xref: /linux/arch/s390/pci/pci.c (revision 0723a166d1f1da4c60d7b11289383f073e4dee9b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corp. 2012
4  *
5  * Author(s):
6  *   Jan Glauber <jang@linux.vnet.ibm.com>
7  *
8  * The System z PCI code is a rewrite from a prototype by
9  * the following people (Kudoz!):
10  *   Alexander Schmidt
11  *   Christoph Raisch
12  *   Hannes Hering
13  *   Hoang-Nam Nguyen
14  *   Jan-Bernd Themann
15  *   Stefan Roscher
16  *   Thomas Klein
17  */
18 
19 #define pr_fmt(fmt) "zpci: " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/slab.h>
23 #include <linux/err.h>
24 #include <linux/export.h>
25 #include <linux/delay.h>
26 #include <linux/seq_file.h>
27 #include <linux/jump_label.h>
28 #include <linux/pci.h>
29 #include <linux/printk.h>
30 #include <linux/lockdep.h>
31 #include <linux/list_sort.h>
32 
33 #include <asm/machine.h>
34 #include <asm/isc.h>
35 #include <asm/airq.h>
36 #include <asm/facility.h>
37 #include <asm/pci_insn.h>
38 #include <asm/pci_clp.h>
39 #include <asm/pci_dma.h>
40 
41 #include "pci_bus.h"
42 #include "pci_iov.h"
43 
44 /* list of all detected zpci devices */
45 static LIST_HEAD(zpci_list);
46 static DEFINE_SPINLOCK(zpci_list_lock);
47 static DEFINE_MUTEX(zpci_add_remove_lock);
48 
49 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
50 static DEFINE_SPINLOCK(zpci_domain_lock);
51 
52 #define ZPCI_IOMAP_ENTRIES						\
53 	min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2),	\
54 	    ZPCI_IOMAP_MAX_ENTRIES)
55 
56 unsigned int s390_pci_no_rid;
57 
58 static DEFINE_SPINLOCK(zpci_iomap_lock);
59 static unsigned long *zpci_iomap_bitmap;
60 struct zpci_iomap_entry *zpci_iomap_start;
61 EXPORT_SYMBOL_GPL(zpci_iomap_start);
62 
63 DEFINE_STATIC_KEY_FALSE(have_mio);
64 
65 static struct kmem_cache *zdev_fmb_cache;
66 
67 /* AEN structures that must be preserved over KVM module re-insertion */
68 union zpci_sic_iib *zpci_aipb;
69 EXPORT_SYMBOL_GPL(zpci_aipb);
70 struct airq_iv *zpci_aif_sbv;
71 EXPORT_SYMBOL_GPL(zpci_aif_sbv);
72 
zpci_zdev_put(struct zpci_dev * zdev)73 void zpci_zdev_put(struct zpci_dev *zdev)
74 {
75 	if (!zdev)
76 		return;
77 	mutex_lock(&zpci_add_remove_lock);
78 	kref_put_lock(&zdev->kref, zpci_release_device, &zpci_list_lock);
79 	mutex_unlock(&zpci_add_remove_lock);
80 }
81 
get_zdev_by_fid(u32 fid)82 struct zpci_dev *get_zdev_by_fid(u32 fid)
83 {
84 	struct zpci_dev *tmp, *zdev = NULL;
85 
86 	spin_lock(&zpci_list_lock);
87 	list_for_each_entry(tmp, &zpci_list, entry) {
88 		if (tmp->fid == fid) {
89 			zdev = tmp;
90 			zpci_zdev_get(zdev);
91 			break;
92 		}
93 	}
94 	spin_unlock(&zpci_list_lock);
95 	return zdev;
96 }
97 
zpci_remove_reserved_devices(void)98 void zpci_remove_reserved_devices(void)
99 {
100 	struct zpci_dev *tmp, *zdev;
101 	enum zpci_state state;
102 	LIST_HEAD(remove);
103 
104 	spin_lock(&zpci_list_lock);
105 	list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
106 		if (zdev->state == ZPCI_FN_STATE_STANDBY &&
107 		    !clp_get_state(zdev->fid, &state) &&
108 		    state == ZPCI_FN_STATE_RESERVED)
109 			list_move_tail(&zdev->entry, &remove);
110 	}
111 	spin_unlock(&zpci_list_lock);
112 
113 	list_for_each_entry_safe(zdev, tmp, &remove, entry)
114 		zpci_device_reserved(zdev);
115 }
116 
pci_domain_nr(struct pci_bus * bus)117 int pci_domain_nr(struct pci_bus *bus)
118 {
119 	return ((struct zpci_bus *) bus->sysdata)->domain_nr;
120 }
121 EXPORT_SYMBOL_GPL(pci_domain_nr);
122 
pci_proc_domain(struct pci_bus * bus)123 int pci_proc_domain(struct pci_bus *bus)
124 {
125 	return pci_domain_nr(bus);
126 }
127 EXPORT_SYMBOL_GPL(pci_proc_domain);
128 
129 /* Modify PCI: Register I/O address translation parameters */
zpci_register_ioat(struct zpci_dev * zdev,u8 dmaas,u64 base,u64 limit,u64 iota,u8 * status)130 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
131 		       u64 base, u64 limit, u64 iota, u8 *status)
132 {
133 	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
134 	struct zpci_fib fib = {0};
135 	u8 cc;
136 
137 	fib.pba = base;
138 	/* Work around off by one in ISM virt device */
139 	if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base)
140 		fib.pal = limit + (1 << 12);
141 	else
142 		fib.pal = limit;
143 	fib.iota = iota;
144 	fib.gd = zdev->gisa;
145 	cc = zpci_mod_fc(req, &fib, status);
146 	if (cc)
147 		zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status);
148 	return cc;
149 }
150 EXPORT_SYMBOL_GPL(zpci_register_ioat);
151 
152 /* Modify PCI: Unregister I/O address translation parameters */
zpci_unregister_ioat(struct zpci_dev * zdev,u8 dmaas)153 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
154 {
155 	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
156 	struct zpci_fib fib = {0};
157 	u8 cc, status;
158 
159 	fib.gd = zdev->gisa;
160 
161 	cc = zpci_mod_fc(req, &fib, &status);
162 	if (cc)
163 		zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
164 	return cc;
165 }
166 
167 /* Modify PCI: Set PCI function measurement parameters */
zpci_fmb_enable_device(struct zpci_dev * zdev)168 int zpci_fmb_enable_device(struct zpci_dev *zdev)
169 {
170 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
171 	struct zpci_iommu_ctrs *ctrs;
172 	struct zpci_fib fib = {0};
173 	unsigned long flags;
174 	u8 cc, status;
175 
176 	if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
177 		return -EINVAL;
178 
179 	zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
180 	if (!zdev->fmb)
181 		return -ENOMEM;
182 	WARN_ON((u64) zdev->fmb & 0xf);
183 
184 	/* reset software counters */
185 	spin_lock_irqsave(&zdev->dom_lock, flags);
186 	ctrs = zpci_get_iommu_ctrs(zdev);
187 	if (ctrs) {
188 		atomic64_set(&ctrs->mapped_pages, 0);
189 		atomic64_set(&ctrs->unmapped_pages, 0);
190 		atomic64_set(&ctrs->global_rpcits, 0);
191 		atomic64_set(&ctrs->sync_map_rpcits, 0);
192 		atomic64_set(&ctrs->sync_rpcits, 0);
193 	}
194 	spin_unlock_irqrestore(&zdev->dom_lock, flags);
195 
196 
197 	fib.fmb_addr = virt_to_phys(zdev->fmb);
198 	fib.gd = zdev->gisa;
199 	cc = zpci_mod_fc(req, &fib, &status);
200 	if (cc) {
201 		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
202 		zdev->fmb = NULL;
203 	}
204 	return cc ? -EIO : 0;
205 }
206 
207 /* Modify PCI: Disable PCI function measurement */
zpci_fmb_disable_device(struct zpci_dev * zdev)208 int zpci_fmb_disable_device(struct zpci_dev *zdev)
209 {
210 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
211 	struct zpci_fib fib = {0};
212 	u8 cc, status;
213 
214 	if (!zdev->fmb)
215 		return -EINVAL;
216 
217 	fib.gd = zdev->gisa;
218 
219 	/* Function measurement is disabled if fmb address is zero */
220 	cc = zpci_mod_fc(req, &fib, &status);
221 	if (cc == 3) /* Function already gone. */
222 		cc = 0;
223 
224 	if (!cc) {
225 		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
226 		zdev->fmb = NULL;
227 	}
228 	return cc ? -EIO : 0;
229 }
230 
zpci_cfg_load(struct zpci_dev * zdev,int offset,u32 * val,u8 len)231 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
232 {
233 	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
234 	u64 data;
235 	int rc;
236 
237 	rc = __zpci_load(&data, req, offset);
238 	if (!rc) {
239 		data = le64_to_cpu((__force __le64) data);
240 		data >>= (8 - len) * 8;
241 		*val = (u32) data;
242 	} else
243 		*val = 0xffffffff;
244 	return rc;
245 }
246 
zpci_cfg_store(struct zpci_dev * zdev,int offset,u32 val,u8 len)247 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
248 {
249 	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
250 	u64 data = val;
251 	int rc;
252 
253 	data <<= (8 - len) * 8;
254 	data = (__force u64) cpu_to_le64(data);
255 	rc = __zpci_store(data, req, offset);
256 	return rc;
257 }
258 
pcibios_align_resource(void * data,const struct resource * res,resource_size_t size,resource_size_t align)259 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
260 				       resource_size_t size,
261 				       resource_size_t align)
262 {
263 	return 0;
264 }
265 
ioremap_prot(phys_addr_t phys_addr,size_t size,pgprot_t prot)266 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size,
267 			   pgprot_t prot)
268 {
269 	/*
270 	 * When PCI MIO instructions are unavailable the "physical" address
271 	 * encodes a hint for accessing the PCI memory space it represents.
272 	 * Just pass it unchanged such that ioread/iowrite can decode it.
273 	 */
274 	if (!static_branch_unlikely(&have_mio))
275 		return (void __iomem *)phys_addr;
276 
277 	return generic_ioremap_prot(phys_addr, size, prot);
278 }
279 EXPORT_SYMBOL(ioremap_prot);
280 
iounmap(volatile void __iomem * addr)281 void iounmap(volatile void __iomem *addr)
282 {
283 	if (static_branch_likely(&have_mio))
284 		generic_iounmap(addr);
285 }
286 EXPORT_SYMBOL(iounmap);
287 
288 /* Create a virtual mapping cookie for a PCI BAR */
pci_iomap_range_fh(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)289 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
290 					unsigned long offset, unsigned long max)
291 {
292 	struct zpci_dev *zdev =	to_zpci(pdev);
293 	int idx;
294 
295 	idx = zdev->bars[bar].map_idx;
296 	spin_lock(&zpci_iomap_lock);
297 	/* Detect overrun */
298 	WARN_ON(!++zpci_iomap_start[idx].count);
299 	zpci_iomap_start[idx].fh = zdev->fh;
300 	zpci_iomap_start[idx].bar = bar;
301 	spin_unlock(&zpci_iomap_lock);
302 
303 	return (void __iomem *) ZPCI_ADDR(idx) + offset;
304 }
305 
pci_iomap_range_mio(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)306 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
307 					 unsigned long offset,
308 					 unsigned long max)
309 {
310 	unsigned long barsize = pci_resource_len(pdev, bar);
311 	struct zpci_dev *zdev = to_zpci(pdev);
312 	void __iomem *iova;
313 
314 	iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
315 	return iova ? iova + offset : iova;
316 }
317 
pci_iomap_range(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)318 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
319 			      unsigned long offset, unsigned long max)
320 {
321 	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
322 		return NULL;
323 
324 	if (static_branch_likely(&have_mio))
325 		return pci_iomap_range_mio(pdev, bar, offset, max);
326 	else
327 		return pci_iomap_range_fh(pdev, bar, offset, max);
328 }
329 EXPORT_SYMBOL(pci_iomap_range);
330 
pci_iomap(struct pci_dev * dev,int bar,unsigned long maxlen)331 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
332 {
333 	return pci_iomap_range(dev, bar, 0, maxlen);
334 }
335 EXPORT_SYMBOL(pci_iomap);
336 
pci_iomap_wc_range_mio(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)337 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
338 					    unsigned long offset, unsigned long max)
339 {
340 	unsigned long barsize = pci_resource_len(pdev, bar);
341 	struct zpci_dev *zdev = to_zpci(pdev);
342 	void __iomem *iova;
343 
344 	iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
345 	return iova ? iova + offset : iova;
346 }
347 
pci_iomap_wc_range(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)348 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
349 				 unsigned long offset, unsigned long max)
350 {
351 	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
352 		return NULL;
353 
354 	if (static_branch_likely(&have_mio))
355 		return pci_iomap_wc_range_mio(pdev, bar, offset, max);
356 	else
357 		return pci_iomap_range_fh(pdev, bar, offset, max);
358 }
359 EXPORT_SYMBOL(pci_iomap_wc_range);
360 
pci_iomap_wc(struct pci_dev * dev,int bar,unsigned long maxlen)361 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
362 {
363 	return pci_iomap_wc_range(dev, bar, 0, maxlen);
364 }
365 EXPORT_SYMBOL(pci_iomap_wc);
366 
pci_iounmap_fh(struct pci_dev * pdev,void __iomem * addr)367 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
368 {
369 	unsigned int idx = ZPCI_IDX(addr);
370 
371 	spin_lock(&zpci_iomap_lock);
372 	/* Detect underrun */
373 	WARN_ON(!zpci_iomap_start[idx].count);
374 	if (!--zpci_iomap_start[idx].count) {
375 		zpci_iomap_start[idx].fh = 0;
376 		zpci_iomap_start[idx].bar = 0;
377 	}
378 	spin_unlock(&zpci_iomap_lock);
379 }
380 
pci_iounmap_mio(struct pci_dev * pdev,void __iomem * addr)381 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
382 {
383 	iounmap(addr);
384 }
385 
pci_iounmap(struct pci_dev * pdev,void __iomem * addr)386 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
387 {
388 	if (static_branch_likely(&have_mio))
389 		pci_iounmap_mio(pdev, addr);
390 	else
391 		pci_iounmap_fh(pdev, addr);
392 }
393 EXPORT_SYMBOL(pci_iounmap);
394 
pci_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)395 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
396 		    int size, u32 *val)
397 {
398 	struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
399 
400 	return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
401 }
402 
pci_write(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)403 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
404 		     int size, u32 val)
405 {
406 	struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
407 
408 	return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
409 }
410 
411 static struct pci_ops pci_root_ops = {
412 	.read = pci_read,
413 	.write = pci_write,
414 };
415 
zpci_map_resources(struct pci_dev * pdev)416 static void zpci_map_resources(struct pci_dev *pdev)
417 {
418 	struct zpci_dev *zdev = to_zpci(pdev);
419 	resource_size_t len;
420 	int i;
421 
422 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
423 		len = pci_resource_len(pdev, i);
424 		if (!len)
425 			continue;
426 
427 		if (zpci_use_mio(zdev))
428 			pdev->resource[i].start =
429 				(resource_size_t __force) zdev->bars[i].mio_wt;
430 		else
431 			pdev->resource[i].start = (resource_size_t __force)
432 				pci_iomap_range_fh(pdev, i, 0, 0);
433 		pdev->resource[i].end = pdev->resource[i].start + len - 1;
434 	}
435 
436 	zpci_iov_map_resources(pdev);
437 }
438 
zpci_unmap_resources(struct pci_dev * pdev)439 static void zpci_unmap_resources(struct pci_dev *pdev)
440 {
441 	struct zpci_dev *zdev = to_zpci(pdev);
442 	resource_size_t len;
443 	int i;
444 
445 	if (zpci_use_mio(zdev))
446 		return;
447 
448 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
449 		len = pci_resource_len(pdev, i);
450 		if (!len)
451 			continue;
452 		pci_iounmap_fh(pdev, (void __iomem __force *)
453 			       pdev->resource[i].start);
454 	}
455 }
456 
zpci_alloc_iomap(struct zpci_dev * zdev)457 static int zpci_alloc_iomap(struct zpci_dev *zdev)
458 {
459 	unsigned long entry;
460 
461 	spin_lock(&zpci_iomap_lock);
462 	entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
463 	if (entry == ZPCI_IOMAP_ENTRIES) {
464 		spin_unlock(&zpci_iomap_lock);
465 		return -ENOSPC;
466 	}
467 	set_bit(entry, zpci_iomap_bitmap);
468 	spin_unlock(&zpci_iomap_lock);
469 	return entry;
470 }
471 
zpci_free_iomap(struct zpci_dev * zdev,int entry)472 static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
473 {
474 	spin_lock(&zpci_iomap_lock);
475 	memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
476 	clear_bit(entry, zpci_iomap_bitmap);
477 	spin_unlock(&zpci_iomap_lock);
478 }
479 
zpci_do_update_iomap_fh(struct zpci_dev * zdev,u32 fh)480 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
481 {
482 	int bar, idx;
483 
484 	spin_lock(&zpci_iomap_lock);
485 	for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
486 		if (!zdev->bars[bar].size)
487 			continue;
488 		idx = zdev->bars[bar].map_idx;
489 		if (!zpci_iomap_start[idx].count)
490 			continue;
491 		WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
492 	}
493 	spin_unlock(&zpci_iomap_lock);
494 }
495 
zpci_update_fh(struct zpci_dev * zdev,u32 fh)496 void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
497 {
498 	if (!fh || zdev->fh == fh)
499 		return;
500 
501 	zdev->fh = fh;
502 	if (zpci_use_mio(zdev))
503 		return;
504 	if (zdev->has_resources && zdev_enabled(zdev))
505 		zpci_do_update_iomap_fh(zdev, fh);
506 }
507 
__alloc_res(struct zpci_dev * zdev,unsigned long start,unsigned long size,unsigned long flags)508 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
509 				    unsigned long size, unsigned long flags)
510 {
511 	struct resource *r;
512 
513 	r = kzalloc(sizeof(*r), GFP_KERNEL);
514 	if (!r)
515 		return NULL;
516 
517 	r->start = start;
518 	r->end = r->start + size - 1;
519 	r->flags = flags;
520 	r->name = zdev->res_name;
521 
522 	if (request_resource(&iomem_resource, r)) {
523 		kfree(r);
524 		return NULL;
525 	}
526 	return r;
527 }
528 
zpci_setup_bus_resources(struct zpci_dev * zdev)529 int zpci_setup_bus_resources(struct zpci_dev *zdev)
530 {
531 	unsigned long addr, size, flags;
532 	struct resource *res;
533 	int i, entry;
534 
535 	snprintf(zdev->res_name, sizeof(zdev->res_name),
536 		 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
537 
538 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
539 		if (!zdev->bars[i].size)
540 			continue;
541 		entry = zpci_alloc_iomap(zdev);
542 		if (entry < 0)
543 			return entry;
544 		zdev->bars[i].map_idx = entry;
545 
546 		/* only MMIO is supported */
547 		flags = IORESOURCE_MEM;
548 		if (zdev->bars[i].val & 8)
549 			flags |= IORESOURCE_PREFETCH;
550 		if (zdev->bars[i].val & 4)
551 			flags |= IORESOURCE_MEM_64;
552 
553 		if (zpci_use_mio(zdev))
554 			addr = (unsigned long) zdev->bars[i].mio_wt;
555 		else
556 			addr = ZPCI_ADDR(entry);
557 		size = 1UL << zdev->bars[i].size;
558 
559 		res = __alloc_res(zdev, addr, size, flags);
560 		if (!res) {
561 			zpci_free_iomap(zdev, entry);
562 			return -ENOMEM;
563 		}
564 		zdev->bars[i].res = res;
565 	}
566 	zdev->has_resources = 1;
567 
568 	return 0;
569 }
570 
zpci_cleanup_bus_resources(struct zpci_dev * zdev)571 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
572 {
573 	struct resource *res;
574 	int i;
575 
576 	pci_lock_rescan_remove();
577 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
578 		res = zdev->bars[i].res;
579 		if (!res)
580 			continue;
581 
582 		release_resource(res);
583 		pci_bus_remove_resource(zdev->zbus->bus, res);
584 		zpci_free_iomap(zdev, zdev->bars[i].map_idx);
585 		zdev->bars[i].res = NULL;
586 		kfree(res);
587 	}
588 	zdev->has_resources = 0;
589 	pci_unlock_rescan_remove();
590 }
591 
pcibios_device_add(struct pci_dev * pdev)592 int pcibios_device_add(struct pci_dev *pdev)
593 {
594 	struct zpci_dev *zdev = to_zpci(pdev);
595 	struct resource *res;
596 	int i;
597 
598 	/* The pdev has a reference to the zdev via its bus */
599 	zpci_zdev_get(zdev);
600 	if (pdev->is_physfn)
601 		pdev->no_vf_scan = 1;
602 
603 	zpci_map_resources(pdev);
604 
605 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
606 		res = &pdev->resource[i];
607 		if (res->parent || !res->flags)
608 			continue;
609 		pci_claim_resource(pdev, i);
610 	}
611 
612 	return 0;
613 }
614 
pcibios_release_device(struct pci_dev * pdev)615 void pcibios_release_device(struct pci_dev *pdev)
616 {
617 	struct zpci_dev *zdev = to_zpci(pdev);
618 
619 	zpci_unmap_resources(pdev);
620 	zpci_zdev_put(zdev);
621 }
622 
pcibios_enable_device(struct pci_dev * pdev,int mask)623 int pcibios_enable_device(struct pci_dev *pdev, int mask)
624 {
625 	struct zpci_dev *zdev = to_zpci(pdev);
626 
627 	zpci_debug_init_device(zdev, dev_name(&pdev->dev));
628 	zpci_fmb_enable_device(zdev);
629 
630 	return pci_enable_resources(pdev, mask);
631 }
632 
pcibios_disable_device(struct pci_dev * pdev)633 void pcibios_disable_device(struct pci_dev *pdev)
634 {
635 	struct zpci_dev *zdev = to_zpci(pdev);
636 
637 	zpci_fmb_disable_device(zdev);
638 	zpci_debug_exit_device(zdev);
639 }
640 
__zpci_register_domain(int domain)641 static int __zpci_register_domain(int domain)
642 {
643 	spin_lock(&zpci_domain_lock);
644 	if (test_bit(domain, zpci_domain)) {
645 		spin_unlock(&zpci_domain_lock);
646 		pr_err("Domain %04x is already assigned\n", domain);
647 		return -EEXIST;
648 	}
649 	set_bit(domain, zpci_domain);
650 	spin_unlock(&zpci_domain_lock);
651 	return domain;
652 }
653 
__zpci_alloc_domain(void)654 static int __zpci_alloc_domain(void)
655 {
656 	int domain;
657 
658 	spin_lock(&zpci_domain_lock);
659 	/*
660 	 * We can always auto allocate domains below ZPCI_NR_DEVICES.
661 	 * There is either a free domain or we have reached the maximum in
662 	 * which case we would have bailed earlier.
663 	 */
664 	domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
665 	set_bit(domain, zpci_domain);
666 	spin_unlock(&zpci_domain_lock);
667 	return domain;
668 }
669 
zpci_alloc_domain(int domain)670 int zpci_alloc_domain(int domain)
671 {
672 	if (zpci_unique_uid) {
673 		if (domain)
674 			return __zpci_register_domain(domain);
675 		pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
676 		update_uid_checking(false);
677 	}
678 	return __zpci_alloc_domain();
679 }
680 
zpci_free_domain(int domain)681 void zpci_free_domain(int domain)
682 {
683 	spin_lock(&zpci_domain_lock);
684 	clear_bit(domain, zpci_domain);
685 	spin_unlock(&zpci_domain_lock);
686 }
687 
688 
zpci_enable_device(struct zpci_dev * zdev)689 int zpci_enable_device(struct zpci_dev *zdev)
690 {
691 	u32 fh = zdev->fh;
692 	int rc = 0;
693 
694 	if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
695 		rc = -EIO;
696 	else
697 		zpci_update_fh(zdev, fh);
698 	return rc;
699 }
700 EXPORT_SYMBOL_GPL(zpci_enable_device);
701 
zpci_reenable_device(struct zpci_dev * zdev)702 int zpci_reenable_device(struct zpci_dev *zdev)
703 {
704 	u8 status;
705 	int rc;
706 
707 	rc = zpci_enable_device(zdev);
708 	if (rc)
709 		return rc;
710 
711 	if (zdev->msi_nr_irqs > 0) {
712 		rc = zpci_set_irq(zdev);
713 		if (rc)
714 			return rc;
715 	}
716 
717 	rc = zpci_iommu_register_ioat(zdev, &status);
718 	if (rc)
719 		zpci_disable_device(zdev);
720 
721 	return rc;
722 }
723 EXPORT_SYMBOL_GPL(zpci_reenable_device);
724 
zpci_disable_device(struct zpci_dev * zdev)725 int zpci_disable_device(struct zpci_dev *zdev)
726 {
727 	u32 fh = zdev->fh;
728 	int cc, rc = 0;
729 
730 	cc = clp_disable_fh(zdev, &fh);
731 	if (!cc) {
732 		zpci_update_fh(zdev, fh);
733 	} else if (cc == CLP_RC_SETPCIFN_ALRDY) {
734 		pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
735 			zdev->fid);
736 		/* Function is already disabled - update handle */
737 		rc = clp_refresh_fh(zdev->fid, &fh);
738 		if (!rc) {
739 			zpci_update_fh(zdev, fh);
740 			rc = -EINVAL;
741 		}
742 	} else {
743 		rc = -EIO;
744 	}
745 	return rc;
746 }
747 EXPORT_SYMBOL_GPL(zpci_disable_device);
748 
749 /**
750  * zpci_hot_reset_device - perform a reset of the given zPCI function
751  * @zdev: the slot which should be reset
752  *
753  * Performs a low level reset of the zPCI function. The reset is low level in
754  * the sense that the zPCI function can be reset without detaching it from the
755  * common PCI subsystem. The reset may be performed while under control of
756  * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
757  * table is reinstated at the end of the reset.
758  *
759  * After the reset the functions internal state is reset to an initial state
760  * equivalent to its state during boot when first probing a driver.
761  * Consequently after reset the PCI function requires re-initialization via the
762  * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
763  * and enabling the function via e.g. pci_enable_device_flags(). The caller
764  * must guard against concurrent reset attempts.
765  *
766  * In most cases this function should not be called directly but through
767  * pci_reset_function() or pci_reset_bus() which handle the save/restore and
768  * locking - asserted by lockdep.
769  *
770  * Return: 0 on success and an error value otherwise
771  */
zpci_hot_reset_device(struct zpci_dev * zdev)772 int zpci_hot_reset_device(struct zpci_dev *zdev)
773 {
774 	int rc;
775 
776 	lockdep_assert_held(&zdev->state_lock);
777 	zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
778 	if (zdev_enabled(zdev)) {
779 		/* Disables device access, DMAs and IRQs (reset state) */
780 		rc = zpci_disable_device(zdev);
781 		/*
782 		 * Due to a z/VM vs LPAR inconsistency in the error state the
783 		 * FH may indicate an enabled device but disable says the
784 		 * device is already disabled don't treat it as an error here.
785 		 */
786 		if (rc == -EINVAL)
787 			rc = 0;
788 		if (rc)
789 			return rc;
790 	}
791 
792 	rc = zpci_reenable_device(zdev);
793 
794 	return rc;
795 }
796 
797 /**
798  * zpci_create_device() - Create a new zpci_dev and add it to the zbus
799  * @fid: Function ID of the device to be created
800  * @fh: Current Function Handle of the device to be created
801  * @state: Initial state after creation either Standby or Configured
802  *
803  * Allocates a new struct zpci_dev and queries the platform for its details.
804  * If successful the device can subsequently be added to the zPCI subsystem
805  * using zpci_add_device().
806  *
807  * Returns: the zdev on success or an error pointer otherwise
808  */
zpci_create_device(u32 fid,u32 fh,enum zpci_state state)809 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
810 {
811 	struct zpci_dev *zdev;
812 	int rc;
813 
814 	zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
815 	if (!zdev)
816 		return ERR_PTR(-ENOMEM);
817 
818 	/* FID and Function Handle are the static/dynamic identifiers */
819 	zdev->fid = fid;
820 	zdev->fh = fh;
821 
822 	/* Query function properties and update zdev */
823 	rc = clp_query_pci_fn(zdev);
824 	if (rc)
825 		goto error;
826 	zdev->state =  state;
827 
828 	mutex_init(&zdev->state_lock);
829 	mutex_init(&zdev->fmb_lock);
830 	mutex_init(&zdev->kzdev_lock);
831 
832 	return zdev;
833 
834 error:
835 	zpci_dbg(0, "crt fid:%x, rc:%d\n", fid, rc);
836 	kfree(zdev);
837 	return ERR_PTR(rc);
838 }
839 
840 /**
841  * zpci_add_device() - Add a previously created zPCI device to the zPCI subsystem
842  * @zdev: The zPCI device to be added
843  *
844  * A struct zpci_dev is added to the zPCI subsystem and to a virtual PCI bus creating
845  * a new one as necessary. A hotplug slot is created and events start to be handled.
846  * If successful from this point on zpci_zdev_get() and zpci_zdev_put() must be used.
847  * If adding the struct zpci_dev fails the device was not added and should be freed.
848  *
849  * Return: 0 on success, or an error code otherwise
850  */
zpci_add_device(struct zpci_dev * zdev)851 int zpci_add_device(struct zpci_dev *zdev)
852 {
853 	int rc;
854 
855 	mutex_lock(&zpci_add_remove_lock);
856 	zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", zdev->fid, zdev->fh, zdev->state);
857 	rc = zpci_init_iommu(zdev);
858 	if (rc)
859 		goto error;
860 
861 	rc = zpci_bus_device_register(zdev, &pci_root_ops);
862 	if (rc)
863 		goto error_destroy_iommu;
864 
865 	kref_init(&zdev->kref);
866 	spin_lock(&zpci_list_lock);
867 	list_add_tail(&zdev->entry, &zpci_list);
868 	spin_unlock(&zpci_list_lock);
869 	mutex_unlock(&zpci_add_remove_lock);
870 	return 0;
871 
872 error_destroy_iommu:
873 	zpci_destroy_iommu(zdev);
874 error:
875 	zpci_dbg(0, "add fid:%x, rc:%d\n", zdev->fid, rc);
876 	mutex_unlock(&zpci_add_remove_lock);
877 	return rc;
878 }
879 
zpci_is_device_configured(struct zpci_dev * zdev)880 bool zpci_is_device_configured(struct zpci_dev *zdev)
881 {
882 	enum zpci_state state = zdev->state;
883 
884 	return state != ZPCI_FN_STATE_RESERVED &&
885 		state != ZPCI_FN_STATE_STANDBY;
886 }
887 
888 /**
889  * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
890  * @zdev: The zpci_dev to be configured
891  * @fh: The general function handle supplied by the platform
892  *
893  * Given a device in the configuration state Configured, enables, scans and
894  * adds it to the common code PCI subsystem if possible. If any failure occurs,
895  * the zpci_dev is left disabled.
896  *
897  * Return: 0 on success, or an error code otherwise
898  */
zpci_scan_configured_device(struct zpci_dev * zdev,u32 fh)899 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
900 {
901 	zpci_update_fh(zdev, fh);
902 	return zpci_bus_scan_device(zdev);
903 }
904 
905 /**
906  * zpci_deconfigure_device() - Deconfigure a zpci_dev
907  * @zdev: The zpci_dev to configure
908  *
909  * Deconfigure a zPCI function that is currently configured and possibly known
910  * to the common code PCI subsystem.
911  * If any failure occurs the device is left as is.
912  *
913  * Return: 0 on success, or an error code otherwise
914  */
zpci_deconfigure_device(struct zpci_dev * zdev)915 int zpci_deconfigure_device(struct zpci_dev *zdev)
916 {
917 	int rc;
918 
919 	lockdep_assert_held(&zdev->state_lock);
920 	if (zdev->state != ZPCI_FN_STATE_CONFIGURED)
921 		return 0;
922 
923 	if (zdev->zbus->bus)
924 		zpci_bus_remove_device(zdev, false);
925 
926 	if (zdev_enabled(zdev)) {
927 		rc = zpci_disable_device(zdev);
928 		if (rc)
929 			return rc;
930 	}
931 
932 	rc = sclp_pci_deconfigure(zdev->fid);
933 	zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
934 	if (rc)
935 		return rc;
936 	zdev->state = ZPCI_FN_STATE_STANDBY;
937 
938 	return 0;
939 }
940 
941 /**
942  * zpci_device_reserved() - Mark device as reserved
943  * @zdev: the zpci_dev that was reserved
944  *
945  * Handle the case that a given zPCI function was reserved by another system.
946  */
zpci_device_reserved(struct zpci_dev * zdev)947 void zpci_device_reserved(struct zpci_dev *zdev)
948 {
949 	lockdep_assert_held(&zdev->state_lock);
950 	/* We may declare the device reserved multiple times */
951 	if (zdev->state == ZPCI_FN_STATE_RESERVED)
952 		return;
953 	zdev->state = ZPCI_FN_STATE_RESERVED;
954 	zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
955 	/*
956 	 * The underlying device is gone. Allow the zdev to be freed
957 	 * as soon as all other references are gone by accounting for
958 	 * the removal as a dropped reference.
959 	 */
960 	zpci_zdev_put(zdev);
961 }
962 
zpci_release_device(struct kref * kref)963 void zpci_release_device(struct kref *kref)
964 {
965 	struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
966 
967 	lockdep_assert_held(&zpci_add_remove_lock);
968 	WARN_ON(zdev->state != ZPCI_FN_STATE_RESERVED);
969 	/*
970 	 * We already hold zpci_list_lock thanks to kref_put_lock().
971 	 * This makes sure no new reference can be taken from the list.
972 	 */
973 	list_del(&zdev->entry);
974 	spin_unlock(&zpci_list_lock);
975 
976 	if (zdev->has_hp_slot)
977 		zpci_exit_slot(zdev);
978 
979 	if (zdev->has_resources)
980 		zpci_cleanup_bus_resources(zdev);
981 
982 	zpci_bus_device_unregister(zdev);
983 	zpci_destroy_iommu(zdev);
984 	zpci_dbg(3, "rem fid:%x\n", zdev->fid);
985 	kfree_rcu(zdev, rcu);
986 }
987 
zpci_report_error(struct pci_dev * pdev,struct zpci_report_error_header * report)988 int zpci_report_error(struct pci_dev *pdev,
989 		      struct zpci_report_error_header *report)
990 {
991 	struct zpci_dev *zdev = to_zpci(pdev);
992 
993 	return sclp_pci_report(report, zdev->fh, zdev->fid);
994 }
995 EXPORT_SYMBOL(zpci_report_error);
996 
997 /**
998  * zpci_clear_error_state() - Clears the zPCI error state of the device
999  * @zdev: The zdev for which the zPCI error state should be reset
1000  *
1001  * Clear the zPCI error state of the device. If clearing the zPCI error state
1002  * fails the device is left in the error state. In this case it may make sense
1003  * to call zpci_io_perm_failure() on the associated pdev if it exists.
1004  *
1005  * Returns: 0 on success, -EIO otherwise
1006  */
zpci_clear_error_state(struct zpci_dev * zdev)1007 int zpci_clear_error_state(struct zpci_dev *zdev)
1008 {
1009 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
1010 	struct zpci_fib fib = {0};
1011 	u8 status;
1012 	int cc;
1013 
1014 	cc = zpci_mod_fc(req, &fib, &status);
1015 	if (cc) {
1016 		zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1017 		return -EIO;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 /**
1024  * zpci_reset_load_store_blocked() - Re-enables L/S from error state
1025  * @zdev: The zdev for which to unblock load/store access
1026  *
1027  * Re-enables load/store access for a PCI function in the error state while
1028  * keeping DMA blocked. In this state drivers can poke MMIO space to determine
1029  * if error recovery is possible while catching any rogue DMA access from the
1030  * device.
1031  *
1032  * Returns: 0 on success, -EIO otherwise
1033  */
zpci_reset_load_store_blocked(struct zpci_dev * zdev)1034 int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
1035 {
1036 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1037 	struct zpci_fib fib = {0};
1038 	u8 status;
1039 	int cc;
1040 
1041 	cc = zpci_mod_fc(req, &fib, &status);
1042 	if (cc) {
1043 		zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1044 		return -EIO;
1045 	}
1046 
1047 	return 0;
1048 }
1049 
zpci_mem_init(void)1050 static int zpci_mem_init(void)
1051 {
1052 	BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1053 		     __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1054 
1055 	zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1056 					   __alignof__(struct zpci_fmb), 0, NULL);
1057 	if (!zdev_fmb_cache)
1058 		goto error_fmb;
1059 
1060 	zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1061 				   sizeof(*zpci_iomap_start), GFP_KERNEL);
1062 	if (!zpci_iomap_start)
1063 		goto error_iomap;
1064 
1065 	zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1066 				    sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1067 	if (!zpci_iomap_bitmap)
1068 		goto error_iomap_bitmap;
1069 
1070 	if (static_branch_likely(&have_mio))
1071 		clp_setup_writeback_mio();
1072 
1073 	return 0;
1074 error_iomap_bitmap:
1075 	kfree(zpci_iomap_start);
1076 error_iomap:
1077 	kmem_cache_destroy(zdev_fmb_cache);
1078 error_fmb:
1079 	return -ENOMEM;
1080 }
1081 
zpci_mem_exit(void)1082 static void zpci_mem_exit(void)
1083 {
1084 	kfree(zpci_iomap_bitmap);
1085 	kfree(zpci_iomap_start);
1086 	kmem_cache_destroy(zdev_fmb_cache);
1087 }
1088 
1089 static unsigned int s390_pci_probe __initdata = 1;
1090 unsigned int s390_pci_force_floating __initdata;
1091 static unsigned int s390_pci_initialized;
1092 
pcibios_setup(char * str)1093 char * __init pcibios_setup(char *str)
1094 {
1095 	if (!strcmp(str, "off")) {
1096 		s390_pci_probe = 0;
1097 		return NULL;
1098 	}
1099 	if (!strcmp(str, "nomio")) {
1100 		clear_machine_feature(MFEATURE_PCI_MIO);
1101 		return NULL;
1102 	}
1103 	if (!strcmp(str, "force_floating")) {
1104 		s390_pci_force_floating = 1;
1105 		return NULL;
1106 	}
1107 	if (!strcmp(str, "norid")) {
1108 		s390_pci_no_rid = 1;
1109 		return NULL;
1110 	}
1111 	return str;
1112 }
1113 
zpci_is_enabled(void)1114 bool zpci_is_enabled(void)
1115 {
1116 	return s390_pci_initialized;
1117 }
1118 
zpci_cmp_rid(void * priv,const struct list_head * a,const struct list_head * b)1119 static int zpci_cmp_rid(void *priv, const struct list_head *a,
1120 			const struct list_head *b)
1121 {
1122 	struct zpci_dev *za = container_of(a, struct zpci_dev, entry);
1123 	struct zpci_dev *zb = container_of(b, struct zpci_dev, entry);
1124 
1125 	/*
1126 	 * PCI functions without RID available maintain original order
1127 	 * between themselves but sort before those with RID.
1128 	 */
1129 	if (za->rid == zb->rid)
1130 		return za->rid_available > zb->rid_available;
1131 	/*
1132 	 * PCI functions with RID sort by RID ascending.
1133 	 */
1134 	return za->rid > zb->rid;
1135 }
1136 
zpci_add_devices(struct list_head * scan_list)1137 static void zpci_add_devices(struct list_head *scan_list)
1138 {
1139 	struct zpci_dev *zdev, *tmp;
1140 
1141 	list_sort(NULL, scan_list, &zpci_cmp_rid);
1142 	list_for_each_entry_safe(zdev, tmp, scan_list, entry) {
1143 		list_del_init(&zdev->entry);
1144 		if (zpci_add_device(zdev))
1145 			kfree(zdev);
1146 	}
1147 }
1148 
zpci_scan_devices(void)1149 int zpci_scan_devices(void)
1150 {
1151 	LIST_HEAD(scan_list);
1152 	int rc;
1153 
1154 	rc = clp_scan_pci_devices(&scan_list);
1155 	if (rc)
1156 		return rc;
1157 
1158 	zpci_add_devices(&scan_list);
1159 	zpci_bus_scan_busses();
1160 	return 0;
1161 }
1162 
pci_base_init(void)1163 static int __init pci_base_init(void)
1164 {
1165 	int rc;
1166 
1167 	if (!s390_pci_probe)
1168 		return 0;
1169 
1170 	if (!test_facility(69) || !test_facility(71)) {
1171 		pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1172 		return 0;
1173 	}
1174 
1175 	if (test_machine_feature(MFEATURE_PCI_MIO)) {
1176 		static_branch_enable(&have_mio);
1177 		system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT);
1178 	}
1179 
1180 	rc = zpci_debug_init();
1181 	if (rc)
1182 		goto out;
1183 
1184 	rc = zpci_mem_init();
1185 	if (rc)
1186 		goto out_mem;
1187 
1188 	rc = zpci_irq_init();
1189 	if (rc)
1190 		goto out_irq;
1191 
1192 	rc = zpci_scan_devices();
1193 	if (rc)
1194 		goto out_find;
1195 
1196 	rc = zpci_fw_sysfs_init();
1197 	if (rc)
1198 		goto out_find;
1199 
1200 	s390_pci_initialized = 1;
1201 	return 0;
1202 
1203 out_find:
1204 	zpci_irq_exit();
1205 out_irq:
1206 	zpci_mem_exit();
1207 out_mem:
1208 	zpci_debug_exit();
1209 out:
1210 	return rc;
1211 }
1212 subsys_initcall_sync(pci_base_init);
1213