1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright IBM Corp. 2012
4 *
5 * Author(s):
6 * Jan Glauber <jang@linux.vnet.ibm.com>
7 *
8 * The System z PCI code is a rewrite from a prototype by
9 * the following people (Kudoz!):
10 * Alexander Schmidt
11 * Christoph Raisch
12 * Hannes Hering
13 * Hoang-Nam Nguyen
14 * Jan-Bernd Themann
15 * Stefan Roscher
16 * Thomas Klein
17 */
18
19 #define pr_fmt(fmt) "zpci: " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/slab.h>
23 #include <linux/err.h>
24 #include <linux/export.h>
25 #include <linux/delay.h>
26 #include <linux/seq_file.h>
27 #include <linux/jump_label.h>
28 #include <linux/pci.h>
29 #include <linux/printk.h>
30 #include <linux/lockdep.h>
31 #include <linux/list_sort.h>
32
33 #include <asm/machine.h>
34 #include <asm/isc.h>
35 #include <asm/airq.h>
36 #include <asm/facility.h>
37 #include <asm/pci_insn.h>
38 #include <asm/pci_clp.h>
39 #include <asm/pci_dma.h>
40
41 #include "pci_bus.h"
42 #include "pci_iov.h"
43
44 /* list of all detected zpci devices */
45 static LIST_HEAD(zpci_list);
46 static DEFINE_SPINLOCK(zpci_list_lock);
47 static DEFINE_MUTEX(zpci_add_remove_lock);
48
49 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
50 static DEFINE_SPINLOCK(zpci_domain_lock);
51
52 #define ZPCI_IOMAP_ENTRIES \
53 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \
54 ZPCI_IOMAP_MAX_ENTRIES)
55
56 unsigned int s390_pci_no_rid;
57
58 static DEFINE_SPINLOCK(zpci_iomap_lock);
59 static unsigned long *zpci_iomap_bitmap;
60 struct zpci_iomap_entry *zpci_iomap_start;
61 EXPORT_SYMBOL_GPL(zpci_iomap_start);
62
63 DEFINE_STATIC_KEY_FALSE(have_mio);
64
65 static struct kmem_cache *zdev_fmb_cache;
66
67 /* AEN structures that must be preserved over KVM module re-insertion */
68 union zpci_sic_iib *zpci_aipb;
69 EXPORT_SYMBOL_GPL(zpci_aipb);
70 struct airq_iv *zpci_aif_sbv;
71 EXPORT_SYMBOL_GPL(zpci_aif_sbv);
72
zpci_zdev_put(struct zpci_dev * zdev)73 void zpci_zdev_put(struct zpci_dev *zdev)
74 {
75 if (!zdev)
76 return;
77 mutex_lock(&zpci_add_remove_lock);
78 kref_put_lock(&zdev->kref, zpci_release_device, &zpci_list_lock);
79 mutex_unlock(&zpci_add_remove_lock);
80 }
81
get_zdev_by_fid(u32 fid)82 struct zpci_dev *get_zdev_by_fid(u32 fid)
83 {
84 struct zpci_dev *tmp, *zdev = NULL;
85
86 spin_lock(&zpci_list_lock);
87 list_for_each_entry(tmp, &zpci_list, entry) {
88 if (tmp->fid == fid) {
89 zdev = tmp;
90 zpci_zdev_get(zdev);
91 break;
92 }
93 }
94 spin_unlock(&zpci_list_lock);
95 return zdev;
96 }
97
zpci_remove_reserved_devices(void)98 void zpci_remove_reserved_devices(void)
99 {
100 struct zpci_dev *tmp, *zdev;
101 enum zpci_state state;
102 LIST_HEAD(remove);
103
104 spin_lock(&zpci_list_lock);
105 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
106 if (zdev->state == ZPCI_FN_STATE_STANDBY &&
107 !clp_get_state(zdev->fid, &state) &&
108 state == ZPCI_FN_STATE_RESERVED)
109 list_move_tail(&zdev->entry, &remove);
110 }
111 spin_unlock(&zpci_list_lock);
112
113 list_for_each_entry_safe(zdev, tmp, &remove, entry)
114 zpci_device_reserved(zdev);
115 }
116
pci_domain_nr(struct pci_bus * bus)117 int pci_domain_nr(struct pci_bus *bus)
118 {
119 return ((struct zpci_bus *) bus->sysdata)->domain_nr;
120 }
121 EXPORT_SYMBOL_GPL(pci_domain_nr);
122
pci_proc_domain(struct pci_bus * bus)123 int pci_proc_domain(struct pci_bus *bus)
124 {
125 return pci_domain_nr(bus);
126 }
127 EXPORT_SYMBOL_GPL(pci_proc_domain);
128
129 /* Modify PCI: Register I/O address translation parameters */
zpci_register_ioat(struct zpci_dev * zdev,u8 dmaas,u64 base,u64 limit,u64 iota,u8 * status)130 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
131 u64 base, u64 limit, u64 iota, u8 *status)
132 {
133 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
134 struct zpci_fib fib = {0};
135 u8 cc;
136
137 fib.pba = base;
138 /* Work around off by one in ISM virt device */
139 if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base)
140 fib.pal = limit + (1 << 12);
141 else
142 fib.pal = limit;
143 fib.iota = iota;
144 fib.gd = zdev->gisa;
145 cc = zpci_mod_fc(req, &fib, status);
146 if (cc)
147 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status);
148 return cc;
149 }
150 EXPORT_SYMBOL_GPL(zpci_register_ioat);
151
152 /* Modify PCI: Unregister I/O address translation parameters */
zpci_unregister_ioat(struct zpci_dev * zdev,u8 dmaas)153 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
154 {
155 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
156 struct zpci_fib fib = {0};
157 u8 cc, status;
158
159 fib.gd = zdev->gisa;
160
161 cc = zpci_mod_fc(req, &fib, &status);
162 if (cc)
163 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
164 return cc;
165 }
166
167 /* Modify PCI: Set PCI function measurement parameters */
zpci_fmb_enable_device(struct zpci_dev * zdev)168 int zpci_fmb_enable_device(struct zpci_dev *zdev)
169 {
170 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
171 struct zpci_iommu_ctrs *ctrs;
172 struct zpci_fib fib = {0};
173 unsigned long flags;
174 u8 cc, status;
175
176 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
177 return -EINVAL;
178
179 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
180 if (!zdev->fmb)
181 return -ENOMEM;
182 WARN_ON((u64) zdev->fmb & 0xf);
183
184 /* reset software counters */
185 spin_lock_irqsave(&zdev->dom_lock, flags);
186 ctrs = zpci_get_iommu_ctrs(zdev);
187 if (ctrs) {
188 atomic64_set(&ctrs->mapped_pages, 0);
189 atomic64_set(&ctrs->unmapped_pages, 0);
190 atomic64_set(&ctrs->global_rpcits, 0);
191 atomic64_set(&ctrs->sync_map_rpcits, 0);
192 atomic64_set(&ctrs->sync_rpcits, 0);
193 }
194 spin_unlock_irqrestore(&zdev->dom_lock, flags);
195
196
197 fib.fmb_addr = virt_to_phys(zdev->fmb);
198 fib.gd = zdev->gisa;
199 cc = zpci_mod_fc(req, &fib, &status);
200 if (cc) {
201 kmem_cache_free(zdev_fmb_cache, zdev->fmb);
202 zdev->fmb = NULL;
203 }
204 return cc ? -EIO : 0;
205 }
206
207 /* Modify PCI: Disable PCI function measurement */
zpci_fmb_disable_device(struct zpci_dev * zdev)208 int zpci_fmb_disable_device(struct zpci_dev *zdev)
209 {
210 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
211 struct zpci_fib fib = {0};
212 u8 cc, status;
213
214 if (!zdev->fmb)
215 return -EINVAL;
216
217 fib.gd = zdev->gisa;
218
219 /* Function measurement is disabled if fmb address is zero */
220 cc = zpci_mod_fc(req, &fib, &status);
221 if (cc == 3) /* Function already gone. */
222 cc = 0;
223
224 if (!cc) {
225 kmem_cache_free(zdev_fmb_cache, zdev->fmb);
226 zdev->fmb = NULL;
227 }
228 return cc ? -EIO : 0;
229 }
230
zpci_cfg_load(struct zpci_dev * zdev,int offset,u32 * val,u8 len)231 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
232 {
233 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
234 u64 data;
235 int rc;
236
237 rc = __zpci_load(&data, req, offset);
238 if (!rc) {
239 data = le64_to_cpu((__force __le64) data);
240 data >>= (8 - len) * 8;
241 *val = (u32) data;
242 } else
243 *val = 0xffffffff;
244 return rc;
245 }
246
zpci_cfg_store(struct zpci_dev * zdev,int offset,u32 val,u8 len)247 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
248 {
249 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
250 u64 data = val;
251 int rc;
252
253 data <<= (8 - len) * 8;
254 data = (__force u64) cpu_to_le64(data);
255 rc = __zpci_store(data, req, offset);
256 return rc;
257 }
258
pcibios_align_resource(void * data,const struct resource * res,resource_size_t size,resource_size_t align)259 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
260 resource_size_t size,
261 resource_size_t align)
262 {
263 return 0;
264 }
265
ioremap_prot(phys_addr_t phys_addr,size_t size,pgprot_t prot)266 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size,
267 pgprot_t prot)
268 {
269 /*
270 * When PCI MIO instructions are unavailable the "physical" address
271 * encodes a hint for accessing the PCI memory space it represents.
272 * Just pass it unchanged such that ioread/iowrite can decode it.
273 */
274 if (!static_branch_unlikely(&have_mio))
275 return (void __iomem *)phys_addr;
276
277 return generic_ioremap_prot(phys_addr, size, prot);
278 }
279 EXPORT_SYMBOL(ioremap_prot);
280
iounmap(volatile void __iomem * addr)281 void iounmap(volatile void __iomem *addr)
282 {
283 if (static_branch_likely(&have_mio))
284 generic_iounmap(addr);
285 }
286 EXPORT_SYMBOL(iounmap);
287
288 /* Create a virtual mapping cookie for a PCI BAR */
pci_iomap_range_fh(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)289 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
290 unsigned long offset, unsigned long max)
291 {
292 struct zpci_dev *zdev = to_zpci(pdev);
293 int idx;
294
295 idx = zdev->bars[bar].map_idx;
296 spin_lock(&zpci_iomap_lock);
297 /* Detect overrun */
298 WARN_ON(!++zpci_iomap_start[idx].count);
299 zpci_iomap_start[idx].fh = zdev->fh;
300 zpci_iomap_start[idx].bar = bar;
301 spin_unlock(&zpci_iomap_lock);
302
303 return (void __iomem *) ZPCI_ADDR(idx) + offset;
304 }
305
pci_iomap_range_mio(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)306 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
307 unsigned long offset,
308 unsigned long max)
309 {
310 unsigned long barsize = pci_resource_len(pdev, bar);
311 struct zpci_dev *zdev = to_zpci(pdev);
312 void __iomem *iova;
313
314 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
315 return iova ? iova + offset : iova;
316 }
317
pci_iomap_range(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)318 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
319 unsigned long offset, unsigned long max)
320 {
321 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
322 return NULL;
323
324 if (static_branch_likely(&have_mio))
325 return pci_iomap_range_mio(pdev, bar, offset, max);
326 else
327 return pci_iomap_range_fh(pdev, bar, offset, max);
328 }
329 EXPORT_SYMBOL(pci_iomap_range);
330
pci_iomap(struct pci_dev * dev,int bar,unsigned long maxlen)331 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
332 {
333 return pci_iomap_range(dev, bar, 0, maxlen);
334 }
335 EXPORT_SYMBOL(pci_iomap);
336
pci_iomap_wc_range_mio(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)337 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
338 unsigned long offset, unsigned long max)
339 {
340 unsigned long barsize = pci_resource_len(pdev, bar);
341 struct zpci_dev *zdev = to_zpci(pdev);
342 void __iomem *iova;
343
344 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
345 return iova ? iova + offset : iova;
346 }
347
pci_iomap_wc_range(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)348 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
349 unsigned long offset, unsigned long max)
350 {
351 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
352 return NULL;
353
354 if (static_branch_likely(&have_mio))
355 return pci_iomap_wc_range_mio(pdev, bar, offset, max);
356 else
357 return pci_iomap_range_fh(pdev, bar, offset, max);
358 }
359 EXPORT_SYMBOL(pci_iomap_wc_range);
360
pci_iomap_wc(struct pci_dev * dev,int bar,unsigned long maxlen)361 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
362 {
363 return pci_iomap_wc_range(dev, bar, 0, maxlen);
364 }
365 EXPORT_SYMBOL(pci_iomap_wc);
366
pci_iounmap_fh(struct pci_dev * pdev,void __iomem * addr)367 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
368 {
369 unsigned int idx = ZPCI_IDX(addr);
370
371 spin_lock(&zpci_iomap_lock);
372 /* Detect underrun */
373 WARN_ON(!zpci_iomap_start[idx].count);
374 if (!--zpci_iomap_start[idx].count) {
375 zpci_iomap_start[idx].fh = 0;
376 zpci_iomap_start[idx].bar = 0;
377 }
378 spin_unlock(&zpci_iomap_lock);
379 }
380
pci_iounmap_mio(struct pci_dev * pdev,void __iomem * addr)381 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
382 {
383 iounmap(addr);
384 }
385
pci_iounmap(struct pci_dev * pdev,void __iomem * addr)386 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
387 {
388 if (static_branch_likely(&have_mio))
389 pci_iounmap_mio(pdev, addr);
390 else
391 pci_iounmap_fh(pdev, addr);
392 }
393 EXPORT_SYMBOL(pci_iounmap);
394
pci_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)395 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
396 int size, u32 *val)
397 {
398 struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
399
400 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
401 }
402
pci_write(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)403 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
404 int size, u32 val)
405 {
406 struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
407
408 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
409 }
410
411 static struct pci_ops pci_root_ops = {
412 .read = pci_read,
413 .write = pci_write,
414 };
415
zpci_map_resources(struct pci_dev * pdev)416 static void zpci_map_resources(struct pci_dev *pdev)
417 {
418 struct zpci_dev *zdev = to_zpci(pdev);
419 resource_size_t len;
420 int i;
421
422 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
423 len = pci_resource_len(pdev, i);
424 if (!len)
425 continue;
426
427 if (zpci_use_mio(zdev))
428 pdev->resource[i].start =
429 (resource_size_t __force) zdev->bars[i].mio_wt;
430 else
431 pdev->resource[i].start = (resource_size_t __force)
432 pci_iomap_range_fh(pdev, i, 0, 0);
433 pdev->resource[i].end = pdev->resource[i].start + len - 1;
434 }
435
436 zpci_iov_map_resources(pdev);
437 }
438
zpci_unmap_resources(struct pci_dev * pdev)439 static void zpci_unmap_resources(struct pci_dev *pdev)
440 {
441 struct zpci_dev *zdev = to_zpci(pdev);
442 resource_size_t len;
443 int i;
444
445 if (zpci_use_mio(zdev))
446 return;
447
448 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
449 len = pci_resource_len(pdev, i);
450 if (!len)
451 continue;
452 pci_iounmap_fh(pdev, (void __iomem __force *)
453 pdev->resource[i].start);
454 }
455 }
456
zpci_alloc_iomap(struct zpci_dev * zdev)457 static int zpci_alloc_iomap(struct zpci_dev *zdev)
458 {
459 unsigned long entry;
460
461 spin_lock(&zpci_iomap_lock);
462 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
463 if (entry == ZPCI_IOMAP_ENTRIES) {
464 spin_unlock(&zpci_iomap_lock);
465 return -ENOSPC;
466 }
467 set_bit(entry, zpci_iomap_bitmap);
468 spin_unlock(&zpci_iomap_lock);
469 return entry;
470 }
471
zpci_free_iomap(struct zpci_dev * zdev,int entry)472 static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
473 {
474 spin_lock(&zpci_iomap_lock);
475 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
476 clear_bit(entry, zpci_iomap_bitmap);
477 spin_unlock(&zpci_iomap_lock);
478 }
479
zpci_do_update_iomap_fh(struct zpci_dev * zdev,u32 fh)480 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
481 {
482 int bar, idx;
483
484 spin_lock(&zpci_iomap_lock);
485 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
486 if (!zdev->bars[bar].size)
487 continue;
488 idx = zdev->bars[bar].map_idx;
489 if (!zpci_iomap_start[idx].count)
490 continue;
491 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
492 }
493 spin_unlock(&zpci_iomap_lock);
494 }
495
zpci_update_fh(struct zpci_dev * zdev,u32 fh)496 void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
497 {
498 if (!fh || zdev->fh == fh)
499 return;
500
501 zdev->fh = fh;
502 if (zpci_use_mio(zdev))
503 return;
504 if (zdev->has_resources && zdev_enabled(zdev))
505 zpci_do_update_iomap_fh(zdev, fh);
506 }
507
__alloc_res(struct zpci_dev * zdev,unsigned long start,unsigned long size,unsigned long flags)508 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
509 unsigned long size, unsigned long flags)
510 {
511 struct resource *r;
512
513 r = kzalloc(sizeof(*r), GFP_KERNEL);
514 if (!r)
515 return NULL;
516
517 r->start = start;
518 r->end = r->start + size - 1;
519 r->flags = flags;
520 r->name = zdev->res_name;
521
522 if (request_resource(&iomem_resource, r)) {
523 kfree(r);
524 return NULL;
525 }
526 return r;
527 }
528
zpci_setup_bus_resources(struct zpci_dev * zdev)529 int zpci_setup_bus_resources(struct zpci_dev *zdev)
530 {
531 unsigned long addr, size, flags;
532 struct resource *res;
533 int i, entry;
534
535 snprintf(zdev->res_name, sizeof(zdev->res_name),
536 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
537
538 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
539 if (!zdev->bars[i].size)
540 continue;
541 entry = zpci_alloc_iomap(zdev);
542 if (entry < 0)
543 return entry;
544 zdev->bars[i].map_idx = entry;
545
546 /* only MMIO is supported */
547 flags = IORESOURCE_MEM;
548 if (zdev->bars[i].val & 8)
549 flags |= IORESOURCE_PREFETCH;
550 if (zdev->bars[i].val & 4)
551 flags |= IORESOURCE_MEM_64;
552
553 if (zpci_use_mio(zdev))
554 addr = (unsigned long) zdev->bars[i].mio_wt;
555 else
556 addr = ZPCI_ADDR(entry);
557 size = 1UL << zdev->bars[i].size;
558
559 res = __alloc_res(zdev, addr, size, flags);
560 if (!res) {
561 zpci_free_iomap(zdev, entry);
562 return -ENOMEM;
563 }
564 zdev->bars[i].res = res;
565 }
566 zdev->has_resources = 1;
567
568 return 0;
569 }
570
zpci_cleanup_bus_resources(struct zpci_dev * zdev)571 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
572 {
573 struct resource *res;
574 int i;
575
576 pci_lock_rescan_remove();
577 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
578 res = zdev->bars[i].res;
579 if (!res)
580 continue;
581
582 release_resource(res);
583 pci_bus_remove_resource(zdev->zbus->bus, res);
584 zpci_free_iomap(zdev, zdev->bars[i].map_idx);
585 zdev->bars[i].res = NULL;
586 kfree(res);
587 }
588 zdev->has_resources = 0;
589 pci_unlock_rescan_remove();
590 }
591
pcibios_device_add(struct pci_dev * pdev)592 int pcibios_device_add(struct pci_dev *pdev)
593 {
594 struct zpci_dev *zdev = to_zpci(pdev);
595 struct resource *res;
596 int i;
597
598 /* The pdev has a reference to the zdev via its bus */
599 zpci_zdev_get(zdev);
600 if (pdev->is_physfn)
601 pdev->no_vf_scan = 1;
602
603 zpci_map_resources(pdev);
604
605 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
606 res = &pdev->resource[i];
607 if (res->parent || !res->flags)
608 continue;
609 pci_claim_resource(pdev, i);
610 }
611
612 return 0;
613 }
614
pcibios_release_device(struct pci_dev * pdev)615 void pcibios_release_device(struct pci_dev *pdev)
616 {
617 struct zpci_dev *zdev = to_zpci(pdev);
618
619 zpci_unmap_resources(pdev);
620 zpci_zdev_put(zdev);
621 }
622
pcibios_enable_device(struct pci_dev * pdev,int mask)623 int pcibios_enable_device(struct pci_dev *pdev, int mask)
624 {
625 struct zpci_dev *zdev = to_zpci(pdev);
626
627 zpci_debug_init_device(zdev, dev_name(&pdev->dev));
628 zpci_fmb_enable_device(zdev);
629
630 return pci_enable_resources(pdev, mask);
631 }
632
pcibios_disable_device(struct pci_dev * pdev)633 void pcibios_disable_device(struct pci_dev *pdev)
634 {
635 struct zpci_dev *zdev = to_zpci(pdev);
636
637 zpci_fmb_disable_device(zdev);
638 zpci_debug_exit_device(zdev);
639 }
640
__zpci_register_domain(int domain)641 static int __zpci_register_domain(int domain)
642 {
643 spin_lock(&zpci_domain_lock);
644 if (test_bit(domain, zpci_domain)) {
645 spin_unlock(&zpci_domain_lock);
646 pr_err("Domain %04x is already assigned\n", domain);
647 return -EEXIST;
648 }
649 set_bit(domain, zpci_domain);
650 spin_unlock(&zpci_domain_lock);
651 return domain;
652 }
653
__zpci_alloc_domain(void)654 static int __zpci_alloc_domain(void)
655 {
656 int domain;
657
658 spin_lock(&zpci_domain_lock);
659 /*
660 * We can always auto allocate domains below ZPCI_NR_DEVICES.
661 * There is either a free domain or we have reached the maximum in
662 * which case we would have bailed earlier.
663 */
664 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
665 set_bit(domain, zpci_domain);
666 spin_unlock(&zpci_domain_lock);
667 return domain;
668 }
669
zpci_alloc_domain(int domain)670 int zpci_alloc_domain(int domain)
671 {
672 if (zpci_unique_uid) {
673 if (domain)
674 return __zpci_register_domain(domain);
675 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
676 update_uid_checking(false);
677 }
678 return __zpci_alloc_domain();
679 }
680
zpci_free_domain(int domain)681 void zpci_free_domain(int domain)
682 {
683 spin_lock(&zpci_domain_lock);
684 clear_bit(domain, zpci_domain);
685 spin_unlock(&zpci_domain_lock);
686 }
687
688
zpci_enable_device(struct zpci_dev * zdev)689 int zpci_enable_device(struct zpci_dev *zdev)
690 {
691 u32 fh = zdev->fh;
692 int rc = 0;
693
694 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
695 rc = -EIO;
696 else
697 zpci_update_fh(zdev, fh);
698 return rc;
699 }
700 EXPORT_SYMBOL_GPL(zpci_enable_device);
701
zpci_reenable_device(struct zpci_dev * zdev)702 int zpci_reenable_device(struct zpci_dev *zdev)
703 {
704 u8 status;
705 int rc;
706
707 rc = zpci_enable_device(zdev);
708 if (rc)
709 return rc;
710
711 if (zdev->msi_nr_irqs > 0) {
712 rc = zpci_set_irq(zdev);
713 if (rc)
714 return rc;
715 }
716
717 rc = zpci_iommu_register_ioat(zdev, &status);
718 if (rc)
719 zpci_disable_device(zdev);
720
721 return rc;
722 }
723 EXPORT_SYMBOL_GPL(zpci_reenable_device);
724
zpci_disable_device(struct zpci_dev * zdev)725 int zpci_disable_device(struct zpci_dev *zdev)
726 {
727 u32 fh = zdev->fh;
728 int cc, rc = 0;
729
730 cc = clp_disable_fh(zdev, &fh);
731 if (!cc) {
732 zpci_update_fh(zdev, fh);
733 } else if (cc == CLP_RC_SETPCIFN_ALRDY) {
734 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
735 zdev->fid);
736 /* Function is already disabled - update handle */
737 rc = clp_refresh_fh(zdev->fid, &fh);
738 if (!rc) {
739 zpci_update_fh(zdev, fh);
740 rc = -EINVAL;
741 }
742 } else {
743 rc = -EIO;
744 }
745 return rc;
746 }
747 EXPORT_SYMBOL_GPL(zpci_disable_device);
748
749 /**
750 * zpci_hot_reset_device - perform a reset of the given zPCI function
751 * @zdev: the slot which should be reset
752 *
753 * Performs a low level reset of the zPCI function. The reset is low level in
754 * the sense that the zPCI function can be reset without detaching it from the
755 * common PCI subsystem. The reset may be performed while under control of
756 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
757 * table is reinstated at the end of the reset.
758 *
759 * After the reset the functions internal state is reset to an initial state
760 * equivalent to its state during boot when first probing a driver.
761 * Consequently after reset the PCI function requires re-initialization via the
762 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
763 * and enabling the function via e.g. pci_enable_device_flags(). The caller
764 * must guard against concurrent reset attempts.
765 *
766 * In most cases this function should not be called directly but through
767 * pci_reset_function() or pci_reset_bus() which handle the save/restore and
768 * locking - asserted by lockdep.
769 *
770 * Return: 0 on success and an error value otherwise
771 */
zpci_hot_reset_device(struct zpci_dev * zdev)772 int zpci_hot_reset_device(struct zpci_dev *zdev)
773 {
774 int rc;
775
776 lockdep_assert_held(&zdev->state_lock);
777 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
778 if (zdev_enabled(zdev)) {
779 /* Disables device access, DMAs and IRQs (reset state) */
780 rc = zpci_disable_device(zdev);
781 /*
782 * Due to a z/VM vs LPAR inconsistency in the error state the
783 * FH may indicate an enabled device but disable says the
784 * device is already disabled don't treat it as an error here.
785 */
786 if (rc == -EINVAL)
787 rc = 0;
788 if (rc)
789 return rc;
790 }
791
792 rc = zpci_reenable_device(zdev);
793
794 return rc;
795 }
796
797 /**
798 * zpci_create_device() - Create a new zpci_dev and add it to the zbus
799 * @fid: Function ID of the device to be created
800 * @fh: Current Function Handle of the device to be created
801 * @state: Initial state after creation either Standby or Configured
802 *
803 * Allocates a new struct zpci_dev and queries the platform for its details.
804 * If successful the device can subsequently be added to the zPCI subsystem
805 * using zpci_add_device().
806 *
807 * Returns: the zdev on success or an error pointer otherwise
808 */
zpci_create_device(u32 fid,u32 fh,enum zpci_state state)809 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
810 {
811 struct zpci_dev *zdev;
812 int rc;
813
814 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
815 if (!zdev)
816 return ERR_PTR(-ENOMEM);
817
818 /* FID and Function Handle are the static/dynamic identifiers */
819 zdev->fid = fid;
820 zdev->fh = fh;
821
822 /* Query function properties and update zdev */
823 rc = clp_query_pci_fn(zdev);
824 if (rc)
825 goto error;
826 zdev->state = state;
827
828 mutex_init(&zdev->state_lock);
829 mutex_init(&zdev->fmb_lock);
830 mutex_init(&zdev->kzdev_lock);
831
832 return zdev;
833
834 error:
835 zpci_dbg(0, "crt fid:%x, rc:%d\n", fid, rc);
836 kfree(zdev);
837 return ERR_PTR(rc);
838 }
839
840 /**
841 * zpci_add_device() - Add a previously created zPCI device to the zPCI subsystem
842 * @zdev: The zPCI device to be added
843 *
844 * A struct zpci_dev is added to the zPCI subsystem and to a virtual PCI bus creating
845 * a new one as necessary. A hotplug slot is created and events start to be handled.
846 * If successful from this point on zpci_zdev_get() and zpci_zdev_put() must be used.
847 * If adding the struct zpci_dev fails the device was not added and should be freed.
848 *
849 * Return: 0 on success, or an error code otherwise
850 */
zpci_add_device(struct zpci_dev * zdev)851 int zpci_add_device(struct zpci_dev *zdev)
852 {
853 int rc;
854
855 mutex_lock(&zpci_add_remove_lock);
856 zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", zdev->fid, zdev->fh, zdev->state);
857 rc = zpci_init_iommu(zdev);
858 if (rc)
859 goto error;
860
861 rc = zpci_bus_device_register(zdev, &pci_root_ops);
862 if (rc)
863 goto error_destroy_iommu;
864
865 kref_init(&zdev->kref);
866 spin_lock(&zpci_list_lock);
867 list_add_tail(&zdev->entry, &zpci_list);
868 spin_unlock(&zpci_list_lock);
869 mutex_unlock(&zpci_add_remove_lock);
870 return 0;
871
872 error_destroy_iommu:
873 zpci_destroy_iommu(zdev);
874 error:
875 zpci_dbg(0, "add fid:%x, rc:%d\n", zdev->fid, rc);
876 mutex_unlock(&zpci_add_remove_lock);
877 return rc;
878 }
879
zpci_is_device_configured(struct zpci_dev * zdev)880 bool zpci_is_device_configured(struct zpci_dev *zdev)
881 {
882 enum zpci_state state = zdev->state;
883
884 return state != ZPCI_FN_STATE_RESERVED &&
885 state != ZPCI_FN_STATE_STANDBY;
886 }
887
888 /**
889 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
890 * @zdev: The zpci_dev to be configured
891 * @fh: The general function handle supplied by the platform
892 *
893 * Given a device in the configuration state Configured, enables, scans and
894 * adds it to the common code PCI subsystem if possible. If any failure occurs,
895 * the zpci_dev is left disabled.
896 *
897 * Return: 0 on success, or an error code otherwise
898 */
zpci_scan_configured_device(struct zpci_dev * zdev,u32 fh)899 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
900 {
901 zpci_update_fh(zdev, fh);
902 return zpci_bus_scan_device(zdev);
903 }
904
905 /**
906 * zpci_deconfigure_device() - Deconfigure a zpci_dev
907 * @zdev: The zpci_dev to configure
908 *
909 * Deconfigure a zPCI function that is currently configured and possibly known
910 * to the common code PCI subsystem.
911 * If any failure occurs the device is left as is.
912 *
913 * Return: 0 on success, or an error code otherwise
914 */
zpci_deconfigure_device(struct zpci_dev * zdev)915 int zpci_deconfigure_device(struct zpci_dev *zdev)
916 {
917 int rc;
918
919 lockdep_assert_held(&zdev->state_lock);
920 if (zdev->state != ZPCI_FN_STATE_CONFIGURED)
921 return 0;
922
923 if (zdev->zbus->bus)
924 zpci_bus_remove_device(zdev, false);
925
926 if (zdev_enabled(zdev)) {
927 rc = zpci_disable_device(zdev);
928 if (rc)
929 return rc;
930 }
931
932 rc = sclp_pci_deconfigure(zdev->fid);
933 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
934 if (rc)
935 return rc;
936 zdev->state = ZPCI_FN_STATE_STANDBY;
937
938 return 0;
939 }
940
941 /**
942 * zpci_device_reserved() - Mark device as reserved
943 * @zdev: the zpci_dev that was reserved
944 *
945 * Handle the case that a given zPCI function was reserved by another system.
946 */
zpci_device_reserved(struct zpci_dev * zdev)947 void zpci_device_reserved(struct zpci_dev *zdev)
948 {
949 lockdep_assert_held(&zdev->state_lock);
950 /* We may declare the device reserved multiple times */
951 if (zdev->state == ZPCI_FN_STATE_RESERVED)
952 return;
953 zdev->state = ZPCI_FN_STATE_RESERVED;
954 zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
955 /*
956 * The underlying device is gone. Allow the zdev to be freed
957 * as soon as all other references are gone by accounting for
958 * the removal as a dropped reference.
959 */
960 zpci_zdev_put(zdev);
961 }
962
zpci_release_device(struct kref * kref)963 void zpci_release_device(struct kref *kref)
964 {
965 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
966
967 lockdep_assert_held(&zpci_add_remove_lock);
968 WARN_ON(zdev->state != ZPCI_FN_STATE_RESERVED);
969 /*
970 * We already hold zpci_list_lock thanks to kref_put_lock().
971 * This makes sure no new reference can be taken from the list.
972 */
973 list_del(&zdev->entry);
974 spin_unlock(&zpci_list_lock);
975
976 if (zdev->has_hp_slot)
977 zpci_exit_slot(zdev);
978
979 if (zdev->has_resources)
980 zpci_cleanup_bus_resources(zdev);
981
982 zpci_bus_device_unregister(zdev);
983 zpci_destroy_iommu(zdev);
984 zpci_dbg(3, "rem fid:%x\n", zdev->fid);
985 kfree_rcu(zdev, rcu);
986 }
987
zpci_report_error(struct pci_dev * pdev,struct zpci_report_error_header * report)988 int zpci_report_error(struct pci_dev *pdev,
989 struct zpci_report_error_header *report)
990 {
991 struct zpci_dev *zdev = to_zpci(pdev);
992
993 return sclp_pci_report(report, zdev->fh, zdev->fid);
994 }
995 EXPORT_SYMBOL(zpci_report_error);
996
997 /**
998 * zpci_clear_error_state() - Clears the zPCI error state of the device
999 * @zdev: The zdev for which the zPCI error state should be reset
1000 *
1001 * Clear the zPCI error state of the device. If clearing the zPCI error state
1002 * fails the device is left in the error state. In this case it may make sense
1003 * to call zpci_io_perm_failure() on the associated pdev if it exists.
1004 *
1005 * Returns: 0 on success, -EIO otherwise
1006 */
zpci_clear_error_state(struct zpci_dev * zdev)1007 int zpci_clear_error_state(struct zpci_dev *zdev)
1008 {
1009 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
1010 struct zpci_fib fib = {0};
1011 u8 status;
1012 int cc;
1013
1014 cc = zpci_mod_fc(req, &fib, &status);
1015 if (cc) {
1016 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1017 return -EIO;
1018 }
1019
1020 return 0;
1021 }
1022
1023 /**
1024 * zpci_reset_load_store_blocked() - Re-enables L/S from error state
1025 * @zdev: The zdev for which to unblock load/store access
1026 *
1027 * Re-enables load/store access for a PCI function in the error state while
1028 * keeping DMA blocked. In this state drivers can poke MMIO space to determine
1029 * if error recovery is possible while catching any rogue DMA access from the
1030 * device.
1031 *
1032 * Returns: 0 on success, -EIO otherwise
1033 */
zpci_reset_load_store_blocked(struct zpci_dev * zdev)1034 int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
1035 {
1036 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1037 struct zpci_fib fib = {0};
1038 u8 status;
1039 int cc;
1040
1041 cc = zpci_mod_fc(req, &fib, &status);
1042 if (cc) {
1043 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1044 return -EIO;
1045 }
1046
1047 return 0;
1048 }
1049
zpci_mem_init(void)1050 static int zpci_mem_init(void)
1051 {
1052 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1053 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1054
1055 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1056 __alignof__(struct zpci_fmb), 0, NULL);
1057 if (!zdev_fmb_cache)
1058 goto error_fmb;
1059
1060 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1061 sizeof(*zpci_iomap_start), GFP_KERNEL);
1062 if (!zpci_iomap_start)
1063 goto error_iomap;
1064
1065 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1066 sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1067 if (!zpci_iomap_bitmap)
1068 goto error_iomap_bitmap;
1069
1070 if (static_branch_likely(&have_mio))
1071 clp_setup_writeback_mio();
1072
1073 return 0;
1074 error_iomap_bitmap:
1075 kfree(zpci_iomap_start);
1076 error_iomap:
1077 kmem_cache_destroy(zdev_fmb_cache);
1078 error_fmb:
1079 return -ENOMEM;
1080 }
1081
zpci_mem_exit(void)1082 static void zpci_mem_exit(void)
1083 {
1084 kfree(zpci_iomap_bitmap);
1085 kfree(zpci_iomap_start);
1086 kmem_cache_destroy(zdev_fmb_cache);
1087 }
1088
1089 static unsigned int s390_pci_probe __initdata = 1;
1090 unsigned int s390_pci_force_floating __initdata;
1091 static unsigned int s390_pci_initialized;
1092
pcibios_setup(char * str)1093 char * __init pcibios_setup(char *str)
1094 {
1095 if (!strcmp(str, "off")) {
1096 s390_pci_probe = 0;
1097 return NULL;
1098 }
1099 if (!strcmp(str, "nomio")) {
1100 clear_machine_feature(MFEATURE_PCI_MIO);
1101 return NULL;
1102 }
1103 if (!strcmp(str, "force_floating")) {
1104 s390_pci_force_floating = 1;
1105 return NULL;
1106 }
1107 if (!strcmp(str, "norid")) {
1108 s390_pci_no_rid = 1;
1109 return NULL;
1110 }
1111 return str;
1112 }
1113
zpci_is_enabled(void)1114 bool zpci_is_enabled(void)
1115 {
1116 return s390_pci_initialized;
1117 }
1118
zpci_cmp_rid(void * priv,const struct list_head * a,const struct list_head * b)1119 static int zpci_cmp_rid(void *priv, const struct list_head *a,
1120 const struct list_head *b)
1121 {
1122 struct zpci_dev *za = container_of(a, struct zpci_dev, entry);
1123 struct zpci_dev *zb = container_of(b, struct zpci_dev, entry);
1124
1125 /*
1126 * PCI functions without RID available maintain original order
1127 * between themselves but sort before those with RID.
1128 */
1129 if (za->rid == zb->rid)
1130 return za->rid_available > zb->rid_available;
1131 /*
1132 * PCI functions with RID sort by RID ascending.
1133 */
1134 return za->rid > zb->rid;
1135 }
1136
zpci_add_devices(struct list_head * scan_list)1137 static void zpci_add_devices(struct list_head *scan_list)
1138 {
1139 struct zpci_dev *zdev, *tmp;
1140
1141 list_sort(NULL, scan_list, &zpci_cmp_rid);
1142 list_for_each_entry_safe(zdev, tmp, scan_list, entry) {
1143 list_del_init(&zdev->entry);
1144 if (zpci_add_device(zdev))
1145 kfree(zdev);
1146 }
1147 }
1148
zpci_scan_devices(void)1149 int zpci_scan_devices(void)
1150 {
1151 LIST_HEAD(scan_list);
1152 int rc;
1153
1154 rc = clp_scan_pci_devices(&scan_list);
1155 if (rc)
1156 return rc;
1157
1158 zpci_add_devices(&scan_list);
1159 zpci_bus_scan_busses();
1160 return 0;
1161 }
1162
pci_base_init(void)1163 static int __init pci_base_init(void)
1164 {
1165 int rc;
1166
1167 if (!s390_pci_probe)
1168 return 0;
1169
1170 if (!test_facility(69) || !test_facility(71)) {
1171 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1172 return 0;
1173 }
1174
1175 if (test_machine_feature(MFEATURE_PCI_MIO)) {
1176 static_branch_enable(&have_mio);
1177 system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT);
1178 }
1179
1180 rc = zpci_debug_init();
1181 if (rc)
1182 goto out;
1183
1184 rc = zpci_mem_init();
1185 if (rc)
1186 goto out_mem;
1187
1188 rc = zpci_irq_init();
1189 if (rc)
1190 goto out_irq;
1191
1192 rc = zpci_scan_devices();
1193 if (rc)
1194 goto out_find;
1195
1196 rc = zpci_fw_sysfs_init();
1197 if (rc)
1198 goto out_find;
1199
1200 s390_pci_initialized = 1;
1201 return 0;
1202
1203 out_find:
1204 zpci_irq_exit();
1205 out_irq:
1206 zpci_mem_exit();
1207 out_mem:
1208 zpci_debug_exit();
1209 out:
1210 return rc;
1211 }
1212 subsys_initcall_sync(pci_base_init);
1213