroy_comps(struct zram *zram)
2706 {
2707 	u32 prio;
2708 
2709 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2710 		struct zcomp *comp = zram->comps[prio];
2711 
2712 		zram->comps[prio] = NULL;
2713 		if (!comp)
2714 			continue;
2715 		zcomp_destroy(comp);
2716 		zram->num_active_comps--;
2717 	}
2718 
2719 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2720 		/* Do not free statically defined compression algorithms */
2721 		if (zram->comp_algs[prio] != default_compressor)
2722 			kfree(zram->comp_algs[prio]);
2723 		zram->comp_algs[prio] = NULL;
2724 	}
2725 
2726 	zram_comp_params_reset(zram);
2727 }
2728 
zram_reset_device(struct zram * zram)2729 static void zram_reset_device(struct zram *zram)
2730 {
2731 	down_write(&zram->init_lock);
2732 
2733 	zram->limit_pages = 0;
2734 
2735 	set_capacity_and_notify(zram->disk, 0);
2736 	part_stat_set_all(zram->disk->part0, 0);
2737 
2738 	/* I/O operation under all of CPU are done so let's free */
2739 	zram_meta_free(zram, zram->disksize);
2740 	zram->disksize = 0;
2741 	zram_destroy_comps(zram);
2742 	memset(&zram->stats, 0, sizeof(zram->stats));
2743 	atomic_set(&zram->pp_in_progress, 0);
2744 	reset_bdev(zram);
2745 
2746 	comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2747 	up_write(&zram->init_lock);
2748 }
2749 
disksize_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)2750 static ssize_t disksize_store(struct device *dev,
2751 		struct device_attribute *attr, const char *buf, size_t len)
2752 {
2753 	u64 disksize;
2754 	struct zcomp *comp;
2755 	struct zram *zram = dev_to_zram(dev);
2756 	int err;
2757 	u32 prio;
2758 
2759 	disksize = memparse(buf, NULL);
2760 	if (!disksize)
2761 		return -EINVAL;
2762 
2763 	down_write(&zram->init_lock);
2764 	if (init_done(zram)) {
2765 		pr_info("Cannot change disksize for initialized device\n");
2766 		err = -EBUSY;
2767 		goto out_unlock;
2768 	}
2769 
2770 	disksize = PAGE_ALIGN(disksize);
2771 	if (!zram_meta_alloc(zram, disksize)) {
2772 		err = -ENOMEM;
2773 		goto out_unlock;
2774 	}
2775 
2776 	for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2777 		if (!zram->comp_algs[prio])
2778 			continue;
2779 
2780 		comp = zcomp_create(zram->comp_algs[prio],
2781 				    &zram->params[prio]);
2782 		if (IS_ERR(comp)) {
2783 			pr_err("Cannot initialise %s compressing backend\n",
2784 			       zram->comp_algs[prio]);
2785 			err = PTR_ERR(comp);
2786 			goto out_free_comps;
2787 		}
2788 
2789 		zram->comps[prio] = comp;
2790 		zram->num_active_comps++;
2791 	}
2792 	zram->disksize = disksize;
2793 	set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
2794 	up_write(&zram->init_lock);
2795 
2796 	return len;
2797 
2798 out_free_comps:
2799 	zram_destroy_comps(zram);
2800 	zram_meta_free(zram, disksize);
2801 out_unlock:
2802 	up_write(&zram->init_lock);
2803 	return err;
2804 }
2805 
reset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)2806 static ssize_t reset_store(struct device *dev,
2807 		struct device_attribute *attr, const char *buf, size_t len)
2808 {
2809 	int ret;
2810 	unsigned short do_reset;
2811 	struct zram *zram;
2812 	struct gendisk *disk;
2813 
2814 	ret = kstrtou16(buf, 10, &do_reset);
2815 	if (ret)
2816 		return ret;
2817 
2818 	if (!do_reset)
2819 		return -EINVAL;
2820 
2821 	zram = dev_to_zram(dev);
2822 	disk = zram->disk;
2823 
2824 	mutex_lock(&disk->open_mutex);
2825 	/* Do not reset an active device or claimed device */
2826 	if (disk_openers(disk) || zram->claim) {
2827 		mutex_unlock(&disk->open_mutex);
2828 		return -EBUSY;
2829 	}
2830 
2831 	/* From now on, anyone can't open /dev/zram[0-9] */
2832 	zram->claim = true;
2833 	mutex_unlock(&disk->open_mutex);
2834 
2835 	/* Make sure all the pending I/O are finished */
2836 	sync_blockdev(disk->part0);
2837 	zram_reset_device(zram);
2838 
2839 	mutex_lock(&disk->open_mutex);
2840 	zram->claim = false;
2841 	mutex_unlock(&disk->open_mutex);
2842 
2843 	return len;
2844 }
2845 
zram_open(struct gendisk * disk,blk_mode_t mode)2846 static int zram_open(struct gendisk *disk, blk_mode_t mode)
2847 {
2848 	struct zram *zram = disk->private_data;
2849 
2850 	WARN_ON(!mutex_is_locked(&disk->open_mutex));
2851 
2852 	/* zram was claimed to reset so open request fails */
2853 	if (zram->claim)
2854 		return -EBUSY;
2855 	return 0;
2856 }
2857 
2858 static const struct block_device_operations zram_devops = {
2859 	.open = zram_open,
2860 	.submit_bio = zram_submit_bio,
2861 	.swap_slot_free_notify = zram_slot_free_notify,
2862 	.owner = THIS_MODULE
2863 };
2864 
2865 static DEVICE_ATTR_WO(compact);
2866 static DEVICE_ATTR_RW(disksize);
2867 static DEVICE_ATTR_RO(initstate);
2868 static DEVICE_ATTR_WO(reset);
2869 static DEVICE_ATTR_WO(mem_limit);
2870 static DEVICE_ATTR_WO(mem_used_max);
2871 static DEVICE_ATTR_WO(idle);
2872 static DEVICE_ATTR_RW(comp_algorithm);
2873 #ifdef CONFIG_ZRAM_WRITEBACK
2874 static DEVICE_ATTR_RW(backing_dev);
2875 static DEVICE_ATTR_WO(writeback);
2876 static DEVICE_ATTR_RW(writeback_limit);
2877 static DEVICE_ATTR_RW(writeback_limit_enable);
2878 static DEVICE_ATTR_RW(writeback_batch_size);
2879 #endif
2880 #ifdef CONFIG_ZRAM_MULTI_COMP
2881 static DEVICE_ATTR_RW(recomp_algorithm);
2882 static DEVICE_ATTR_WO(recompress);
2883 #endif
2884 static DEVICE_ATTR_WO(algorithm_params);
2885 
2886 static struct attribute *zram_disk_attrs[] = {
2887 	&dev_attr_disksize.attr,
2888 	&dev_attr_initstate.attr,
2889 	&dev_attr_reset.attr,
2890 	&dev_attr_compact.attr,
2891 	&dev_attr_mem_limit.attr,
2892 	&dev_attr_mem_used_max.attr,
2893 	&dev_attr_idle.attr,
2894 	&dev_attr_comp_algorithm.attr,
2895 #ifdef CONFIG_ZRAM_WRITEBACK
2896 	&dev_attr_backing_dev.attr,
2897 	&dev_attr_writeback.attr,
2898 	&dev_attr_writeback_limit.attr,
2899 	&dev_attr_writeback_limit_enable.attr,
2900 	&dev_attr_writeback_batch_size.attr,
2901 #endif
2902 	&dev_attr_io_stat.attr,
2903 	&dev_attr_mm_stat.attr,
2904 #ifdef CONFIG_ZRAM_WRITEBACK
2905 	&dev_attr_bd_stat.attr,
2906 #endif
2907 	&dev_attr_debug_stat.attr,
2908 #ifdef CONFIG_ZRAM_MULTI_COMP
2909 	&dev_attr_recomp_algorithm.attr,
2910 	&dev_attr_recompress.attr,
2911 #endif
2912 	&dev_attr_algorithm_params.attr,
2913 	NULL,
2914 };
2915 
2916 ATTRIBUTE_GROUPS(zram_disk);
2917 
2918 /*
2919  * Allocate and initialize new zram device. the function returns
2920  * '>= 0' device_id upon success, and negative value otherwise.
2921  */
zram_add(void)2922 static int zram_add(void)
2923 {
2924 	struct queue_limits lim = {
2925 		.logical_block_size		= ZRAM_LOGICAL_BLOCK_SIZE,
2926 		/*
2927 		 * To ensure that we always get PAGE_SIZE aligned and
2928 		 * n*PAGE_SIZED sized I/O requests.
2929 		 */
2930 		.physical_block_size		= PAGE_SIZE,
2931 		.io_min				= PAGE_SIZE,
2932 		.io_opt				= PAGE_SIZE,
2933 		.max_hw_discard_sectors		= UINT_MAX,
2934 		/*
2935 		 * zram_bio_discard() will clear all logical blocks if logical
2936 		 * block size is identical with physical block size(PAGE_SIZE).
2937 		 * But if it is different, we will skip discarding some parts of
2938 		 * logical blocks in the part of the request range which isn't
2939 		 * aligned to physical block size.  So we can't ensure that all
2940 		 * discarded logical blocks are zeroed.
2941 		 */
2942 #if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE
2943 		.max_write_zeroes_sectors	= UINT_MAX,
2944 #endif
2945 		.features			= BLK_FEAT_STABLE_WRITES |
2946 						  BLK_FEAT_SYNCHRONOUS,
2947 	};
2948 	struct zram *zram;
2949 	int ret, device_id;
2950 
2951 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
2952 	if (!zram)
2953 		return -ENOMEM;
2954 
2955 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
2956 	if (ret < 0)
2957 		goto out_free_dev;
2958 	device_id = ret;
2959 
2960 	init_rwsem(&zram->init_lock);
2961 #ifdef CONFIG_ZRAM_WRITEBACK
2962 	zram->wb_batch_size = 32;
2963 #endif
2964 
2965 	/* gendisk structure */
2966 	zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2967 	if (IS_ERR(zram->disk)) {
2968 		pr_err("Error allocating disk structure for device %d\n",
2969 			device_id);
2970 		ret = PTR_ERR(zram->disk);
2971 		goto out_free_idr;
2972 	}
2973 
2974 	zram->disk->major = zram_major;
2975 	zram->disk->first_minor = device_id;
2976 	zram->disk->minors = 1;
2977 	zram->disk->flags |= GENHD_FL_NO_PART;
2978 	zram->disk->fops = &zram_devops;
2979 	zram->disk->private_data = zram;
2980 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
2981 	atomic_set(&zram->pp_in_progress, 0);
2982 	zram_comp_params_reset(zram);
2983 	comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2984 
2985 	/* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */
2986 	set_capacity(zram->disk, 0);
2987 	ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
2988 	if (ret)
2989 		goto out_cleanup_disk;
2990 
2991 	zram_debugfs_register(zram);
2992 	pr_info("Added device: %s\n", zram->disk->disk_name);
2993 	return device_id;
2994 
2995 out_cleanup_disk:
2996 	put_disk(zram->disk);
2997 out_free_idr:
2998 	idr_remove(&zram_index_idr, device_id);
2999 out_free_dev:
3000 	kfree(zram);
3001 	return ret;
3002 }
3003 
zram_remove(struct zram * zram)3004 static int zram_remove(struct zram *zram)
3005 {
3006 	bool claimed;
3007 
3008 	mutex_lock(&zram->disk->open_mutex);
3009 	if (disk_openers(zram->disk)) {
3010 		mutex_unlock(&zram->disk->open_mutex);
3011 		return -EBUSY;
3012 	}
3013 
3014 	claimed = zram->claim;
3015 	if (!claimed)
3016 		zram->claim = true;
3017 	mutex_unlock(&zram->disk->open_mutex);
3018 
3019 	zram_debugfs_unregister(zram);
3020 
3021 	if (claimed) {
3022 		/*
3023 		 * If we were claimed by reset_store(), del_gendisk() will
3024 		 * wait until reset_store() is done, so nothing need to do.
3025 		 */
3026 		;
3027 	} else {
3028 		/* Make sure all the pending I/O are finished */
3029 		sync_blockdev(zram->disk->part0);
3030 		zram_reset_device(zram);
3031 	}
3032 
3033 	pr_info("Removed device: %s\n", zram->disk->disk_name);
3034 
3035 	del_gendisk(zram->disk);
3036 
3037 	/* del_gendisk drains pending reset_store */
3038 	WARN_ON_ONCE(claimed && zram->claim);
3039 
3040 	/*
3041 	 * disksize_store() may be called in between zram_reset_device()
3042 	 * and del_gendisk(), so run the last reset to avoid leaking
3043 	 * anything allocated with disksize_store()
3044 	 */
3045 	zram_reset_device(zram);
3046 
3047 	put_disk(zram->disk);
3048 	kfree(zram);
3049 	return 0;
3050 }
3051 
3052 /* zram-control sysfs attributes */
3053 
3054 /*
3055  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
3056  * sense that reading from this file does alter the state of your system -- it
3057  * creates a new un-initialized zram device and returns back this device's
3058  * device_id (or an error code if it fails to create a new device).
3059  */
hot_add_show(const struct class * class,const struct class_attribute * attr,char * buf)3060 static ssize_t hot_add_show(const struct class *class,
3061 			const struct class_attribute *attr,
3062 			char *buf)
3063 {
3064 	int ret;
3065 
3066 	mutex_lock(&zram_index_mutex);
3067 	ret = zram_add();
3068 	mutex_unlock(&zram_index_mutex);
3069 
3070 	if (ret < 0)
3071 		return ret;
3072 	return sysfs_emit(buf, "%d\n", ret);
3073 }
3074 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */
3075 static struct class_attribute class_attr_hot_add =
3076 	__ATTR(hot_add, 0400, hot_add_show, NULL);
3077 
hot_remove_store(const struct class * class,const struct class_attribute * attr,const char * buf,size_t count)3078 static ssize_t hot_remove_store(const struct class *class,
3079 			const struct class_attribute *attr,
3080 			const char *buf,
3081 			size_t count)
3082 {
3083 	struct zram *zram;
3084 	int ret, dev_id;
3085 
3086 	/* dev_id is gendisk->first_minor, which is `int' */
3087 	ret = kstrtoint(buf, 10, &dev_id);
3088 	if (ret)
3089 		return ret;
3090 	if (dev_id < 0)
3091 		return -EINVAL;
3092 
3093 	mutex_lock(&zram_index_mutex);
3094 
3095 	zram = idr_find(&zram_index_idr, dev_id);
3096 	if (zram) {
3097 		ret = zram_remove(zram);
3098 		if (!ret)
3099 			idr_remove(&zram_index_idr, dev_id);
3100 	} else {
3101 		ret = -ENODEV;
3102 	}
3103 
3104 	mutex_unlock(&zram_index_mutex);
3105 	return ret ? ret : count;
3106 }
3107 static CLASS_ATTR_WO(hot_remove);
3108 
3109 static struct attribute *zram_control_class_attrs[] = {
3110 	&class_attr_hot_add.attr,
3111 	&class_attr_hot_remove.attr,
3112 	NULL,
3113 };
3114 ATTRIBUTE_GROUPS(zram_control_class);
3115 
3116 static struct class zram_control_class = {
3117 	.name		= "zram-control",
3118 	.class_groups	= zram_control_class_groups,
3119 };
3120 
zram_remove_cb(int id,void * ptr,void * data)3121 static int zram_remove_cb(int id, void *ptr, void *data)
3122 {
3123 	WARN_ON_ONCE(zram_remove(ptr));
3124 	return 0;
3125 }
3126 
destroy_devices(void)3127 static void destroy_devices(void)
3128 {
3129 	class_unregister(&zram_control_class);
3130 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
3131 	zram_debugfs_destroy();
3132 	idr_destroy(&zram_index_idr);
3133 	unregister_blkdev(zram_major, "zram");
3134 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
3135 }
3136 
zram_init(void)3137 static int __init zram_init(void)
3138 {
3139 	struct zram_table_entry zram_te;
3140 	int ret;
3141 
3142 	BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > sizeof(zram_te.flags) * 8);
3143 
3144 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
3145 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
3146 	if (ret < 0)
3147 		return ret;
3148 
3149 	ret = class_register(&zram_control_class);
3150 	if (ret) {
3151 		pr_err("Unable to register zram-control class\n");
3152 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
3153 		return ret;
3154 	}
3155 
3156 	zram_debugfs_create();
3157 	zram_major = register_blkdev(0, "zram");
3158 	if (zram_major <= 0) {
3159 		pr_err("Unable to get major number\n");
3160 		class_unregister(&zram_control_class);
3161 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
3162 		return -EBUSY;
3163 	}
3164 
3165 	while (num_devices != 0) {
3166 		mutex_lock(&zram_index_mutex);
3167 		ret = zram_add();
3168 		mutex_unlock(&zram_index_mutex);
3169 		if (ret < 0)
3170 			goto out_error;
3171 		num_devices--;
3172 	}
3173 
3174 	return 0;
3175 
3176 out_error:
3177 	destroy_devices();
3178 	return ret;
3179 }
3180 
zram_exit(void)3181 static void __exit zram_exit(void)
3182 {
3183 	destroy_devices();
3184 }
3185 
3186 module_init(zram_init);
3187 module_exit(zram_exit);
3188 
3189 module_param(num_devices, uint, 0);
3190 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
3191 
3192 MODULE_LICENSE("Dual BSD/GPL");
3193 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
3194 MODULE_DESCRIPTION("Compressed RAM Block Device");
3195