xref: /linux/fs/zonefs/file.c (revision b5d760d53ac2e36825fbbb8d1f54ad9ce6138f7b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2022 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/iomap.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/blkdev.h>
13 #include <linux/statfs.h>
14 #include <linux/writeback.h>
15 #include <linux/quotaops.h>
16 #include <linux/seq_file.h>
17 #include <linux/parser.h>
18 #include <linux/uio.h>
19 #include <linux/mman.h>
20 #include <linux/sched/mm.h>
21 #include <linux/task_io_accounting_ops.h>
22 
23 #include "zonefs.h"
24 
25 #include "trace.h"
26 
zonefs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
28 				   loff_t length, unsigned int flags,
29 				   struct iomap *iomap, struct iomap *srcmap)
30 {
31 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
32 	struct zonefs_zone *z = zonefs_inode_zone(inode);
33 	struct super_block *sb = inode->i_sb;
34 	loff_t isize;
35 
36 	/*
37 	 * All blocks are always mapped below EOF. If reading past EOF,
38 	 * act as if there is a hole up to the file maximum size.
39 	 */
40 	mutex_lock(&zi->i_truncate_mutex);
41 	iomap->bdev = inode->i_sb->s_bdev;
42 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
43 	isize = i_size_read(inode);
44 	if (iomap->offset >= isize) {
45 		iomap->type = IOMAP_HOLE;
46 		iomap->addr = IOMAP_NULL_ADDR;
47 		iomap->length = length;
48 	} else {
49 		iomap->type = IOMAP_MAPPED;
50 		iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
51 		iomap->length = isize - iomap->offset;
52 	}
53 	mutex_unlock(&zi->i_truncate_mutex);
54 
55 	trace_zonefs_iomap_begin(inode, iomap);
56 
57 	return 0;
58 }
59 
60 static const struct iomap_ops zonefs_read_iomap_ops = {
61 	.iomap_begin	= zonefs_read_iomap_begin,
62 };
63 
zonefs_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
65 				    loff_t length, unsigned int flags,
66 				    struct iomap *iomap, struct iomap *srcmap)
67 {
68 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 	struct zonefs_zone *z = zonefs_inode_zone(inode);
70 	struct super_block *sb = inode->i_sb;
71 	loff_t isize;
72 
73 	/* All write I/Os should always be within the file maximum size */
74 	if (WARN_ON_ONCE(offset + length > z->z_capacity))
75 		return -EIO;
76 
77 	/*
78 	 * Sequential zones can only accept direct writes. This is already
79 	 * checked when writes are issued, so warn if we see a page writeback
80 	 * operation.
81 	 */
82 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT)))
83 		return -EIO;
84 
85 	/*
86 	 * For conventional zones, all blocks are always mapped. For sequential
87 	 * zones, all blocks after always mapped below the inode size (zone
88 	 * write pointer) and unwriten beyond.
89 	 */
90 	mutex_lock(&zi->i_truncate_mutex);
91 	iomap->bdev = inode->i_sb->s_bdev;
92 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
93 	iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
94 	isize = i_size_read(inode);
95 	if (iomap->offset >= isize) {
96 		iomap->type = IOMAP_UNWRITTEN;
97 		iomap->length = z->z_capacity - iomap->offset;
98 	} else {
99 		iomap->type = IOMAP_MAPPED;
100 		iomap->length = isize - iomap->offset;
101 	}
102 	mutex_unlock(&zi->i_truncate_mutex);
103 
104 	trace_zonefs_iomap_begin(inode, iomap);
105 
106 	return 0;
107 }
108 
109 static const struct iomap_ops zonefs_write_iomap_ops = {
110 	.iomap_begin	= zonefs_write_iomap_begin,
111 };
112 
zonefs_read_folio(struct file * unused,struct folio * folio)113 static int zonefs_read_folio(struct file *unused, struct folio *folio)
114 {
115 	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
116 }
117 
zonefs_readahead(struct readahead_control * rac)118 static void zonefs_readahead(struct readahead_control *rac)
119 {
120 	iomap_readahead(rac, &zonefs_read_iomap_ops);
121 }
122 
123 /*
124  * Map blocks for page writeback. This is used only on conventional zone files,
125  * which implies that the page range can only be within the fixed inode size.
126  */
zonefs_writeback_range(struct iomap_writepage_ctx * wpc,struct folio * folio,u64 offset,unsigned len,u64 end_pos)127 static ssize_t zonefs_writeback_range(struct iomap_writepage_ctx *wpc,
128 		struct folio *folio, u64 offset, unsigned len, u64 end_pos)
129 {
130 	struct zonefs_zone *z = zonefs_inode_zone(wpc->inode);
131 
132 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z)))
133 		return -EIO;
134 	if (WARN_ON_ONCE(offset >= i_size_read(wpc->inode)))
135 		return -EIO;
136 
137 	/* If the mapping is already OK, nothing needs to be done */
138 	if (offset < wpc->iomap.offset ||
139 	    offset >= wpc->iomap.offset + wpc->iomap.length) {
140 		int error;
141 
142 		error = zonefs_write_iomap_begin(wpc->inode, offset,
143 				z->z_capacity - offset, IOMAP_WRITE,
144 				&wpc->iomap, NULL);
145 		if (error)
146 			return error;
147 	}
148 
149 	return iomap_add_to_ioend(wpc, folio, offset, end_pos, len);
150 }
151 
152 static const struct iomap_writeback_ops zonefs_writeback_ops = {
153 	.writeback_range	= zonefs_writeback_range,
154 	.writeback_submit	= iomap_ioend_writeback_submit,
155 };
156 
zonefs_writepages(struct address_space * mapping,struct writeback_control * wbc)157 static int zonefs_writepages(struct address_space *mapping,
158 			     struct writeback_control *wbc)
159 {
160 	struct iomap_writepage_ctx wpc = {
161 		.inode		= mapping->host,
162 		.wbc		= wbc,
163 		.ops		= &zonefs_writeback_ops,
164 	};
165 
166 	return iomap_writepages(&wpc);
167 }
168 
zonefs_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)169 static int zonefs_swap_activate(struct swap_info_struct *sis,
170 				struct file *swap_file, sector_t *span)
171 {
172 	struct inode *inode = file_inode(swap_file);
173 
174 	if (zonefs_inode_is_seq(inode)) {
175 		zonefs_err(inode->i_sb,
176 			   "swap file: not a conventional zone file\n");
177 		return -EINVAL;
178 	}
179 
180 	return iomap_swapfile_activate(sis, swap_file, span,
181 				       &zonefs_read_iomap_ops);
182 }
183 
184 const struct address_space_operations zonefs_file_aops = {
185 	.read_folio		= zonefs_read_folio,
186 	.readahead		= zonefs_readahead,
187 	.writepages		= zonefs_writepages,
188 	.dirty_folio		= iomap_dirty_folio,
189 	.release_folio		= iomap_release_folio,
190 	.invalidate_folio	= iomap_invalidate_folio,
191 	.migrate_folio		= filemap_migrate_folio,
192 	.is_partially_uptodate	= iomap_is_partially_uptodate,
193 	.error_remove_folio	= generic_error_remove_folio,
194 	.swap_activate		= zonefs_swap_activate,
195 };
196 
zonefs_file_truncate(struct inode * inode,loff_t isize)197 int zonefs_file_truncate(struct inode *inode, loff_t isize)
198 {
199 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
200 	struct zonefs_zone *z = zonefs_inode_zone(inode);
201 	loff_t old_isize;
202 	enum req_op op;
203 	int ret = 0;
204 
205 	/*
206 	 * Only sequential zone files can be truncated and truncation is allowed
207 	 * only down to a 0 size, which is equivalent to a zone reset, and to
208 	 * the maximum file size, which is equivalent to a zone finish.
209 	 */
210 	if (!zonefs_zone_is_seq(z))
211 		return -EPERM;
212 
213 	if (!isize)
214 		op = REQ_OP_ZONE_RESET;
215 	else if (isize == z->z_capacity)
216 		op = REQ_OP_ZONE_FINISH;
217 	else
218 		return -EPERM;
219 
220 	inode_dio_wait(inode);
221 
222 	/* Serialize against page faults */
223 	filemap_invalidate_lock(inode->i_mapping);
224 
225 	/* Serialize against zonefs_iomap_begin() */
226 	mutex_lock(&zi->i_truncate_mutex);
227 
228 	old_isize = i_size_read(inode);
229 	if (isize == old_isize)
230 		goto unlock;
231 
232 	ret = zonefs_inode_zone_mgmt(inode, op);
233 	if (ret)
234 		goto unlock;
235 
236 	/*
237 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
238 	 * take care of open zones.
239 	 */
240 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
241 		/*
242 		 * Truncating a zone to EMPTY or FULL is the equivalent of
243 		 * closing the zone. For a truncation to 0, we need to
244 		 * re-open the zone to ensure new writes can be processed.
245 		 * For a truncation to the maximum file size, the zone is
246 		 * closed and writes cannot be accepted anymore, so clear
247 		 * the open flag.
248 		 */
249 		if (!isize)
250 			ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
251 		else
252 			z->z_flags &= ~ZONEFS_ZONE_OPEN;
253 	}
254 
255 	zonefs_update_stats(inode, isize);
256 	truncate_setsize(inode, isize);
257 	z->z_wpoffset = isize;
258 	zonefs_inode_account_active(inode);
259 
260 unlock:
261 	mutex_unlock(&zi->i_truncate_mutex);
262 	filemap_invalidate_unlock(inode->i_mapping);
263 
264 	return ret;
265 }
266 
zonefs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)267 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
268 			     int datasync)
269 {
270 	struct inode *inode = file_inode(file);
271 	int ret = 0;
272 
273 	if (unlikely(IS_IMMUTABLE(inode)))
274 		return -EPERM;
275 
276 	/*
277 	 * Since only direct writes are allowed in sequential files, page cache
278 	 * flush is needed only for conventional zone files.
279 	 */
280 	if (zonefs_inode_is_cnv(inode))
281 		ret = file_write_and_wait_range(file, start, end);
282 	if (!ret)
283 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
284 
285 	if (ret)
286 		zonefs_io_error(inode, true);
287 
288 	return ret;
289 }
290 
zonefs_filemap_page_mkwrite(struct vm_fault * vmf)291 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
292 {
293 	struct inode *inode = file_inode(vmf->vma->vm_file);
294 	vm_fault_t ret;
295 
296 	if (unlikely(IS_IMMUTABLE(inode)))
297 		return VM_FAULT_SIGBUS;
298 
299 	/*
300 	 * Sanity check: only conventional zone files can have shared
301 	 * writeable mappings.
302 	 */
303 	if (zonefs_inode_is_seq(inode))
304 		return VM_FAULT_NOPAGE;
305 
306 	sb_start_pagefault(inode->i_sb);
307 	file_update_time(vmf->vma->vm_file);
308 
309 	/* Serialize against truncates */
310 	filemap_invalidate_lock_shared(inode->i_mapping);
311 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops, NULL);
312 	filemap_invalidate_unlock_shared(inode->i_mapping);
313 
314 	sb_end_pagefault(inode->i_sb);
315 	return ret;
316 }
317 
318 static const struct vm_operations_struct zonefs_file_vm_ops = {
319 	.fault		= filemap_fault,
320 	.map_pages	= filemap_map_pages,
321 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
322 };
323 
zonefs_file_mmap_prepare(struct vm_area_desc * desc)324 static int zonefs_file_mmap_prepare(struct vm_area_desc *desc)
325 {
326 	struct file *file = desc->file;
327 
328 	/*
329 	 * Conventional zones accept random writes, so their files can support
330 	 * shared writable mappings. For sequential zone files, only read
331 	 * mappings are possible since there are no guarantees for write
332 	 * ordering between msync() and page cache writeback.
333 	 */
334 	if (zonefs_inode_is_seq(file_inode(file)) &&
335 	    (desc->vm_flags & VM_SHARED) && (desc->vm_flags & VM_MAYWRITE))
336 		return -EINVAL;
337 
338 	file_accessed(file);
339 	desc->vm_ops = &zonefs_file_vm_ops;
340 
341 	return 0;
342 }
343 
zonefs_file_llseek(struct file * file,loff_t offset,int whence)344 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
345 {
346 	loff_t isize = i_size_read(file_inode(file));
347 
348 	/*
349 	 * Seeks are limited to below the zone size for conventional zones
350 	 * and below the zone write pointer for sequential zones. In both
351 	 * cases, this limit is the inode size.
352 	 */
353 	return generic_file_llseek_size(file, offset, whence, isize, isize);
354 }
355 
zonefs_file_write_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)356 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
357 					int error, unsigned int flags)
358 {
359 	struct inode *inode = file_inode(iocb->ki_filp);
360 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
361 
362 	if (error) {
363 		/*
364 		 * For Sync IOs, error recovery is called from
365 		 * zonefs_file_dio_write().
366 		 */
367 		if (!is_sync_kiocb(iocb))
368 			zonefs_io_error(inode, true);
369 		return error;
370 	}
371 
372 	if (size && zonefs_inode_is_seq(inode)) {
373 		/*
374 		 * Note that we may be seeing completions out of order,
375 		 * but that is not a problem since a write completed
376 		 * successfully necessarily means that all preceding writes
377 		 * were also successful. So we can safely increase the inode
378 		 * size to the write end location.
379 		 */
380 		mutex_lock(&zi->i_truncate_mutex);
381 		if (i_size_read(inode) < iocb->ki_pos + size) {
382 			zonefs_update_stats(inode, iocb->ki_pos + size);
383 			zonefs_i_size_write(inode, iocb->ki_pos + size);
384 		}
385 		mutex_unlock(&zi->i_truncate_mutex);
386 	}
387 
388 	return 0;
389 }
390 
391 static const struct iomap_dio_ops zonefs_write_dio_ops = {
392 	.end_io		= zonefs_file_write_dio_end_io,
393 };
394 
395 /*
396  * Do not exceed the LFS limits nor the file zone size. If pos is under the
397  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
398  */
zonefs_write_check_limits(struct file * file,loff_t pos,loff_t count)399 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
400 					loff_t count)
401 {
402 	struct inode *inode = file_inode(file);
403 	struct zonefs_zone *z = zonefs_inode_zone(inode);
404 	loff_t limit = rlimit(RLIMIT_FSIZE);
405 	loff_t max_size = z->z_capacity;
406 
407 	if (limit != RLIM_INFINITY) {
408 		if (pos >= limit) {
409 			send_sig(SIGXFSZ, current, 0);
410 			return -EFBIG;
411 		}
412 		count = min(count, limit - pos);
413 	}
414 
415 	if (!(file->f_flags & O_LARGEFILE))
416 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
417 
418 	if (unlikely(pos >= max_size))
419 		return -EFBIG;
420 
421 	return min(count, max_size - pos);
422 }
423 
zonefs_write_checks(struct kiocb * iocb,struct iov_iter * from)424 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
425 {
426 	struct file *file = iocb->ki_filp;
427 	struct inode *inode = file_inode(file);
428 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
429 	struct zonefs_zone *z = zonefs_inode_zone(inode);
430 	loff_t count;
431 
432 	if (IS_SWAPFILE(inode))
433 		return -ETXTBSY;
434 
435 	if (!iov_iter_count(from))
436 		return 0;
437 
438 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
439 		return -EINVAL;
440 
441 	if (iocb->ki_flags & IOCB_APPEND) {
442 		if (zonefs_zone_is_cnv(z))
443 			return -EINVAL;
444 		mutex_lock(&zi->i_truncate_mutex);
445 		iocb->ki_pos = z->z_wpoffset;
446 		mutex_unlock(&zi->i_truncate_mutex);
447 	}
448 
449 	count = zonefs_write_check_limits(file, iocb->ki_pos,
450 					  iov_iter_count(from));
451 	if (count < 0)
452 		return count;
453 
454 	iov_iter_truncate(from, count);
455 	return iov_iter_count(from);
456 }
457 
458 /*
459  * Handle direct writes. For sequential zone files, this is the only possible
460  * write path. For these files, check that the user is issuing writes
461  * sequentially from the end of the file. This code assumes that the block layer
462  * delivers write requests to the device in sequential order. This is always the
463  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
464  * elevator feature is being used (e.g. mq-deadline). The block layer always
465  * automatically select such an elevator for zoned block devices during the
466  * device initialization.
467  */
zonefs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)468 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
469 {
470 	struct inode *inode = file_inode(iocb->ki_filp);
471 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
472 	struct zonefs_zone *z = zonefs_inode_zone(inode);
473 	struct super_block *sb = inode->i_sb;
474 	ssize_t ret, count;
475 
476 	/*
477 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
478 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
479 	 * on the inode lock but the second goes through but is now unaligned).
480 	 */
481 	if (zonefs_zone_is_seq(z) && !is_sync_kiocb(iocb) &&
482 	    (iocb->ki_flags & IOCB_NOWAIT))
483 		return -EOPNOTSUPP;
484 
485 	if (iocb->ki_flags & IOCB_NOWAIT) {
486 		if (!inode_trylock(inode))
487 			return -EAGAIN;
488 	} else {
489 		inode_lock(inode);
490 	}
491 
492 	count = zonefs_write_checks(iocb, from);
493 	if (count <= 0) {
494 		ret = count;
495 		goto inode_unlock;
496 	}
497 
498 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
499 		ret = -EINVAL;
500 		goto inode_unlock;
501 	}
502 
503 	/* Enforce sequential writes (append only) in sequential zones */
504 	if (zonefs_zone_is_seq(z)) {
505 		mutex_lock(&zi->i_truncate_mutex);
506 		if (iocb->ki_pos != z->z_wpoffset) {
507 			mutex_unlock(&zi->i_truncate_mutex);
508 			ret = -EINVAL;
509 			goto inode_unlock;
510 		}
511 		/*
512 		 * Advance the zone write pointer offset. This assumes that the
513 		 * IO will succeed, which is OK to do because we do not allow
514 		 * partial writes (IOMAP_DIO_PARTIAL is not set) and if the IO
515 		 * fails, the error path will correct the write pointer offset.
516 		 */
517 		z->z_wpoffset += count;
518 		zonefs_inode_account_active(inode);
519 		mutex_unlock(&zi->i_truncate_mutex);
520 	}
521 
522 	/*
523 	 * iomap_dio_rw() may return ENOTBLK if there was an issue with
524 	 * page invalidation. Overwrite that error code with EBUSY so that
525 	 * the user can make sense of the error.
526 	 */
527 	ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
528 			   &zonefs_write_dio_ops, 0, NULL, 0);
529 	if (ret == -ENOTBLK)
530 		ret = -EBUSY;
531 
532 	/*
533 	 * For a failed IO or partial completion, trigger error recovery
534 	 * to update the zone write pointer offset to a correct value.
535 	 * For asynchronous IOs, zonefs_file_write_dio_end_io() may already
536 	 * have executed error recovery if the IO already completed when we
537 	 * reach here. However, we cannot know that and execute error recovery
538 	 * again (that will not change anything).
539 	 */
540 	if (zonefs_zone_is_seq(z)) {
541 		if (ret > 0 && ret != count)
542 			ret = -EIO;
543 		if (ret < 0 && ret != -EIOCBQUEUED)
544 			zonefs_io_error(inode, true);
545 	}
546 
547 inode_unlock:
548 	inode_unlock(inode);
549 
550 	return ret;
551 }
552 
zonefs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)553 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
554 					  struct iov_iter *from)
555 {
556 	struct inode *inode = file_inode(iocb->ki_filp);
557 	ssize_t ret;
558 
559 	/*
560 	 * Direct IO writes are mandatory for sequential zone files so that the
561 	 * write IO issuing order is preserved.
562 	 */
563 	if (zonefs_inode_is_seq(inode))
564 		return -EIO;
565 
566 	if (iocb->ki_flags & IOCB_NOWAIT) {
567 		if (!inode_trylock(inode))
568 			return -EAGAIN;
569 	} else {
570 		inode_lock(inode);
571 	}
572 
573 	ret = zonefs_write_checks(iocb, from);
574 	if (ret <= 0)
575 		goto inode_unlock;
576 
577 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops,
578 			NULL, NULL);
579 	if (ret == -EIO)
580 		zonefs_io_error(inode, true);
581 
582 inode_unlock:
583 	inode_unlock(inode);
584 	if (ret > 0)
585 		ret = generic_write_sync(iocb, ret);
586 
587 	return ret;
588 }
589 
zonefs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)590 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
591 {
592 	struct inode *inode = file_inode(iocb->ki_filp);
593 	struct zonefs_zone *z = zonefs_inode_zone(inode);
594 
595 	if (unlikely(IS_IMMUTABLE(inode)))
596 		return -EPERM;
597 
598 	if (sb_rdonly(inode->i_sb))
599 		return -EROFS;
600 
601 	/* Write operations beyond the zone capacity are not allowed */
602 	if (iocb->ki_pos >= z->z_capacity)
603 		return -EFBIG;
604 
605 	if (iocb->ki_flags & IOCB_DIRECT) {
606 		ssize_t ret = zonefs_file_dio_write(iocb, from);
607 
608 		if (ret != -ENOTBLK)
609 			return ret;
610 	}
611 
612 	return zonefs_file_buffered_write(iocb, from);
613 }
614 
zonefs_file_read_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)615 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
616 				       int error, unsigned int flags)
617 {
618 	if (error) {
619 		zonefs_io_error(file_inode(iocb->ki_filp), false);
620 		return error;
621 	}
622 
623 	return 0;
624 }
625 
626 static const struct iomap_dio_ops zonefs_read_dio_ops = {
627 	.end_io			= zonefs_file_read_dio_end_io,
628 };
629 
zonefs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)630 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
631 {
632 	struct inode *inode = file_inode(iocb->ki_filp);
633 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
634 	struct zonefs_zone *z = zonefs_inode_zone(inode);
635 	struct super_block *sb = inode->i_sb;
636 	loff_t isize;
637 	ssize_t ret;
638 
639 	/* Offline zones cannot be read */
640 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
641 		return -EPERM;
642 
643 	if (iocb->ki_pos >= z->z_capacity)
644 		return 0;
645 
646 	if (iocb->ki_flags & IOCB_NOWAIT) {
647 		if (!inode_trylock_shared(inode))
648 			return -EAGAIN;
649 	} else {
650 		inode_lock_shared(inode);
651 	}
652 
653 	/* Limit read operations to written data */
654 	mutex_lock(&zi->i_truncate_mutex);
655 	isize = i_size_read(inode);
656 	if (iocb->ki_pos >= isize) {
657 		mutex_unlock(&zi->i_truncate_mutex);
658 		ret = 0;
659 		goto inode_unlock;
660 	}
661 	iov_iter_truncate(to, isize - iocb->ki_pos);
662 	mutex_unlock(&zi->i_truncate_mutex);
663 
664 	if (iocb->ki_flags & IOCB_DIRECT) {
665 		size_t count = iov_iter_count(to);
666 
667 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
668 			ret = -EINVAL;
669 			goto inode_unlock;
670 		}
671 		file_accessed(iocb->ki_filp);
672 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
673 				   &zonefs_read_dio_ops, 0, NULL, 0);
674 	} else {
675 		ret = generic_file_read_iter(iocb, to);
676 		if (ret == -EIO)
677 			zonefs_io_error(inode, false);
678 	}
679 
680 inode_unlock:
681 	inode_unlock_shared(inode);
682 
683 	return ret;
684 }
685 
zonefs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)686 static ssize_t zonefs_file_splice_read(struct file *in, loff_t *ppos,
687 				       struct pipe_inode_info *pipe,
688 				       size_t len, unsigned int flags)
689 {
690 	struct inode *inode = file_inode(in);
691 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
692 	struct zonefs_zone *z = zonefs_inode_zone(inode);
693 	loff_t isize;
694 	ssize_t ret = 0;
695 
696 	/* Offline zones cannot be read */
697 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
698 		return -EPERM;
699 
700 	if (*ppos >= z->z_capacity)
701 		return 0;
702 
703 	inode_lock_shared(inode);
704 
705 	/* Limit read operations to written data */
706 	mutex_lock(&zi->i_truncate_mutex);
707 	isize = i_size_read(inode);
708 	if (*ppos >= isize)
709 		len = 0;
710 	else
711 		len = min_t(loff_t, len, isize - *ppos);
712 	mutex_unlock(&zi->i_truncate_mutex);
713 
714 	if (len > 0) {
715 		ret = filemap_splice_read(in, ppos, pipe, len, flags);
716 		if (ret == -EIO)
717 			zonefs_io_error(inode, false);
718 	}
719 
720 	inode_unlock_shared(inode);
721 	return ret;
722 }
723 
724 /*
725  * Write open accounting is done only for sequential files.
726  */
zonefs_seq_file_need_wro(struct inode * inode,struct file * file)727 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
728 					    struct file *file)
729 {
730 	if (zonefs_inode_is_cnv(inode))
731 		return false;
732 
733 	if (!(file->f_mode & FMODE_WRITE))
734 		return false;
735 
736 	return true;
737 }
738 
zonefs_seq_file_write_open(struct inode * inode)739 static int zonefs_seq_file_write_open(struct inode *inode)
740 {
741 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
742 	struct zonefs_zone *z = zonefs_inode_zone(inode);
743 	int ret = 0;
744 
745 	mutex_lock(&zi->i_truncate_mutex);
746 
747 	if (!zi->i_wr_refcnt) {
748 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
749 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
750 
751 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
752 
753 			if (sbi->s_max_wro_seq_files
754 			    && wro > sbi->s_max_wro_seq_files) {
755 				atomic_dec(&sbi->s_wro_seq_files);
756 				ret = -EBUSY;
757 				goto unlock;
758 			}
759 
760 			if (i_size_read(inode) < z->z_capacity) {
761 				ret = zonefs_inode_zone_mgmt(inode,
762 							     REQ_OP_ZONE_OPEN);
763 				if (ret) {
764 					atomic_dec(&sbi->s_wro_seq_files);
765 					goto unlock;
766 				}
767 				z->z_flags |= ZONEFS_ZONE_OPEN;
768 				zonefs_inode_account_active(inode);
769 			}
770 		}
771 	}
772 
773 	zi->i_wr_refcnt++;
774 
775 unlock:
776 	mutex_unlock(&zi->i_truncate_mutex);
777 
778 	return ret;
779 }
780 
zonefs_file_open(struct inode * inode,struct file * file)781 static int zonefs_file_open(struct inode *inode, struct file *file)
782 {
783 	int ret;
784 
785 	file->f_mode |= FMODE_CAN_ODIRECT;
786 	ret = generic_file_open(inode, file);
787 	if (ret)
788 		return ret;
789 
790 	if (zonefs_seq_file_need_wro(inode, file))
791 		return zonefs_seq_file_write_open(inode);
792 
793 	return 0;
794 }
795 
zonefs_seq_file_write_close(struct inode * inode)796 static void zonefs_seq_file_write_close(struct inode *inode)
797 {
798 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
799 	struct zonefs_zone *z = zonefs_inode_zone(inode);
800 	struct super_block *sb = inode->i_sb;
801 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
802 	int ret = 0;
803 
804 	mutex_lock(&zi->i_truncate_mutex);
805 
806 	zi->i_wr_refcnt--;
807 	if (zi->i_wr_refcnt)
808 		goto unlock;
809 
810 	/*
811 	 * The file zone may not be open anymore (e.g. the file was truncated to
812 	 * its maximum size or it was fully written). For this case, we only
813 	 * need to decrement the write open count.
814 	 */
815 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
816 		ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
817 		if (ret) {
818 			__zonefs_io_error(inode, false);
819 			/*
820 			 * Leaving zones explicitly open may lead to a state
821 			 * where most zones cannot be written (zone resources
822 			 * exhausted). So take preventive action by remounting
823 			 * read-only.
824 			 */
825 			if (z->z_flags & ZONEFS_ZONE_OPEN &&
826 			    !(sb->s_flags & SB_RDONLY)) {
827 				zonefs_warn(sb,
828 					"closing zone at %llu failed %d\n",
829 					z->z_sector, ret);
830 				zonefs_warn(sb,
831 					"remounting filesystem read-only\n");
832 				sb->s_flags |= SB_RDONLY;
833 			}
834 			goto unlock;
835 		}
836 
837 		z->z_flags &= ~ZONEFS_ZONE_OPEN;
838 		zonefs_inode_account_active(inode);
839 	}
840 
841 	atomic_dec(&sbi->s_wro_seq_files);
842 
843 unlock:
844 	mutex_unlock(&zi->i_truncate_mutex);
845 }
846 
zonefs_file_release(struct inode * inode,struct file * file)847 static int zonefs_file_release(struct inode *inode, struct file *file)
848 {
849 	/*
850 	 * If we explicitly open a zone we must close it again as well, but the
851 	 * zone management operation can fail (either due to an IO error or as
852 	 * the zone has gone offline or read-only). Make sure we don't fail the
853 	 * close(2) for user-space.
854 	 */
855 	if (zonefs_seq_file_need_wro(inode, file))
856 		zonefs_seq_file_write_close(inode);
857 
858 	return 0;
859 }
860 
861 const struct file_operations zonefs_file_operations = {
862 	.open		= zonefs_file_open,
863 	.release	= zonefs_file_release,
864 	.fsync		= zonefs_file_fsync,
865 	.mmap_prepare	= zonefs_file_mmap_prepare,
866 	.llseek		= zonefs_file_llseek,
867 	.read_iter	= zonefs_file_read_iter,
868 	.write_iter	= zonefs_file_write_iter,
869 	.splice_read	= zonefs_file_splice_read,
870 	.splice_write	= iter_file_splice_write,
871 	.iopoll		= iocb_bio_iopoll,
872 };
873