1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/slab.h>
15 #include <linux/crc32.h>
16 #include <linux/magic.h>
17 #include <linux/kobject.h>
18 #include <linux/sched.h>
19 #include <linux/cred.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <linux/rw_hint.h>
27 #include <crypto/hash.h>
28
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31
32 struct pagevec;
33
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition) \
38 do { \
39 if (WARN_ON(condition)) \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } while (0)
42 #endif
43
44 enum {
45 FAULT_KMALLOC,
46 FAULT_KVMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_PAGE_GET,
49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
50 FAULT_ALLOC_NID,
51 FAULT_ORPHAN,
52 FAULT_BLOCK,
53 FAULT_DIR_DEPTH,
54 FAULT_EVICT_INODE,
55 FAULT_TRUNCATE,
56 FAULT_READ_IO,
57 FAULT_CHECKPOINT,
58 FAULT_DISCARD,
59 FAULT_WRITE_IO,
60 FAULT_SLAB_ALLOC,
61 FAULT_DQUOT_INIT,
62 FAULT_LOCK_OP,
63 FAULT_BLKADDR_VALIDITY,
64 FAULT_BLKADDR_CONSISTENCE,
65 FAULT_NO_SEGMENT,
66 FAULT_MAX,
67 };
68
69 #ifdef CONFIG_F2FS_FAULT_INJECTION
70 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0))
71
72 struct f2fs_fault_info {
73 atomic_t inject_ops;
74 int inject_rate;
75 unsigned int inject_type;
76 };
77
78 extern const char *f2fs_fault_name[FAULT_MAX];
79 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
80
81 /* maximum retry count for injected failure */
82 #define DEFAULT_FAILURE_RETRY_COUNT 8
83 #else
84 #define DEFAULT_FAILURE_RETRY_COUNT 1
85 #endif
86
87 /*
88 * For mount options
89 */
90 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
91 #define F2FS_MOUNT_DISCARD 0x00000002
92 #define F2FS_MOUNT_NOHEAP 0x00000004
93 #define F2FS_MOUNT_XATTR_USER 0x00000008
94 #define F2FS_MOUNT_POSIX_ACL 0x00000010
95 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
96 #define F2FS_MOUNT_INLINE_XATTR 0x00000040
97 #define F2FS_MOUNT_INLINE_DATA 0x00000080
98 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100
99 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200
100 #define F2FS_MOUNT_NOBARRIER 0x00000400
101 #define F2FS_MOUNT_FASTBOOT 0x00000800
102 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
103 #define F2FS_MOUNT_DATA_FLUSH 0x00002000
104 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000
105 #define F2FS_MOUNT_USRQUOTA 0x00008000
106 #define F2FS_MOUNT_GRPQUOTA 0x00010000
107 #define F2FS_MOUNT_PRJQUOTA 0x00020000
108 #define F2FS_MOUNT_QUOTA 0x00040000
109 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
110 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000
111 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
112 #define F2FS_MOUNT_NORECOVERY 0x00400000
113 #define F2FS_MOUNT_ATGC 0x00800000
114 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
115 #define F2FS_MOUNT_GC_MERGE 0x02000000
116 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
117 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
118
119 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
120 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
121 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
122 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
123
124 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
125 typecheck(unsigned long long, b) && \
126 ((long long)((a) - (b)) > 0))
127
128 typedef u32 block_t; /*
129 * should not change u32, since it is the on-disk block
130 * address format, __le32.
131 */
132 typedef u32 nid_t;
133
134 #define COMPRESS_EXT_NUM 16
135
136 enum blkzone_allocation_policy {
137 BLKZONE_ALLOC_PRIOR_SEQ, /* Prioritize writing to sequential zones */
138 BLKZONE_ALLOC_ONLY_SEQ, /* Only allow writing to sequential zones */
139 BLKZONE_ALLOC_PRIOR_CONV, /* Prioritize writing to conventional zones */
140 };
141
142 /*
143 * An implementation of an rwsem that is explicitly unfair to readers. This
144 * prevents priority inversion when a low-priority reader acquires the read lock
145 * while sleeping on the write lock but the write lock is needed by
146 * higher-priority clients.
147 */
148
149 struct f2fs_rwsem {
150 struct rw_semaphore internal_rwsem;
151 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
152 wait_queue_head_t read_waiters;
153 #endif
154 };
155
156 struct f2fs_mount_info {
157 unsigned int opt;
158 block_t root_reserved_blocks; /* root reserved blocks */
159 kuid_t s_resuid; /* reserved blocks for uid */
160 kgid_t s_resgid; /* reserved blocks for gid */
161 int active_logs; /* # of active logs */
162 int inline_xattr_size; /* inline xattr size */
163 #ifdef CONFIG_F2FS_FAULT_INJECTION
164 struct f2fs_fault_info fault_info; /* For fault injection */
165 #endif
166 #ifdef CONFIG_QUOTA
167 /* Names of quota files with journalled quota */
168 char *s_qf_names[MAXQUOTAS];
169 int s_jquota_fmt; /* Format of quota to use */
170 #endif
171 /* For which write hints are passed down to block layer */
172 int alloc_mode; /* segment allocation policy */
173 int fsync_mode; /* fsync policy */
174 int fs_mode; /* fs mode: LFS or ADAPTIVE */
175 int bggc_mode; /* bggc mode: off, on or sync */
176 int memory_mode; /* memory mode */
177 int errors; /* errors parameter */
178 int discard_unit; /*
179 * discard command's offset/size should
180 * be aligned to this unit: block,
181 * segment or section
182 */
183 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
184 block_t unusable_cap_perc; /* percentage for cap */
185 block_t unusable_cap; /* Amount of space allowed to be
186 * unusable when disabling checkpoint
187 */
188
189 /* For compression */
190 unsigned char compress_algorithm; /* algorithm type */
191 unsigned char compress_log_size; /* cluster log size */
192 unsigned char compress_level; /* compress level */
193 bool compress_chksum; /* compressed data chksum */
194 unsigned char compress_ext_cnt; /* extension count */
195 unsigned char nocompress_ext_cnt; /* nocompress extension count */
196 int compress_mode; /* compression mode */
197 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
198 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
199 };
200
201 #define F2FS_FEATURE_ENCRYPT 0x00000001
202 #define F2FS_FEATURE_BLKZONED 0x00000002
203 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
204 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008
205 #define F2FS_FEATURE_PRJQUOTA 0x00000010
206 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020
207 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
208 #define F2FS_FEATURE_QUOTA_INO 0x00000080
209 #define F2FS_FEATURE_INODE_CRTIME 0x00000100
210 #define F2FS_FEATURE_LOST_FOUND 0x00000200
211 #define F2FS_FEATURE_VERITY 0x00000400
212 #define F2FS_FEATURE_SB_CHKSUM 0x00000800
213 #define F2FS_FEATURE_CASEFOLD 0x00001000
214 #define F2FS_FEATURE_COMPRESSION 0x00002000
215 #define F2FS_FEATURE_RO 0x00004000
216
217 #define __F2FS_HAS_FEATURE(raw_super, mask) \
218 ((raw_super->feature & cpu_to_le32(mask)) != 0)
219 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
220
221 /*
222 * Default values for user and/or group using reserved blocks
223 */
224 #define F2FS_DEF_RESUID 0
225 #define F2FS_DEF_RESGID 0
226
227 /*
228 * For checkpoint manager
229 */
230 enum {
231 NAT_BITMAP,
232 SIT_BITMAP
233 };
234
235 #define CP_UMOUNT 0x00000001
236 #define CP_FASTBOOT 0x00000002
237 #define CP_SYNC 0x00000004
238 #define CP_RECOVERY 0x00000008
239 #define CP_DISCARD 0x00000010
240 #define CP_TRIMMED 0x00000020
241 #define CP_PAUSE 0x00000040
242 #define CP_RESIZE 0x00000080
243
244 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
245 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
246 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
247 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
248 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
249 #define DEF_CP_INTERVAL 60 /* 60 secs */
250 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
251 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
252 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
253 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
254
255 struct cp_control {
256 int reason;
257 __u64 trim_start;
258 __u64 trim_end;
259 __u64 trim_minlen;
260 };
261
262 /*
263 * indicate meta/data type
264 */
265 enum {
266 META_CP,
267 META_NAT,
268 META_SIT,
269 META_SSA,
270 META_MAX,
271 META_POR,
272 DATA_GENERIC, /* check range only */
273 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
274 DATA_GENERIC_ENHANCE_READ, /*
275 * strong check on range and segment
276 * bitmap but no warning due to race
277 * condition of read on truncated area
278 * by extent_cache
279 */
280 DATA_GENERIC_ENHANCE_UPDATE, /*
281 * strong check on range and segment
282 * bitmap for update case
283 */
284 META_GENERIC,
285 };
286
287 /* for the list of ino */
288 enum {
289 ORPHAN_INO, /* for orphan ino list */
290 APPEND_INO, /* for append ino list */
291 UPDATE_INO, /* for update ino list */
292 TRANS_DIR_INO, /* for transactions dir ino list */
293 XATTR_DIR_INO, /* for xattr updated dir ino list */
294 FLUSH_INO, /* for multiple device flushing */
295 MAX_INO_ENTRY, /* max. list */
296 };
297
298 struct ino_entry {
299 struct list_head list; /* list head */
300 nid_t ino; /* inode number */
301 unsigned int dirty_device; /* dirty device bitmap */
302 };
303
304 /* for the list of inodes to be GCed */
305 struct inode_entry {
306 struct list_head list; /* list head */
307 struct inode *inode; /* vfs inode pointer */
308 };
309
310 struct fsync_node_entry {
311 struct list_head list; /* list head */
312 struct page *page; /* warm node page pointer */
313 unsigned int seq_id; /* sequence id */
314 };
315
316 struct ckpt_req {
317 struct completion wait; /* completion for checkpoint done */
318 struct llist_node llnode; /* llist_node to be linked in wait queue */
319 int ret; /* return code of checkpoint */
320 ktime_t queue_time; /* request queued time */
321 };
322
323 struct ckpt_req_control {
324 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
325 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
326 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
327 atomic_t issued_ckpt; /* # of actually issued ckpts */
328 atomic_t total_ckpt; /* # of total ckpts */
329 atomic_t queued_ckpt; /* # of queued ckpts */
330 struct llist_head issue_list; /* list for command issue */
331 spinlock_t stat_lock; /* lock for below checkpoint time stats */
332 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
333 unsigned int peak_time; /* peak wait time in msec until now */
334 };
335
336 /* for the bitmap indicate blocks to be discarded */
337 struct discard_entry {
338 struct list_head list; /* list head */
339 block_t start_blkaddr; /* start blockaddr of current segment */
340 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
341 };
342
343 /* minimum discard granularity, unit: block count */
344 #define MIN_DISCARD_GRANULARITY 1
345 /* default discard granularity of inner discard thread, unit: block count */
346 #define DEFAULT_DISCARD_GRANULARITY 16
347 /* default maximum discard granularity of ordered discard, unit: block count */
348 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
349
350 /* max discard pend list number */
351 #define MAX_PLIST_NUM 512
352 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
353 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
354
355 enum {
356 D_PREP, /* initial */
357 D_PARTIAL, /* partially submitted */
358 D_SUBMIT, /* all submitted */
359 D_DONE, /* finished */
360 };
361
362 struct discard_info {
363 block_t lstart; /* logical start address */
364 block_t len; /* length */
365 block_t start; /* actual start address in dev */
366 };
367
368 struct discard_cmd {
369 struct rb_node rb_node; /* rb node located in rb-tree */
370 struct discard_info di; /* discard info */
371 struct list_head list; /* command list */
372 struct completion wait; /* compleation */
373 struct block_device *bdev; /* bdev */
374 unsigned short ref; /* reference count */
375 unsigned char state; /* state */
376 unsigned char queued; /* queued discard */
377 int error; /* bio error */
378 spinlock_t lock; /* for state/bio_ref updating */
379 unsigned short bio_ref; /* bio reference count */
380 };
381
382 enum {
383 DPOLICY_BG,
384 DPOLICY_FORCE,
385 DPOLICY_FSTRIM,
386 DPOLICY_UMOUNT,
387 MAX_DPOLICY,
388 };
389
390 enum {
391 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */
392 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */
393 DPOLICY_IO_AWARE_MAX,
394 };
395
396 struct discard_policy {
397 int type; /* type of discard */
398 unsigned int min_interval; /* used for candidates exist */
399 unsigned int mid_interval; /* used for device busy */
400 unsigned int max_interval; /* used for candidates not exist */
401 unsigned int max_requests; /* # of discards issued per round */
402 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
403 bool io_aware; /* issue discard in idle time */
404 bool sync; /* submit discard with REQ_SYNC flag */
405 bool ordered; /* issue discard by lba order */
406 bool timeout; /* discard timeout for put_super */
407 unsigned int granularity; /* discard granularity */
408 };
409
410 struct discard_cmd_control {
411 struct task_struct *f2fs_issue_discard; /* discard thread */
412 struct list_head entry_list; /* 4KB discard entry list */
413 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
414 struct list_head wait_list; /* store on-flushing entries */
415 struct list_head fstrim_list; /* in-flight discard from fstrim */
416 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
417 struct mutex cmd_lock;
418 unsigned int nr_discards; /* # of discards in the list */
419 unsigned int max_discards; /* max. discards to be issued */
420 unsigned int max_discard_request; /* max. discard request per round */
421 unsigned int min_discard_issue_time; /* min. interval between discard issue */
422 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
423 unsigned int max_discard_issue_time; /* max. interval between discard issue */
424 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
425 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
426 unsigned int discard_granularity; /* discard granularity */
427 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
428 unsigned int discard_io_aware; /* io_aware policy */
429 unsigned int undiscard_blks; /* # of undiscard blocks */
430 unsigned int next_pos; /* next discard position */
431 atomic_t issued_discard; /* # of issued discard */
432 atomic_t queued_discard; /* # of queued discard */
433 atomic_t discard_cmd_cnt; /* # of cached cmd count */
434 struct rb_root_cached root; /* root of discard rb-tree */
435 bool rbtree_check; /* config for consistence check */
436 bool discard_wake; /* to wake up discard thread */
437 };
438
439 /* for the list of fsync inodes, used only during recovery */
440 struct fsync_inode_entry {
441 struct list_head list; /* list head */
442 struct inode *inode; /* vfs inode pointer */
443 block_t blkaddr; /* block address locating the last fsync */
444 block_t last_dentry; /* block address locating the last dentry */
445 };
446
447 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
448 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
449
450 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
451 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
452 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
453 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
454
455 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
456 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
457
update_nats_in_cursum(struct f2fs_journal * journal,int i)458 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
459 {
460 int before = nats_in_cursum(journal);
461
462 journal->n_nats = cpu_to_le16(before + i);
463 return before;
464 }
465
update_sits_in_cursum(struct f2fs_journal * journal,int i)466 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
467 {
468 int before = sits_in_cursum(journal);
469
470 journal->n_sits = cpu_to_le16(before + i);
471 return before;
472 }
473
__has_cursum_space(struct f2fs_journal * journal,int size,int type)474 static inline bool __has_cursum_space(struct f2fs_journal *journal,
475 int size, int type)
476 {
477 if (type == NAT_JOURNAL)
478 return size <= MAX_NAT_JENTRIES(journal);
479 return size <= MAX_SIT_JENTRIES(journal);
480 }
481
482 /* for inline stuff */
483 #define DEF_INLINE_RESERVED_SIZE 1
484 static inline int get_extra_isize(struct inode *inode);
485 static inline int get_inline_xattr_addrs(struct inode *inode);
486 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
487 (CUR_ADDRS_PER_INODE(inode) - \
488 get_inline_xattr_addrs(inode) - \
489 DEF_INLINE_RESERVED_SIZE))
490
491 /* for inline dir */
492 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
493 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
494 BITS_PER_BYTE + 1))
495 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
496 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
497 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
498 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
499 NR_INLINE_DENTRY(inode) + \
500 INLINE_DENTRY_BITMAP_SIZE(inode)))
501
502 /*
503 * For INODE and NODE manager
504 */
505 /* for directory operations */
506
507 struct f2fs_filename {
508 /*
509 * The filename the user specified. This is NULL for some
510 * filesystem-internal operations, e.g. converting an inline directory
511 * to a non-inline one, or roll-forward recovering an encrypted dentry.
512 */
513 const struct qstr *usr_fname;
514
515 /*
516 * The on-disk filename. For encrypted directories, this is encrypted.
517 * This may be NULL for lookups in an encrypted dir without the key.
518 */
519 struct fscrypt_str disk_name;
520
521 /* The dirhash of this filename */
522 f2fs_hash_t hash;
523
524 #ifdef CONFIG_FS_ENCRYPTION
525 /*
526 * For lookups in encrypted directories: either the buffer backing
527 * disk_name, or a buffer that holds the decoded no-key name.
528 */
529 struct fscrypt_str crypto_buf;
530 #endif
531 #if IS_ENABLED(CONFIG_UNICODE)
532 /*
533 * For casefolded directories: the casefolded name, but it's left NULL
534 * if the original name is not valid Unicode, if the original name is
535 * "." or "..", if the directory is both casefolded and encrypted and
536 * its encryption key is unavailable, or if the filesystem is doing an
537 * internal operation where usr_fname is also NULL. In all these cases
538 * we fall back to treating the name as an opaque byte sequence.
539 */
540 struct qstr cf_name;
541 #endif
542 };
543
544 struct f2fs_dentry_ptr {
545 struct inode *inode;
546 void *bitmap;
547 struct f2fs_dir_entry *dentry;
548 __u8 (*filename)[F2FS_SLOT_LEN];
549 int max;
550 int nr_bitmap;
551 };
552
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)553 static inline void make_dentry_ptr_block(struct inode *inode,
554 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
555 {
556 d->inode = inode;
557 d->max = NR_DENTRY_IN_BLOCK;
558 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
559 d->bitmap = t->dentry_bitmap;
560 d->dentry = t->dentry;
561 d->filename = t->filename;
562 }
563
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)564 static inline void make_dentry_ptr_inline(struct inode *inode,
565 struct f2fs_dentry_ptr *d, void *t)
566 {
567 int entry_cnt = NR_INLINE_DENTRY(inode);
568 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
569 int reserved_size = INLINE_RESERVED_SIZE(inode);
570
571 d->inode = inode;
572 d->max = entry_cnt;
573 d->nr_bitmap = bitmap_size;
574 d->bitmap = t;
575 d->dentry = t + bitmap_size + reserved_size;
576 d->filename = t + bitmap_size + reserved_size +
577 SIZE_OF_DIR_ENTRY * entry_cnt;
578 }
579
580 /*
581 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
582 * as its node offset to distinguish from index node blocks.
583 * But some bits are used to mark the node block.
584 */
585 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
586 >> OFFSET_BIT_SHIFT)
587 enum {
588 ALLOC_NODE, /* allocate a new node page if needed */
589 LOOKUP_NODE, /* look up a node without readahead */
590 LOOKUP_NODE_RA, /*
591 * look up a node with readahead called
592 * by get_data_block.
593 */
594 };
595
596 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
597
598 /* congestion wait timeout value, default: 20ms */
599 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
600
601 /* maximum retry quota flush count */
602 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
603
604 /* maximum retry of EIO'ed page */
605 #define MAX_RETRY_PAGE_EIO 100
606
607 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
608
609 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
610
611 /* dirty segments threshold for triggering CP */
612 #define DEFAULT_DIRTY_THRESHOLD 4
613
614 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
615 #define RECOVERY_MIN_RA_BLOCKS 1
616
617 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
618
619 /* for in-memory extent cache entry */
620 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
621
622 /* number of extent info in extent cache we try to shrink */
623 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128
624
625 /* number of age extent info in extent cache we try to shrink */
626 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
627 #define LAST_AGE_WEIGHT 30
628 #define SAME_AGE_REGION 1024
629
630 /*
631 * Define data block with age less than 1GB as hot data
632 * define data block with age less than 10GB but more than 1GB as warm data
633 */
634 #define DEF_HOT_DATA_AGE_THRESHOLD 262144
635 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440
636
637 /* extent cache type */
638 enum extent_type {
639 EX_READ,
640 EX_BLOCK_AGE,
641 NR_EXTENT_CACHES,
642 };
643
644 struct extent_info {
645 unsigned int fofs; /* start offset in a file */
646 unsigned int len; /* length of the extent */
647 union {
648 /* read extent_cache */
649 struct {
650 /* start block address of the extent */
651 block_t blk;
652 #ifdef CONFIG_F2FS_FS_COMPRESSION
653 /* physical extent length of compressed blocks */
654 unsigned int c_len;
655 #endif
656 };
657 /* block age extent_cache */
658 struct {
659 /* block age of the extent */
660 unsigned long long age;
661 /* last total blocks allocated */
662 unsigned long long last_blocks;
663 };
664 };
665 };
666
667 struct extent_node {
668 struct rb_node rb_node; /* rb node located in rb-tree */
669 struct extent_info ei; /* extent info */
670 struct list_head list; /* node in global extent list of sbi */
671 struct extent_tree *et; /* extent tree pointer */
672 };
673
674 struct extent_tree {
675 nid_t ino; /* inode number */
676 enum extent_type type; /* keep the extent tree type */
677 struct rb_root_cached root; /* root of extent info rb-tree */
678 struct extent_node *cached_en; /* recently accessed extent node */
679 struct list_head list; /* to be used by sbi->zombie_list */
680 rwlock_t lock; /* protect extent info rb-tree */
681 atomic_t node_cnt; /* # of extent node in rb-tree*/
682 bool largest_updated; /* largest extent updated */
683 struct extent_info largest; /* largest cached extent for EX_READ */
684 };
685
686 struct extent_tree_info {
687 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
688 struct mutex extent_tree_lock; /* locking extent radix tree */
689 struct list_head extent_list; /* lru list for shrinker */
690 spinlock_t extent_lock; /* locking extent lru list */
691 atomic_t total_ext_tree; /* extent tree count */
692 struct list_head zombie_list; /* extent zombie tree list */
693 atomic_t total_zombie_tree; /* extent zombie tree count */
694 atomic_t total_ext_node; /* extent info count */
695 };
696
697 /*
698 * State of block returned by f2fs_map_blocks.
699 */
700 #define F2FS_MAP_NEW (1U << 0)
701 #define F2FS_MAP_MAPPED (1U << 1)
702 #define F2FS_MAP_DELALLOC (1U << 2)
703 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
704 F2FS_MAP_DELALLOC)
705
706 struct f2fs_map_blocks {
707 struct block_device *m_bdev; /* for multi-device dio */
708 block_t m_pblk;
709 block_t m_lblk;
710 unsigned int m_len;
711 unsigned int m_flags;
712 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
713 pgoff_t *m_next_extent; /* point to next possible extent */
714 int m_seg_type;
715 bool m_may_create; /* indicate it is from write path */
716 bool m_multidev_dio; /* indicate it allows multi-device dio */
717 };
718
719 /* for flag in get_data_block */
720 enum {
721 F2FS_GET_BLOCK_DEFAULT,
722 F2FS_GET_BLOCK_FIEMAP,
723 F2FS_GET_BLOCK_BMAP,
724 F2FS_GET_BLOCK_DIO,
725 F2FS_GET_BLOCK_PRE_DIO,
726 F2FS_GET_BLOCK_PRE_AIO,
727 F2FS_GET_BLOCK_PRECACHE,
728 };
729
730 /*
731 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
732 */
733 #define FADVISE_COLD_BIT 0x01
734 #define FADVISE_LOST_PINO_BIT 0x02
735 #define FADVISE_ENCRYPT_BIT 0x04
736 #define FADVISE_ENC_NAME_BIT 0x08
737 #define FADVISE_KEEP_SIZE_BIT 0x10
738 #define FADVISE_HOT_BIT 0x20
739 #define FADVISE_VERITY_BIT 0x40
740 #define FADVISE_TRUNC_BIT 0x80
741
742 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
743
744 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
745 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
746 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
747
748 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
749 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
750 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
751
752 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
753 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
754
755 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
756 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
757
758 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
759 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
760
761 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
762 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
763 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
764
765 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
766 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
767
768 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
769 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
770 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
771
772 #define DEF_DIR_LEVEL 0
773
774 /* used for f2fs_inode_info->flags */
775 enum {
776 FI_NEW_INODE, /* indicate newly allocated inode */
777 FI_DIRTY_INODE, /* indicate inode is dirty or not */
778 FI_AUTO_RECOVER, /* indicate inode is recoverable */
779 FI_DIRTY_DIR, /* indicate directory has dirty pages */
780 FI_INC_LINK, /* need to increment i_nlink */
781 FI_ACL_MODE, /* indicate acl mode */
782 FI_NO_ALLOC, /* should not allocate any blocks */
783 FI_FREE_NID, /* free allocated nide */
784 FI_NO_EXTENT, /* not to use the extent cache */
785 FI_INLINE_XATTR, /* used for inline xattr */
786 FI_INLINE_DATA, /* used for inline data*/
787 FI_INLINE_DENTRY, /* used for inline dentry */
788 FI_APPEND_WRITE, /* inode has appended data */
789 FI_UPDATE_WRITE, /* inode has in-place-update data */
790 FI_NEED_IPU, /* used for ipu per file */
791 FI_ATOMIC_FILE, /* indicate atomic file */
792 FI_DATA_EXIST, /* indicate data exists */
793 FI_SKIP_WRITES, /* should skip data page writeback */
794 FI_OPU_WRITE, /* used for opu per file */
795 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
796 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
797 FI_HOT_DATA, /* indicate file is hot */
798 FI_EXTRA_ATTR, /* indicate file has extra attribute */
799 FI_PROJ_INHERIT, /* indicate file inherits projectid */
800 FI_PIN_FILE, /* indicate file should not be gced */
801 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
802 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
803 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
804 FI_MMAP_FILE, /* indicate file was mmapped */
805 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
806 FI_COMPRESS_RELEASED, /* compressed blocks were released */
807 FI_ALIGNED_WRITE, /* enable aligned write */
808 FI_COW_FILE, /* indicate COW file */
809 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
810 FI_ATOMIC_DIRTIED, /* indicate atomic file is dirtied */
811 FI_ATOMIC_REPLACE, /* indicate atomic replace */
812 FI_OPENED_FILE, /* indicate file has been opened */
813 FI_MAX, /* max flag, never be used */
814 };
815
816 struct f2fs_inode_info {
817 struct inode vfs_inode; /* serve a vfs inode */
818 unsigned long i_flags; /* keep an inode flags for ioctl */
819 unsigned char i_advise; /* use to give file attribute hints */
820 unsigned char i_dir_level; /* use for dentry level for large dir */
821 union {
822 unsigned int i_current_depth; /* only for directory depth */
823 unsigned short i_gc_failures; /* for gc failure statistic */
824 };
825 unsigned int i_pino; /* parent inode number */
826 umode_t i_acl_mode; /* keep file acl mode temporarily */
827
828 /* Use below internally in f2fs*/
829 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
830 struct f2fs_rwsem i_sem; /* protect fi info */
831 atomic_t dirty_pages; /* # of dirty pages */
832 f2fs_hash_t chash; /* hash value of given file name */
833 unsigned int clevel; /* maximum level of given file name */
834 struct task_struct *task; /* lookup and create consistency */
835 struct task_struct *cp_task; /* separate cp/wb IO stats*/
836 struct task_struct *wb_task; /* indicate inode is in context of writeback */
837 nid_t i_xattr_nid; /* node id that contains xattrs */
838 loff_t last_disk_size; /* lastly written file size */
839 spinlock_t i_size_lock; /* protect last_disk_size */
840
841 #ifdef CONFIG_QUOTA
842 struct dquot __rcu *i_dquot[MAXQUOTAS];
843
844 /* quota space reservation, managed internally by quota code */
845 qsize_t i_reserved_quota;
846 #endif
847 struct list_head dirty_list; /* dirty list for dirs and files */
848 struct list_head gdirty_list; /* linked in global dirty list */
849 struct task_struct *atomic_write_task; /* store atomic write task */
850 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
851 /* cached extent_tree entry */
852 union {
853 struct inode *cow_inode; /* copy-on-write inode for atomic write */
854 struct inode *atomic_inode;
855 /* point to atomic_inode, available only for cow_inode */
856 };
857
858 /* avoid racing between foreground op and gc */
859 struct f2fs_rwsem i_gc_rwsem[2];
860 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
861
862 int i_extra_isize; /* size of extra space located in i_addr */
863 kprojid_t i_projid; /* id for project quota */
864 int i_inline_xattr_size; /* inline xattr size */
865 struct timespec64 i_crtime; /* inode creation time */
866 struct timespec64 i_disk_time[3];/* inode disk times */
867
868 /* for file compress */
869 atomic_t i_compr_blocks; /* # of compressed blocks */
870 unsigned char i_compress_algorithm; /* algorithm type */
871 unsigned char i_log_cluster_size; /* log of cluster size */
872 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
873 unsigned char i_compress_flag; /* compress flag */
874 unsigned int i_cluster_size; /* cluster size */
875
876 unsigned int atomic_write_cnt;
877 loff_t original_i_size; /* original i_size before atomic write */
878 };
879
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)880 static inline void get_read_extent_info(struct extent_info *ext,
881 struct f2fs_extent *i_ext)
882 {
883 ext->fofs = le32_to_cpu(i_ext->fofs);
884 ext->blk = le32_to_cpu(i_ext->blk);
885 ext->len = le32_to_cpu(i_ext->len);
886 }
887
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)888 static inline void set_raw_read_extent(struct extent_info *ext,
889 struct f2fs_extent *i_ext)
890 {
891 i_ext->fofs = cpu_to_le32(ext->fofs);
892 i_ext->blk = cpu_to_le32(ext->blk);
893 i_ext->len = cpu_to_le32(ext->len);
894 }
895
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)896 static inline bool __is_discard_mergeable(struct discard_info *back,
897 struct discard_info *front, unsigned int max_len)
898 {
899 return (back->lstart + back->len == front->lstart) &&
900 (back->len + front->len <= max_len);
901 }
902
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)903 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
904 struct discard_info *back, unsigned int max_len)
905 {
906 return __is_discard_mergeable(back, cur, max_len);
907 }
908
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)909 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
910 struct discard_info *front, unsigned int max_len)
911 {
912 return __is_discard_mergeable(cur, front, max_len);
913 }
914
915 /*
916 * For free nid management
917 */
918 enum nid_state {
919 FREE_NID, /* newly added to free nid list */
920 PREALLOC_NID, /* it is preallocated */
921 MAX_NID_STATE,
922 };
923
924 enum nat_state {
925 TOTAL_NAT,
926 DIRTY_NAT,
927 RECLAIMABLE_NAT,
928 MAX_NAT_STATE,
929 };
930
931 struct f2fs_nm_info {
932 block_t nat_blkaddr; /* base disk address of NAT */
933 nid_t max_nid; /* maximum possible node ids */
934 nid_t available_nids; /* # of available node ids */
935 nid_t next_scan_nid; /* the next nid to be scanned */
936 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
937 unsigned int ram_thresh; /* control the memory footprint */
938 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
939 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
940
941 /* NAT cache management */
942 struct radix_tree_root nat_root;/* root of the nat entry cache */
943 struct radix_tree_root nat_set_root;/* root of the nat set cache */
944 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
945 struct list_head nat_entries; /* cached nat entry list (clean) */
946 spinlock_t nat_list_lock; /* protect clean nat entry list */
947 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
948 unsigned int nat_blocks; /* # of nat blocks */
949
950 /* free node ids management */
951 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
952 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
953 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
954 spinlock_t nid_list_lock; /* protect nid lists ops */
955 struct mutex build_lock; /* lock for build free nids */
956 unsigned char **free_nid_bitmap;
957 unsigned char *nat_block_bitmap;
958 unsigned short *free_nid_count; /* free nid count of NAT block */
959
960 /* for checkpoint */
961 char *nat_bitmap; /* NAT bitmap pointer */
962
963 unsigned int nat_bits_blocks; /* # of nat bits blocks */
964 unsigned char *nat_bits; /* NAT bits blocks */
965 unsigned char *full_nat_bits; /* full NAT pages */
966 unsigned char *empty_nat_bits; /* empty NAT pages */
967 #ifdef CONFIG_F2FS_CHECK_FS
968 char *nat_bitmap_mir; /* NAT bitmap mirror */
969 #endif
970 int bitmap_size; /* bitmap size */
971 };
972
973 /*
974 * this structure is used as one of function parameters.
975 * all the information are dedicated to a given direct node block determined
976 * by the data offset in a file.
977 */
978 struct dnode_of_data {
979 struct inode *inode; /* vfs inode pointer */
980 struct page *inode_page; /* its inode page, NULL is possible */
981 struct page *node_page; /* cached direct node page */
982 nid_t nid; /* node id of the direct node block */
983 unsigned int ofs_in_node; /* data offset in the node page */
984 bool inode_page_locked; /* inode page is locked or not */
985 bool node_changed; /* is node block changed */
986 char cur_level; /* level of hole node page */
987 char max_level; /* level of current page located */
988 block_t data_blkaddr; /* block address of the node block */
989 };
990
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)991 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
992 struct page *ipage, struct page *npage, nid_t nid)
993 {
994 memset(dn, 0, sizeof(*dn));
995 dn->inode = inode;
996 dn->inode_page = ipage;
997 dn->node_page = npage;
998 dn->nid = nid;
999 }
1000
1001 /*
1002 * For SIT manager
1003 *
1004 * By default, there are 6 active log areas across the whole main area.
1005 * When considering hot and cold data separation to reduce cleaning overhead,
1006 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1007 * respectively.
1008 * In the current design, you should not change the numbers intentionally.
1009 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1010 * logs individually according to the underlying devices. (default: 6)
1011 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1012 * data and 8 for node logs.
1013 */
1014 #define NR_CURSEG_DATA_TYPE (3)
1015 #define NR_CURSEG_NODE_TYPE (3)
1016 #define NR_CURSEG_INMEM_TYPE (2)
1017 #define NR_CURSEG_RO_TYPE (2)
1018 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1019 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1020
1021 enum {
1022 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1023 CURSEG_WARM_DATA, /* data blocks */
1024 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1025 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1026 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1027 CURSEG_COLD_NODE, /* indirect node blocks */
1028 NR_PERSISTENT_LOG, /* number of persistent log */
1029 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1030 /* pinned file that needs consecutive block address */
1031 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1032 NO_CHECK_TYPE, /* number of persistent & inmem log */
1033 };
1034
1035 struct flush_cmd {
1036 struct completion wait;
1037 struct llist_node llnode;
1038 nid_t ino;
1039 int ret;
1040 };
1041
1042 struct flush_cmd_control {
1043 struct task_struct *f2fs_issue_flush; /* flush thread */
1044 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1045 atomic_t issued_flush; /* # of issued flushes */
1046 atomic_t queued_flush; /* # of queued flushes */
1047 struct llist_head issue_list; /* list for command issue */
1048 struct llist_node *dispatch_list; /* list for command dispatch */
1049 };
1050
1051 struct f2fs_sm_info {
1052 struct sit_info *sit_info; /* whole segment information */
1053 struct free_segmap_info *free_info; /* free segment information */
1054 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1055 struct curseg_info *curseg_array; /* active segment information */
1056
1057 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1058
1059 block_t seg0_blkaddr; /* block address of 0'th segment */
1060 block_t main_blkaddr; /* start block address of main area */
1061 block_t ssa_blkaddr; /* start block address of SSA area */
1062
1063 unsigned int segment_count; /* total # of segments */
1064 unsigned int main_segments; /* # of segments in main area */
1065 unsigned int reserved_segments; /* # of reserved segments */
1066 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1067 unsigned int ovp_segments; /* # of overprovision segments */
1068
1069 /* a threshold to reclaim prefree segments */
1070 unsigned int rec_prefree_segments;
1071
1072 struct list_head sit_entry_set; /* sit entry set list */
1073
1074 unsigned int ipu_policy; /* in-place-update policy */
1075 unsigned int min_ipu_util; /* in-place-update threshold */
1076 unsigned int min_fsync_blocks; /* threshold for fsync */
1077 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1078 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1079 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1080
1081 /* for flush command control */
1082 struct flush_cmd_control *fcc_info;
1083
1084 /* for discard command control */
1085 struct discard_cmd_control *dcc_info;
1086 };
1087
1088 /*
1089 * For superblock
1090 */
1091 /*
1092 * COUNT_TYPE for monitoring
1093 *
1094 * f2fs monitors the number of several block types such as on-writeback,
1095 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1096 */
1097 #define WB_DATA_TYPE(p, f) \
1098 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1099 enum count_type {
1100 F2FS_DIRTY_DENTS,
1101 F2FS_DIRTY_DATA,
1102 F2FS_DIRTY_QDATA,
1103 F2FS_DIRTY_NODES,
1104 F2FS_DIRTY_META,
1105 F2FS_DIRTY_IMETA,
1106 F2FS_WB_CP_DATA,
1107 F2FS_WB_DATA,
1108 F2FS_RD_DATA,
1109 F2FS_RD_NODE,
1110 F2FS_RD_META,
1111 F2FS_DIO_WRITE,
1112 F2FS_DIO_READ,
1113 NR_COUNT_TYPE,
1114 };
1115
1116 /*
1117 * The below are the page types of bios used in submit_bio().
1118 * The available types are:
1119 * DATA User data pages. It operates as async mode.
1120 * NODE Node pages. It operates as async mode.
1121 * META FS metadata pages such as SIT, NAT, CP.
1122 * NR_PAGE_TYPE The number of page types.
1123 * META_FLUSH Make sure the previous pages are written
1124 * with waiting the bio's completion
1125 * ... Only can be used with META.
1126 */
1127 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1128 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE)
1129 enum page_type {
1130 DATA = 0,
1131 NODE = 1, /* should not change this */
1132 META,
1133 NR_PAGE_TYPE,
1134 META_FLUSH,
1135 IPU, /* the below types are used by tracepoints only. */
1136 OPU,
1137 };
1138
1139 enum temp_type {
1140 HOT = 0, /* must be zero for meta bio */
1141 WARM,
1142 COLD,
1143 NR_TEMP_TYPE,
1144 };
1145
1146 enum need_lock_type {
1147 LOCK_REQ = 0,
1148 LOCK_DONE,
1149 LOCK_RETRY,
1150 };
1151
1152 enum cp_reason_type {
1153 CP_NO_NEEDED,
1154 CP_NON_REGULAR,
1155 CP_COMPRESSED,
1156 CP_HARDLINK,
1157 CP_SB_NEED_CP,
1158 CP_WRONG_PINO,
1159 CP_NO_SPC_ROLL,
1160 CP_NODE_NEED_CP,
1161 CP_FASTBOOT_MODE,
1162 CP_SPEC_LOG_NUM,
1163 CP_RECOVER_DIR,
1164 CP_XATTR_DIR,
1165 };
1166
1167 enum iostat_type {
1168 /* WRITE IO */
1169 APP_DIRECT_IO, /* app direct write IOs */
1170 APP_BUFFERED_IO, /* app buffered write IOs */
1171 APP_WRITE_IO, /* app write IOs */
1172 APP_MAPPED_IO, /* app mapped IOs */
1173 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1174 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1175 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1176 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1177 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1178 FS_META_IO, /* meta IOs from kworker/reclaimer */
1179 FS_GC_DATA_IO, /* data IOs from forground gc */
1180 FS_GC_NODE_IO, /* node IOs from forground gc */
1181 FS_CP_DATA_IO, /* data IOs from checkpoint */
1182 FS_CP_NODE_IO, /* node IOs from checkpoint */
1183 FS_CP_META_IO, /* meta IOs from checkpoint */
1184
1185 /* READ IO */
1186 APP_DIRECT_READ_IO, /* app direct read IOs */
1187 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1188 APP_READ_IO, /* app read IOs */
1189 APP_MAPPED_READ_IO, /* app mapped read IOs */
1190 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1191 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1192 FS_DATA_READ_IO, /* data read IOs */
1193 FS_GDATA_READ_IO, /* data read IOs from background gc */
1194 FS_CDATA_READ_IO, /* compressed data read IOs */
1195 FS_NODE_READ_IO, /* node read IOs */
1196 FS_META_READ_IO, /* meta read IOs */
1197
1198 /* other */
1199 FS_DISCARD_IO, /* discard */
1200 FS_FLUSH_IO, /* flush */
1201 FS_ZONE_RESET_IO, /* zone reset */
1202 NR_IO_TYPE,
1203 };
1204
1205 struct f2fs_io_info {
1206 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1207 nid_t ino; /* inode number */
1208 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1209 enum temp_type temp; /* contains HOT/WARM/COLD */
1210 enum req_op op; /* contains REQ_OP_ */
1211 blk_opf_t op_flags; /* req_flag_bits */
1212 block_t new_blkaddr; /* new block address to be written */
1213 block_t old_blkaddr; /* old block address before Cow */
1214 struct page *page; /* page to be written */
1215 struct page *encrypted_page; /* encrypted page */
1216 struct page *compressed_page; /* compressed page */
1217 struct list_head list; /* serialize IOs */
1218 unsigned int compr_blocks; /* # of compressed block addresses */
1219 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1220 unsigned int version:8; /* version of the node */
1221 unsigned int submitted:1; /* indicate IO submission */
1222 unsigned int in_list:1; /* indicate fio is in io_list */
1223 unsigned int is_por:1; /* indicate IO is from recovery or not */
1224 unsigned int encrypted:1; /* indicate file is encrypted */
1225 unsigned int meta_gc:1; /* require meta inode GC */
1226 enum iostat_type io_type; /* io type */
1227 struct writeback_control *io_wbc; /* writeback control */
1228 struct bio **bio; /* bio for ipu */
1229 sector_t *last_block; /* last block number in bio */
1230 };
1231
1232 struct bio_entry {
1233 struct bio *bio;
1234 struct list_head list;
1235 };
1236
1237 #define is_read_io(rw) ((rw) == READ)
1238 struct f2fs_bio_info {
1239 struct f2fs_sb_info *sbi; /* f2fs superblock */
1240 struct bio *bio; /* bios to merge */
1241 sector_t last_block_in_bio; /* last block number */
1242 struct f2fs_io_info fio; /* store buffered io info. */
1243 #ifdef CONFIG_BLK_DEV_ZONED
1244 struct completion zone_wait; /* condition value for the previous open zone to close */
1245 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1246 void *bi_private; /* previous bi_private for pending bio */
1247 #endif
1248 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1249 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1250 struct list_head io_list; /* track fios */
1251 struct list_head bio_list; /* bio entry list head */
1252 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1253 };
1254
1255 #define FDEV(i) (sbi->devs[i])
1256 #define RDEV(i) (raw_super->devs[i])
1257 struct f2fs_dev_info {
1258 struct file *bdev_file;
1259 struct block_device *bdev;
1260 char path[MAX_PATH_LEN];
1261 unsigned int total_segments;
1262 block_t start_blk;
1263 block_t end_blk;
1264 #ifdef CONFIG_BLK_DEV_ZONED
1265 unsigned int nr_blkz; /* Total number of zones */
1266 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1267 #endif
1268 };
1269
1270 enum inode_type {
1271 DIR_INODE, /* for dirty dir inode */
1272 FILE_INODE, /* for dirty regular/symlink inode */
1273 DIRTY_META, /* for all dirtied inode metadata */
1274 NR_INODE_TYPE,
1275 };
1276
1277 /* for inner inode cache management */
1278 struct inode_management {
1279 struct radix_tree_root ino_root; /* ino entry array */
1280 spinlock_t ino_lock; /* for ino entry lock */
1281 struct list_head ino_list; /* inode list head */
1282 unsigned long ino_num; /* number of entries */
1283 };
1284
1285 /* for GC_AT */
1286 struct atgc_management {
1287 bool atgc_enabled; /* ATGC is enabled or not */
1288 struct rb_root_cached root; /* root of victim rb-tree */
1289 struct list_head victim_list; /* linked with all victim entries */
1290 unsigned int victim_count; /* victim count in rb-tree */
1291 unsigned int candidate_ratio; /* candidate ratio */
1292 unsigned int max_candidate_count; /* max candidate count */
1293 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1294 unsigned long long age_threshold; /* age threshold */
1295 };
1296
1297 struct f2fs_gc_control {
1298 unsigned int victim_segno; /* target victim segment number */
1299 int init_gc_type; /* FG_GC or BG_GC */
1300 bool no_bg_gc; /* check the space and stop bg_gc */
1301 bool should_migrate_blocks; /* should migrate blocks */
1302 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1303 bool one_time; /* require one time GC in one migration unit */
1304 unsigned int nr_free_secs; /* # of free sections to do GC */
1305 };
1306
1307 /*
1308 * For s_flag in struct f2fs_sb_info
1309 * Modification on enum should be synchronized with s_flag array
1310 */
1311 enum {
1312 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1313 SBI_IS_CLOSE, /* specify unmounting */
1314 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1315 SBI_POR_DOING, /* recovery is doing or not */
1316 SBI_NEED_SB_WRITE, /* need to recover superblock */
1317 SBI_NEED_CP, /* need to checkpoint */
1318 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1319 SBI_IS_RECOVERED, /* recovered orphan/data */
1320 SBI_CP_DISABLED, /* CP was disabled last mount */
1321 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1322 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1323 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1324 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1325 SBI_IS_RESIZEFS, /* resizefs is in process */
1326 SBI_IS_FREEZING, /* freezefs is in process */
1327 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1328 MAX_SBI_FLAG,
1329 };
1330
1331 enum {
1332 CP_TIME,
1333 REQ_TIME,
1334 DISCARD_TIME,
1335 GC_TIME,
1336 DISABLE_TIME,
1337 UMOUNT_DISCARD_TIMEOUT,
1338 MAX_TIME,
1339 };
1340
1341 /* Note that you need to keep synchronization with this gc_mode_names array */
1342 enum {
1343 GC_NORMAL,
1344 GC_IDLE_CB,
1345 GC_IDLE_GREEDY,
1346 GC_IDLE_AT,
1347 GC_URGENT_HIGH,
1348 GC_URGENT_LOW,
1349 GC_URGENT_MID,
1350 MAX_GC_MODE,
1351 };
1352
1353 enum {
1354 BGGC_MODE_ON, /* background gc is on */
1355 BGGC_MODE_OFF, /* background gc is off */
1356 BGGC_MODE_SYNC, /*
1357 * background gc is on, migrating blocks
1358 * like foreground gc
1359 */
1360 };
1361
1362 enum {
1363 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1364 FS_MODE_LFS, /* use lfs allocation only */
1365 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1366 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1367 };
1368
1369 enum {
1370 ALLOC_MODE_DEFAULT, /* stay default */
1371 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1372 };
1373
1374 enum fsync_mode {
1375 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1376 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1377 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1378 };
1379
1380 enum {
1381 COMPR_MODE_FS, /*
1382 * automatically compress compression
1383 * enabled files
1384 */
1385 COMPR_MODE_USER, /*
1386 * automatical compression is disabled.
1387 * user can control the file compression
1388 * using ioctls
1389 */
1390 };
1391
1392 enum {
1393 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1394 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1395 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1396 };
1397
1398 enum {
1399 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1400 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1401 };
1402
1403 enum errors_option {
1404 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1405 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1406 MOUNT_ERRORS_PANIC, /* panic on errors */
1407 };
1408
1409 enum {
1410 BACKGROUND,
1411 FOREGROUND,
1412 MAX_CALL_TYPE,
1413 TOTAL_CALL = FOREGROUND,
1414 };
1415
1416 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1417 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1418 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1419
1420 /*
1421 * Layout of f2fs page.private:
1422 *
1423 * Layout A: lowest bit should be 1
1424 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1425 * bit 0 PAGE_PRIVATE_NOT_POINTER
1426 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION
1427 * bit 2 PAGE_PRIVATE_INLINE_INODE
1428 * bit 3 PAGE_PRIVATE_REF_RESOURCE
1429 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE
1430 * bit 5- f2fs private data
1431 *
1432 * Layout B: lowest bit should be 0
1433 * page.private is a wrapped pointer.
1434 */
1435 enum {
1436 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1437 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1438 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1439 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1440 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1441 PAGE_PRIVATE_MAX
1442 };
1443
1444 /* For compression */
1445 enum compress_algorithm_type {
1446 COMPRESS_LZO,
1447 COMPRESS_LZ4,
1448 COMPRESS_ZSTD,
1449 COMPRESS_LZORLE,
1450 COMPRESS_MAX,
1451 };
1452
1453 enum compress_flag {
1454 COMPRESS_CHKSUM,
1455 COMPRESS_MAX_FLAG,
1456 };
1457
1458 #define COMPRESS_WATERMARK 20
1459 #define COMPRESS_PERCENT 20
1460
1461 #define COMPRESS_DATA_RESERVED_SIZE 4
1462 struct compress_data {
1463 __le32 clen; /* compressed data size */
1464 __le32 chksum; /* compressed data chksum */
1465 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1466 u8 cdata[]; /* compressed data */
1467 };
1468
1469 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1470
1471 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1472
1473 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
1474
1475 #define COMPRESS_LEVEL_OFFSET 8
1476
1477 /* compress context */
1478 struct compress_ctx {
1479 struct inode *inode; /* inode the context belong to */
1480 pgoff_t cluster_idx; /* cluster index number */
1481 unsigned int cluster_size; /* page count in cluster */
1482 unsigned int log_cluster_size; /* log of cluster size */
1483 struct page **rpages; /* pages store raw data in cluster */
1484 unsigned int nr_rpages; /* total page number in rpages */
1485 struct page **cpages; /* pages store compressed data in cluster */
1486 unsigned int nr_cpages; /* total page number in cpages */
1487 unsigned int valid_nr_cpages; /* valid page number in cpages */
1488 void *rbuf; /* virtual mapped address on rpages */
1489 struct compress_data *cbuf; /* virtual mapped address on cpages */
1490 size_t rlen; /* valid data length in rbuf */
1491 size_t clen; /* valid data length in cbuf */
1492 void *private; /* payload buffer for specified compression algorithm */
1493 void *private2; /* extra payload buffer */
1494 };
1495
1496 /* compress context for write IO path */
1497 struct compress_io_ctx {
1498 u32 magic; /* magic number to indicate page is compressed */
1499 struct inode *inode; /* inode the context belong to */
1500 struct page **rpages; /* pages store raw data in cluster */
1501 unsigned int nr_rpages; /* total page number in rpages */
1502 atomic_t pending_pages; /* in-flight compressed page count */
1503 };
1504
1505 /* Context for decompressing one cluster on the read IO path */
1506 struct decompress_io_ctx {
1507 u32 magic; /* magic number to indicate page is compressed */
1508 struct inode *inode; /* inode the context belong to */
1509 pgoff_t cluster_idx; /* cluster index number */
1510 unsigned int cluster_size; /* page count in cluster */
1511 unsigned int log_cluster_size; /* log of cluster size */
1512 struct page **rpages; /* pages store raw data in cluster */
1513 unsigned int nr_rpages; /* total page number in rpages */
1514 struct page **cpages; /* pages store compressed data in cluster */
1515 unsigned int nr_cpages; /* total page number in cpages */
1516 struct page **tpages; /* temp pages to pad holes in cluster */
1517 void *rbuf; /* virtual mapped address on rpages */
1518 struct compress_data *cbuf; /* virtual mapped address on cpages */
1519 size_t rlen; /* valid data length in rbuf */
1520 size_t clen; /* valid data length in cbuf */
1521
1522 /*
1523 * The number of compressed pages remaining to be read in this cluster.
1524 * This is initially nr_cpages. It is decremented by 1 each time a page
1525 * has been read (or failed to be read). When it reaches 0, the cluster
1526 * is decompressed (or an error is reported).
1527 *
1528 * If an error occurs before all the pages have been submitted for I/O,
1529 * then this will never reach 0. In this case the I/O submitter is
1530 * responsible for calling f2fs_decompress_end_io() instead.
1531 */
1532 atomic_t remaining_pages;
1533
1534 /*
1535 * Number of references to this decompress_io_ctx.
1536 *
1537 * One reference is held for I/O completion. This reference is dropped
1538 * after the pagecache pages are updated and unlocked -- either after
1539 * decompression (and verity if enabled), or after an error.
1540 *
1541 * In addition, each compressed page holds a reference while it is in a
1542 * bio. These references are necessary prevent compressed pages from
1543 * being freed while they are still in a bio.
1544 */
1545 refcount_t refcnt;
1546
1547 bool failed; /* IO error occurred before decompression? */
1548 bool need_verity; /* need fs-verity verification after decompression? */
1549 void *private; /* payload buffer for specified decompression algorithm */
1550 void *private2; /* extra payload buffer */
1551 struct work_struct verity_work; /* work to verify the decompressed pages */
1552 struct work_struct free_work; /* work for late free this structure itself */
1553 };
1554
1555 #define NULL_CLUSTER ((unsigned int)(~0))
1556 #define MIN_COMPRESS_LOG_SIZE 2
1557 #define MAX_COMPRESS_LOG_SIZE 8
1558 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1559
1560 struct f2fs_sb_info {
1561 struct super_block *sb; /* pointer to VFS super block */
1562 struct proc_dir_entry *s_proc; /* proc entry */
1563 struct f2fs_super_block *raw_super; /* raw super block pointer */
1564 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1565 int valid_super_block; /* valid super block no */
1566 unsigned long s_flag; /* flags for sbi */
1567 struct mutex writepages; /* mutex for writepages() */
1568
1569 #ifdef CONFIG_BLK_DEV_ZONED
1570 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1571 unsigned int max_open_zones; /* max open zone resources of the zoned device */
1572 /* For adjust the priority writing position of data in zone UFS */
1573 unsigned int blkzone_alloc_policy;
1574 #endif
1575
1576 /* for node-related operations */
1577 struct f2fs_nm_info *nm_info; /* node manager */
1578 struct inode *node_inode; /* cache node blocks */
1579
1580 /* for segment-related operations */
1581 struct f2fs_sm_info *sm_info; /* segment manager */
1582
1583 /* for bio operations */
1584 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1585 /* keep migration IO order for LFS mode */
1586 struct f2fs_rwsem io_order_lock;
1587 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1588 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1589
1590 /* for checkpoint */
1591 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1592 int cur_cp_pack; /* remain current cp pack */
1593 spinlock_t cp_lock; /* for flag in ckpt */
1594 struct inode *meta_inode; /* cache meta blocks */
1595 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1596 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1597 struct f2fs_rwsem node_write; /* locking node writes */
1598 struct f2fs_rwsem node_change; /* locking node change */
1599 wait_queue_head_t cp_wait;
1600 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1601 long interval_time[MAX_TIME]; /* to store thresholds */
1602 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1603
1604 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1605
1606 spinlock_t fsync_node_lock; /* for node entry lock */
1607 struct list_head fsync_node_list; /* node list head */
1608 unsigned int fsync_seg_id; /* sequence id */
1609 unsigned int fsync_node_num; /* number of node entries */
1610
1611 /* for orphan inode, use 0'th array */
1612 unsigned int max_orphans; /* max orphan inodes */
1613
1614 /* for inode management */
1615 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1616 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1617 struct mutex flush_lock; /* for flush exclusion */
1618
1619 /* for extent tree cache */
1620 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1621 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1622
1623 /* The threshold used for hot and warm data seperation*/
1624 unsigned int hot_data_age_threshold;
1625 unsigned int warm_data_age_threshold;
1626 unsigned int last_age_weight;
1627
1628 /* basic filesystem units */
1629 unsigned int log_sectors_per_block; /* log2 sectors per block */
1630 unsigned int log_blocksize; /* log2 block size */
1631 unsigned int blocksize; /* block size */
1632 unsigned int root_ino_num; /* root inode number*/
1633 unsigned int node_ino_num; /* node inode number*/
1634 unsigned int meta_ino_num; /* meta inode number*/
1635 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1636 unsigned int blocks_per_seg; /* blocks per segment */
1637 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1638 unsigned int segs_per_sec; /* segments per section */
1639 unsigned int secs_per_zone; /* sections per zone */
1640 unsigned int total_sections; /* total section count */
1641 unsigned int total_node_count; /* total node block count */
1642 unsigned int total_valid_node_count; /* valid node block count */
1643 int dir_level; /* directory level */
1644 bool readdir_ra; /* readahead inode in readdir */
1645 u64 max_io_bytes; /* max io bytes to merge IOs */
1646
1647 block_t user_block_count; /* # of user blocks */
1648 block_t total_valid_block_count; /* # of valid blocks */
1649 block_t discard_blks; /* discard command candidats */
1650 block_t last_valid_block_count; /* for recovery */
1651 block_t reserved_blocks; /* configurable reserved blocks */
1652 block_t current_reserved_blocks; /* current reserved blocks */
1653
1654 /* Additional tracking for no checkpoint mode */
1655 block_t unusable_block_count; /* # of blocks saved by last cp */
1656
1657 unsigned int nquota_files; /* # of quota sysfile */
1658 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1659
1660 /* # of pages, see count_type */
1661 atomic_t nr_pages[NR_COUNT_TYPE];
1662 /* # of allocated blocks */
1663 struct percpu_counter alloc_valid_block_count;
1664 /* # of node block writes as roll forward recovery */
1665 struct percpu_counter rf_node_block_count;
1666
1667 /* writeback control */
1668 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1669
1670 /* valid inode count */
1671 struct percpu_counter total_valid_inode_count;
1672
1673 struct f2fs_mount_info mount_opt; /* mount options */
1674
1675 /* for cleaning operations */
1676 struct f2fs_rwsem gc_lock; /*
1677 * semaphore for GC, avoid
1678 * race between GC and GC or CP
1679 */
1680 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1681 struct atgc_management am; /* atgc management */
1682 unsigned int cur_victim_sec; /* current victim section num */
1683 unsigned int gc_mode; /* current GC state */
1684 unsigned int next_victim_seg[2]; /* next segment in victim section */
1685 spinlock_t gc_remaining_trials_lock;
1686 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1687 unsigned int gc_remaining_trials;
1688
1689 /* for skip statistic */
1690 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1691
1692 /* threshold for gc trials on pinned files */
1693 unsigned short gc_pin_file_threshold;
1694 struct f2fs_rwsem pin_sem;
1695
1696 /* maximum # of trials to find a victim segment for SSR and GC */
1697 unsigned int max_victim_search;
1698 /* migration granularity of garbage collection, unit: segment */
1699 unsigned int migration_granularity;
1700 /* migration window granularity of garbage collection, unit: segment */
1701 unsigned int migration_window_granularity;
1702
1703 /*
1704 * for stat information.
1705 * one is for the LFS mode, and the other is for the SSR mode.
1706 */
1707 #ifdef CONFIG_F2FS_STAT_FS
1708 struct f2fs_stat_info *stat_info; /* FS status information */
1709 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1710 unsigned int segment_count[2]; /* # of allocated segments */
1711 unsigned int block_count[2]; /* # of allocated blocks */
1712 atomic_t inplace_count; /* # of inplace update */
1713 /* # of lookup extent cache */
1714 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1715 /* # of hit rbtree extent node */
1716 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1717 /* # of hit cached extent node */
1718 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1719 /* # of hit largest extent node in read extent cache */
1720 atomic64_t read_hit_largest;
1721 atomic_t inline_xattr; /* # of inline_xattr inodes */
1722 atomic_t inline_inode; /* # of inline_data inodes */
1723 atomic_t inline_dir; /* # of inline_dentry inodes */
1724 atomic_t compr_inode; /* # of compressed inodes */
1725 atomic64_t compr_blocks; /* # of compressed blocks */
1726 atomic_t swapfile_inode; /* # of swapfile inodes */
1727 atomic_t atomic_files; /* # of opened atomic file */
1728 atomic_t max_aw_cnt; /* max # of atomic writes */
1729 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1730 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1731 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1732 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1733 #endif
1734 spinlock_t stat_lock; /* lock for stat operations */
1735
1736 /* to attach REQ_META|REQ_FUA flags */
1737 unsigned int data_io_flag;
1738 unsigned int node_io_flag;
1739
1740 /* For sysfs support */
1741 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1742 struct completion s_kobj_unregister;
1743
1744 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1745 struct completion s_stat_kobj_unregister;
1746
1747 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1748 struct completion s_feature_list_kobj_unregister;
1749
1750 /* For shrinker support */
1751 struct list_head s_list;
1752 struct mutex umount_mutex;
1753 unsigned int shrinker_run_no;
1754
1755 /* For multi devices */
1756 int s_ndevs; /* number of devices */
1757 struct f2fs_dev_info *devs; /* for device list */
1758 unsigned int dirty_device; /* for checkpoint data flush */
1759 spinlock_t dev_lock; /* protect dirty_device */
1760 bool aligned_blksize; /* all devices has the same logical blksize */
1761
1762 /* For write statistics */
1763 u64 sectors_written_start;
1764 u64 kbytes_written;
1765
1766 /* Reference to checksum algorithm driver via cryptoapi */
1767 struct crypto_shash *s_chksum_driver;
1768
1769 /* Precomputed FS UUID checksum for seeding other checksums */
1770 __u32 s_chksum_seed;
1771
1772 struct workqueue_struct *post_read_wq; /* post read workqueue */
1773
1774 /*
1775 * If we are in irq context, let's update error information into
1776 * on-disk superblock in the work.
1777 */
1778 struct work_struct s_error_work;
1779 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1780 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1781 spinlock_t error_lock; /* protect errors/stop_reason array */
1782 bool error_dirty; /* errors of sb is dirty */
1783
1784 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1785 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1786
1787 /* For reclaimed segs statistics per each GC mode */
1788 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1789 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1790
1791 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1792
1793 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1794 int max_fragment_hole; /* max hole size for block fragmentation mode */
1795
1796 /* For atomic write statistics */
1797 atomic64_t current_atomic_write;
1798 s64 peak_atomic_write;
1799 u64 committed_atomic_block;
1800 u64 revoked_atomic_block;
1801
1802 #ifdef CONFIG_F2FS_FS_COMPRESSION
1803 struct kmem_cache *page_array_slab; /* page array entry */
1804 unsigned int page_array_slab_size; /* default page array slab size */
1805
1806 /* For runtime compression statistics */
1807 u64 compr_written_block;
1808 u64 compr_saved_block;
1809 u32 compr_new_inode;
1810
1811 /* For compressed block cache */
1812 struct inode *compress_inode; /* cache compressed blocks */
1813 unsigned int compress_percent; /* cache page percentage */
1814 unsigned int compress_watermark; /* cache page watermark */
1815 atomic_t compress_page_hit; /* cache hit count */
1816 #endif
1817
1818 #ifdef CONFIG_F2FS_IOSTAT
1819 /* For app/fs IO statistics */
1820 spinlock_t iostat_lock;
1821 unsigned long long iostat_count[NR_IO_TYPE];
1822 unsigned long long iostat_bytes[NR_IO_TYPE];
1823 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1824 bool iostat_enable;
1825 unsigned long iostat_next_period;
1826 unsigned int iostat_period_ms;
1827
1828 /* For io latency related statistics info in one iostat period */
1829 spinlock_t iostat_lat_lock;
1830 struct iostat_lat_info *iostat_io_lat;
1831 #endif
1832 };
1833
1834 /* Definitions to access f2fs_sb_info */
1835 #define SEGS_TO_BLKS(sbi, segs) \
1836 ((segs) << (sbi)->log_blocks_per_seg)
1837 #define BLKS_TO_SEGS(sbi, blks) \
1838 ((blks) >> (sbi)->log_blocks_per_seg)
1839
1840 #define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg)
1841 #define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1842 #define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec)
1843
1844 __printf(3, 4)
1845 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1846
1847 #define f2fs_err(sbi, fmt, ...) \
1848 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1849 #define f2fs_warn(sbi, fmt, ...) \
1850 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1851 #define f2fs_notice(sbi, fmt, ...) \
1852 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1853 #define f2fs_info(sbi, fmt, ...) \
1854 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1855 #define f2fs_debug(sbi, fmt, ...) \
1856 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1857
1858 #define f2fs_err_ratelimited(sbi, fmt, ...) \
1859 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1860 #define f2fs_warn_ratelimited(sbi, fmt, ...) \
1861 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1862 #define f2fs_info_ratelimited(sbi, fmt, ...) \
1863 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1864
1865 #ifdef CONFIG_F2FS_FAULT_INJECTION
1866 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1867 __builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1868 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1869 const char *func, const char *parent_func)
1870 {
1871 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1872
1873 if (!ffi->inject_rate)
1874 return false;
1875
1876 if (!IS_FAULT_SET(ffi, type))
1877 return false;
1878
1879 atomic_inc(&ffi->inject_ops);
1880 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1881 atomic_set(&ffi->inject_ops, 0);
1882 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1883 f2fs_fault_name[type], func, parent_func);
1884 return true;
1885 }
1886 return false;
1887 }
1888 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1889 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1890 {
1891 return false;
1892 }
1893 #endif
1894
1895 /*
1896 * Test if the mounted volume is a multi-device volume.
1897 * - For a single regular disk volume, sbi->s_ndevs is 0.
1898 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1899 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1900 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1901 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1902 {
1903 return sbi->s_ndevs > 1;
1904 }
1905
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1906 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1907 {
1908 unsigned long now = jiffies;
1909
1910 sbi->last_time[type] = now;
1911
1912 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1913 if (type == REQ_TIME) {
1914 sbi->last_time[DISCARD_TIME] = now;
1915 sbi->last_time[GC_TIME] = now;
1916 }
1917 }
1918
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1919 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1920 {
1921 unsigned long interval = sbi->interval_time[type] * HZ;
1922
1923 return time_after(jiffies, sbi->last_time[type] + interval);
1924 }
1925
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1926 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1927 int type)
1928 {
1929 unsigned long interval = sbi->interval_time[type] * HZ;
1930 unsigned int wait_ms = 0;
1931 long delta;
1932
1933 delta = (sbi->last_time[type] + interval) - jiffies;
1934 if (delta > 0)
1935 wait_ms = jiffies_to_msecs(delta);
1936
1937 return wait_ms;
1938 }
1939
1940 /*
1941 * Inline functions
1942 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1943 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1944 const void *address, unsigned int length)
1945 {
1946 struct {
1947 struct shash_desc shash;
1948 char ctx[4];
1949 } desc;
1950 int err;
1951
1952 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1953
1954 desc.shash.tfm = sbi->s_chksum_driver;
1955 *(u32 *)desc.ctx = crc;
1956
1957 err = crypto_shash_update(&desc.shash, address, length);
1958 BUG_ON(err);
1959
1960 return *(u32 *)desc.ctx;
1961 }
1962
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1963 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1964 unsigned int length)
1965 {
1966 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1967 }
1968
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1969 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1970 void *buf, size_t buf_size)
1971 {
1972 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1973 }
1974
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1975 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1976 const void *address, unsigned int length)
1977 {
1978 return __f2fs_crc32(sbi, crc, address, length);
1979 }
1980
F2FS_I(struct inode * inode)1981 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1982 {
1983 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1984 }
1985
F2FS_SB(struct super_block * sb)1986 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1987 {
1988 return sb->s_fs_info;
1989 }
1990
F2FS_I_SB(struct inode * inode)1991 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1992 {
1993 return F2FS_SB(inode->i_sb);
1994 }
1995
F2FS_M_SB(struct address_space * mapping)1996 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1997 {
1998 return F2FS_I_SB(mapping->host);
1999 }
2000
F2FS_P_SB(struct page * page)2001 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2002 {
2003 return F2FS_M_SB(page_file_mapping(page));
2004 }
2005
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2006 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2007 {
2008 return (struct f2fs_super_block *)(sbi->raw_super);
2009 }
2010
F2FS_SUPER_BLOCK(struct folio * folio,pgoff_t index)2011 static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio,
2012 pgoff_t index)
2013 {
2014 pgoff_t idx_in_folio = index % (1 << folio_order(folio));
2015
2016 return (struct f2fs_super_block *)
2017 (page_address(folio_page(folio, idx_in_folio)) +
2018 F2FS_SUPER_OFFSET);
2019 }
2020
F2FS_CKPT(struct f2fs_sb_info * sbi)2021 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2022 {
2023 return (struct f2fs_checkpoint *)(sbi->ckpt);
2024 }
2025
F2FS_NODE(struct page * page)2026 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2027 {
2028 return (struct f2fs_node *)page_address(page);
2029 }
2030
F2FS_INODE(struct page * page)2031 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2032 {
2033 return &((struct f2fs_node *)page_address(page))->i;
2034 }
2035
NM_I(struct f2fs_sb_info * sbi)2036 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2037 {
2038 return (struct f2fs_nm_info *)(sbi->nm_info);
2039 }
2040
SM_I(struct f2fs_sb_info * sbi)2041 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2042 {
2043 return (struct f2fs_sm_info *)(sbi->sm_info);
2044 }
2045
SIT_I(struct f2fs_sb_info * sbi)2046 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2047 {
2048 return (struct sit_info *)(SM_I(sbi)->sit_info);
2049 }
2050
FREE_I(struct f2fs_sb_info * sbi)2051 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2052 {
2053 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2054 }
2055
DIRTY_I(struct f2fs_sb_info * sbi)2056 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2057 {
2058 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2059 }
2060
META_MAPPING(struct f2fs_sb_info * sbi)2061 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2062 {
2063 return sbi->meta_inode->i_mapping;
2064 }
2065
NODE_MAPPING(struct f2fs_sb_info * sbi)2066 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2067 {
2068 return sbi->node_inode->i_mapping;
2069 }
2070
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2071 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2072 {
2073 return test_bit(type, &sbi->s_flag);
2074 }
2075
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2076 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2077 {
2078 set_bit(type, &sbi->s_flag);
2079 }
2080
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2081 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2082 {
2083 clear_bit(type, &sbi->s_flag);
2084 }
2085
cur_cp_version(struct f2fs_checkpoint * cp)2086 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2087 {
2088 return le64_to_cpu(cp->checkpoint_ver);
2089 }
2090
f2fs_qf_ino(struct super_block * sb,int type)2091 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2092 {
2093 if (type < F2FS_MAX_QUOTAS)
2094 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2095 return 0;
2096 }
2097
cur_cp_crc(struct f2fs_checkpoint * cp)2098 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2099 {
2100 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2101 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2102 }
2103
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2104 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2105 {
2106 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2107
2108 return ckpt_flags & f;
2109 }
2110
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2111 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2112 {
2113 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2114 }
2115
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2116 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2117 {
2118 unsigned int ckpt_flags;
2119
2120 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2121 ckpt_flags |= f;
2122 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2123 }
2124
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2125 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2126 {
2127 unsigned long flags;
2128
2129 spin_lock_irqsave(&sbi->cp_lock, flags);
2130 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2131 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2132 }
2133
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2134 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2135 {
2136 unsigned int ckpt_flags;
2137
2138 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2139 ckpt_flags &= (~f);
2140 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2141 }
2142
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2143 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2144 {
2145 unsigned long flags;
2146
2147 spin_lock_irqsave(&sbi->cp_lock, flags);
2148 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2149 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2150 }
2151
2152 #define init_f2fs_rwsem(sem) \
2153 do { \
2154 static struct lock_class_key __key; \
2155 \
2156 __init_f2fs_rwsem((sem), #sem, &__key); \
2157 } while (0)
2158
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2159 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2160 const char *sem_name, struct lock_class_key *key)
2161 {
2162 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2163 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2164 init_waitqueue_head(&sem->read_waiters);
2165 #endif
2166 }
2167
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2168 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2169 {
2170 return rwsem_is_locked(&sem->internal_rwsem);
2171 }
2172
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2173 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2174 {
2175 return rwsem_is_contended(&sem->internal_rwsem);
2176 }
2177
f2fs_down_read(struct f2fs_rwsem * sem)2178 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2179 {
2180 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2181 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2182 #else
2183 down_read(&sem->internal_rwsem);
2184 #endif
2185 }
2186
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2187 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2188 {
2189 return down_read_trylock(&sem->internal_rwsem);
2190 }
2191
f2fs_up_read(struct f2fs_rwsem * sem)2192 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2193 {
2194 up_read(&sem->internal_rwsem);
2195 }
2196
f2fs_down_write(struct f2fs_rwsem * sem)2197 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2198 {
2199 down_write(&sem->internal_rwsem);
2200 }
2201
2202 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2203 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2204 {
2205 down_read_nested(&sem->internal_rwsem, subclass);
2206 }
2207
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2208 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2209 {
2210 down_write_nested(&sem->internal_rwsem, subclass);
2211 }
2212 #else
2213 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2214 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2215 #endif
2216
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2217 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2218 {
2219 return down_write_trylock(&sem->internal_rwsem);
2220 }
2221
f2fs_up_write(struct f2fs_rwsem * sem)2222 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2223 {
2224 up_write(&sem->internal_rwsem);
2225 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2226 wake_up_all(&sem->read_waiters);
2227 #endif
2228 }
2229
f2fs_lock_op(struct f2fs_sb_info * sbi)2230 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2231 {
2232 f2fs_down_read(&sbi->cp_rwsem);
2233 }
2234
f2fs_trylock_op(struct f2fs_sb_info * sbi)2235 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2236 {
2237 if (time_to_inject(sbi, FAULT_LOCK_OP))
2238 return 0;
2239 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2240 }
2241
f2fs_unlock_op(struct f2fs_sb_info * sbi)2242 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2243 {
2244 f2fs_up_read(&sbi->cp_rwsem);
2245 }
2246
f2fs_lock_all(struct f2fs_sb_info * sbi)2247 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2248 {
2249 f2fs_down_write(&sbi->cp_rwsem);
2250 }
2251
f2fs_unlock_all(struct f2fs_sb_info * sbi)2252 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2253 {
2254 f2fs_up_write(&sbi->cp_rwsem);
2255 }
2256
__get_cp_reason(struct f2fs_sb_info * sbi)2257 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2258 {
2259 int reason = CP_SYNC;
2260
2261 if (test_opt(sbi, FASTBOOT))
2262 reason = CP_FASTBOOT;
2263 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2264 reason = CP_UMOUNT;
2265 return reason;
2266 }
2267
__remain_node_summaries(int reason)2268 static inline bool __remain_node_summaries(int reason)
2269 {
2270 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2271 }
2272
__exist_node_summaries(struct f2fs_sb_info * sbi)2273 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2274 {
2275 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2276 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2277 }
2278
2279 /*
2280 * Check whether the inode has blocks or not
2281 */
F2FS_HAS_BLOCKS(struct inode * inode)2282 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2283 {
2284 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2285
2286 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2287 }
2288
f2fs_has_xattr_block(unsigned int ofs)2289 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2290 {
2291 return ofs == XATTR_NODE_OFFSET;
2292 }
2293
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2294 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2295 struct inode *inode, bool cap)
2296 {
2297 if (!inode)
2298 return true;
2299 if (!test_opt(sbi, RESERVE_ROOT))
2300 return false;
2301 if (IS_NOQUOTA(inode))
2302 return true;
2303 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2304 return true;
2305 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2306 in_group_p(F2FS_OPTION(sbi).s_resgid))
2307 return true;
2308 if (cap && capable(CAP_SYS_RESOURCE))
2309 return true;
2310 return false;
2311 }
2312
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2313 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2314 struct inode *inode, bool cap)
2315 {
2316 block_t avail_user_block_count;
2317
2318 avail_user_block_count = sbi->user_block_count -
2319 sbi->current_reserved_blocks;
2320
2321 if (!__allow_reserved_blocks(sbi, inode, cap))
2322 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2323
2324 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2325 if (avail_user_block_count > sbi->unusable_block_count)
2326 avail_user_block_count -= sbi->unusable_block_count;
2327 else
2328 avail_user_block_count = 0;
2329 }
2330
2331 return avail_user_block_count;
2332 }
2333
2334 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2335 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2336 struct inode *inode, blkcnt_t *count, bool partial)
2337 {
2338 long long diff = 0, release = 0;
2339 block_t avail_user_block_count;
2340 int ret;
2341
2342 ret = dquot_reserve_block(inode, *count);
2343 if (ret)
2344 return ret;
2345
2346 if (time_to_inject(sbi, FAULT_BLOCK)) {
2347 release = *count;
2348 goto release_quota;
2349 }
2350
2351 /*
2352 * let's increase this in prior to actual block count change in order
2353 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2354 */
2355 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2356
2357 spin_lock(&sbi->stat_lock);
2358
2359 avail_user_block_count = get_available_block_count(sbi, inode, true);
2360 diff = (long long)sbi->total_valid_block_count + *count -
2361 avail_user_block_count;
2362 if (unlikely(diff > 0)) {
2363 if (!partial) {
2364 spin_unlock(&sbi->stat_lock);
2365 release = *count;
2366 goto enospc;
2367 }
2368 if (diff > *count)
2369 diff = *count;
2370 *count -= diff;
2371 release = diff;
2372 if (!*count) {
2373 spin_unlock(&sbi->stat_lock);
2374 goto enospc;
2375 }
2376 }
2377 sbi->total_valid_block_count += (block_t)(*count);
2378
2379 spin_unlock(&sbi->stat_lock);
2380
2381 if (unlikely(release)) {
2382 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2383 dquot_release_reservation_block(inode, release);
2384 }
2385 f2fs_i_blocks_write(inode, *count, true, true);
2386 return 0;
2387
2388 enospc:
2389 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2390 release_quota:
2391 dquot_release_reservation_block(inode, release);
2392 return -ENOSPC;
2393 }
2394
2395 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2396 static inline bool page_private_##name(struct page *page) \
2397 { \
2398 return PagePrivate(page) && \
2399 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2400 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2401 }
2402
2403 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2404 static inline void set_page_private_##name(struct page *page) \
2405 { \
2406 if (!PagePrivate(page)) \
2407 attach_page_private(page, (void *)0); \
2408 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2409 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2410 }
2411
2412 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2413 static inline void clear_page_private_##name(struct page *page) \
2414 { \
2415 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2416 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2417 detach_page_private(page); \
2418 }
2419
2420 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2421 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2422 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2423 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2424
2425 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2426 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2427 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2428 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2429
2430 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2431 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2432 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2433 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2434
get_page_private_data(struct page * page)2435 static inline unsigned long get_page_private_data(struct page *page)
2436 {
2437 unsigned long data = page_private(page);
2438
2439 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2440 return 0;
2441 return data >> PAGE_PRIVATE_MAX;
2442 }
2443
set_page_private_data(struct page * page,unsigned long data)2444 static inline void set_page_private_data(struct page *page, unsigned long data)
2445 {
2446 if (!PagePrivate(page))
2447 attach_page_private(page, (void *)0);
2448 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2449 page_private(page) |= data << PAGE_PRIVATE_MAX;
2450 }
2451
clear_page_private_data(struct page * page)2452 static inline void clear_page_private_data(struct page *page)
2453 {
2454 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2455 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2456 detach_page_private(page);
2457 }
2458
clear_page_private_all(struct page * page)2459 static inline void clear_page_private_all(struct page *page)
2460 {
2461 clear_page_private_data(page);
2462 clear_page_private_reference(page);
2463 clear_page_private_gcing(page);
2464 clear_page_private_inline(page);
2465 clear_page_private_atomic(page);
2466
2467 f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2468 }
2469
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2470 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2471 struct inode *inode,
2472 block_t count)
2473 {
2474 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2475
2476 spin_lock(&sbi->stat_lock);
2477 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2478 sbi->total_valid_block_count -= (block_t)count;
2479 if (sbi->reserved_blocks &&
2480 sbi->current_reserved_blocks < sbi->reserved_blocks)
2481 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2482 sbi->current_reserved_blocks + count);
2483 spin_unlock(&sbi->stat_lock);
2484 if (unlikely(inode->i_blocks < sectors)) {
2485 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2486 inode->i_ino,
2487 (unsigned long long)inode->i_blocks,
2488 (unsigned long long)sectors);
2489 set_sbi_flag(sbi, SBI_NEED_FSCK);
2490 return;
2491 }
2492 f2fs_i_blocks_write(inode, count, false, true);
2493 }
2494
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2495 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2496 {
2497 atomic_inc(&sbi->nr_pages[count_type]);
2498
2499 if (count_type == F2FS_DIRTY_DENTS ||
2500 count_type == F2FS_DIRTY_NODES ||
2501 count_type == F2FS_DIRTY_META ||
2502 count_type == F2FS_DIRTY_QDATA ||
2503 count_type == F2FS_DIRTY_IMETA)
2504 set_sbi_flag(sbi, SBI_IS_DIRTY);
2505 }
2506
inode_inc_dirty_pages(struct inode * inode)2507 static inline void inode_inc_dirty_pages(struct inode *inode)
2508 {
2509 atomic_inc(&F2FS_I(inode)->dirty_pages);
2510 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2511 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2512 if (IS_NOQUOTA(inode))
2513 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2514 }
2515
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2516 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2517 {
2518 atomic_dec(&sbi->nr_pages[count_type]);
2519 }
2520
inode_dec_dirty_pages(struct inode * inode)2521 static inline void inode_dec_dirty_pages(struct inode *inode)
2522 {
2523 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2524 !S_ISLNK(inode->i_mode))
2525 return;
2526
2527 atomic_dec(&F2FS_I(inode)->dirty_pages);
2528 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2529 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2530 if (IS_NOQUOTA(inode))
2531 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2532 }
2533
inc_atomic_write_cnt(struct inode * inode)2534 static inline void inc_atomic_write_cnt(struct inode *inode)
2535 {
2536 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2537 struct f2fs_inode_info *fi = F2FS_I(inode);
2538 u64 current_write;
2539
2540 fi->atomic_write_cnt++;
2541 atomic64_inc(&sbi->current_atomic_write);
2542 current_write = atomic64_read(&sbi->current_atomic_write);
2543 if (current_write > sbi->peak_atomic_write)
2544 sbi->peak_atomic_write = current_write;
2545 }
2546
release_atomic_write_cnt(struct inode * inode)2547 static inline void release_atomic_write_cnt(struct inode *inode)
2548 {
2549 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2550 struct f2fs_inode_info *fi = F2FS_I(inode);
2551
2552 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2553 fi->atomic_write_cnt = 0;
2554 }
2555
get_pages(struct f2fs_sb_info * sbi,int count_type)2556 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2557 {
2558 return atomic_read(&sbi->nr_pages[count_type]);
2559 }
2560
get_dirty_pages(struct inode * inode)2561 static inline int get_dirty_pages(struct inode *inode)
2562 {
2563 return atomic_read(&F2FS_I(inode)->dirty_pages);
2564 }
2565
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2566 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2567 {
2568 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2569 BLKS_PER_SEC(sbi));
2570 }
2571
valid_user_blocks(struct f2fs_sb_info * sbi)2572 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2573 {
2574 return sbi->total_valid_block_count;
2575 }
2576
discard_blocks(struct f2fs_sb_info * sbi)2577 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2578 {
2579 return sbi->discard_blks;
2580 }
2581
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2582 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2583 {
2584 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2585
2586 /* return NAT or SIT bitmap */
2587 if (flag == NAT_BITMAP)
2588 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2589 else if (flag == SIT_BITMAP)
2590 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2591
2592 return 0;
2593 }
2594
__cp_payload(struct f2fs_sb_info * sbi)2595 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2596 {
2597 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2598 }
2599
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2600 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2601 {
2602 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2603 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2604 int offset;
2605
2606 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2607 offset = (flag == SIT_BITMAP) ?
2608 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2609 /*
2610 * if large_nat_bitmap feature is enabled, leave checksum
2611 * protection for all nat/sit bitmaps.
2612 */
2613 return tmp_ptr + offset + sizeof(__le32);
2614 }
2615
2616 if (__cp_payload(sbi) > 0) {
2617 if (flag == NAT_BITMAP)
2618 return tmp_ptr;
2619 else
2620 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2621 } else {
2622 offset = (flag == NAT_BITMAP) ?
2623 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2624 return tmp_ptr + offset;
2625 }
2626 }
2627
__start_cp_addr(struct f2fs_sb_info * sbi)2628 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2629 {
2630 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2631
2632 if (sbi->cur_cp_pack == 2)
2633 start_addr += BLKS_PER_SEG(sbi);
2634 return start_addr;
2635 }
2636
__start_cp_next_addr(struct f2fs_sb_info * sbi)2637 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2638 {
2639 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2640
2641 if (sbi->cur_cp_pack == 1)
2642 start_addr += BLKS_PER_SEG(sbi);
2643 return start_addr;
2644 }
2645
__set_cp_next_pack(struct f2fs_sb_info * sbi)2646 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2647 {
2648 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2649 }
2650
__start_sum_addr(struct f2fs_sb_info * sbi)2651 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2652 {
2653 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2654 }
2655
2656 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2657 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2658 struct inode *inode, bool is_inode)
2659 {
2660 block_t valid_block_count;
2661 unsigned int valid_node_count;
2662 unsigned int avail_user_block_count;
2663 int err;
2664
2665 if (is_inode) {
2666 if (inode) {
2667 err = dquot_alloc_inode(inode);
2668 if (err)
2669 return err;
2670 }
2671 } else {
2672 err = dquot_reserve_block(inode, 1);
2673 if (err)
2674 return err;
2675 }
2676
2677 if (time_to_inject(sbi, FAULT_BLOCK))
2678 goto enospc;
2679
2680 spin_lock(&sbi->stat_lock);
2681
2682 valid_block_count = sbi->total_valid_block_count + 1;
2683 avail_user_block_count = get_available_block_count(sbi, inode, false);
2684
2685 if (unlikely(valid_block_count > avail_user_block_count)) {
2686 spin_unlock(&sbi->stat_lock);
2687 goto enospc;
2688 }
2689
2690 valid_node_count = sbi->total_valid_node_count + 1;
2691 if (unlikely(valid_node_count > sbi->total_node_count)) {
2692 spin_unlock(&sbi->stat_lock);
2693 goto enospc;
2694 }
2695
2696 sbi->total_valid_node_count++;
2697 sbi->total_valid_block_count++;
2698 spin_unlock(&sbi->stat_lock);
2699
2700 if (inode) {
2701 if (is_inode)
2702 f2fs_mark_inode_dirty_sync(inode, true);
2703 else
2704 f2fs_i_blocks_write(inode, 1, true, true);
2705 }
2706
2707 percpu_counter_inc(&sbi->alloc_valid_block_count);
2708 return 0;
2709
2710 enospc:
2711 if (is_inode) {
2712 if (inode)
2713 dquot_free_inode(inode);
2714 } else {
2715 dquot_release_reservation_block(inode, 1);
2716 }
2717 return -ENOSPC;
2718 }
2719
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2720 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2721 struct inode *inode, bool is_inode)
2722 {
2723 spin_lock(&sbi->stat_lock);
2724
2725 if (unlikely(!sbi->total_valid_block_count ||
2726 !sbi->total_valid_node_count)) {
2727 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2728 sbi->total_valid_block_count,
2729 sbi->total_valid_node_count);
2730 set_sbi_flag(sbi, SBI_NEED_FSCK);
2731 } else {
2732 sbi->total_valid_block_count--;
2733 sbi->total_valid_node_count--;
2734 }
2735
2736 if (sbi->reserved_blocks &&
2737 sbi->current_reserved_blocks < sbi->reserved_blocks)
2738 sbi->current_reserved_blocks++;
2739
2740 spin_unlock(&sbi->stat_lock);
2741
2742 if (is_inode) {
2743 dquot_free_inode(inode);
2744 } else {
2745 if (unlikely(inode->i_blocks == 0)) {
2746 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2747 inode->i_ino,
2748 (unsigned long long)inode->i_blocks);
2749 set_sbi_flag(sbi, SBI_NEED_FSCK);
2750 return;
2751 }
2752 f2fs_i_blocks_write(inode, 1, false, true);
2753 }
2754 }
2755
valid_node_count(struct f2fs_sb_info * sbi)2756 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2757 {
2758 return sbi->total_valid_node_count;
2759 }
2760
inc_valid_inode_count(struct f2fs_sb_info * sbi)2761 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2762 {
2763 percpu_counter_inc(&sbi->total_valid_inode_count);
2764 }
2765
dec_valid_inode_count(struct f2fs_sb_info * sbi)2766 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2767 {
2768 percpu_counter_dec(&sbi->total_valid_inode_count);
2769 }
2770
valid_inode_count(struct f2fs_sb_info * sbi)2771 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2772 {
2773 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2774 }
2775
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2776 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2777 pgoff_t index, bool for_write)
2778 {
2779 struct page *page;
2780 unsigned int flags;
2781
2782 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2783 if (!for_write)
2784 page = find_get_page_flags(mapping, index,
2785 FGP_LOCK | FGP_ACCESSED);
2786 else
2787 page = find_lock_page(mapping, index);
2788 if (page)
2789 return page;
2790
2791 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2792 return NULL;
2793 }
2794
2795 if (!for_write)
2796 return grab_cache_page(mapping, index);
2797
2798 flags = memalloc_nofs_save();
2799 page = grab_cache_page_write_begin(mapping, index);
2800 memalloc_nofs_restore(flags);
2801
2802 return page;
2803 }
2804
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2805 static inline struct page *f2fs_pagecache_get_page(
2806 struct address_space *mapping, pgoff_t index,
2807 fgf_t fgp_flags, gfp_t gfp_mask)
2808 {
2809 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2810 return NULL;
2811
2812 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2813 }
2814
f2fs_put_page(struct page * page,int unlock)2815 static inline void f2fs_put_page(struct page *page, int unlock)
2816 {
2817 if (!page)
2818 return;
2819
2820 if (unlock) {
2821 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2822 unlock_page(page);
2823 }
2824 put_page(page);
2825 }
2826
f2fs_put_dnode(struct dnode_of_data * dn)2827 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2828 {
2829 if (dn->node_page)
2830 f2fs_put_page(dn->node_page, 1);
2831 if (dn->inode_page && dn->node_page != dn->inode_page)
2832 f2fs_put_page(dn->inode_page, 0);
2833 dn->node_page = NULL;
2834 dn->inode_page = NULL;
2835 }
2836
f2fs_kmem_cache_create(const char * name,size_t size)2837 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2838 size_t size)
2839 {
2840 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2841 }
2842
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2843 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2844 gfp_t flags)
2845 {
2846 void *entry;
2847
2848 entry = kmem_cache_alloc(cachep, flags);
2849 if (!entry)
2850 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2851 return entry;
2852 }
2853
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2854 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2855 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2856 {
2857 if (nofail)
2858 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2859
2860 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2861 return NULL;
2862
2863 return kmem_cache_alloc(cachep, flags);
2864 }
2865
is_inflight_io(struct f2fs_sb_info * sbi,int type)2866 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2867 {
2868 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2869 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2870 get_pages(sbi, F2FS_WB_CP_DATA) ||
2871 get_pages(sbi, F2FS_DIO_READ) ||
2872 get_pages(sbi, F2FS_DIO_WRITE))
2873 return true;
2874
2875 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2876 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2877 return true;
2878
2879 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2880 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2881 return true;
2882 return false;
2883 }
2884
is_inflight_read_io(struct f2fs_sb_info * sbi)2885 static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi)
2886 {
2887 return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ);
2888 }
2889
is_idle(struct f2fs_sb_info * sbi,int type)2890 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2891 {
2892 bool zoned_gc = (type == GC_TIME &&
2893 F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED));
2894
2895 if (sbi->gc_mode == GC_URGENT_HIGH)
2896 return true;
2897
2898 if (zoned_gc) {
2899 if (is_inflight_read_io(sbi))
2900 return false;
2901 } else {
2902 if (is_inflight_io(sbi, type))
2903 return false;
2904 }
2905
2906 if (sbi->gc_mode == GC_URGENT_MID)
2907 return true;
2908
2909 if (sbi->gc_mode == GC_URGENT_LOW &&
2910 (type == DISCARD_TIME || type == GC_TIME))
2911 return true;
2912
2913 if (zoned_gc)
2914 return true;
2915
2916 return f2fs_time_over(sbi, type);
2917 }
2918
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2919 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2920 unsigned long index, void *item)
2921 {
2922 while (radix_tree_insert(root, index, item))
2923 cond_resched();
2924 }
2925
2926 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2927
IS_INODE(struct page * page)2928 static inline bool IS_INODE(struct page *page)
2929 {
2930 struct f2fs_node *p = F2FS_NODE(page);
2931
2932 return RAW_IS_INODE(p);
2933 }
2934
offset_in_addr(struct f2fs_inode * i)2935 static inline int offset_in_addr(struct f2fs_inode *i)
2936 {
2937 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2938 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2939 }
2940
blkaddr_in_node(struct f2fs_node * node)2941 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2942 {
2943 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2944 }
2945
2946 static inline int f2fs_has_extra_attr(struct inode *inode);
get_dnode_base(struct inode * inode,struct page * node_page)2947 static inline unsigned int get_dnode_base(struct inode *inode,
2948 struct page *node_page)
2949 {
2950 if (!IS_INODE(node_page))
2951 return 0;
2952
2953 return inode ? get_extra_isize(inode) :
2954 offset_in_addr(&F2FS_NODE(node_page)->i);
2955 }
2956
get_dnode_addr(struct inode * inode,struct page * node_page)2957 static inline __le32 *get_dnode_addr(struct inode *inode,
2958 struct page *node_page)
2959 {
2960 return blkaddr_in_node(F2FS_NODE(node_page)) +
2961 get_dnode_base(inode, node_page);
2962 }
2963
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2964 static inline block_t data_blkaddr(struct inode *inode,
2965 struct page *node_page, unsigned int offset)
2966 {
2967 return le32_to_cpu(*(get_dnode_addr(inode, node_page) + offset));
2968 }
2969
f2fs_data_blkaddr(struct dnode_of_data * dn)2970 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2971 {
2972 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2973 }
2974
f2fs_test_bit(unsigned int nr,char * addr)2975 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2976 {
2977 int mask;
2978
2979 addr += (nr >> 3);
2980 mask = BIT(7 - (nr & 0x07));
2981 return mask & *addr;
2982 }
2983
f2fs_set_bit(unsigned int nr,char * addr)2984 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2985 {
2986 int mask;
2987
2988 addr += (nr >> 3);
2989 mask = BIT(7 - (nr & 0x07));
2990 *addr |= mask;
2991 }
2992
f2fs_clear_bit(unsigned int nr,char * addr)2993 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2994 {
2995 int mask;
2996
2997 addr += (nr >> 3);
2998 mask = BIT(7 - (nr & 0x07));
2999 *addr &= ~mask;
3000 }
3001
f2fs_test_and_set_bit(unsigned int nr,char * addr)3002 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
3003 {
3004 int mask;
3005 int ret;
3006
3007 addr += (nr >> 3);
3008 mask = BIT(7 - (nr & 0x07));
3009 ret = mask & *addr;
3010 *addr |= mask;
3011 return ret;
3012 }
3013
f2fs_test_and_clear_bit(unsigned int nr,char * addr)3014 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
3015 {
3016 int mask;
3017 int ret;
3018
3019 addr += (nr >> 3);
3020 mask = BIT(7 - (nr & 0x07));
3021 ret = mask & *addr;
3022 *addr &= ~mask;
3023 return ret;
3024 }
3025
f2fs_change_bit(unsigned int nr,char * addr)3026 static inline void f2fs_change_bit(unsigned int nr, char *addr)
3027 {
3028 int mask;
3029
3030 addr += (nr >> 3);
3031 mask = BIT(7 - (nr & 0x07));
3032 *addr ^= mask;
3033 }
3034
3035 /*
3036 * On-disk inode flags (f2fs_inode::i_flags)
3037 */
3038 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
3039 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
3040 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
3041 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
3042 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
3043 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
3044 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
3045 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
3046 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
3047 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
3048 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
3049
3050 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3051
3052 /* Flags that should be inherited by new inodes from their parent. */
3053 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3054 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3055 F2FS_CASEFOLD_FL)
3056
3057 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3058 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3059 F2FS_CASEFOLD_FL))
3060
3061 /* Flags that are appropriate for non-directories/regular files. */
3062 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3063
f2fs_mask_flags(umode_t mode,__u32 flags)3064 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3065 {
3066 if (S_ISDIR(mode))
3067 return flags;
3068 else if (S_ISREG(mode))
3069 return flags & F2FS_REG_FLMASK;
3070 else
3071 return flags & F2FS_OTHER_FLMASK;
3072 }
3073
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3074 static inline void __mark_inode_dirty_flag(struct inode *inode,
3075 int flag, bool set)
3076 {
3077 switch (flag) {
3078 case FI_INLINE_XATTR:
3079 case FI_INLINE_DATA:
3080 case FI_INLINE_DENTRY:
3081 case FI_NEW_INODE:
3082 if (set)
3083 return;
3084 fallthrough;
3085 case FI_DATA_EXIST:
3086 case FI_PIN_FILE:
3087 case FI_COMPRESS_RELEASED:
3088 f2fs_mark_inode_dirty_sync(inode, true);
3089 }
3090 }
3091
set_inode_flag(struct inode * inode,int flag)3092 static inline void set_inode_flag(struct inode *inode, int flag)
3093 {
3094 set_bit(flag, F2FS_I(inode)->flags);
3095 __mark_inode_dirty_flag(inode, flag, true);
3096 }
3097
is_inode_flag_set(struct inode * inode,int flag)3098 static inline int is_inode_flag_set(struct inode *inode, int flag)
3099 {
3100 return test_bit(flag, F2FS_I(inode)->flags);
3101 }
3102
clear_inode_flag(struct inode * inode,int flag)3103 static inline void clear_inode_flag(struct inode *inode, int flag)
3104 {
3105 clear_bit(flag, F2FS_I(inode)->flags);
3106 __mark_inode_dirty_flag(inode, flag, false);
3107 }
3108
f2fs_verity_in_progress(struct inode * inode)3109 static inline bool f2fs_verity_in_progress(struct inode *inode)
3110 {
3111 return IS_ENABLED(CONFIG_FS_VERITY) &&
3112 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3113 }
3114
set_acl_inode(struct inode * inode,umode_t mode)3115 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3116 {
3117 F2FS_I(inode)->i_acl_mode = mode;
3118 set_inode_flag(inode, FI_ACL_MODE);
3119 f2fs_mark_inode_dirty_sync(inode, false);
3120 }
3121
f2fs_i_links_write(struct inode * inode,bool inc)3122 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3123 {
3124 if (inc)
3125 inc_nlink(inode);
3126 else
3127 drop_nlink(inode);
3128 f2fs_mark_inode_dirty_sync(inode, true);
3129 }
3130
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3131 static inline void f2fs_i_blocks_write(struct inode *inode,
3132 block_t diff, bool add, bool claim)
3133 {
3134 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3135 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3136
3137 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3138 if (add) {
3139 if (claim)
3140 dquot_claim_block(inode, diff);
3141 else
3142 dquot_alloc_block_nofail(inode, diff);
3143 } else {
3144 dquot_free_block(inode, diff);
3145 }
3146
3147 f2fs_mark_inode_dirty_sync(inode, true);
3148 if (clean || recover)
3149 set_inode_flag(inode, FI_AUTO_RECOVER);
3150 }
3151
3152 static inline bool f2fs_is_atomic_file(struct inode *inode);
3153
f2fs_i_size_write(struct inode * inode,loff_t i_size)3154 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3155 {
3156 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3157 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3158
3159 if (i_size_read(inode) == i_size)
3160 return;
3161
3162 i_size_write(inode, i_size);
3163
3164 if (f2fs_is_atomic_file(inode))
3165 return;
3166
3167 f2fs_mark_inode_dirty_sync(inode, true);
3168 if (clean || recover)
3169 set_inode_flag(inode, FI_AUTO_RECOVER);
3170 }
3171
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3172 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3173 {
3174 F2FS_I(inode)->i_current_depth = depth;
3175 f2fs_mark_inode_dirty_sync(inode, true);
3176 }
3177
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3178 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3179 unsigned int count)
3180 {
3181 F2FS_I(inode)->i_gc_failures = count;
3182 f2fs_mark_inode_dirty_sync(inode, true);
3183 }
3184
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3185 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3186 {
3187 F2FS_I(inode)->i_xattr_nid = xnid;
3188 f2fs_mark_inode_dirty_sync(inode, true);
3189 }
3190
f2fs_i_pino_write(struct inode * inode,nid_t pino)3191 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3192 {
3193 F2FS_I(inode)->i_pino = pino;
3194 f2fs_mark_inode_dirty_sync(inode, true);
3195 }
3196
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3197 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3198 {
3199 struct f2fs_inode_info *fi = F2FS_I(inode);
3200
3201 if (ri->i_inline & F2FS_INLINE_XATTR)
3202 set_bit(FI_INLINE_XATTR, fi->flags);
3203 if (ri->i_inline & F2FS_INLINE_DATA)
3204 set_bit(FI_INLINE_DATA, fi->flags);
3205 if (ri->i_inline & F2FS_INLINE_DENTRY)
3206 set_bit(FI_INLINE_DENTRY, fi->flags);
3207 if (ri->i_inline & F2FS_DATA_EXIST)
3208 set_bit(FI_DATA_EXIST, fi->flags);
3209 if (ri->i_inline & F2FS_EXTRA_ATTR)
3210 set_bit(FI_EXTRA_ATTR, fi->flags);
3211 if (ri->i_inline & F2FS_PIN_FILE)
3212 set_bit(FI_PIN_FILE, fi->flags);
3213 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3214 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3215 }
3216
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3217 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3218 {
3219 ri->i_inline = 0;
3220
3221 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3222 ri->i_inline |= F2FS_INLINE_XATTR;
3223 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3224 ri->i_inline |= F2FS_INLINE_DATA;
3225 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3226 ri->i_inline |= F2FS_INLINE_DENTRY;
3227 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3228 ri->i_inline |= F2FS_DATA_EXIST;
3229 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3230 ri->i_inline |= F2FS_EXTRA_ATTR;
3231 if (is_inode_flag_set(inode, FI_PIN_FILE))
3232 ri->i_inline |= F2FS_PIN_FILE;
3233 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3234 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3235 }
3236
f2fs_has_extra_attr(struct inode * inode)3237 static inline int f2fs_has_extra_attr(struct inode *inode)
3238 {
3239 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3240 }
3241
f2fs_has_inline_xattr(struct inode * inode)3242 static inline int f2fs_has_inline_xattr(struct inode *inode)
3243 {
3244 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3245 }
3246
f2fs_compressed_file(struct inode * inode)3247 static inline int f2fs_compressed_file(struct inode *inode)
3248 {
3249 return S_ISREG(inode->i_mode) &&
3250 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3251 }
3252
f2fs_need_compress_data(struct inode * inode)3253 static inline bool f2fs_need_compress_data(struct inode *inode)
3254 {
3255 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3256
3257 if (!f2fs_compressed_file(inode))
3258 return false;
3259
3260 if (compress_mode == COMPR_MODE_FS)
3261 return true;
3262 else if (compress_mode == COMPR_MODE_USER &&
3263 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3264 return true;
3265
3266 return false;
3267 }
3268
addrs_per_page(struct inode * inode,bool is_inode)3269 static inline unsigned int addrs_per_page(struct inode *inode,
3270 bool is_inode)
3271 {
3272 unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3273 get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3274
3275 if (f2fs_compressed_file(inode))
3276 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3277 return addrs;
3278 }
3279
inline_xattr_addr(struct inode * inode,struct page * page)3280 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3281 {
3282 struct f2fs_inode *ri = F2FS_INODE(page);
3283
3284 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3285 get_inline_xattr_addrs(inode)]);
3286 }
3287
inline_xattr_size(struct inode * inode)3288 static inline int inline_xattr_size(struct inode *inode)
3289 {
3290 if (f2fs_has_inline_xattr(inode))
3291 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3292 return 0;
3293 }
3294
3295 /*
3296 * Notice: check inline_data flag without inode page lock is unsafe.
3297 * It could change at any time by f2fs_convert_inline_page().
3298 */
f2fs_has_inline_data(struct inode * inode)3299 static inline int f2fs_has_inline_data(struct inode *inode)
3300 {
3301 return is_inode_flag_set(inode, FI_INLINE_DATA);
3302 }
3303
f2fs_exist_data(struct inode * inode)3304 static inline int f2fs_exist_data(struct inode *inode)
3305 {
3306 return is_inode_flag_set(inode, FI_DATA_EXIST);
3307 }
3308
f2fs_is_mmap_file(struct inode * inode)3309 static inline int f2fs_is_mmap_file(struct inode *inode)
3310 {
3311 return is_inode_flag_set(inode, FI_MMAP_FILE);
3312 }
3313
f2fs_is_pinned_file(struct inode * inode)3314 static inline bool f2fs_is_pinned_file(struct inode *inode)
3315 {
3316 return is_inode_flag_set(inode, FI_PIN_FILE);
3317 }
3318
f2fs_is_atomic_file(struct inode * inode)3319 static inline bool f2fs_is_atomic_file(struct inode *inode)
3320 {
3321 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3322 }
3323
f2fs_is_cow_file(struct inode * inode)3324 static inline bool f2fs_is_cow_file(struct inode *inode)
3325 {
3326 return is_inode_flag_set(inode, FI_COW_FILE);
3327 }
3328
inline_data_addr(struct inode * inode,struct page * page)3329 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3330 {
3331 __le32 *addr = get_dnode_addr(inode, page);
3332
3333 return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3334 }
3335
f2fs_has_inline_dentry(struct inode * inode)3336 static inline int f2fs_has_inline_dentry(struct inode *inode)
3337 {
3338 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3339 }
3340
is_file(struct inode * inode,int type)3341 static inline int is_file(struct inode *inode, int type)
3342 {
3343 return F2FS_I(inode)->i_advise & type;
3344 }
3345
set_file(struct inode * inode,int type)3346 static inline void set_file(struct inode *inode, int type)
3347 {
3348 if (is_file(inode, type))
3349 return;
3350 F2FS_I(inode)->i_advise |= type;
3351 f2fs_mark_inode_dirty_sync(inode, true);
3352 }
3353
clear_file(struct inode * inode,int type)3354 static inline void clear_file(struct inode *inode, int type)
3355 {
3356 if (!is_file(inode, type))
3357 return;
3358 F2FS_I(inode)->i_advise &= ~type;
3359 f2fs_mark_inode_dirty_sync(inode, true);
3360 }
3361
f2fs_is_time_consistent(struct inode * inode)3362 static inline bool f2fs_is_time_consistent(struct inode *inode)
3363 {
3364 struct timespec64 ts = inode_get_atime(inode);
3365
3366 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3367 return false;
3368 ts = inode_get_ctime(inode);
3369 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3370 return false;
3371 ts = inode_get_mtime(inode);
3372 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3373 return false;
3374 return true;
3375 }
3376
f2fs_skip_inode_update(struct inode * inode,int dsync)3377 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3378 {
3379 bool ret;
3380
3381 if (dsync) {
3382 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3383
3384 spin_lock(&sbi->inode_lock[DIRTY_META]);
3385 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3386 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3387 return ret;
3388 }
3389 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3390 file_keep_isize(inode) ||
3391 i_size_read(inode) & ~PAGE_MASK)
3392 return false;
3393
3394 if (!f2fs_is_time_consistent(inode))
3395 return false;
3396
3397 spin_lock(&F2FS_I(inode)->i_size_lock);
3398 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3399 spin_unlock(&F2FS_I(inode)->i_size_lock);
3400
3401 return ret;
3402 }
3403
f2fs_readonly(struct super_block * sb)3404 static inline bool f2fs_readonly(struct super_block *sb)
3405 {
3406 return sb_rdonly(sb);
3407 }
3408
f2fs_cp_error(struct f2fs_sb_info * sbi)3409 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3410 {
3411 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3412 }
3413
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3414 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3415 size_t size, gfp_t flags)
3416 {
3417 if (time_to_inject(sbi, FAULT_KMALLOC))
3418 return NULL;
3419
3420 return kmalloc(size, flags);
3421 }
3422
f2fs_getname(struct f2fs_sb_info * sbi)3423 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3424 {
3425 if (time_to_inject(sbi, FAULT_KMALLOC))
3426 return NULL;
3427
3428 return __getname();
3429 }
3430
f2fs_putname(char * buf)3431 static inline void f2fs_putname(char *buf)
3432 {
3433 __putname(buf);
3434 }
3435
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3436 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3437 size_t size, gfp_t flags)
3438 {
3439 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3440 }
3441
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3442 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3443 size_t size, gfp_t flags)
3444 {
3445 if (time_to_inject(sbi, FAULT_KVMALLOC))
3446 return NULL;
3447
3448 return kvmalloc(size, flags);
3449 }
3450
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3451 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3452 size_t size, gfp_t flags)
3453 {
3454 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3455 }
3456
get_extra_isize(struct inode * inode)3457 static inline int get_extra_isize(struct inode *inode)
3458 {
3459 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3460 }
3461
get_inline_xattr_addrs(struct inode * inode)3462 static inline int get_inline_xattr_addrs(struct inode *inode)
3463 {
3464 return F2FS_I(inode)->i_inline_xattr_size;
3465 }
3466
3467 #define f2fs_get_inode_mode(i) \
3468 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3469 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3470
3471 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3472
3473 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3474 (offsetof(struct f2fs_inode, i_extra_end) - \
3475 offsetof(struct f2fs_inode, i_extra_isize)) \
3476
3477 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3478 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3479 ((offsetof(typeof(*(f2fs_inode)), field) + \
3480 sizeof((f2fs_inode)->field)) \
3481 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3482
3483 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1)
3484
3485 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3486
3487 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3488 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3489 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3490 block_t blkaddr, int type)
3491 {
3492 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3493 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3494 blkaddr, type);
3495 }
3496
__is_valid_data_blkaddr(block_t blkaddr)3497 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3498 {
3499 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3500 blkaddr == COMPRESS_ADDR)
3501 return false;
3502 return true;
3503 }
3504
3505 /*
3506 * file.c
3507 */
3508 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3509 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3510 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3511 int f2fs_truncate(struct inode *inode);
3512 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3513 struct kstat *stat, u32 request_mask, unsigned int flags);
3514 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3515 struct iattr *attr);
3516 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3517 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3518 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3519 bool readonly, bool need_lock);
3520 int f2fs_precache_extents(struct inode *inode);
3521 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3522 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3523 struct dentry *dentry, struct fileattr *fa);
3524 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3525 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3526 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3527 int f2fs_pin_file_control(struct inode *inode, bool inc);
3528
3529 /*
3530 * inode.c
3531 */
3532 void f2fs_set_inode_flags(struct inode *inode);
3533 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3534 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3535 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3536 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3537 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3538 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3539 void f2fs_update_inode_page(struct inode *inode);
3540 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3541 void f2fs_evict_inode(struct inode *inode);
3542 void f2fs_handle_failed_inode(struct inode *inode);
3543
3544 /*
3545 * namei.c
3546 */
3547 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3548 bool hot, bool set);
3549 struct dentry *f2fs_get_parent(struct dentry *child);
3550 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3551 struct inode **new_inode);
3552
3553 /*
3554 * dir.c
3555 */
3556 #if IS_ENABLED(CONFIG_UNICODE)
3557 int f2fs_init_casefolded_name(const struct inode *dir,
3558 struct f2fs_filename *fname);
3559 void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3560 #else
f2fs_init_casefolded_name(const struct inode * dir,struct f2fs_filename * fname)3561 static inline int f2fs_init_casefolded_name(const struct inode *dir,
3562 struct f2fs_filename *fname)
3563 {
3564 return 0;
3565 }
3566
f2fs_free_casefolded_name(struct f2fs_filename * fname)3567 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3568 {
3569 }
3570 #endif /* CONFIG_UNICODE */
3571
3572 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3573 int lookup, struct f2fs_filename *fname);
3574 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3575 struct f2fs_filename *fname);
3576 void f2fs_free_filename(struct f2fs_filename *fname);
3577 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3578 const struct f2fs_filename *fname, int *max_slots);
3579 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3580 unsigned int start_pos, struct fscrypt_str *fstr);
3581 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3582 struct f2fs_dentry_ptr *d);
3583 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3584 const struct f2fs_filename *fname, struct page *dpage);
3585 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3586 unsigned int current_depth);
3587 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3588 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3589 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3590 const struct f2fs_filename *fname,
3591 struct page **res_page);
3592 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3593 const struct qstr *child, struct page **res_page);
3594 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3595 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3596 struct page **page);
3597 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3598 struct page *page, struct inode *inode);
3599 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3600 const struct f2fs_filename *fname);
3601 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3602 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3603 unsigned int bit_pos);
3604 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3605 struct inode *inode, nid_t ino, umode_t mode);
3606 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3607 struct inode *inode, nid_t ino, umode_t mode);
3608 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3609 struct inode *inode, nid_t ino, umode_t mode);
3610 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3611 struct inode *dir, struct inode *inode);
3612 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3613 struct f2fs_filename *fname);
3614 bool f2fs_empty_dir(struct inode *dir);
3615
f2fs_add_link(struct dentry * dentry,struct inode * inode)3616 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3617 {
3618 if (fscrypt_is_nokey_name(dentry))
3619 return -ENOKEY;
3620 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3621 inode, inode->i_ino, inode->i_mode);
3622 }
3623
3624 /*
3625 * super.c
3626 */
3627 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3628 void f2fs_inode_synced(struct inode *inode);
3629 int f2fs_dquot_initialize(struct inode *inode);
3630 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3631 int f2fs_quota_sync(struct super_block *sb, int type);
3632 loff_t max_file_blocks(struct inode *inode);
3633 void f2fs_quota_off_umount(struct super_block *sb);
3634 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3635 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3636 bool irq_context);
3637 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3638 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3639 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3640 int f2fs_sync_fs(struct super_block *sb, int sync);
3641 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3642
3643 /*
3644 * hash.c
3645 */
3646 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3647
3648 /*
3649 * node.c
3650 */
3651 struct node_info;
3652
3653 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3654 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3655 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3656 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3657 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3658 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3659 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3660 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3661 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3662 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3663 struct node_info *ni, bool checkpoint_context);
3664 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3665 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3666 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3667 int f2fs_truncate_xattr_node(struct inode *inode);
3668 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3669 unsigned int seq_id);
3670 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3671 int f2fs_remove_inode_page(struct inode *inode);
3672 struct page *f2fs_new_inode_page(struct inode *inode);
3673 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3674 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3675 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3676 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3677 int f2fs_move_node_page(struct page *node_page, int gc_type);
3678 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3679 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3680 struct writeback_control *wbc, bool atomic,
3681 unsigned int *seq_id);
3682 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3683 struct writeback_control *wbc,
3684 bool do_balance, enum iostat_type io_type);
3685 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3686 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3687 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3688 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3689 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3690 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3691 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3692 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3693 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3694 unsigned int segno, struct f2fs_summary_block *sum);
3695 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3696 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3697 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3698 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3699 int __init f2fs_create_node_manager_caches(void);
3700 void f2fs_destroy_node_manager_caches(void);
3701
3702 /*
3703 * segment.c
3704 */
3705 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3706 int f2fs_commit_atomic_write(struct inode *inode);
3707 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3708 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3709 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3710 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3711 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3712 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3713 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3714 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3715 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3716 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3717 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3718 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3719 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3720 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3721 struct cp_control *cpc);
3722 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3723 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3724 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3725 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3726 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3727 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3728 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3729 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3730 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3731 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3732 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3733 unsigned int start, unsigned int end);
3734 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3735 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3736 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3737 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3738 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3739 struct cp_control *cpc);
3740 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3741 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3742 block_t blk_addr);
3743 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3744 enum iostat_type io_type);
3745 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3746 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3747 struct f2fs_io_info *fio);
3748 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3749 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3750 block_t old_blkaddr, block_t new_blkaddr,
3751 bool recover_curseg, bool recover_newaddr,
3752 bool from_gc);
3753 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3754 block_t old_addr, block_t new_addr,
3755 unsigned char version, bool recover_curseg,
3756 bool recover_newaddr);
3757 int f2fs_get_segment_temp(int seg_type);
3758 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3759 block_t old_blkaddr, block_t *new_blkaddr,
3760 struct f2fs_summary *sum, int type,
3761 struct f2fs_io_info *fio);
3762 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3763 block_t blkaddr, unsigned int blkcnt);
3764 void f2fs_wait_on_page_writeback(struct page *page,
3765 enum page_type type, bool ordered, bool locked);
3766 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3767 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3768 block_t len);
3769 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3770 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3771 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3772 unsigned int val, int alloc);
3773 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3774 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3775 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3776 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3777 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3778 int __init f2fs_create_segment_manager_caches(void);
3779 void f2fs_destroy_segment_manager_caches(void);
3780 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3781 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3782 enum page_type type, enum temp_type temp);
3783 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi);
3784 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3785 unsigned int segno);
3786
3787 #define DEF_FRAGMENT_SIZE 4
3788 #define MIN_FRAGMENT_SIZE 1
3789 #define MAX_FRAGMENT_SIZE 512
3790
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3791 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3792 {
3793 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3794 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3795 }
3796
3797 /*
3798 * checkpoint.c
3799 */
3800 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3801 unsigned char reason);
3802 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3803 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3804 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3805 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3806 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3807 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3808 block_t blkaddr, int type);
3809 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3810 block_t blkaddr, int type);
3811 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3812 int type, bool sync);
3813 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3814 unsigned int ra_blocks);
3815 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3816 long nr_to_write, enum iostat_type io_type);
3817 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3818 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3819 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3820 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3821 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3822 unsigned int devidx, int type);
3823 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3824 unsigned int devidx, int type);
3825 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3826 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3827 void f2fs_add_orphan_inode(struct inode *inode);
3828 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3829 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3830 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3831 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3832 void f2fs_remove_dirty_inode(struct inode *inode);
3833 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3834 bool from_cp);
3835 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3836 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3837 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3838 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3839 int __init f2fs_create_checkpoint_caches(void);
3840 void f2fs_destroy_checkpoint_caches(void);
3841 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3842 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3843 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3844 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3845
3846 /*
3847 * data.c
3848 */
3849 int __init f2fs_init_bioset(void);
3850 void f2fs_destroy_bioset(void);
3851 bool f2fs_is_cp_guaranteed(struct page *page);
3852 int f2fs_init_bio_entry_cache(void);
3853 void f2fs_destroy_bio_entry_cache(void);
3854 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3855 enum page_type type);
3856 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3857 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3858 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3859 struct inode *inode, struct page *page,
3860 nid_t ino, enum page_type type);
3861 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3862 struct bio **bio, struct page *page);
3863 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3864 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3865 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3866 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3867 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3868 block_t blk_addr, sector_t *sector);
3869 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3870 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3871 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3872 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3873 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3874 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3875 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3876 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3877 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3878 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3879 pgoff_t *next_pgofs);
3880 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3881 bool for_write);
3882 struct page *f2fs_get_new_data_page(struct inode *inode,
3883 struct page *ipage, pgoff_t index, bool new_i_size);
3884 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3885 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3886 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3887 u64 start, u64 len);
3888 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3889 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3890 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3891 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
3892 struct bio **bio, sector_t *last_block,
3893 struct writeback_control *wbc,
3894 enum iostat_type io_type,
3895 int compr_blocks, bool allow_balance);
3896 void f2fs_write_failed(struct inode *inode, loff_t to);
3897 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3898 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3899 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3900 void f2fs_clear_page_cache_dirty_tag(struct folio *folio);
3901 int f2fs_init_post_read_processing(void);
3902 void f2fs_destroy_post_read_processing(void);
3903 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3904 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3905 extern const struct iomap_ops f2fs_iomap_ops;
3906
3907 /*
3908 * gc.c
3909 */
3910 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3911 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3912 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3913 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3914 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3915 int f2fs_gc_range(struct f2fs_sb_info *sbi,
3916 unsigned int start_seg, unsigned int end_seg,
3917 bool dry_run, unsigned int dry_run_sections);
3918 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3919 int __init f2fs_create_garbage_collection_cache(void);
3920 void f2fs_destroy_garbage_collection_cache(void);
3921 /* victim selection function for cleaning and SSR */
3922 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3923 int gc_type, int type, char alloc_mode,
3924 unsigned long long age, bool one_time);
3925
3926 /*
3927 * recovery.c
3928 */
3929 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3930 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3931 int __init f2fs_create_recovery_cache(void);
3932 void f2fs_destroy_recovery_cache(void);
3933
3934 /*
3935 * debug.c
3936 */
3937 #ifdef CONFIG_F2FS_STAT_FS
3938 struct f2fs_stat_info {
3939 struct list_head stat_list;
3940 struct f2fs_sb_info *sbi;
3941 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3942 int main_area_segs, main_area_sections, main_area_zones;
3943 unsigned long long hit_cached[NR_EXTENT_CACHES];
3944 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3945 unsigned long long total_ext[NR_EXTENT_CACHES];
3946 unsigned long long hit_total[NR_EXTENT_CACHES];
3947 int ext_tree[NR_EXTENT_CACHES];
3948 int zombie_tree[NR_EXTENT_CACHES];
3949 int ext_node[NR_EXTENT_CACHES];
3950 /* to count memory footprint */
3951 unsigned long long ext_mem[NR_EXTENT_CACHES];
3952 /* for read extent cache */
3953 unsigned long long hit_largest;
3954 /* for block age extent cache */
3955 unsigned long long allocated_data_blocks;
3956 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3957 int ndirty_data, ndirty_qdata;
3958 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3959 int nats, dirty_nats, sits, dirty_sits;
3960 int free_nids, avail_nids, alloc_nids;
3961 int total_count, utilization;
3962 int nr_wb_cp_data, nr_wb_data;
3963 int nr_rd_data, nr_rd_node, nr_rd_meta;
3964 int nr_dio_read, nr_dio_write;
3965 unsigned int io_skip_bggc, other_skip_bggc;
3966 int nr_flushing, nr_flushed, flush_list_empty;
3967 int nr_discarding, nr_discarded;
3968 int nr_discard_cmd;
3969 unsigned int undiscard_blks;
3970 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3971 unsigned int cur_ckpt_time, peak_ckpt_time;
3972 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3973 int compr_inode, swapfile_inode;
3974 unsigned long long compr_blocks;
3975 int aw_cnt, max_aw_cnt;
3976 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3977 unsigned int bimodal, avg_vblocks;
3978 int util_free, util_valid, util_invalid;
3979 int rsvd_segs, overp_segs;
3980 int dirty_count, node_pages, meta_pages, compress_pages;
3981 int compress_page_hit;
3982 int prefree_count, free_segs, free_secs;
3983 int cp_call_count[MAX_CALL_TYPE], cp_count;
3984 int gc_call_count[MAX_CALL_TYPE];
3985 int gc_segs[2][2];
3986 int gc_secs[2][2];
3987 int tot_blks, data_blks, node_blks;
3988 int bg_data_blks, bg_node_blks;
3989 int curseg[NR_CURSEG_TYPE];
3990 int cursec[NR_CURSEG_TYPE];
3991 int curzone[NR_CURSEG_TYPE];
3992 unsigned int dirty_seg[NR_CURSEG_TYPE];
3993 unsigned int full_seg[NR_CURSEG_TYPE];
3994 unsigned int valid_blks[NR_CURSEG_TYPE];
3995
3996 unsigned int meta_count[META_MAX];
3997 unsigned int segment_count[2];
3998 unsigned int block_count[2];
3999 unsigned int inplace_count;
4000 unsigned long long base_mem, cache_mem, page_mem;
4001 };
4002
F2FS_STAT(struct f2fs_sb_info * sbi)4003 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
4004 {
4005 return (struct f2fs_stat_info *)sbi->stat_info;
4006 }
4007
4008 #define stat_inc_cp_call_count(sbi, foreground) \
4009 atomic_inc(&sbi->cp_call_count[(foreground)])
4010 #define stat_inc_cp_count(sbi) (F2FS_STAT(sbi)->cp_count++)
4011 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
4012 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
4013 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
4014 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
4015 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
4016 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
4017 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
4018 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
4019 #define stat_inc_inline_xattr(inode) \
4020 do { \
4021 if (f2fs_has_inline_xattr(inode)) \
4022 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
4023 } while (0)
4024 #define stat_dec_inline_xattr(inode) \
4025 do { \
4026 if (f2fs_has_inline_xattr(inode)) \
4027 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
4028 } while (0)
4029 #define stat_inc_inline_inode(inode) \
4030 do { \
4031 if (f2fs_has_inline_data(inode)) \
4032 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
4033 } while (0)
4034 #define stat_dec_inline_inode(inode) \
4035 do { \
4036 if (f2fs_has_inline_data(inode)) \
4037 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
4038 } while (0)
4039 #define stat_inc_inline_dir(inode) \
4040 do { \
4041 if (f2fs_has_inline_dentry(inode)) \
4042 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
4043 } while (0)
4044 #define stat_dec_inline_dir(inode) \
4045 do { \
4046 if (f2fs_has_inline_dentry(inode)) \
4047 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
4048 } while (0)
4049 #define stat_inc_compr_inode(inode) \
4050 do { \
4051 if (f2fs_compressed_file(inode)) \
4052 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
4053 } while (0)
4054 #define stat_dec_compr_inode(inode) \
4055 do { \
4056 if (f2fs_compressed_file(inode)) \
4057 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4058 } while (0)
4059 #define stat_add_compr_blocks(inode, blocks) \
4060 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4061 #define stat_sub_compr_blocks(inode, blocks) \
4062 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4063 #define stat_inc_swapfile_inode(inode) \
4064 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4065 #define stat_dec_swapfile_inode(inode) \
4066 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4067 #define stat_inc_atomic_inode(inode) \
4068 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4069 #define stat_dec_atomic_inode(inode) \
4070 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4071 #define stat_inc_meta_count(sbi, blkaddr) \
4072 do { \
4073 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4074 atomic_inc(&(sbi)->meta_count[META_CP]); \
4075 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4076 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4077 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4078 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4079 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4080 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4081 } while (0)
4082 #define stat_inc_seg_type(sbi, curseg) \
4083 ((sbi)->segment_count[(curseg)->alloc_type]++)
4084 #define stat_inc_block_count(sbi, curseg) \
4085 ((sbi)->block_count[(curseg)->alloc_type]++)
4086 #define stat_inc_inplace_blocks(sbi) \
4087 (atomic_inc(&(sbi)->inplace_count))
4088 #define stat_update_max_atomic_write(inode) \
4089 do { \
4090 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4091 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4092 if (cur > max) \
4093 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4094 } while (0)
4095 #define stat_inc_gc_call_count(sbi, foreground) \
4096 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4097 #define stat_inc_gc_sec_count(sbi, type, gc_type) \
4098 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4099 #define stat_inc_gc_seg_count(sbi, type, gc_type) \
4100 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4101
4102 #define stat_inc_tot_blk_count(si, blks) \
4103 ((si)->tot_blks += (blks))
4104
4105 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4106 do { \
4107 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4108 stat_inc_tot_blk_count(si, blks); \
4109 si->data_blks += (blks); \
4110 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4111 } while (0)
4112
4113 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4114 do { \
4115 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4116 stat_inc_tot_blk_count(si, blks); \
4117 si->node_blks += (blks); \
4118 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4119 } while (0)
4120
4121 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4122 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4123 void __init f2fs_create_root_stats(void);
4124 void f2fs_destroy_root_stats(void);
4125 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4126 #else
4127 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4128 #define stat_inc_cp_count(sbi) do { } while (0)
4129 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4130 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4131 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4132 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4133 #define stat_inc_total_hit(sbi, type) do { } while (0)
4134 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4135 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4136 #define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4137 #define stat_inc_inline_xattr(inode) do { } while (0)
4138 #define stat_dec_inline_xattr(inode) do { } while (0)
4139 #define stat_inc_inline_inode(inode) do { } while (0)
4140 #define stat_dec_inline_inode(inode) do { } while (0)
4141 #define stat_inc_inline_dir(inode) do { } while (0)
4142 #define stat_dec_inline_dir(inode) do { } while (0)
4143 #define stat_inc_compr_inode(inode) do { } while (0)
4144 #define stat_dec_compr_inode(inode) do { } while (0)
4145 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4146 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4147 #define stat_inc_swapfile_inode(inode) do { } while (0)
4148 #define stat_dec_swapfile_inode(inode) do { } while (0)
4149 #define stat_inc_atomic_inode(inode) do { } while (0)
4150 #define stat_dec_atomic_inode(inode) do { } while (0)
4151 #define stat_update_max_atomic_write(inode) do { } while (0)
4152 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4153 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4154 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4155 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4156 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4157 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4158 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4159 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4160 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4161 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4162
f2fs_build_stats(struct f2fs_sb_info * sbi)4163 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4164 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4165 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4166 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4167 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4168 #endif
4169
4170 extern const struct file_operations f2fs_dir_operations;
4171 extern const struct file_operations f2fs_file_operations;
4172 extern const struct inode_operations f2fs_file_inode_operations;
4173 extern const struct address_space_operations f2fs_dblock_aops;
4174 extern const struct address_space_operations f2fs_node_aops;
4175 extern const struct address_space_operations f2fs_meta_aops;
4176 extern const struct inode_operations f2fs_dir_inode_operations;
4177 extern const struct inode_operations f2fs_symlink_inode_operations;
4178 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4179 extern const struct inode_operations f2fs_special_inode_operations;
4180 extern struct kmem_cache *f2fs_inode_entry_slab;
4181
4182 /*
4183 * inline.c
4184 */
4185 bool f2fs_may_inline_data(struct inode *inode);
4186 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4187 bool f2fs_may_inline_dentry(struct inode *inode);
4188 void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage);
4189 void f2fs_truncate_inline_inode(struct inode *inode,
4190 struct page *ipage, u64 from);
4191 int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4192 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4193 int f2fs_convert_inline_inode(struct inode *inode);
4194 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4195 int f2fs_write_inline_data(struct inode *inode, struct folio *folio);
4196 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4197 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4198 const struct f2fs_filename *fname,
4199 struct page **res_page);
4200 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4201 struct page *ipage);
4202 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4203 struct inode *inode, nid_t ino, umode_t mode);
4204 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4205 struct page *page, struct inode *dir,
4206 struct inode *inode);
4207 bool f2fs_empty_inline_dir(struct inode *dir);
4208 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4209 struct fscrypt_str *fstr);
4210 int f2fs_inline_data_fiemap(struct inode *inode,
4211 struct fiemap_extent_info *fieinfo,
4212 __u64 start, __u64 len);
4213
4214 /*
4215 * shrinker.c
4216 */
4217 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4218 struct shrink_control *sc);
4219 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4220 struct shrink_control *sc);
4221 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4222 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4223
4224 /*
4225 * extent_cache.c
4226 */
4227 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4228 void f2fs_init_extent_tree(struct inode *inode);
4229 void f2fs_drop_extent_tree(struct inode *inode);
4230 void f2fs_destroy_extent_node(struct inode *inode);
4231 void f2fs_destroy_extent_tree(struct inode *inode);
4232 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4233 int __init f2fs_create_extent_cache(void);
4234 void f2fs_destroy_extent_cache(void);
4235
4236 /* read extent cache ops */
4237 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4238 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4239 struct extent_info *ei);
4240 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4241 block_t *blkaddr);
4242 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4243 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4244 pgoff_t fofs, block_t blkaddr, unsigned int len);
4245 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4246 int nr_shrink);
4247
4248 /* block age extent cache ops */
4249 void f2fs_init_age_extent_tree(struct inode *inode);
4250 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4251 struct extent_info *ei);
4252 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4253 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4254 pgoff_t fofs, unsigned int len);
4255 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4256 int nr_shrink);
4257
4258 /*
4259 * sysfs.c
4260 */
4261 #define MIN_RA_MUL 2
4262 #define MAX_RA_MUL 256
4263
4264 int __init f2fs_init_sysfs(void);
4265 void f2fs_exit_sysfs(void);
4266 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4267 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4268
4269 /* verity.c */
4270 extern const struct fsverity_operations f2fs_verityops;
4271
4272 /*
4273 * crypto support
4274 */
f2fs_encrypted_file(struct inode * inode)4275 static inline bool f2fs_encrypted_file(struct inode *inode)
4276 {
4277 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4278 }
4279
f2fs_set_encrypted_inode(struct inode * inode)4280 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4281 {
4282 #ifdef CONFIG_FS_ENCRYPTION
4283 file_set_encrypt(inode);
4284 f2fs_set_inode_flags(inode);
4285 #endif
4286 }
4287
4288 /*
4289 * Returns true if the reads of the inode's data need to undergo some
4290 * postprocessing step, like decryption or authenticity verification.
4291 */
f2fs_post_read_required(struct inode * inode)4292 static inline bool f2fs_post_read_required(struct inode *inode)
4293 {
4294 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4295 f2fs_compressed_file(inode);
4296 }
4297
f2fs_used_in_atomic_write(struct inode * inode)4298 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4299 {
4300 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4301 }
4302
f2fs_meta_inode_gc_required(struct inode * inode)4303 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4304 {
4305 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4306 }
4307
4308 /*
4309 * compress.c
4310 */
4311 #ifdef CONFIG_F2FS_FS_COMPRESSION
4312 enum cluster_check_type {
4313 CLUSTER_IS_COMPR, /* check only if compressed cluster */
4314 CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4315 CLUSTER_RAW_BLKS /* return # of raw blocks in a cluster */
4316 };
4317 bool f2fs_is_compressed_page(struct page *page);
4318 struct page *f2fs_compress_control_page(struct page *page);
4319 int f2fs_prepare_compress_overwrite(struct inode *inode,
4320 struct page **pagep, pgoff_t index, void **fsdata);
4321 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4322 pgoff_t index, unsigned copied);
4323 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4324 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4325 bool f2fs_is_compress_backend_ready(struct inode *inode);
4326 bool f2fs_is_compress_level_valid(int alg, int lvl);
4327 int __init f2fs_init_compress_mempool(void);
4328 void f2fs_destroy_compress_mempool(void);
4329 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4330 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4331 block_t blkaddr, bool in_task);
4332 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4333 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4334 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4335 int index, int nr_pages, bool uptodate);
4336 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4337 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio);
4338 int f2fs_write_multi_pages(struct compress_ctx *cc,
4339 int *submitted,
4340 struct writeback_control *wbc,
4341 enum iostat_type io_type);
4342 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4343 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4344 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4345 pgoff_t fofs, block_t blkaddr,
4346 unsigned int llen, unsigned int c_len);
4347 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4348 unsigned nr_pages, sector_t *last_block_in_bio,
4349 struct readahead_control *rac, bool for_write);
4350 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4351 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4352 bool in_task);
4353 void f2fs_put_page_dic(struct page *page, bool in_task);
4354 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4355 unsigned int ofs_in_node);
4356 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4357 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4358 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4359 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4360 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4361 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4362 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4363 int __init f2fs_init_compress_cache(void);
4364 void f2fs_destroy_compress_cache(void);
4365 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4366 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4367 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4368 nid_t ino, block_t blkaddr);
4369 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4370 block_t blkaddr);
4371 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4372 #define inc_compr_inode_stat(inode) \
4373 do { \
4374 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4375 sbi->compr_new_inode++; \
4376 } while (0)
4377 #define add_compr_block_stat(inode, blocks) \
4378 do { \
4379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4380 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4381 sbi->compr_written_block += blocks; \
4382 sbi->compr_saved_block += diff; \
4383 } while (0)
4384 #else
f2fs_is_compressed_page(struct page * page)4385 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4386 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4387 {
4388 if (!f2fs_compressed_file(inode))
4389 return true;
4390 /* not support compression */
4391 return false;
4392 }
f2fs_is_compress_level_valid(int alg,int lvl)4393 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4394 static inline struct page *f2fs_compress_control_page(struct page *page)
4395 {
4396 WARN_ON_ONCE(1);
4397 return ERR_PTR(-EINVAL);
4398 }
f2fs_init_compress_mempool(void)4399 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4400 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4401 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4402 bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4403 static inline void f2fs_end_read_compressed_page(struct page *page,
4404 bool failed, block_t blkaddr, bool in_task)
4405 {
4406 WARN_ON_ONCE(1);
4407 }
f2fs_put_page_dic(struct page * page,bool in_task)4408 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4409 {
4410 WARN_ON_ONCE(1);
4411 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4412 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4413 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4414 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4415 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4416 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4417 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4418 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4419 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4420 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4421 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4422 block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4423 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4424 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4425 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4426 struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4427 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4428 nid_t ino) { }
4429 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)4430 static inline int f2fs_is_compressed_cluster(
4431 struct inode *inode,
4432 pgoff_t index) { return 0; }
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)4433 static inline bool f2fs_is_sparse_cluster(
4434 struct inode *inode,
4435 pgoff_t index) { return true; }
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4436 static inline void f2fs_update_read_extent_tree_range_compressed(
4437 struct inode *inode,
4438 pgoff_t fofs, block_t blkaddr,
4439 unsigned int llen, unsigned int c_len) { }
4440 #endif
4441
set_compress_context(struct inode * inode)4442 static inline int set_compress_context(struct inode *inode)
4443 {
4444 #ifdef CONFIG_F2FS_FS_COMPRESSION
4445 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4446 struct f2fs_inode_info *fi = F2FS_I(inode);
4447
4448 fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4449 fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4450 fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4451 BIT(COMPRESS_CHKSUM) : 0;
4452 fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4453 if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4454 fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4455 F2FS_OPTION(sbi).compress_level)
4456 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4457 fi->i_flags |= F2FS_COMPR_FL;
4458 set_inode_flag(inode, FI_COMPRESSED_FILE);
4459 stat_inc_compr_inode(inode);
4460 inc_compr_inode_stat(inode);
4461 f2fs_mark_inode_dirty_sync(inode, true);
4462 return 0;
4463 #else
4464 return -EOPNOTSUPP;
4465 #endif
4466 }
4467
f2fs_disable_compressed_file(struct inode * inode)4468 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4469 {
4470 struct f2fs_inode_info *fi = F2FS_I(inode);
4471
4472 f2fs_down_write(&fi->i_sem);
4473
4474 if (!f2fs_compressed_file(inode)) {
4475 f2fs_up_write(&fi->i_sem);
4476 return true;
4477 }
4478 if (f2fs_is_mmap_file(inode) ||
4479 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4480 f2fs_up_write(&fi->i_sem);
4481 return false;
4482 }
4483
4484 fi->i_flags &= ~F2FS_COMPR_FL;
4485 stat_dec_compr_inode(inode);
4486 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4487 f2fs_mark_inode_dirty_sync(inode, true);
4488
4489 f2fs_up_write(&fi->i_sem);
4490 return true;
4491 }
4492
4493 #define F2FS_FEATURE_FUNCS(name, flagname) \
4494 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4495 { \
4496 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4497 }
4498
4499 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4500 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4501 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4502 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4503 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4504 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4505 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4506 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4507 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4508 F2FS_FEATURE_FUNCS(verity, VERITY);
4509 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4510 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4511 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4512 F2FS_FEATURE_FUNCS(readonly, RO);
4513
4514 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4515 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4516 block_t blkaddr)
4517 {
4518 unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4519
4520 return test_bit(zno, FDEV(devi).blkz_seq);
4521 }
4522 #endif
4523
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4524 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4525 struct block_device *bdev)
4526 {
4527 int i;
4528
4529 if (!f2fs_is_multi_device(sbi))
4530 return 0;
4531
4532 for (i = 0; i < sbi->s_ndevs; i++)
4533 if (FDEV(i).bdev == bdev)
4534 return i;
4535
4536 WARN_ON(1);
4537 return -1;
4538 }
4539
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4540 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4541 {
4542 return f2fs_sb_has_blkzoned(sbi);
4543 }
4544
f2fs_bdev_support_discard(struct block_device * bdev)4545 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4546 {
4547 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4548 }
4549
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4550 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4551 {
4552 int i;
4553
4554 if (!f2fs_is_multi_device(sbi))
4555 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4556
4557 for (i = 0; i < sbi->s_ndevs; i++)
4558 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4559 return true;
4560 return false;
4561 }
4562
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4563 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4564 {
4565 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4566 f2fs_hw_should_discard(sbi);
4567 }
4568
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4569 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4570 {
4571 int i;
4572
4573 if (!f2fs_is_multi_device(sbi))
4574 return bdev_read_only(sbi->sb->s_bdev);
4575
4576 for (i = 0; i < sbi->s_ndevs; i++)
4577 if (bdev_read_only(FDEV(i).bdev))
4578 return true;
4579 return false;
4580 }
4581
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4582 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4583 {
4584 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4585 }
4586
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4587 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4588 {
4589 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4590 }
4591
f2fs_valid_pinned_area(struct f2fs_sb_info * sbi,block_t blkaddr)4592 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4593 block_t blkaddr)
4594 {
4595 if (f2fs_sb_has_blkzoned(sbi)) {
4596 int devi = f2fs_target_device_index(sbi, blkaddr);
4597
4598 return !bdev_is_zoned(FDEV(devi).bdev);
4599 }
4600 return true;
4601 }
4602
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4603 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4604 {
4605 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4606 }
4607
f2fs_may_compress(struct inode * inode)4608 static inline bool f2fs_may_compress(struct inode *inode)
4609 {
4610 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4611 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4612 f2fs_is_mmap_file(inode))
4613 return false;
4614 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4615 }
4616
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4617 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4618 u64 blocks, bool add)
4619 {
4620 struct f2fs_inode_info *fi = F2FS_I(inode);
4621 int diff = fi->i_cluster_size - blocks;
4622
4623 /* don't update i_compr_blocks if saved blocks were released */
4624 if (!add && !atomic_read(&fi->i_compr_blocks))
4625 return;
4626
4627 if (add) {
4628 atomic_add(diff, &fi->i_compr_blocks);
4629 stat_add_compr_blocks(inode, diff);
4630 } else {
4631 atomic_sub(diff, &fi->i_compr_blocks);
4632 stat_sub_compr_blocks(inode, diff);
4633 }
4634 f2fs_mark_inode_dirty_sync(inode, true);
4635 }
4636
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4637 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4638 int flag)
4639 {
4640 if (!f2fs_is_multi_device(sbi))
4641 return false;
4642 if (flag != F2FS_GET_BLOCK_DIO)
4643 return false;
4644 return sbi->aligned_blksize;
4645 }
4646
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4647 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4648 {
4649 return fsverity_active(inode) &&
4650 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4651 }
4652
4653 #ifdef CONFIG_F2FS_FAULT_INJECTION
4654 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4655 unsigned long type);
4656 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)4657 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4658 unsigned long rate, unsigned long type)
4659 {
4660 return 0;
4661 }
4662 #endif
4663
is_journalled_quota(struct f2fs_sb_info * sbi)4664 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4665 {
4666 #ifdef CONFIG_QUOTA
4667 if (f2fs_sb_has_quota_ino(sbi))
4668 return true;
4669 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4670 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4671 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4672 return true;
4673 #endif
4674 return false;
4675 }
4676
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4677 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4678 {
4679 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4680 }
4681
f2fs_io_schedule_timeout(long timeout)4682 static inline void f2fs_io_schedule_timeout(long timeout)
4683 {
4684 set_current_state(TASK_UNINTERRUPTIBLE);
4685 io_schedule_timeout(timeout);
4686 }
4687
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,struct folio * folio,enum page_type type)4688 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi,
4689 struct folio *folio, enum page_type type)
4690 {
4691 pgoff_t ofs = folio->index;
4692
4693 if (unlikely(f2fs_cp_error(sbi)))
4694 return;
4695
4696 if (ofs == sbi->page_eio_ofs[type]) {
4697 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4698 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4699 } else {
4700 sbi->page_eio_ofs[type] = ofs;
4701 sbi->page_eio_cnt[type] = 0;
4702 }
4703 }
4704
f2fs_is_readonly(struct f2fs_sb_info * sbi)4705 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4706 {
4707 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4708 }
4709
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4710 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4711 block_t blkaddr, unsigned int cnt)
4712 {
4713 bool need_submit = false;
4714 int i = 0;
4715
4716 do {
4717 struct page *page;
4718
4719 page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4720 if (page) {
4721 if (folio_test_writeback(page_folio(page)))
4722 need_submit = true;
4723 f2fs_put_page(page, 0);
4724 }
4725 } while (++i < cnt && !need_submit);
4726
4727 if (need_submit)
4728 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4729 NULL, 0, DATA);
4730
4731 truncate_inode_pages_range(META_MAPPING(sbi),
4732 F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4733 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4734 }
4735
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr)4736 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4737 block_t blkaddr)
4738 {
4739 f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4740 f2fs_invalidate_compress_page(sbi, blkaddr);
4741 }
4742
4743 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4744 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4745
4746 #endif /* _LINUX_F2FS_H */
4747