1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2017 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/time.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/resource.h>
33 #include <sys/vfs.h>
34 #include <sys/vnode.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/kmem.h>
38 #include <sys/cmn_err.h>
39 #include <sys/errno.h>
40 #include <sys/unistd.h>
41 #include <sys/sdt.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/policy.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/zfs_fuid.h>
46 #include <sys/zfs_acl.h>
47 #include <sys/zfs_dir.h>
48 #include <sys/zfs_quota.h>
49 #include <sys/zfs_vfsops.h>
50 #include <sys/dmu.h>
51 #include <sys/dnode.h>
52 #include <sys/zap.h>
53 #include <sys/sa.h>
54 #include <acl/acl_common.h>
55
56
57 #define ALLOW ACE_ACCESS_ALLOWED_ACE_TYPE
58 #define DENY ACE_ACCESS_DENIED_ACE_TYPE
59 #define MAX_ACE_TYPE ACE_SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE
60 #define MIN_ACE_TYPE ALLOW
61
62 #define OWNING_GROUP (ACE_GROUP|ACE_IDENTIFIER_GROUP)
63 #define EVERYONE_ALLOW_MASK (ACE_READ_ACL|ACE_READ_ATTRIBUTES | \
64 ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE)
65 #define EVERYONE_DENY_MASK (ACE_WRITE_ACL|ACE_WRITE_OWNER | \
66 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
67 #define OWNER_ALLOW_MASK (ACE_WRITE_ACL | ACE_WRITE_OWNER | \
68 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
69
70 #define ZFS_CHECKED_MASKS (ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_DATA| \
71 ACE_READ_NAMED_ATTRS|ACE_WRITE_DATA|ACE_WRITE_ATTRIBUTES| \
72 ACE_WRITE_NAMED_ATTRS|ACE_APPEND_DATA|ACE_EXECUTE|ACE_WRITE_OWNER| \
73 ACE_WRITE_ACL|ACE_DELETE|ACE_DELETE_CHILD|ACE_SYNCHRONIZE)
74
75 #define WRITE_MASK_DATA (ACE_WRITE_DATA|ACE_APPEND_DATA|ACE_WRITE_NAMED_ATTRS)
76 #define WRITE_MASK_ATTRS (ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES| \
77 ACE_DELETE|ACE_DELETE_CHILD)
78 #define WRITE_MASK (WRITE_MASK_DATA|WRITE_MASK_ATTRS)
79
80 #define OGE_CLEAR (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
81 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
82
83 #define OKAY_MASK_BITS (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
84 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
85
86 #define ALL_INHERIT (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE | \
87 ACE_NO_PROPAGATE_INHERIT_ACE|ACE_INHERIT_ONLY_ACE|ACE_INHERITED_ACE)
88
89 #define RESTRICTED_CLEAR (ACE_WRITE_ACL|ACE_WRITE_OWNER)
90
91 #define V4_ACL_WIDE_FLAGS (ZFS_ACL_AUTO_INHERIT|ZFS_ACL_DEFAULTED|\
92 ZFS_ACL_PROTECTED)
93
94 #define ZFS_ACL_WIDE_FLAGS (V4_ACL_WIDE_FLAGS|ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|\
95 ZFS_ACL_OBJ_ACE)
96
97 #define ALL_MODE_EXECS (S_IXUSR | S_IXGRP | S_IXOTH)
98
99 static uint16_t
zfs_ace_v0_get_type(void * acep)100 zfs_ace_v0_get_type(void *acep)
101 {
102 return (((zfs_oldace_t *)acep)->z_type);
103 }
104
105 static uint16_t
zfs_ace_v0_get_flags(void * acep)106 zfs_ace_v0_get_flags(void *acep)
107 {
108 return (((zfs_oldace_t *)acep)->z_flags);
109 }
110
111 static uint32_t
zfs_ace_v0_get_mask(void * acep)112 zfs_ace_v0_get_mask(void *acep)
113 {
114 return (((zfs_oldace_t *)acep)->z_access_mask);
115 }
116
117 static uint64_t
zfs_ace_v0_get_who(void * acep)118 zfs_ace_v0_get_who(void *acep)
119 {
120 return (((zfs_oldace_t *)acep)->z_fuid);
121 }
122
123 static void
zfs_ace_v0_set_type(void * acep,uint16_t type)124 zfs_ace_v0_set_type(void *acep, uint16_t type)
125 {
126 ((zfs_oldace_t *)acep)->z_type = type;
127 }
128
129 static void
zfs_ace_v0_set_flags(void * acep,uint16_t flags)130 zfs_ace_v0_set_flags(void *acep, uint16_t flags)
131 {
132 ((zfs_oldace_t *)acep)->z_flags = flags;
133 }
134
135 static void
zfs_ace_v0_set_mask(void * acep,uint32_t mask)136 zfs_ace_v0_set_mask(void *acep, uint32_t mask)
137 {
138 ((zfs_oldace_t *)acep)->z_access_mask = mask;
139 }
140
141 static void
zfs_ace_v0_set_who(void * acep,uint64_t who)142 zfs_ace_v0_set_who(void *acep, uint64_t who)
143 {
144 ((zfs_oldace_t *)acep)->z_fuid = who;
145 }
146
147 static size_t
zfs_ace_v0_size(void * acep)148 zfs_ace_v0_size(void *acep)
149 {
150 (void) acep;
151 return (sizeof (zfs_oldace_t));
152 }
153
154 static size_t
zfs_ace_v0_abstract_size(void)155 zfs_ace_v0_abstract_size(void)
156 {
157 return (sizeof (zfs_oldace_t));
158 }
159
160 static int
zfs_ace_v0_mask_off(void)161 zfs_ace_v0_mask_off(void)
162 {
163 return (offsetof(zfs_oldace_t, z_access_mask));
164 }
165
166 static int
zfs_ace_v0_data(void * acep,void ** datap)167 zfs_ace_v0_data(void *acep, void **datap)
168 {
169 (void) acep;
170 *datap = NULL;
171 return (0);
172 }
173
174 static const acl_ops_t zfs_acl_v0_ops = {
175 zfs_ace_v0_get_mask,
176 zfs_ace_v0_set_mask,
177 zfs_ace_v0_get_flags,
178 zfs_ace_v0_set_flags,
179 zfs_ace_v0_get_type,
180 zfs_ace_v0_set_type,
181 zfs_ace_v0_get_who,
182 zfs_ace_v0_set_who,
183 zfs_ace_v0_size,
184 zfs_ace_v0_abstract_size,
185 zfs_ace_v0_mask_off,
186 zfs_ace_v0_data
187 };
188
189 static uint16_t
zfs_ace_fuid_get_type(void * acep)190 zfs_ace_fuid_get_type(void *acep)
191 {
192 return (((zfs_ace_hdr_t *)acep)->z_type);
193 }
194
195 static uint16_t
zfs_ace_fuid_get_flags(void * acep)196 zfs_ace_fuid_get_flags(void *acep)
197 {
198 return (((zfs_ace_hdr_t *)acep)->z_flags);
199 }
200
201 static uint32_t
zfs_ace_fuid_get_mask(void * acep)202 zfs_ace_fuid_get_mask(void *acep)
203 {
204 return (((zfs_ace_hdr_t *)acep)->z_access_mask);
205 }
206
207 static uint64_t
zfs_ace_fuid_get_who(void * args)208 zfs_ace_fuid_get_who(void *args)
209 {
210 uint16_t entry_type;
211 zfs_ace_t *acep = args;
212
213 entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
214
215 if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
216 entry_type == ACE_EVERYONE)
217 return (-1);
218 return (((zfs_ace_t *)acep)->z_fuid);
219 }
220
221 static void
zfs_ace_fuid_set_type(void * acep,uint16_t type)222 zfs_ace_fuid_set_type(void *acep, uint16_t type)
223 {
224 ((zfs_ace_hdr_t *)acep)->z_type = type;
225 }
226
227 static void
zfs_ace_fuid_set_flags(void * acep,uint16_t flags)228 zfs_ace_fuid_set_flags(void *acep, uint16_t flags)
229 {
230 ((zfs_ace_hdr_t *)acep)->z_flags = flags;
231 }
232
233 static void
zfs_ace_fuid_set_mask(void * acep,uint32_t mask)234 zfs_ace_fuid_set_mask(void *acep, uint32_t mask)
235 {
236 ((zfs_ace_hdr_t *)acep)->z_access_mask = mask;
237 }
238
239 static void
zfs_ace_fuid_set_who(void * arg,uint64_t who)240 zfs_ace_fuid_set_who(void *arg, uint64_t who)
241 {
242 zfs_ace_t *acep = arg;
243
244 uint16_t entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
245
246 if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
247 entry_type == ACE_EVERYONE)
248 return;
249 acep->z_fuid = who;
250 }
251
252 static size_t
zfs_ace_fuid_size(void * acep)253 zfs_ace_fuid_size(void *acep)
254 {
255 zfs_ace_hdr_t *zacep = acep;
256 uint16_t entry_type;
257
258 switch (zacep->z_type) {
259 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
260 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
261 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
262 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
263 return (sizeof (zfs_object_ace_t));
264 case ALLOW:
265 case DENY:
266 entry_type =
267 (((zfs_ace_hdr_t *)acep)->z_flags & ACE_TYPE_FLAGS);
268 if (entry_type == ACE_OWNER ||
269 entry_type == OWNING_GROUP ||
270 entry_type == ACE_EVERYONE)
271 return (sizeof (zfs_ace_hdr_t));
272 zfs_fallthrough;
273 default:
274 return (sizeof (zfs_ace_t));
275 }
276 }
277
278 static size_t
zfs_ace_fuid_abstract_size(void)279 zfs_ace_fuid_abstract_size(void)
280 {
281 return (sizeof (zfs_ace_hdr_t));
282 }
283
284 static int
zfs_ace_fuid_mask_off(void)285 zfs_ace_fuid_mask_off(void)
286 {
287 return (offsetof(zfs_ace_hdr_t, z_access_mask));
288 }
289
290 static int
zfs_ace_fuid_data(void * acep,void ** datap)291 zfs_ace_fuid_data(void *acep, void **datap)
292 {
293 zfs_ace_t *zacep = acep;
294 zfs_object_ace_t *zobjp;
295
296 switch (zacep->z_hdr.z_type) {
297 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
298 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
299 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
300 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
301 zobjp = acep;
302 *datap = (caddr_t)zobjp + sizeof (zfs_ace_t);
303 return (sizeof (zfs_object_ace_t) - sizeof (zfs_ace_t));
304 default:
305 *datap = NULL;
306 return (0);
307 }
308 }
309
310 static const acl_ops_t zfs_acl_fuid_ops = {
311 zfs_ace_fuid_get_mask,
312 zfs_ace_fuid_set_mask,
313 zfs_ace_fuid_get_flags,
314 zfs_ace_fuid_set_flags,
315 zfs_ace_fuid_get_type,
316 zfs_ace_fuid_set_type,
317 zfs_ace_fuid_get_who,
318 zfs_ace_fuid_set_who,
319 zfs_ace_fuid_size,
320 zfs_ace_fuid_abstract_size,
321 zfs_ace_fuid_mask_off,
322 zfs_ace_fuid_data
323 };
324
325 /*
326 * The following three functions are provided for compatibility with
327 * older ZPL version in order to determine if the file use to have
328 * an external ACL and what version of ACL previously existed on the
329 * file. Would really be nice to not need this, sigh.
330 */
331 uint64_t
zfs_external_acl(znode_t * zp)332 zfs_external_acl(znode_t *zp)
333 {
334 zfs_acl_phys_t acl_phys;
335 int error;
336
337 if (zp->z_is_sa)
338 return (0);
339
340 /*
341 * Need to deal with a potential
342 * race where zfs_sa_upgrade could cause
343 * z_isa_sa to change.
344 *
345 * If the lookup fails then the state of z_is_sa should have
346 * changed.
347 */
348
349 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zp->z_zfsvfs),
350 &acl_phys, sizeof (acl_phys))) == 0)
351 return (acl_phys.z_acl_extern_obj);
352 else {
353 /*
354 * after upgrade the SA_ZPL_ZNODE_ACL should have been
355 * removed
356 */
357 VERIFY(zp->z_is_sa);
358 VERIFY3S(error, ==, ENOENT);
359 return (0);
360 }
361 }
362
363 /*
364 * Determine size of ACL in bytes
365 *
366 * This is more complicated than it should be since we have to deal
367 * with old external ACLs.
368 */
369 static int
zfs_acl_znode_info(znode_t * zp,int * aclsize,int * aclcount,zfs_acl_phys_t * aclphys)370 zfs_acl_znode_info(znode_t *zp, int *aclsize, int *aclcount,
371 zfs_acl_phys_t *aclphys)
372 {
373 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
374 uint64_t acl_count;
375 int size;
376 int error;
377
378 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
379 if (zp->z_is_sa) {
380 if ((error = sa_size(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zfsvfs),
381 &size)) != 0)
382 return (error);
383 *aclsize = size;
384 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_COUNT(zfsvfs),
385 &acl_count, sizeof (acl_count))) != 0)
386 return (error);
387 *aclcount = acl_count;
388 } else {
389 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
390 aclphys, sizeof (*aclphys))) != 0)
391 return (error);
392
393 if (aclphys->z_acl_version == ZFS_ACL_VERSION_INITIAL) {
394 *aclsize = ZFS_ACL_SIZE(aclphys->z_acl_size);
395 *aclcount = aclphys->z_acl_size;
396 } else {
397 *aclsize = aclphys->z_acl_size;
398 *aclcount = aclphys->z_acl_count;
399 }
400 }
401 return (0);
402 }
403
404 int
zfs_znode_acl_version(znode_t * zp)405 zfs_znode_acl_version(znode_t *zp)
406 {
407 zfs_acl_phys_t acl_phys;
408
409 if (zp->z_is_sa)
410 return (ZFS_ACL_VERSION_FUID);
411 else {
412 int error;
413
414 /*
415 * Need to deal with a potential
416 * race where zfs_sa_upgrade could cause
417 * z_isa_sa to change.
418 *
419 * If the lookup fails then the state of z_is_sa should have
420 * changed.
421 */
422 if ((error = sa_lookup(zp->z_sa_hdl,
423 SA_ZPL_ZNODE_ACL(zp->z_zfsvfs),
424 &acl_phys, sizeof (acl_phys))) == 0)
425 return (acl_phys.z_acl_version);
426 else {
427 /*
428 * After upgrade SA_ZPL_ZNODE_ACL should have
429 * been removed.
430 */
431 VERIFY(zp->z_is_sa);
432 VERIFY3S(error, ==, ENOENT);
433 return (ZFS_ACL_VERSION_FUID);
434 }
435 }
436 }
437
438 static int
zfs_acl_version(int version)439 zfs_acl_version(int version)
440 {
441 if (version < ZPL_VERSION_FUID)
442 return (ZFS_ACL_VERSION_INITIAL);
443 else
444 return (ZFS_ACL_VERSION_FUID);
445 }
446
447 static int
zfs_acl_version_zp(znode_t * zp)448 zfs_acl_version_zp(znode_t *zp)
449 {
450 return (zfs_acl_version(zp->z_zfsvfs->z_version));
451 }
452
453 zfs_acl_t *
zfs_acl_alloc(int vers)454 zfs_acl_alloc(int vers)
455 {
456 zfs_acl_t *aclp;
457
458 aclp = kmem_zalloc(sizeof (zfs_acl_t), KM_SLEEP);
459 list_create(&aclp->z_acl, sizeof (zfs_acl_node_t),
460 offsetof(zfs_acl_node_t, z_next));
461 aclp->z_version = vers;
462 if (vers == ZFS_ACL_VERSION_FUID)
463 aclp->z_ops = &zfs_acl_fuid_ops;
464 else
465 aclp->z_ops = &zfs_acl_v0_ops;
466 return (aclp);
467 }
468
469 zfs_acl_node_t *
zfs_acl_node_alloc(size_t bytes)470 zfs_acl_node_alloc(size_t bytes)
471 {
472 zfs_acl_node_t *aclnode;
473
474 aclnode = kmem_zalloc(sizeof (zfs_acl_node_t), KM_SLEEP);
475 if (bytes) {
476 aclnode->z_acldata = kmem_zalloc(bytes, KM_SLEEP);
477 aclnode->z_allocdata = aclnode->z_acldata;
478 aclnode->z_allocsize = bytes;
479 aclnode->z_size = bytes;
480 }
481
482 return (aclnode);
483 }
484
485 static void
zfs_acl_node_free(zfs_acl_node_t * aclnode)486 zfs_acl_node_free(zfs_acl_node_t *aclnode)
487 {
488 if (aclnode->z_allocsize)
489 kmem_free(aclnode->z_allocdata, aclnode->z_allocsize);
490 kmem_free(aclnode, sizeof (zfs_acl_node_t));
491 }
492
493 static void
zfs_acl_release_nodes(zfs_acl_t * aclp)494 zfs_acl_release_nodes(zfs_acl_t *aclp)
495 {
496 zfs_acl_node_t *aclnode;
497
498 while ((aclnode = list_remove_head(&aclp->z_acl)))
499 zfs_acl_node_free(aclnode);
500 aclp->z_acl_count = 0;
501 aclp->z_acl_bytes = 0;
502 }
503
504 void
zfs_acl_free(zfs_acl_t * aclp)505 zfs_acl_free(zfs_acl_t *aclp)
506 {
507 zfs_acl_release_nodes(aclp);
508 list_destroy(&aclp->z_acl);
509 kmem_free(aclp, sizeof (zfs_acl_t));
510 }
511
512 static boolean_t
zfs_acl_valid_ace_type(uint_t type,uint_t flags)513 zfs_acl_valid_ace_type(uint_t type, uint_t flags)
514 {
515 uint16_t entry_type;
516
517 switch (type) {
518 case ALLOW:
519 case DENY:
520 case ACE_SYSTEM_AUDIT_ACE_TYPE:
521 case ACE_SYSTEM_ALARM_ACE_TYPE:
522 entry_type = flags & ACE_TYPE_FLAGS;
523 return (entry_type == ACE_OWNER ||
524 entry_type == OWNING_GROUP ||
525 entry_type == ACE_EVERYONE || entry_type == 0 ||
526 entry_type == ACE_IDENTIFIER_GROUP);
527 default:
528 if (type <= MAX_ACE_TYPE)
529 return (B_TRUE);
530 }
531 return (B_FALSE);
532 }
533
534 static boolean_t
zfs_ace_valid(vtype_t obj_type,zfs_acl_t * aclp,uint16_t type,uint16_t iflags)535 zfs_ace_valid(vtype_t obj_type, zfs_acl_t *aclp, uint16_t type, uint16_t iflags)
536 {
537 /*
538 * first check type of entry
539 */
540
541 if (!zfs_acl_valid_ace_type(type, iflags))
542 return (B_FALSE);
543
544 switch (type) {
545 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
546 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
547 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
548 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
549 if (aclp->z_version < ZFS_ACL_VERSION_FUID)
550 return (B_FALSE);
551 aclp->z_hints |= ZFS_ACL_OBJ_ACE;
552 }
553
554 /*
555 * next check inheritance level flags
556 */
557
558 if (obj_type == VDIR &&
559 (iflags & (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
560 aclp->z_hints |= ZFS_INHERIT_ACE;
561
562 if (iflags & (ACE_INHERIT_ONLY_ACE|ACE_NO_PROPAGATE_INHERIT_ACE)) {
563 if ((iflags & (ACE_FILE_INHERIT_ACE|
564 ACE_DIRECTORY_INHERIT_ACE)) == 0) {
565 return (B_FALSE);
566 }
567 }
568
569 return (B_TRUE);
570 }
571
572 static void *
zfs_acl_next_ace(zfs_acl_t * aclp,void * start,uint64_t * who,uint32_t * access_mask,uint16_t * iflags,uint16_t * type)573 zfs_acl_next_ace(zfs_acl_t *aclp, void *start, uint64_t *who,
574 uint32_t *access_mask, uint16_t *iflags, uint16_t *type)
575 {
576 zfs_acl_node_t *aclnode;
577
578 ASSERT3P(aclp, !=, NULL);
579
580 if (start == NULL) {
581 aclnode = list_head(&aclp->z_acl);
582 if (aclnode == NULL)
583 return (NULL);
584
585 aclp->z_next_ace = aclnode->z_acldata;
586 aclp->z_curr_node = aclnode;
587 aclnode->z_ace_idx = 0;
588 }
589
590 aclnode = aclp->z_curr_node;
591
592 if (aclnode == NULL)
593 return (NULL);
594
595 if (aclnode->z_ace_idx >= aclnode->z_ace_count) {
596 aclnode = list_next(&aclp->z_acl, aclnode);
597 if (aclnode == NULL)
598 return (NULL);
599 else {
600 aclp->z_curr_node = aclnode;
601 aclnode->z_ace_idx = 0;
602 aclp->z_next_ace = aclnode->z_acldata;
603 }
604 }
605
606 if (aclnode->z_ace_idx < aclnode->z_ace_count) {
607 void *acep = aclp->z_next_ace;
608 size_t ace_size;
609
610 /*
611 * Make sure we don't overstep our bounds
612 */
613 ace_size = aclp->z_ops->ace_size(acep);
614
615 if (((caddr_t)acep + ace_size) >
616 ((caddr_t)aclnode->z_acldata + aclnode->z_size)) {
617 return (NULL);
618 }
619
620 *iflags = aclp->z_ops->ace_flags_get(acep);
621 *type = aclp->z_ops->ace_type_get(acep);
622 *access_mask = aclp->z_ops->ace_mask_get(acep);
623 *who = aclp->z_ops->ace_who_get(acep);
624 aclp->z_next_ace = (caddr_t)aclp->z_next_ace + ace_size;
625 aclnode->z_ace_idx++;
626
627 return ((void *)acep);
628 }
629 return (NULL);
630 }
631
632 static uintptr_t
zfs_ace_walk(void * datap,uintptr_t cookie,int aclcnt,uint16_t * flags,uint16_t * type,uint32_t * mask)633 zfs_ace_walk(void *datap, uintptr_t cookie, int aclcnt,
634 uint16_t *flags, uint16_t *type, uint32_t *mask)
635 {
636 (void) aclcnt;
637 zfs_acl_t *aclp = datap;
638 zfs_ace_hdr_t *acep = (zfs_ace_hdr_t *)(uintptr_t)cookie;
639 uint64_t who;
640
641 acep = zfs_acl_next_ace(aclp, acep, &who, mask,
642 flags, type);
643 return ((uintptr_t)acep);
644 }
645
646 /*
647 * Copy ACE to internal ZFS format.
648 * While processing the ACL each ACE will be validated for correctness.
649 * ACE FUIDs will be created later.
650 */
651 static int
zfs_copy_ace_2_fuid(zfsvfs_t * zfsvfs,vtype_t obj_type,zfs_acl_t * aclp,void * datap,zfs_ace_t * z_acl,uint64_t aclcnt,size_t * size,zfs_fuid_info_t ** fuidp,cred_t * cr)652 zfs_copy_ace_2_fuid(zfsvfs_t *zfsvfs, vtype_t obj_type, zfs_acl_t *aclp,
653 void *datap, zfs_ace_t *z_acl, uint64_t aclcnt, size_t *size,
654 zfs_fuid_info_t **fuidp, cred_t *cr)
655 {
656 int i;
657 uint16_t entry_type;
658 zfs_ace_t *aceptr = z_acl;
659 ace_t *acep = datap;
660 zfs_object_ace_t *zobjacep;
661 ace_object_t *aceobjp;
662
663 for (i = 0; i != aclcnt; i++) {
664 aceptr->z_hdr.z_access_mask = acep->a_access_mask;
665 aceptr->z_hdr.z_flags = acep->a_flags;
666 aceptr->z_hdr.z_type = acep->a_type;
667 entry_type = aceptr->z_hdr.z_flags & ACE_TYPE_FLAGS;
668 if (entry_type != ACE_OWNER && entry_type != OWNING_GROUP &&
669 entry_type != ACE_EVERYONE) {
670 aceptr->z_fuid = zfs_fuid_create(zfsvfs, acep->a_who,
671 cr, (entry_type == 0) ?
672 ZFS_ACE_USER : ZFS_ACE_GROUP, fuidp);
673 }
674
675 /*
676 * Make sure ACE is valid
677 */
678 if (zfs_ace_valid(obj_type, aclp, aceptr->z_hdr.z_type,
679 aceptr->z_hdr.z_flags) != B_TRUE)
680 return (SET_ERROR(EINVAL));
681
682 switch (acep->a_type) {
683 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
684 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
685 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
686 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
687 zobjacep = (zfs_object_ace_t *)aceptr;
688 aceobjp = (ace_object_t *)acep;
689
690 memcpy(zobjacep->z_object_type, aceobjp->a_obj_type,
691 sizeof (aceobjp->a_obj_type));
692 memcpy(zobjacep->z_inherit_type,
693 aceobjp->a_inherit_obj_type,
694 sizeof (aceobjp->a_inherit_obj_type));
695 acep = (ace_t *)((caddr_t)acep + sizeof (ace_object_t));
696 break;
697 default:
698 acep = (ace_t *)((caddr_t)acep + sizeof (ace_t));
699 }
700
701 aceptr = (zfs_ace_t *)((caddr_t)aceptr +
702 aclp->z_ops->ace_size(aceptr));
703 }
704
705 *size = (caddr_t)aceptr - (caddr_t)z_acl;
706
707 return (0);
708 }
709
710 /*
711 * Copy ZFS ACEs to fixed size ace_t layout
712 */
713 static void
zfs_copy_fuid_2_ace(zfsvfs_t * zfsvfs,zfs_acl_t * aclp,cred_t * cr,void * datap,int filter)714 zfs_copy_fuid_2_ace(zfsvfs_t *zfsvfs, zfs_acl_t *aclp, cred_t *cr,
715 void *datap, int filter)
716 {
717 uint64_t who;
718 uint32_t access_mask;
719 uint16_t iflags, type;
720 zfs_ace_hdr_t *zacep = NULL;
721 ace_t *acep = datap;
722 ace_object_t *objacep;
723 zfs_object_ace_t *zobjacep;
724 size_t ace_size;
725 uint16_t entry_type;
726
727 while ((zacep = zfs_acl_next_ace(aclp, zacep,
728 &who, &access_mask, &iflags, &type))) {
729
730 switch (type) {
731 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
732 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
733 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
734 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
735 if (filter) {
736 continue;
737 }
738 zobjacep = (zfs_object_ace_t *)zacep;
739 objacep = (ace_object_t *)acep;
740 memcpy(objacep->a_obj_type,
741 zobjacep->z_object_type,
742 sizeof (zobjacep->z_object_type));
743 memcpy(objacep->a_inherit_obj_type,
744 zobjacep->z_inherit_type,
745 sizeof (zobjacep->z_inherit_type));
746 ace_size = sizeof (ace_object_t);
747 break;
748 default:
749 ace_size = sizeof (ace_t);
750 break;
751 }
752
753 entry_type = (iflags & ACE_TYPE_FLAGS);
754 if ((entry_type != ACE_OWNER &&
755 entry_type != OWNING_GROUP &&
756 entry_type != ACE_EVERYONE)) {
757 acep->a_who = zfs_fuid_map_id(zfsvfs, who,
758 cr, (entry_type & ACE_IDENTIFIER_GROUP) ?
759 ZFS_ACE_GROUP : ZFS_ACE_USER);
760 } else {
761 acep->a_who = (uid_t)(int64_t)who;
762 }
763 acep->a_access_mask = access_mask;
764 acep->a_flags = iflags;
765 acep->a_type = type;
766 acep = (ace_t *)((caddr_t)acep + ace_size);
767 }
768 }
769
770 static int
zfs_copy_ace_2_oldace(vtype_t obj_type,zfs_acl_t * aclp,ace_t * acep,zfs_oldace_t * z_acl,int aclcnt,size_t * size)771 zfs_copy_ace_2_oldace(vtype_t obj_type, zfs_acl_t *aclp, ace_t *acep,
772 zfs_oldace_t *z_acl, int aclcnt, size_t *size)
773 {
774 int i;
775 zfs_oldace_t *aceptr = z_acl;
776
777 for (i = 0; i != aclcnt; i++, aceptr++) {
778 aceptr->z_access_mask = acep[i].a_access_mask;
779 aceptr->z_type = acep[i].a_type;
780 aceptr->z_flags = acep[i].a_flags;
781 aceptr->z_fuid = acep[i].a_who;
782 /*
783 * Make sure ACE is valid
784 */
785 if (zfs_ace_valid(obj_type, aclp, aceptr->z_type,
786 aceptr->z_flags) != B_TRUE)
787 return (SET_ERROR(EINVAL));
788 }
789 *size = (caddr_t)aceptr - (caddr_t)z_acl;
790 return (0);
791 }
792
793 /*
794 * convert old ACL format to new
795 */
796 void
zfs_acl_xform(znode_t * zp,zfs_acl_t * aclp,cred_t * cr)797 zfs_acl_xform(znode_t *zp, zfs_acl_t *aclp, cred_t *cr)
798 {
799 zfs_oldace_t *oldaclp;
800 int i;
801 uint16_t type, iflags;
802 uint32_t access_mask;
803 uint64_t who;
804 void *cookie = NULL;
805 zfs_acl_node_t *newaclnode;
806
807 ASSERT3U(aclp->z_version, ==, ZFS_ACL_VERSION_INITIAL);
808 /*
809 * First create the ACE in a contiguous piece of memory
810 * for zfs_copy_ace_2_fuid().
811 *
812 * We only convert an ACL once, so this won't happen
813 * everytime.
814 */
815 oldaclp = kmem_alloc(sizeof (zfs_oldace_t) * aclp->z_acl_count,
816 KM_SLEEP);
817 i = 0;
818 while ((cookie = zfs_acl_next_ace(aclp, cookie, &who,
819 &access_mask, &iflags, &type))) {
820 oldaclp[i].z_flags = iflags;
821 oldaclp[i].z_type = type;
822 oldaclp[i].z_fuid = who;
823 oldaclp[i++].z_access_mask = access_mask;
824 }
825
826 newaclnode = zfs_acl_node_alloc(aclp->z_acl_count *
827 sizeof (zfs_object_ace_t));
828 aclp->z_ops = &zfs_acl_fuid_ops;
829 VERIFY0(zfs_copy_ace_2_fuid(zp->z_zfsvfs, ZTOV(zp)->v_type, aclp,
830 oldaclp, newaclnode->z_acldata, aclp->z_acl_count,
831 &newaclnode->z_size, NULL, cr));
832 newaclnode->z_ace_count = aclp->z_acl_count;
833 aclp->z_version = ZFS_ACL_VERSION;
834 kmem_free(oldaclp, aclp->z_acl_count * sizeof (zfs_oldace_t));
835
836 /*
837 * Release all previous ACL nodes
838 */
839
840 zfs_acl_release_nodes(aclp);
841
842 list_insert_head(&aclp->z_acl, newaclnode);
843
844 aclp->z_acl_bytes = newaclnode->z_size;
845 aclp->z_acl_count = newaclnode->z_ace_count;
846
847 }
848
849 /*
850 * Convert unix access mask to v4 access mask
851 */
852 static uint32_t
zfs_unix_to_v4(uint32_t access_mask)853 zfs_unix_to_v4(uint32_t access_mask)
854 {
855 uint32_t new_mask = 0;
856
857 if (access_mask & S_IXOTH)
858 new_mask |= ACE_EXECUTE;
859 if (access_mask & S_IWOTH)
860 new_mask |= ACE_WRITE_DATA;
861 if (access_mask & S_IROTH)
862 new_mask |= ACE_READ_DATA;
863 return (new_mask);
864 }
865
866 static void
zfs_set_ace(zfs_acl_t * aclp,void * acep,uint32_t access_mask,uint16_t access_type,uint64_t fuid,uint16_t entry_type)867 zfs_set_ace(zfs_acl_t *aclp, void *acep, uint32_t access_mask,
868 uint16_t access_type, uint64_t fuid, uint16_t entry_type)
869 {
870 uint16_t type = entry_type & ACE_TYPE_FLAGS;
871
872 aclp->z_ops->ace_mask_set(acep, access_mask);
873 aclp->z_ops->ace_type_set(acep, access_type);
874 aclp->z_ops->ace_flags_set(acep, entry_type);
875 if ((type != ACE_OWNER && type != OWNING_GROUP &&
876 type != ACE_EVERYONE))
877 aclp->z_ops->ace_who_set(acep, fuid);
878 }
879
880 /*
881 * Determine mode of file based on ACL.
882 */
883 uint64_t
zfs_mode_compute(uint64_t fmode,zfs_acl_t * aclp,uint64_t * pflags,uint64_t fuid,uint64_t fgid)884 zfs_mode_compute(uint64_t fmode, zfs_acl_t *aclp,
885 uint64_t *pflags, uint64_t fuid, uint64_t fgid)
886 {
887 int entry_type;
888 mode_t mode;
889 mode_t seen = 0;
890 zfs_ace_hdr_t *acep = NULL;
891 uint64_t who;
892 uint16_t iflags, type;
893 uint32_t access_mask;
894 boolean_t an_exec_denied = B_FALSE;
895
896 mode = (fmode & (S_IFMT | S_ISUID | S_ISGID | S_ISVTX));
897
898 while ((acep = zfs_acl_next_ace(aclp, acep, &who,
899 &access_mask, &iflags, &type))) {
900
901 if (!zfs_acl_valid_ace_type(type, iflags))
902 continue;
903
904 entry_type = (iflags & ACE_TYPE_FLAGS);
905
906 /*
907 * Skip over any inherit_only ACEs
908 */
909 if (iflags & ACE_INHERIT_ONLY_ACE)
910 continue;
911
912 if (entry_type == ACE_OWNER || (entry_type == 0 &&
913 who == fuid)) {
914 if ((access_mask & ACE_READ_DATA) &&
915 (!(seen & S_IRUSR))) {
916 seen |= S_IRUSR;
917 if (type == ALLOW) {
918 mode |= S_IRUSR;
919 }
920 }
921 if ((access_mask & ACE_WRITE_DATA) &&
922 (!(seen & S_IWUSR))) {
923 seen |= S_IWUSR;
924 if (type == ALLOW) {
925 mode |= S_IWUSR;
926 }
927 }
928 if ((access_mask & ACE_EXECUTE) &&
929 (!(seen & S_IXUSR))) {
930 seen |= S_IXUSR;
931 if (type == ALLOW) {
932 mode |= S_IXUSR;
933 }
934 }
935 } else if (entry_type == OWNING_GROUP ||
936 (entry_type == ACE_IDENTIFIER_GROUP && who == fgid)) {
937 if ((access_mask & ACE_READ_DATA) &&
938 (!(seen & S_IRGRP))) {
939 seen |= S_IRGRP;
940 if (type == ALLOW) {
941 mode |= S_IRGRP;
942 }
943 }
944 if ((access_mask & ACE_WRITE_DATA) &&
945 (!(seen & S_IWGRP))) {
946 seen |= S_IWGRP;
947 if (type == ALLOW) {
948 mode |= S_IWGRP;
949 }
950 }
951 if ((access_mask & ACE_EXECUTE) &&
952 (!(seen & S_IXGRP))) {
953 seen |= S_IXGRP;
954 if (type == ALLOW) {
955 mode |= S_IXGRP;
956 }
957 }
958 } else if (entry_type == ACE_EVERYONE) {
959 if ((access_mask & ACE_READ_DATA)) {
960 if (!(seen & S_IRUSR)) {
961 seen |= S_IRUSR;
962 if (type == ALLOW) {
963 mode |= S_IRUSR;
964 }
965 }
966 if (!(seen & S_IRGRP)) {
967 seen |= S_IRGRP;
968 if (type == ALLOW) {
969 mode |= S_IRGRP;
970 }
971 }
972 if (!(seen & S_IROTH)) {
973 seen |= S_IROTH;
974 if (type == ALLOW) {
975 mode |= S_IROTH;
976 }
977 }
978 }
979 if ((access_mask & ACE_WRITE_DATA)) {
980 if (!(seen & S_IWUSR)) {
981 seen |= S_IWUSR;
982 if (type == ALLOW) {
983 mode |= S_IWUSR;
984 }
985 }
986 if (!(seen & S_IWGRP)) {
987 seen |= S_IWGRP;
988 if (type == ALLOW) {
989 mode |= S_IWGRP;
990 }
991 }
992 if (!(seen & S_IWOTH)) {
993 seen |= S_IWOTH;
994 if (type == ALLOW) {
995 mode |= S_IWOTH;
996 }
997 }
998 }
999 if ((access_mask & ACE_EXECUTE)) {
1000 if (!(seen & S_IXUSR)) {
1001 seen |= S_IXUSR;
1002 if (type == ALLOW) {
1003 mode |= S_IXUSR;
1004 }
1005 }
1006 if (!(seen & S_IXGRP)) {
1007 seen |= S_IXGRP;
1008 if (type == ALLOW) {
1009 mode |= S_IXGRP;
1010 }
1011 }
1012 if (!(seen & S_IXOTH)) {
1013 seen |= S_IXOTH;
1014 if (type == ALLOW) {
1015 mode |= S_IXOTH;
1016 }
1017 }
1018 }
1019 } else {
1020 /*
1021 * Only care if this IDENTIFIER_GROUP or
1022 * USER ACE denies execute access to someone,
1023 * mode is not affected
1024 */
1025 if ((access_mask & ACE_EXECUTE) && type == DENY)
1026 an_exec_denied = B_TRUE;
1027 }
1028 }
1029
1030 /*
1031 * Failure to allow is effectively a deny, so execute permission
1032 * is denied if it was never mentioned or if we explicitly
1033 * weren't allowed it.
1034 */
1035 if (!an_exec_denied &&
1036 ((seen & ALL_MODE_EXECS) != ALL_MODE_EXECS ||
1037 (mode & ALL_MODE_EXECS) != ALL_MODE_EXECS))
1038 an_exec_denied = B_TRUE;
1039
1040 if (an_exec_denied)
1041 *pflags &= ~ZFS_NO_EXECS_DENIED;
1042 else
1043 *pflags |= ZFS_NO_EXECS_DENIED;
1044
1045 return (mode);
1046 }
1047
1048 /*
1049 * Read an external acl object. If the intent is to modify, always
1050 * create a new acl and leave any cached acl in place.
1051 */
1052 int
zfs_acl_node_read(znode_t * zp,boolean_t have_lock,zfs_acl_t ** aclpp,boolean_t will_modify)1053 zfs_acl_node_read(znode_t *zp, boolean_t have_lock, zfs_acl_t **aclpp,
1054 boolean_t will_modify)
1055 {
1056 zfs_acl_t *aclp;
1057 int aclsize;
1058 int acl_count;
1059 zfs_acl_node_t *aclnode;
1060 zfs_acl_phys_t znode_acl;
1061 int version;
1062 int error;
1063
1064 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
1065 if (zp->z_zfsvfs->z_replay == B_FALSE)
1066 ASSERT_VOP_LOCKED(ZTOV(zp), __func__);
1067
1068 if (zp->z_acl_cached && !will_modify) {
1069 *aclpp = zp->z_acl_cached;
1070 return (0);
1071 }
1072
1073 version = zfs_znode_acl_version(zp);
1074
1075 if ((error = zfs_acl_znode_info(zp, &aclsize,
1076 &acl_count, &znode_acl)) != 0) {
1077 goto done;
1078 }
1079
1080 aclp = zfs_acl_alloc(version);
1081
1082 aclp->z_acl_count = acl_count;
1083 aclp->z_acl_bytes = aclsize;
1084
1085 aclnode = zfs_acl_node_alloc(aclsize);
1086 aclnode->z_ace_count = aclp->z_acl_count;
1087 aclnode->z_size = aclsize;
1088
1089 if (!zp->z_is_sa) {
1090 if (znode_acl.z_acl_extern_obj) {
1091 error = dmu_read(zp->z_zfsvfs->z_os,
1092 znode_acl.z_acl_extern_obj, 0, aclnode->z_size,
1093 aclnode->z_acldata, DMU_READ_PREFETCH);
1094 } else {
1095 memcpy(aclnode->z_acldata, znode_acl.z_ace_data,
1096 aclnode->z_size);
1097 }
1098 } else {
1099 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zp->z_zfsvfs),
1100 aclnode->z_acldata, aclnode->z_size);
1101 }
1102
1103 if (error != 0) {
1104 zfs_acl_free(aclp);
1105 zfs_acl_node_free(aclnode);
1106 /* convert checksum errors into IO errors */
1107 if (error == ECKSUM)
1108 error = SET_ERROR(EIO);
1109 goto done;
1110 }
1111
1112 list_insert_head(&aclp->z_acl, aclnode);
1113
1114 *aclpp = aclp;
1115 if (!will_modify)
1116 zp->z_acl_cached = aclp;
1117 done:
1118 return (error);
1119 }
1120
1121 void
zfs_acl_data_locator(void ** dataptr,uint32_t * length,uint32_t buflen,boolean_t start,void * userdata)1122 zfs_acl_data_locator(void **dataptr, uint32_t *length, uint32_t buflen,
1123 boolean_t start, void *userdata)
1124 {
1125 (void) buflen;
1126 zfs_acl_locator_cb_t *cb = (zfs_acl_locator_cb_t *)userdata;
1127
1128 if (start) {
1129 cb->cb_acl_node = list_head(&cb->cb_aclp->z_acl);
1130 } else {
1131 cb->cb_acl_node = list_next(&cb->cb_aclp->z_acl,
1132 cb->cb_acl_node);
1133 }
1134 ASSERT3P(cb->cb_acl_node, !=, NULL);
1135 *dataptr = cb->cb_acl_node->z_acldata;
1136 *length = cb->cb_acl_node->z_size;
1137 }
1138
1139 int
zfs_acl_chown_setattr(znode_t * zp)1140 zfs_acl_chown_setattr(znode_t *zp)
1141 {
1142 int error;
1143 zfs_acl_t *aclp;
1144
1145 if (zp->z_zfsvfs->z_replay == B_FALSE) {
1146 ASSERT_VOP_ELOCKED(ZTOV(zp), __func__);
1147 ASSERT_VOP_IN_SEQC(ZTOV(zp));
1148 }
1149 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
1150
1151 if ((error = zfs_acl_node_read(zp, B_TRUE, &aclp, B_FALSE)) == 0)
1152 zp->z_mode = zfs_mode_compute(zp->z_mode, aclp,
1153 &zp->z_pflags, zp->z_uid, zp->z_gid);
1154 return (error);
1155 }
1156
1157 /*
1158 * common code for setting ACLs.
1159 *
1160 * This function is called from zfs_mode_update, zfs_perm_init, and zfs_setacl.
1161 * zfs_setacl passes a non-NULL inherit pointer (ihp) to indicate that it's
1162 * already checked the acl and knows whether to inherit.
1163 */
1164 int
zfs_aclset_common(znode_t * zp,zfs_acl_t * aclp,cred_t * cr,dmu_tx_t * tx)1165 zfs_aclset_common(znode_t *zp, zfs_acl_t *aclp, cred_t *cr, dmu_tx_t *tx)
1166 {
1167 int error;
1168 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1169 dmu_object_type_t otype;
1170 zfs_acl_locator_cb_t locate = { 0 };
1171 uint64_t mode;
1172 sa_bulk_attr_t bulk[5];
1173 uint64_t ctime[2];
1174 int count = 0;
1175 zfs_acl_phys_t acl_phys;
1176
1177 if (zp->z_zfsvfs->z_replay == B_FALSE) {
1178 ASSERT_VOP_IN_SEQC(ZTOV(zp));
1179 }
1180
1181 mode = zp->z_mode;
1182
1183 mode = zfs_mode_compute(mode, aclp, &zp->z_pflags,
1184 zp->z_uid, zp->z_gid);
1185
1186 zp->z_mode = mode;
1187 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1188 &mode, sizeof (mode));
1189 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1190 &zp->z_pflags, sizeof (zp->z_pflags));
1191 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
1192 &ctime, sizeof (ctime));
1193
1194 if (zp->z_acl_cached) {
1195 zfs_acl_free(zp->z_acl_cached);
1196 zp->z_acl_cached = NULL;
1197 }
1198
1199 /*
1200 * Upgrade needed?
1201 */
1202 if (!zfsvfs->z_use_fuids) {
1203 otype = DMU_OT_OLDACL;
1204 } else {
1205 if ((aclp->z_version == ZFS_ACL_VERSION_INITIAL) &&
1206 (zfsvfs->z_version >= ZPL_VERSION_FUID))
1207 zfs_acl_xform(zp, aclp, cr);
1208 ASSERT3U(aclp->z_version, >=, ZFS_ACL_VERSION_FUID);
1209 otype = DMU_OT_ACL;
1210 }
1211
1212 /*
1213 * Arrgh, we have to handle old on disk format
1214 * as well as newer (preferred) SA format.
1215 */
1216
1217 if (zp->z_is_sa) { /* the easy case, just update the ACL attribute */
1218 locate.cb_aclp = aclp;
1219 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_ACES(zfsvfs),
1220 zfs_acl_data_locator, &locate, aclp->z_acl_bytes);
1221 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_COUNT(zfsvfs),
1222 NULL, &aclp->z_acl_count, sizeof (uint64_t));
1223 } else { /* Painful legacy way */
1224 zfs_acl_node_t *aclnode;
1225 uint64_t off = 0;
1226 uint64_t aoid;
1227
1228 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
1229 &acl_phys, sizeof (acl_phys))) != 0)
1230 return (error);
1231
1232 aoid = acl_phys.z_acl_extern_obj;
1233
1234 if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1235 /*
1236 * If ACL was previously external and we are now
1237 * converting to new ACL format then release old
1238 * ACL object and create a new one.
1239 */
1240 if (aoid &&
1241 aclp->z_version != acl_phys.z_acl_version) {
1242 error = dmu_object_free(zfsvfs->z_os, aoid, tx);
1243 if (error)
1244 return (error);
1245 aoid = 0;
1246 }
1247 if (aoid == 0) {
1248 aoid = dmu_object_alloc(zfsvfs->z_os,
1249 otype, aclp->z_acl_bytes,
1250 otype == DMU_OT_ACL ?
1251 DMU_OT_SYSACL : DMU_OT_NONE,
1252 otype == DMU_OT_ACL ?
1253 DN_OLD_MAX_BONUSLEN : 0, tx);
1254 } else {
1255 (void) dmu_object_set_blocksize(zfsvfs->z_os,
1256 aoid, aclp->z_acl_bytes, 0, tx);
1257 }
1258 acl_phys.z_acl_extern_obj = aoid;
1259 for (aclnode = list_head(&aclp->z_acl); aclnode;
1260 aclnode = list_next(&aclp->z_acl, aclnode)) {
1261 if (aclnode->z_ace_count == 0)
1262 continue;
1263 dmu_write(zfsvfs->z_os, aoid, off,
1264 aclnode->z_size, aclnode->z_acldata, tx);
1265 off += aclnode->z_size;
1266 }
1267 } else {
1268 void *start = acl_phys.z_ace_data;
1269 /*
1270 * Migrating back embedded?
1271 */
1272 if (acl_phys.z_acl_extern_obj) {
1273 error = dmu_object_free(zfsvfs->z_os,
1274 acl_phys.z_acl_extern_obj, tx);
1275 if (error)
1276 return (error);
1277 acl_phys.z_acl_extern_obj = 0;
1278 }
1279
1280 for (aclnode = list_head(&aclp->z_acl); aclnode;
1281 aclnode = list_next(&aclp->z_acl, aclnode)) {
1282 if (aclnode->z_ace_count == 0)
1283 continue;
1284 memcpy(start, aclnode->z_acldata,
1285 aclnode->z_size);
1286 start = (caddr_t)start + aclnode->z_size;
1287 }
1288 }
1289 /*
1290 * If Old version then swap count/bytes to match old
1291 * layout of znode_acl_phys_t.
1292 */
1293 if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
1294 acl_phys.z_acl_size = aclp->z_acl_count;
1295 acl_phys.z_acl_count = aclp->z_acl_bytes;
1296 } else {
1297 acl_phys.z_acl_size = aclp->z_acl_bytes;
1298 acl_phys.z_acl_count = aclp->z_acl_count;
1299 }
1300 acl_phys.z_acl_version = aclp->z_version;
1301
1302 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
1303 &acl_phys, sizeof (acl_phys));
1304 }
1305
1306 /*
1307 * Replace ACL wide bits, but first clear them.
1308 */
1309 zp->z_pflags &= ~ZFS_ACL_WIDE_FLAGS;
1310
1311 zp->z_pflags |= aclp->z_hints;
1312
1313 if (ace_trivial_common(aclp, 0, zfs_ace_walk) == 0)
1314 zp->z_pflags |= ZFS_ACL_TRIVIAL;
1315
1316 zfs_tstamp_update_setup(zp, STATE_CHANGED, NULL, ctime);
1317 return (sa_bulk_update(zp->z_sa_hdl, bulk, count, tx));
1318 }
1319
1320 static void
zfs_acl_chmod(vtype_t vtype,uint64_t mode,boolean_t split,boolean_t trim,zfs_acl_t * aclp)1321 zfs_acl_chmod(vtype_t vtype, uint64_t mode, boolean_t split, boolean_t trim,
1322 zfs_acl_t *aclp)
1323 {
1324 void *acep = NULL;
1325 uint64_t who;
1326 int new_count, new_bytes;
1327 int ace_size;
1328 int entry_type;
1329 uint16_t iflags, type;
1330 uint32_t access_mask;
1331 zfs_acl_node_t *newnode;
1332 size_t abstract_size = aclp->z_ops->ace_abstract_size();
1333 void *zacep;
1334 boolean_t isdir;
1335 trivial_acl_t masks;
1336
1337 new_count = new_bytes = 0;
1338
1339 isdir = (vtype == VDIR);
1340
1341 acl_trivial_access_masks((mode_t)mode, isdir, &masks);
1342
1343 newnode = zfs_acl_node_alloc((abstract_size * 6) + aclp->z_acl_bytes);
1344
1345 zacep = newnode->z_acldata;
1346 if (masks.allow0) {
1347 zfs_set_ace(aclp, zacep, masks.allow0, ALLOW, -1, ACE_OWNER);
1348 zacep = (void *)((uintptr_t)zacep + abstract_size);
1349 new_count++;
1350 new_bytes += abstract_size;
1351 }
1352 if (masks.deny1) {
1353 zfs_set_ace(aclp, zacep, masks.deny1, DENY, -1, ACE_OWNER);
1354 zacep = (void *)((uintptr_t)zacep + abstract_size);
1355 new_count++;
1356 new_bytes += abstract_size;
1357 }
1358 if (masks.deny2) {
1359 zfs_set_ace(aclp, zacep, masks.deny2, DENY, -1, OWNING_GROUP);
1360 zacep = (void *)((uintptr_t)zacep + abstract_size);
1361 new_count++;
1362 new_bytes += abstract_size;
1363 }
1364
1365 while ((acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
1366 &iflags, &type))) {
1367 entry_type = (iflags & ACE_TYPE_FLAGS);
1368 /*
1369 * ACEs used to represent the file mode may be divided
1370 * into an equivalent pair of inherit-only and regular
1371 * ACEs, if they are inheritable.
1372 * Skip regular ACEs, which are replaced by the new mode.
1373 */
1374 if (split && (entry_type == ACE_OWNER ||
1375 entry_type == OWNING_GROUP ||
1376 entry_type == ACE_EVERYONE)) {
1377 if (!isdir || !(iflags &
1378 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1379 continue;
1380 /*
1381 * We preserve owner@, group@, or @everyone
1382 * permissions, if they are inheritable, by
1383 * copying them to inherit_only ACEs. This
1384 * prevents inheritable permissions from being
1385 * altered along with the file mode.
1386 */
1387 iflags |= ACE_INHERIT_ONLY_ACE;
1388 }
1389
1390 /*
1391 * If this ACL has any inheritable ACEs, mark that in
1392 * the hints (which are later masked into the pflags)
1393 * so create knows to do inheritance.
1394 */
1395 if (isdir && (iflags &
1396 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1397 aclp->z_hints |= ZFS_INHERIT_ACE;
1398
1399 if ((type != ALLOW && type != DENY) ||
1400 (iflags & ACE_INHERIT_ONLY_ACE)) {
1401 switch (type) {
1402 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1403 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1404 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1405 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1406 aclp->z_hints |= ZFS_ACL_OBJ_ACE;
1407 break;
1408 }
1409 } else {
1410 /*
1411 * Limit permissions granted by ACEs to be no greater
1412 * than permissions of the requested group mode.
1413 * Applies when the "aclmode" property is set to
1414 * "groupmask".
1415 */
1416 if ((type == ALLOW) && trim)
1417 access_mask &= masks.group;
1418 }
1419 zfs_set_ace(aclp, zacep, access_mask, type, who, iflags);
1420 ace_size = aclp->z_ops->ace_size(acep);
1421 zacep = (void *)((uintptr_t)zacep + ace_size);
1422 new_count++;
1423 new_bytes += ace_size;
1424 }
1425 zfs_set_ace(aclp, zacep, masks.owner, ALLOW, -1, ACE_OWNER);
1426 zacep = (void *)((uintptr_t)zacep + abstract_size);
1427 zfs_set_ace(aclp, zacep, masks.group, ALLOW, -1, OWNING_GROUP);
1428 zacep = (void *)((uintptr_t)zacep + abstract_size);
1429 zfs_set_ace(aclp, zacep, masks.everyone, ALLOW, -1, ACE_EVERYONE);
1430
1431 new_count += 3;
1432 new_bytes += abstract_size * 3;
1433 zfs_acl_release_nodes(aclp);
1434 aclp->z_acl_count = new_count;
1435 aclp->z_acl_bytes = new_bytes;
1436 newnode->z_ace_count = new_count;
1437 newnode->z_size = new_bytes;
1438 list_insert_tail(&aclp->z_acl, newnode);
1439 }
1440
1441 int
zfs_acl_chmod_setattr(znode_t * zp,zfs_acl_t ** aclp,uint64_t mode)1442 zfs_acl_chmod_setattr(znode_t *zp, zfs_acl_t **aclp, uint64_t mode)
1443 {
1444 int error = 0;
1445
1446 mutex_enter(&zp->z_acl_lock);
1447 if (zp->z_zfsvfs->z_replay == B_FALSE)
1448 ASSERT_VOP_ELOCKED(ZTOV(zp), __func__);
1449 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_DISCARD)
1450 *aclp = zfs_acl_alloc(zfs_acl_version_zp(zp));
1451 else
1452 error = zfs_acl_node_read(zp, B_TRUE, aclp, B_TRUE);
1453
1454 if (error == 0) {
1455 (*aclp)->z_hints = zp->z_pflags & V4_ACL_WIDE_FLAGS;
1456 zfs_acl_chmod(ZTOV(zp)->v_type, mode, B_TRUE,
1457 (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK), *aclp);
1458 }
1459 mutex_exit(&zp->z_acl_lock);
1460
1461 return (error);
1462 }
1463
1464 /*
1465 * Should ACE be inherited?
1466 */
1467 static int
zfs_ace_can_use(vtype_t vtype,uint16_t acep_flags)1468 zfs_ace_can_use(vtype_t vtype, uint16_t acep_flags)
1469 {
1470 int iflags = (acep_flags & 0xf);
1471
1472 if ((vtype == VDIR) && (iflags & ACE_DIRECTORY_INHERIT_ACE))
1473 return (1);
1474 else if (iflags & ACE_FILE_INHERIT_ACE)
1475 return (!((vtype == VDIR) &&
1476 (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)));
1477 return (0);
1478 }
1479
1480 /*
1481 * inherit inheritable ACEs from parent
1482 */
1483 static zfs_acl_t *
zfs_acl_inherit(zfsvfs_t * zfsvfs,vtype_t vtype,zfs_acl_t * paclp,uint64_t mode,boolean_t * need_chmod)1484 zfs_acl_inherit(zfsvfs_t *zfsvfs, vtype_t vtype, zfs_acl_t *paclp,
1485 uint64_t mode, boolean_t *need_chmod)
1486 {
1487 void *pacep = NULL;
1488 void *acep;
1489 zfs_acl_node_t *aclnode;
1490 zfs_acl_t *aclp = NULL;
1491 uint64_t who;
1492 uint32_t access_mask;
1493 uint16_t iflags, newflags, type;
1494 size_t ace_size;
1495 void *data1, *data2;
1496 size_t data1sz, data2sz;
1497 uint_t aclinherit;
1498 boolean_t isdir = (vtype == VDIR);
1499 boolean_t isreg = (vtype == VREG);
1500
1501 *need_chmod = B_TRUE;
1502
1503 aclp = zfs_acl_alloc(paclp->z_version);
1504 aclinherit = zfsvfs->z_acl_inherit;
1505 if (aclinherit == ZFS_ACL_DISCARD || vtype == VLNK)
1506 return (aclp);
1507
1508 while ((pacep = zfs_acl_next_ace(paclp, pacep, &who,
1509 &access_mask, &iflags, &type))) {
1510
1511 /*
1512 * don't inherit bogus ACEs
1513 */
1514 if (!zfs_acl_valid_ace_type(type, iflags))
1515 continue;
1516
1517 /*
1518 * Check if ACE is inheritable by this vnode
1519 */
1520 if ((aclinherit == ZFS_ACL_NOALLOW && type == ALLOW) ||
1521 !zfs_ace_can_use(vtype, iflags))
1522 continue;
1523
1524 /*
1525 * If owner@, group@, or everyone@ inheritable
1526 * then zfs_acl_chmod() isn't needed.
1527 */
1528 if ((aclinherit == ZFS_ACL_PASSTHROUGH ||
1529 aclinherit == ZFS_ACL_PASSTHROUGH_X) &&
1530 ((iflags & (ACE_OWNER|ACE_EVERYONE)) ||
1531 ((iflags & OWNING_GROUP) == OWNING_GROUP)) &&
1532 (isreg || (isdir && (iflags & ACE_DIRECTORY_INHERIT_ACE))))
1533 *need_chmod = B_FALSE;
1534
1535 /*
1536 * Strip inherited execute permission from file if
1537 * not in mode
1538 */
1539 if (aclinherit == ZFS_ACL_PASSTHROUGH_X && type == ALLOW &&
1540 !isdir && ((mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)) {
1541 access_mask &= ~ACE_EXECUTE;
1542 }
1543
1544 /*
1545 * Strip write_acl and write_owner from permissions
1546 * when inheriting an ACE
1547 */
1548 if (aclinherit == ZFS_ACL_RESTRICTED && type == ALLOW) {
1549 access_mask &= ~RESTRICTED_CLEAR;
1550 }
1551
1552 ace_size = aclp->z_ops->ace_size(pacep);
1553 aclnode = zfs_acl_node_alloc(ace_size);
1554 list_insert_tail(&aclp->z_acl, aclnode);
1555 acep = aclnode->z_acldata;
1556
1557 zfs_set_ace(aclp, acep, access_mask, type,
1558 who, iflags|ACE_INHERITED_ACE);
1559
1560 /*
1561 * Copy special opaque data if any
1562 */
1563 if ((data1sz = paclp->z_ops->ace_data(pacep, &data1)) != 0) {
1564 data2sz = aclp->z_ops->ace_data(acep, &data2);
1565 VERIFY3U(data2sz, ==, data1sz);
1566 memcpy(data2, data1, data2sz);
1567 }
1568
1569 aclp->z_acl_count++;
1570 aclnode->z_ace_count++;
1571 aclp->z_acl_bytes += aclnode->z_size;
1572 newflags = aclp->z_ops->ace_flags_get(acep);
1573
1574 /*
1575 * If ACE is not to be inherited further, or if the vnode is
1576 * not a directory, remove all inheritance flags
1577 */
1578 if (!isdir || (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)) {
1579 newflags &= ~ALL_INHERIT;
1580 aclp->z_ops->ace_flags_set(acep,
1581 newflags|ACE_INHERITED_ACE);
1582 continue;
1583 }
1584
1585 /*
1586 * This directory has an inheritable ACE
1587 */
1588 aclp->z_hints |= ZFS_INHERIT_ACE;
1589
1590 /*
1591 * If only FILE_INHERIT is set then turn on
1592 * inherit_only
1593 */
1594 if ((iflags & (ACE_FILE_INHERIT_ACE |
1595 ACE_DIRECTORY_INHERIT_ACE)) == ACE_FILE_INHERIT_ACE) {
1596 newflags |= ACE_INHERIT_ONLY_ACE;
1597 aclp->z_ops->ace_flags_set(acep,
1598 newflags|ACE_INHERITED_ACE);
1599 } else {
1600 newflags &= ~ACE_INHERIT_ONLY_ACE;
1601 aclp->z_ops->ace_flags_set(acep,
1602 newflags|ACE_INHERITED_ACE);
1603 }
1604 }
1605 if (zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
1606 aclp->z_acl_count != 0) {
1607 *need_chmod = B_FALSE;
1608 }
1609
1610 return (aclp);
1611 }
1612
1613 /*
1614 * Create file system object initial permissions
1615 * including inheritable ACEs.
1616 * Also, create FUIDs for owner and group.
1617 */
1618 int
zfs_acl_ids_create(znode_t * dzp,int flag,vattr_t * vap,cred_t * cr,vsecattr_t * vsecp,zfs_acl_ids_t * acl_ids,zidmap_t * mnt_ns)1619 zfs_acl_ids_create(znode_t *dzp, int flag, vattr_t *vap, cred_t *cr,
1620 vsecattr_t *vsecp, zfs_acl_ids_t *acl_ids, zidmap_t *mnt_ns)
1621 {
1622 int error;
1623 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1624 zfs_acl_t *paclp;
1625 gid_t gid;
1626 boolean_t need_chmod = B_TRUE;
1627 boolean_t trim = B_FALSE;
1628 boolean_t inherited = B_FALSE;
1629
1630 if ((flag & IS_ROOT_NODE) == 0) {
1631 if (zfsvfs->z_replay == B_FALSE)
1632 ASSERT_VOP_ELOCKED(ZTOV(dzp), __func__);
1633 } else
1634 ASSERT3P(dzp->z_vnode, ==, NULL);
1635 memset(acl_ids, 0, sizeof (zfs_acl_ids_t));
1636 acl_ids->z_mode = MAKEIMODE(vap->va_type, vap->va_mode);
1637
1638 if (vsecp)
1639 if ((error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, cr,
1640 &acl_ids->z_fuidp, &acl_ids->z_aclp)) != 0)
1641 return (error);
1642 /*
1643 * Determine uid and gid.
1644 */
1645 if ((flag & IS_ROOT_NODE) || zfsvfs->z_replay ||
1646 ((flag & IS_XATTR) && (vap->va_type == VDIR))) {
1647 acl_ids->z_fuid = zfs_fuid_create(zfsvfs,
1648 (uint64_t)vap->va_uid, cr,
1649 ZFS_OWNER, &acl_ids->z_fuidp);
1650 acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
1651 (uint64_t)vap->va_gid, cr,
1652 ZFS_GROUP, &acl_ids->z_fuidp);
1653 gid = vap->va_gid;
1654 } else {
1655 uid_t id = crgetuid(cr);
1656 if (IS_EPHEMERAL(id))
1657 id = UID_NOBODY;
1658 acl_ids->z_fuid = (uint64_t)id;
1659 acl_ids->z_fgid = 0;
1660 if (vap->va_mask & AT_GID) {
1661 acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
1662 (uint64_t)vap->va_gid,
1663 cr, ZFS_GROUP, &acl_ids->z_fuidp);
1664 gid = vap->va_gid;
1665 if (acl_ids->z_fgid != dzp->z_gid &&
1666 !groupmember(vap->va_gid, cr) &&
1667 secpolicy_vnode_create_gid(cr) != 0)
1668 acl_ids->z_fgid = 0;
1669 }
1670 if (acl_ids->z_fgid == 0) {
1671 const char *domain;
1672 uint32_t rid;
1673
1674 acl_ids->z_fgid = dzp->z_gid;
1675 gid = zfs_fuid_map_id(zfsvfs, acl_ids->z_fgid,
1676 cr, ZFS_GROUP);
1677
1678 if (zfsvfs->z_use_fuids &&
1679 IS_EPHEMERAL(acl_ids->z_fgid)) {
1680 domain =
1681 zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx,
1682 FUID_INDEX(acl_ids->z_fgid));
1683 rid = FUID_RID(acl_ids->z_fgid);
1684 zfs_fuid_node_add(&acl_ids->z_fuidp,
1685 domain, rid, FUID_INDEX(acl_ids->z_fgid),
1686 acl_ids->z_fgid, ZFS_GROUP);
1687 }
1688 }
1689 }
1690
1691 /*
1692 * If we're creating a directory, and the parent directory has the
1693 * set-GID bit set, set in on the new directory.
1694 * Otherwise, if the user is neither privileged nor a member of the
1695 * file's new group, clear the file's set-GID bit.
1696 */
1697
1698 if (!(flag & IS_ROOT_NODE) && (dzp->z_mode & S_ISGID) &&
1699 (vap->va_type == VDIR)) {
1700 acl_ids->z_mode |= S_ISGID;
1701 } else {
1702 if ((acl_ids->z_mode & S_ISGID) &&
1703 secpolicy_vnode_setids_setgids(ZTOV(dzp), cr, gid) != 0)
1704 acl_ids->z_mode &= ~S_ISGID;
1705 }
1706
1707 if (acl_ids->z_aclp == NULL) {
1708 mutex_enter(&dzp->z_acl_lock);
1709 if (!(flag & IS_ROOT_NODE) &&
1710 (dzp->z_pflags & ZFS_INHERIT_ACE) &&
1711 !(dzp->z_pflags & ZFS_XATTR)) {
1712 VERIFY0(zfs_acl_node_read(dzp, B_TRUE,
1713 &paclp, B_FALSE));
1714 acl_ids->z_aclp = zfs_acl_inherit(zfsvfs,
1715 vap->va_type, paclp, acl_ids->z_mode, &need_chmod);
1716 inherited = B_TRUE;
1717 } else {
1718 acl_ids->z_aclp =
1719 zfs_acl_alloc(zfs_acl_version_zp(dzp));
1720 acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
1721 }
1722 mutex_exit(&dzp->z_acl_lock);
1723
1724 if (need_chmod) {
1725 if (vap->va_type == VDIR)
1726 acl_ids->z_aclp->z_hints |=
1727 ZFS_ACL_AUTO_INHERIT;
1728
1729 if (zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK &&
1730 zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH &&
1731 zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH_X)
1732 trim = B_TRUE;
1733 zfs_acl_chmod(vap->va_type, acl_ids->z_mode, B_FALSE,
1734 trim, acl_ids->z_aclp);
1735 }
1736 }
1737
1738 if (inherited || vsecp) {
1739 acl_ids->z_mode = zfs_mode_compute(acl_ids->z_mode,
1740 acl_ids->z_aclp, &acl_ids->z_aclp->z_hints,
1741 acl_ids->z_fuid, acl_ids->z_fgid);
1742 if (ace_trivial_common(acl_ids->z_aclp, 0, zfs_ace_walk) == 0)
1743 acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
1744 }
1745
1746 return (0);
1747 }
1748
1749 /*
1750 * Free ACL and fuid_infop, but not the acl_ids structure
1751 */
1752 void
zfs_acl_ids_free(zfs_acl_ids_t * acl_ids)1753 zfs_acl_ids_free(zfs_acl_ids_t *acl_ids)
1754 {
1755 if (acl_ids->z_aclp)
1756 zfs_acl_free(acl_ids->z_aclp);
1757 if (acl_ids->z_fuidp)
1758 zfs_fuid_info_free(acl_ids->z_fuidp);
1759 acl_ids->z_aclp = NULL;
1760 acl_ids->z_fuidp = NULL;
1761 }
1762
1763 boolean_t
zfs_acl_ids_overquota(zfsvfs_t * zv,zfs_acl_ids_t * acl_ids,uint64_t projid)1764 zfs_acl_ids_overquota(zfsvfs_t *zv, zfs_acl_ids_t *acl_ids, uint64_t projid)
1765 {
1766 return (zfs_id_overquota(zv, DMU_USERUSED_OBJECT, acl_ids->z_fuid) ||
1767 zfs_id_overquota(zv, DMU_GROUPUSED_OBJECT, acl_ids->z_fgid) ||
1768 (projid != ZFS_DEFAULT_PROJID && projid != ZFS_INVALID_PROJID &&
1769 zfs_id_overquota(zv, DMU_PROJECTUSED_OBJECT, projid)));
1770 }
1771
1772 /*
1773 * Retrieve a file's ACL
1774 */
1775 int
zfs_getacl(znode_t * zp,vsecattr_t * vsecp,boolean_t skipaclchk,cred_t * cr)1776 zfs_getacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1777 {
1778 zfs_acl_t *aclp;
1779 ulong_t mask;
1780 int error;
1781 int count = 0;
1782 int largeace = 0;
1783
1784 mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT |
1785 VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES);
1786
1787 if (mask == 0)
1788 return (SET_ERROR(ENOSYS));
1789
1790 if ((error = zfs_zaccess(zp, ACE_READ_ACL, 0, skipaclchk, cr, NULL)))
1791 return (error);
1792
1793 mutex_enter(&zp->z_acl_lock);
1794
1795 if (zp->z_zfsvfs->z_replay == B_FALSE)
1796 ASSERT_VOP_LOCKED(ZTOV(zp), __func__);
1797 error = zfs_acl_node_read(zp, B_TRUE, &aclp, B_FALSE);
1798 if (error != 0) {
1799 mutex_exit(&zp->z_acl_lock);
1800 return (error);
1801 }
1802
1803 /*
1804 * Scan ACL to determine number of ACEs
1805 */
1806 if ((zp->z_pflags & ZFS_ACL_OBJ_ACE) && !(mask & VSA_ACE_ALLTYPES)) {
1807 void *zacep = NULL;
1808 uint64_t who;
1809 uint32_t access_mask;
1810 uint16_t type, iflags;
1811
1812 while ((zacep = zfs_acl_next_ace(aclp, zacep,
1813 &who, &access_mask, &iflags, &type))) {
1814 switch (type) {
1815 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1816 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1817 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1818 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1819 largeace++;
1820 continue;
1821 default:
1822 count++;
1823 }
1824 }
1825 vsecp->vsa_aclcnt = count;
1826 } else
1827 count = (int)aclp->z_acl_count;
1828
1829 if (mask & VSA_ACECNT) {
1830 vsecp->vsa_aclcnt = count;
1831 }
1832
1833 if (mask & VSA_ACE) {
1834 size_t aclsz;
1835
1836 aclsz = count * sizeof (ace_t) +
1837 sizeof (ace_object_t) * largeace;
1838
1839 vsecp->vsa_aclentp = kmem_alloc(aclsz, KM_SLEEP);
1840 vsecp->vsa_aclentsz = aclsz;
1841
1842 if (aclp->z_version == ZFS_ACL_VERSION_FUID)
1843 zfs_copy_fuid_2_ace(zp->z_zfsvfs, aclp, cr,
1844 vsecp->vsa_aclentp, !(mask & VSA_ACE_ALLTYPES));
1845 else {
1846 zfs_acl_node_t *aclnode;
1847 void *start = vsecp->vsa_aclentp;
1848
1849 for (aclnode = list_head(&aclp->z_acl); aclnode;
1850 aclnode = list_next(&aclp->z_acl, aclnode)) {
1851 memcpy(start, aclnode->z_acldata,
1852 aclnode->z_size);
1853 start = (caddr_t)start + aclnode->z_size;
1854 }
1855 ASSERT3U((caddr_t)start - (caddr_t)vsecp->vsa_aclentp,
1856 ==, aclp->z_acl_bytes);
1857 }
1858 }
1859 if (mask & VSA_ACE_ACLFLAGS) {
1860 vsecp->vsa_aclflags = 0;
1861 if (zp->z_pflags & ZFS_ACL_DEFAULTED)
1862 vsecp->vsa_aclflags |= ACL_DEFAULTED;
1863 if (zp->z_pflags & ZFS_ACL_PROTECTED)
1864 vsecp->vsa_aclflags |= ACL_PROTECTED;
1865 if (zp->z_pflags & ZFS_ACL_AUTO_INHERIT)
1866 vsecp->vsa_aclflags |= ACL_AUTO_INHERIT;
1867 }
1868
1869 mutex_exit(&zp->z_acl_lock);
1870
1871 return (0);
1872 }
1873
1874 int
zfs_vsec_2_aclp(zfsvfs_t * zfsvfs,umode_t obj_type,vsecattr_t * vsecp,cred_t * cr,zfs_fuid_info_t ** fuidp,zfs_acl_t ** zaclp)1875 zfs_vsec_2_aclp(zfsvfs_t *zfsvfs, umode_t obj_type,
1876 vsecattr_t *vsecp, cred_t *cr, zfs_fuid_info_t **fuidp, zfs_acl_t **zaclp)
1877 {
1878 zfs_acl_t *aclp;
1879 zfs_acl_node_t *aclnode;
1880 int aclcnt = vsecp->vsa_aclcnt;
1881 int error;
1882
1883 if (vsecp->vsa_aclcnt > MAX_ACL_ENTRIES || vsecp->vsa_aclcnt <= 0)
1884 return (SET_ERROR(EINVAL));
1885
1886 aclp = zfs_acl_alloc(zfs_acl_version(zfsvfs->z_version));
1887
1888 aclp->z_hints = 0;
1889 aclnode = zfs_acl_node_alloc(aclcnt * sizeof (zfs_object_ace_t));
1890 if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
1891 if ((error = zfs_copy_ace_2_oldace(obj_type, aclp,
1892 (ace_t *)vsecp->vsa_aclentp, aclnode->z_acldata,
1893 aclcnt, &aclnode->z_size)) != 0) {
1894 zfs_acl_free(aclp);
1895 zfs_acl_node_free(aclnode);
1896 return (error);
1897 }
1898 } else {
1899 if ((error = zfs_copy_ace_2_fuid(zfsvfs, obj_type, aclp,
1900 vsecp->vsa_aclentp, aclnode->z_acldata, aclcnt,
1901 &aclnode->z_size, fuidp, cr)) != 0) {
1902 zfs_acl_free(aclp);
1903 zfs_acl_node_free(aclnode);
1904 return (error);
1905 }
1906 }
1907 aclp->z_acl_bytes = aclnode->z_size;
1908 aclnode->z_ace_count = aclcnt;
1909 aclp->z_acl_count = aclcnt;
1910 list_insert_head(&aclp->z_acl, aclnode);
1911
1912 /*
1913 * If flags are being set then add them to z_hints
1914 */
1915 if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) {
1916 if (vsecp->vsa_aclflags & ACL_PROTECTED)
1917 aclp->z_hints |= ZFS_ACL_PROTECTED;
1918 if (vsecp->vsa_aclflags & ACL_DEFAULTED)
1919 aclp->z_hints |= ZFS_ACL_DEFAULTED;
1920 if (vsecp->vsa_aclflags & ACL_AUTO_INHERIT)
1921 aclp->z_hints |= ZFS_ACL_AUTO_INHERIT;
1922 }
1923
1924 *zaclp = aclp;
1925
1926 return (0);
1927 }
1928
1929 /*
1930 * Set a file's ACL
1931 */
1932 int
zfs_setacl(znode_t * zp,vsecattr_t * vsecp,boolean_t skipaclchk,cred_t * cr)1933 zfs_setacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1934 {
1935 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1936 zilog_t *zilog = zfsvfs->z_log;
1937 ulong_t mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT);
1938 dmu_tx_t *tx;
1939 int error;
1940 zfs_acl_t *aclp;
1941 zfs_fuid_info_t *fuidp = NULL;
1942 boolean_t fuid_dirtied;
1943 uint64_t acl_obj;
1944
1945 if (zp->z_zfsvfs->z_replay == B_FALSE)
1946 ASSERT_VOP_ELOCKED(ZTOV(zp), __func__);
1947 if (mask == 0)
1948 return (SET_ERROR(ENOSYS));
1949
1950 if (zp->z_pflags & ZFS_IMMUTABLE)
1951 return (SET_ERROR(EPERM));
1952
1953 if ((error = zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr, NULL)))
1954 return (error);
1955
1956 error = zfs_vsec_2_aclp(zfsvfs, ZTOV(zp)->v_type, vsecp, cr, &fuidp,
1957 &aclp);
1958 if (error)
1959 return (error);
1960
1961 /*
1962 * If ACL wide flags aren't being set then preserve any
1963 * existing flags.
1964 */
1965 if (!(vsecp->vsa_mask & VSA_ACE_ACLFLAGS)) {
1966 aclp->z_hints |=
1967 (zp->z_pflags & V4_ACL_WIDE_FLAGS);
1968 }
1969 top:
1970 mutex_enter(&zp->z_acl_lock);
1971
1972 tx = dmu_tx_create(zfsvfs->z_os);
1973
1974 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1975
1976 fuid_dirtied = zfsvfs->z_fuid_dirty;
1977 if (fuid_dirtied)
1978 zfs_fuid_txhold(zfsvfs, tx);
1979
1980 /*
1981 * If old version and ACL won't fit in bonus and we aren't
1982 * upgrading then take out necessary DMU holds
1983 */
1984
1985 if ((acl_obj = zfs_external_acl(zp)) != 0) {
1986 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
1987 zfs_znode_acl_version(zp) <= ZFS_ACL_VERSION_INITIAL) {
1988 dmu_tx_hold_free(tx, acl_obj, 0,
1989 DMU_OBJECT_END);
1990 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1991 aclp->z_acl_bytes);
1992 } else {
1993 dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes);
1994 }
1995 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1996 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes);
1997 }
1998
1999 zfs_sa_upgrade_txholds(tx, zp);
2000 error = dmu_tx_assign(tx, TXG_NOWAIT);
2001 if (error) {
2002 mutex_exit(&zp->z_acl_lock);
2003
2004 if (error == ERESTART) {
2005 dmu_tx_wait(tx);
2006 dmu_tx_abort(tx);
2007 goto top;
2008 }
2009 dmu_tx_abort(tx);
2010 zfs_acl_free(aclp);
2011 return (error);
2012 }
2013
2014 error = zfs_aclset_common(zp, aclp, cr, tx);
2015 ASSERT0(error);
2016 ASSERT3P(zp->z_acl_cached, ==, NULL);
2017 zp->z_acl_cached = aclp;
2018
2019 if (fuid_dirtied)
2020 zfs_fuid_sync(zfsvfs, tx);
2021
2022 zfs_log_acl(zilog, tx, zp, vsecp, fuidp);
2023
2024 if (fuidp)
2025 zfs_fuid_info_free(fuidp);
2026 dmu_tx_commit(tx);
2027 mutex_exit(&zp->z_acl_lock);
2028
2029 return (error);
2030 }
2031
2032 /*
2033 * Check accesses of interest (AoI) against attributes of the dataset
2034 * such as read-only. Returns zero if no AoI conflict with dataset
2035 * attributes, otherwise an appropriate errno is returned.
2036 */
2037 static int
zfs_zaccess_dataset_check(znode_t * zp,uint32_t v4_mode)2038 zfs_zaccess_dataset_check(znode_t *zp, uint32_t v4_mode)
2039 {
2040 if ((v4_mode & WRITE_MASK) &&
2041 (zp->z_zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) &&
2042 (!IS_DEVVP(ZTOV(zp)) || (v4_mode & WRITE_MASK_ATTRS))) {
2043 return (SET_ERROR(EROFS));
2044 }
2045
2046 /*
2047 * Intentionally allow ZFS_READONLY through here.
2048 * See zfs_zaccess_common().
2049 */
2050 if ((v4_mode & WRITE_MASK_DATA) &&
2051 (zp->z_pflags & ZFS_IMMUTABLE)) {
2052 return (SET_ERROR(EPERM));
2053 }
2054
2055 /*
2056 * In FreeBSD we allow to modify directory's content is ZFS_NOUNLINK
2057 * (sunlnk) is set. We just don't allow directory removal, which is
2058 * handled in zfs_zaccess_delete().
2059 */
2060 if ((v4_mode & ACE_DELETE) &&
2061 (zp->z_pflags & ZFS_NOUNLINK)) {
2062 return (EPERM);
2063 }
2064
2065 if (((v4_mode & (ACE_READ_DATA|ACE_EXECUTE)) &&
2066 (zp->z_pflags & ZFS_AV_QUARANTINED))) {
2067 return (SET_ERROR(EACCES));
2068 }
2069
2070 return (0);
2071 }
2072
2073 /*
2074 * The primary usage of this function is to loop through all of the
2075 * ACEs in the znode, determining what accesses of interest (AoI) to
2076 * the caller are allowed or denied. The AoI are expressed as bits in
2077 * the working_mode parameter. As each ACE is processed, bits covered
2078 * by that ACE are removed from the working_mode. This removal
2079 * facilitates two things. The first is that when the working mode is
2080 * empty (= 0), we know we've looked at all the AoI. The second is
2081 * that the ACE interpretation rules don't allow a later ACE to undo
2082 * something granted or denied by an earlier ACE. Removing the
2083 * discovered access or denial enforces this rule. At the end of
2084 * processing the ACEs, all AoI that were found to be denied are
2085 * placed into the working_mode, giving the caller a mask of denied
2086 * accesses. Returns:
2087 * 0 if all AoI granted
2088 * EACCESS if the denied mask is non-zero
2089 * other error if abnormal failure (e.g., IO error)
2090 *
2091 * A secondary usage of the function is to determine if any of the
2092 * AoI are granted. If an ACE grants any access in
2093 * the working_mode, we immediately short circuit out of the function.
2094 * This mode is chosen by setting anyaccess to B_TRUE. The
2095 * working_mode is not a denied access mask upon exit if the function
2096 * is used in this manner.
2097 */
2098 static int
zfs_zaccess_aces_check(znode_t * zp,uint32_t * working_mode,boolean_t anyaccess,cred_t * cr)2099 zfs_zaccess_aces_check(znode_t *zp, uint32_t *working_mode,
2100 boolean_t anyaccess, cred_t *cr)
2101 {
2102 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2103 zfs_acl_t *aclp;
2104 int error;
2105 uid_t uid = crgetuid(cr);
2106 uint64_t who;
2107 uint16_t type, iflags;
2108 uint16_t entry_type;
2109 uint32_t access_mask;
2110 uint32_t deny_mask = 0;
2111 zfs_ace_hdr_t *acep = NULL;
2112 boolean_t checkit;
2113 uid_t gowner;
2114 uid_t fowner;
2115
2116 zfs_fuid_map_ids(zp, cr, &fowner, &gowner);
2117
2118 mutex_enter(&zp->z_acl_lock);
2119
2120 if (zp->z_zfsvfs->z_replay == B_FALSE)
2121 ASSERT_VOP_LOCKED(ZTOV(zp), __func__);
2122 error = zfs_acl_node_read(zp, B_TRUE, &aclp, B_FALSE);
2123 if (error != 0) {
2124 mutex_exit(&zp->z_acl_lock);
2125 return (error);
2126 }
2127
2128 ASSERT3P(zp->z_acl_cached, !=, NULL);
2129
2130 while ((acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
2131 &iflags, &type))) {
2132 uint32_t mask_matched;
2133
2134 if (!zfs_acl_valid_ace_type(type, iflags))
2135 continue;
2136
2137 if (ZTOV(zp)->v_type == VDIR && (iflags & ACE_INHERIT_ONLY_ACE))
2138 continue;
2139
2140 /* Skip ACE if it does not affect any AoI */
2141 mask_matched = (access_mask & *working_mode);
2142 if (!mask_matched)
2143 continue;
2144
2145 entry_type = (iflags & ACE_TYPE_FLAGS);
2146
2147 checkit = B_FALSE;
2148
2149 switch (entry_type) {
2150 case ACE_OWNER:
2151 if (uid == fowner)
2152 checkit = B_TRUE;
2153 break;
2154 case OWNING_GROUP:
2155 who = gowner;
2156 zfs_fallthrough;
2157 case ACE_IDENTIFIER_GROUP:
2158 checkit = zfs_groupmember(zfsvfs, who, cr);
2159 break;
2160 case ACE_EVERYONE:
2161 checkit = B_TRUE;
2162 break;
2163
2164 /* USER Entry */
2165 default:
2166 if (entry_type == 0) {
2167 uid_t newid;
2168
2169 newid = zfs_fuid_map_id(zfsvfs, who, cr,
2170 ZFS_ACE_USER);
2171 if (newid != UID_NOBODY &&
2172 uid == newid)
2173 checkit = B_TRUE;
2174 break;
2175 } else {
2176 mutex_exit(&zp->z_acl_lock);
2177 return (SET_ERROR(EIO));
2178 }
2179 }
2180
2181 if (checkit) {
2182 if (type == DENY) {
2183 DTRACE_PROBE3(zfs__ace__denies,
2184 znode_t *, zp,
2185 zfs_ace_hdr_t *, acep,
2186 uint32_t, mask_matched);
2187 deny_mask |= mask_matched;
2188 } else {
2189 DTRACE_PROBE3(zfs__ace__allows,
2190 znode_t *, zp,
2191 zfs_ace_hdr_t *, acep,
2192 uint32_t, mask_matched);
2193 if (anyaccess) {
2194 mutex_exit(&zp->z_acl_lock);
2195 return (0);
2196 }
2197 }
2198 *working_mode &= ~mask_matched;
2199 }
2200
2201 /* Are we done? */
2202 if (*working_mode == 0)
2203 break;
2204 }
2205
2206 mutex_exit(&zp->z_acl_lock);
2207
2208 /* Put the found 'denies' back on the working mode */
2209 if (deny_mask) {
2210 *working_mode |= deny_mask;
2211 return (SET_ERROR(EACCES));
2212 } else if (*working_mode) {
2213 return (-1);
2214 }
2215
2216 return (0);
2217 }
2218
2219 /*
2220 * Return true if any access whatsoever granted, we don't actually
2221 * care what access is granted.
2222 */
2223 boolean_t
zfs_has_access(znode_t * zp,cred_t * cr)2224 zfs_has_access(znode_t *zp, cred_t *cr)
2225 {
2226 uint32_t have = ACE_ALL_PERMS;
2227
2228 if (zfs_zaccess_aces_check(zp, &have, B_TRUE, cr) != 0) {
2229 uid_t owner;
2230
2231 owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
2232 return (secpolicy_vnode_any_access(cr, ZTOV(zp), owner) == 0);
2233 }
2234 return (B_TRUE);
2235 }
2236
2237 static int
zfs_zaccess_common(znode_t * zp,uint32_t v4_mode,uint32_t * working_mode,boolean_t * check_privs,boolean_t skipaclchk,cred_t * cr)2238 zfs_zaccess_common(znode_t *zp, uint32_t v4_mode, uint32_t *working_mode,
2239 boolean_t *check_privs, boolean_t skipaclchk, cred_t *cr)
2240 {
2241 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2242 int err;
2243
2244 *working_mode = v4_mode;
2245 *check_privs = B_TRUE;
2246
2247 /*
2248 * Short circuit empty requests
2249 */
2250 if (v4_mode == 0 || zfsvfs->z_replay) {
2251 *working_mode = 0;
2252 return (0);
2253 }
2254
2255 if ((err = zfs_zaccess_dataset_check(zp, v4_mode)) != 0) {
2256 *check_privs = B_FALSE;
2257 return (err);
2258 }
2259
2260 /*
2261 * The caller requested that the ACL check be skipped. This
2262 * would only happen if the caller checked VOP_ACCESS() with a
2263 * 32 bit ACE mask and already had the appropriate permissions.
2264 */
2265 if (skipaclchk) {
2266 *working_mode = 0;
2267 return (0);
2268 }
2269
2270 /*
2271 * Note: ZFS_READONLY represents the "DOS R/O" attribute.
2272 * When that flag is set, we should behave as if write access
2273 * were not granted by anything in the ACL. In particular:
2274 * We _must_ allow writes after opening the file r/w, then
2275 * setting the DOS R/O attribute, and writing some more.
2276 * (Similar to how you can write after fchmod(fd, 0444).)
2277 *
2278 * Therefore ZFS_READONLY is ignored in the dataset check
2279 * above, and checked here as if part of the ACL check.
2280 * Also note: DOS R/O is ignored for directories.
2281 */
2282 if ((v4_mode & WRITE_MASK_DATA) &&
2283 (ZTOV(zp)->v_type != VDIR) &&
2284 (zp->z_pflags & ZFS_READONLY)) {
2285 return (SET_ERROR(EPERM));
2286 }
2287
2288 return (zfs_zaccess_aces_check(zp, working_mode, B_FALSE, cr));
2289 }
2290
2291 static int
zfs_zaccess_append(znode_t * zp,uint32_t * working_mode,boolean_t * check_privs,cred_t * cr)2292 zfs_zaccess_append(znode_t *zp, uint32_t *working_mode, boolean_t *check_privs,
2293 cred_t *cr)
2294 {
2295 if (*working_mode != ACE_WRITE_DATA)
2296 return (SET_ERROR(EACCES));
2297
2298 return (zfs_zaccess_common(zp, ACE_APPEND_DATA, working_mode,
2299 check_privs, B_FALSE, cr));
2300 }
2301
2302 /*
2303 * Check if VEXEC is allowed.
2304 *
2305 * This routine is based on zfs_fastaccesschk_execute which has slowpath
2306 * calling zfs_zaccess. This would be incorrect on FreeBSD (see
2307 * zfs_freebsd_access for the difference). Thus this variant let's the
2308 * caller handle the slowpath (if necessary).
2309 *
2310 * On top of that we perform a lockless check for ZFS_NO_EXECS_DENIED.
2311 *
2312 * Safe access to znode_t is provided by the vnode lock.
2313 */
2314 int
zfs_fastaccesschk_execute(znode_t * zdp,cred_t * cr)2315 zfs_fastaccesschk_execute(znode_t *zdp, cred_t *cr)
2316 {
2317 boolean_t is_attr;
2318
2319 if (zdp->z_pflags & ZFS_AV_QUARANTINED)
2320 return (1);
2321
2322 is_attr = ((zdp->z_pflags & ZFS_XATTR) &&
2323 (ZTOV(zdp)->v_type == VDIR));
2324 if (is_attr)
2325 return (1);
2326
2327 if (zdp->z_pflags & ZFS_NO_EXECS_DENIED)
2328 return (0);
2329
2330 return (1);
2331 }
2332
2333
2334 /*
2335 * Determine whether Access should be granted/denied.
2336 *
2337 * The least priv subsystem is always consulted as a basic privilege
2338 * can define any form of access.
2339 */
2340 int
zfs_zaccess(znode_t * zp,int mode,int flags,boolean_t skipaclchk,cred_t * cr,zidmap_t * mnt_ns)2341 zfs_zaccess(znode_t *zp, int mode, int flags, boolean_t skipaclchk, cred_t *cr,
2342 zidmap_t *mnt_ns)
2343 {
2344 uint32_t working_mode;
2345 int error;
2346 int is_attr;
2347 boolean_t check_privs;
2348 znode_t *xzp = NULL;
2349 znode_t *check_zp = zp;
2350 mode_t needed_bits;
2351 uid_t owner;
2352
2353 is_attr = ((zp->z_pflags & ZFS_XATTR) && (ZTOV(zp)->v_type == VDIR));
2354
2355 /*
2356 * In FreeBSD, we don't care about permissions of individual ADS.
2357 * Note that not checking them is not just an optimization - without
2358 * this shortcut, EA operations may bogusly fail with EACCES.
2359 */
2360 if (zp->z_pflags & ZFS_XATTR)
2361 return (0);
2362
2363 owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
2364
2365 /*
2366 * Map the bits required to the standard vnode flags VREAD|VWRITE|VEXEC
2367 * in needed_bits. Map the bits mapped by working_mode (currently
2368 * missing) in missing_bits.
2369 * Call secpolicy_vnode_access2() with (needed_bits & ~checkmode),
2370 * needed_bits.
2371 */
2372 needed_bits = 0;
2373
2374 working_mode = mode;
2375 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES)) &&
2376 owner == crgetuid(cr))
2377 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
2378
2379 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2380 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2381 needed_bits |= VREAD;
2382 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2383 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2384 needed_bits |= VWRITE;
2385 if (working_mode & ACE_EXECUTE)
2386 needed_bits |= VEXEC;
2387
2388 if ((error = zfs_zaccess_common(check_zp, mode, &working_mode,
2389 &check_privs, skipaclchk, cr)) == 0) {
2390 if (is_attr)
2391 VN_RELE(ZTOV(xzp));
2392 return (secpolicy_vnode_access2(cr, ZTOV(zp), owner,
2393 needed_bits, needed_bits));
2394 }
2395
2396 if (error && !check_privs) {
2397 if (is_attr)
2398 VN_RELE(ZTOV(xzp));
2399 return (error);
2400 }
2401
2402 if (error && (flags & V_APPEND)) {
2403 error = zfs_zaccess_append(zp, &working_mode, &check_privs, cr);
2404 }
2405
2406 if (error && check_privs) {
2407 mode_t checkmode = 0;
2408 vnode_t *check_vp = ZTOV(check_zp);
2409
2410 /*
2411 * First check for implicit owner permission on
2412 * read_acl/read_attributes
2413 */
2414
2415 ASSERT3U(working_mode, !=, 0);
2416
2417 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) &&
2418 owner == crgetuid(cr)))
2419 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
2420
2421 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2422 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2423 checkmode |= VREAD;
2424 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2425 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2426 checkmode |= VWRITE;
2427 if (working_mode & ACE_EXECUTE)
2428 checkmode |= VEXEC;
2429
2430 error = secpolicy_vnode_access2(cr, check_vp, owner,
2431 needed_bits & ~checkmode, needed_bits);
2432
2433 if (error == 0 && (working_mode & ACE_WRITE_OWNER))
2434 error = secpolicy_vnode_chown(check_vp, cr, owner);
2435 if (error == 0 && (working_mode & ACE_WRITE_ACL))
2436 error = secpolicy_vnode_setdac(check_vp, cr, owner);
2437
2438 if (error == 0 && (working_mode &
2439 (ACE_DELETE|ACE_DELETE_CHILD)))
2440 error = secpolicy_vnode_remove(check_vp, cr);
2441
2442 if (error == 0 && (working_mode & ACE_SYNCHRONIZE)) {
2443 error = secpolicy_vnode_chown(check_vp, cr, owner);
2444 }
2445 if (error == 0) {
2446 /*
2447 * See if any bits other than those already checked
2448 * for are still present. If so then return EACCES
2449 */
2450 if (working_mode & ~(ZFS_CHECKED_MASKS)) {
2451 error = SET_ERROR(EACCES);
2452 }
2453 }
2454 } else if (error == 0) {
2455 error = secpolicy_vnode_access2(cr, ZTOV(zp), owner,
2456 needed_bits, needed_bits);
2457 }
2458
2459
2460 if (is_attr)
2461 VN_RELE(ZTOV(xzp));
2462
2463 return (error);
2464 }
2465
2466 /*
2467 * Translate traditional unix VREAD/VWRITE/VEXEC mode into
2468 * NFSv4-style ZFS ACL format and call zfs_zaccess()
2469 */
2470 int
zfs_zaccess_rwx(znode_t * zp,mode_t mode,int flags,cred_t * cr,zidmap_t * mnt_ns)2471 zfs_zaccess_rwx(znode_t *zp, mode_t mode, int flags, cred_t *cr,
2472 zidmap_t *mnt_ns)
2473 {
2474 return (zfs_zaccess(zp, zfs_unix_to_v4(mode >> 6), flags, B_FALSE, cr,
2475 mnt_ns));
2476 }
2477
2478 /*
2479 * Access function for secpolicy_vnode_setattr
2480 */
2481 int
zfs_zaccess_unix(void * zp,int mode,cred_t * cr)2482 zfs_zaccess_unix(void *zp, int mode, cred_t *cr)
2483 {
2484 int v4_mode = zfs_unix_to_v4(mode >> 6);
2485
2486 return (zfs_zaccess(zp, v4_mode, 0, B_FALSE, cr, NULL));
2487 }
2488
2489 static int
zfs_delete_final_check(znode_t * zp,znode_t * dzp,mode_t available_perms,cred_t * cr)2490 zfs_delete_final_check(znode_t *zp, znode_t *dzp,
2491 mode_t available_perms, cred_t *cr)
2492 {
2493 int error;
2494 uid_t downer;
2495
2496 downer = zfs_fuid_map_id(dzp->z_zfsvfs, dzp->z_uid, cr, ZFS_OWNER);
2497
2498 error = secpolicy_vnode_access2(cr, ZTOV(dzp),
2499 downer, available_perms, VWRITE|VEXEC);
2500
2501 if (error == 0)
2502 error = zfs_sticky_remove_access(dzp, zp, cr);
2503
2504 return (error);
2505 }
2506
2507 /*
2508 * Determine whether Access should be granted/deny, without
2509 * consulting least priv subsystem.
2510 *
2511 * The following chart is the recommended NFSv4 enforcement for
2512 * ability to delete an object.
2513 *
2514 * -------------------------------------------------------
2515 * | Parent Dir | Target Object Permissions |
2516 * | permissions | |
2517 * -------------------------------------------------------
2518 * | | ACL Allows | ACL Denies| Delete |
2519 * | | Delete | Delete | unspecified|
2520 * -------------------------------------------------------
2521 * | ACL Allows | Permit | Permit | Permit |
2522 * | DELETE_CHILD | |
2523 * -------------------------------------------------------
2524 * | ACL Denies | Permit | Deny | Deny |
2525 * | DELETE_CHILD | | | |
2526 * -------------------------------------------------------
2527 * | ACL specifies | | | |
2528 * | only allow | Permit | Permit | Permit |
2529 * | write and | | | |
2530 * | execute | | | |
2531 * -------------------------------------------------------
2532 * | ACL denies | | | |
2533 * | write and | Permit | Deny | Deny |
2534 * | execute | | | |
2535 * -------------------------------------------------------
2536 * ^
2537 * |
2538 * No search privilege, can't even look up file?
2539 *
2540 */
2541 int
zfs_zaccess_delete(znode_t * dzp,znode_t * zp,cred_t * cr,zidmap_t * mnt_ns)2542 zfs_zaccess_delete(znode_t *dzp, znode_t *zp, cred_t *cr, zidmap_t *mnt_ns)
2543 {
2544 uint32_t dzp_working_mode = 0;
2545 uint32_t zp_working_mode = 0;
2546 int dzp_error, zp_error;
2547 mode_t available_perms;
2548 boolean_t dzpcheck_privs = B_TRUE;
2549 boolean_t zpcheck_privs = B_TRUE;
2550
2551 /*
2552 * We want specific DELETE permissions to
2553 * take precedence over WRITE/EXECUTE. We don't
2554 * want an ACL such as this to mess us up.
2555 * user:joe:write_data:deny,user:joe:delete:allow
2556 *
2557 * However, deny permissions may ultimately be overridden
2558 * by secpolicy_vnode_access().
2559 *
2560 * We will ask for all of the necessary permissions and then
2561 * look at the working modes from the directory and target object
2562 * to determine what was found.
2563 */
2564
2565 if (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_NOUNLINK))
2566 return (SET_ERROR(EPERM));
2567
2568 /*
2569 * First row
2570 * If the directory permissions allow the delete, we are done.
2571 */
2572 if ((dzp_error = zfs_zaccess_common(dzp, ACE_DELETE_CHILD,
2573 &dzp_working_mode, &dzpcheck_privs, B_FALSE, cr)) == 0)
2574 return (0);
2575
2576 /*
2577 * If target object has delete permission then we are done
2578 */
2579 if ((zp_error = zfs_zaccess_common(zp, ACE_DELETE, &zp_working_mode,
2580 &zpcheck_privs, B_FALSE, cr)) == 0)
2581 return (0);
2582
2583 ASSERT(dzp_error);
2584 ASSERT(zp_error);
2585
2586 if (!dzpcheck_privs)
2587 return (dzp_error);
2588 if (!zpcheck_privs)
2589 return (zp_error);
2590
2591 /*
2592 * Second row
2593 *
2594 * If directory returns EACCES then delete_child was denied
2595 * due to deny delete_child. In this case send the request through
2596 * secpolicy_vnode_remove(). We don't use zfs_delete_final_check()
2597 * since that *could* allow the delete based on write/execute permission
2598 * and we want delete permissions to override write/execute.
2599 */
2600
2601 if (dzp_error == EACCES) {
2602 /* XXXPJD: s/dzp/zp/ ? */
2603 return (secpolicy_vnode_remove(ZTOV(dzp), cr));
2604 }
2605 /*
2606 * Third Row
2607 * only need to see if we have write/execute on directory.
2608 */
2609
2610 dzp_error = zfs_zaccess_common(dzp, ACE_EXECUTE|ACE_WRITE_DATA,
2611 &dzp_working_mode, &dzpcheck_privs, B_FALSE, cr);
2612
2613 if (dzp_error != 0 && !dzpcheck_privs)
2614 return (dzp_error);
2615
2616 /*
2617 * Fourth row
2618 */
2619
2620 available_perms = (dzp_working_mode & ACE_WRITE_DATA) ? 0 : VWRITE;
2621 available_perms |= (dzp_working_mode & ACE_EXECUTE) ? 0 : VEXEC;
2622
2623 return (zfs_delete_final_check(zp, dzp, available_perms, cr));
2624
2625 }
2626
2627 int
zfs_zaccess_rename(znode_t * sdzp,znode_t * szp,znode_t * tdzp,znode_t * tzp,cred_t * cr,zidmap_t * mnt_ns)2628 zfs_zaccess_rename(znode_t *sdzp, znode_t *szp, znode_t *tdzp,
2629 znode_t *tzp, cred_t *cr, zidmap_t *mnt_ns)
2630 {
2631 int add_perm;
2632 int error;
2633
2634 if (szp->z_pflags & ZFS_AV_QUARANTINED)
2635 return (SET_ERROR(EACCES));
2636
2637 add_perm = (ZTOV(szp)->v_type == VDIR) ?
2638 ACE_ADD_SUBDIRECTORY : ACE_ADD_FILE;
2639
2640 /*
2641 * Rename permissions are combination of delete permission +
2642 * add file/subdir permission.
2643 *
2644 * BSD operating systems also require write permission
2645 * on the directory being moved from one parent directory
2646 * to another.
2647 */
2648 if (ZTOV(szp)->v_type == VDIR && ZTOV(sdzp) != ZTOV(tdzp)) {
2649 if ((error = zfs_zaccess(szp, ACE_WRITE_DATA, 0, B_FALSE, cr,
2650 mnt_ns)))
2651 return (error);
2652 }
2653
2654 /*
2655 * first make sure we do the delete portion.
2656 *
2657 * If that succeeds then check for add_file/add_subdir permissions
2658 */
2659
2660 if ((error = zfs_zaccess_delete(sdzp, szp, cr, mnt_ns)))
2661 return (error);
2662
2663 /*
2664 * If we have a tzp, see if we can delete it?
2665 */
2666 if (tzp && (error = zfs_zaccess_delete(tdzp, tzp, cr, mnt_ns)))
2667 return (error);
2668
2669 /*
2670 * Now check for add permissions
2671 */
2672 error = zfs_zaccess(tdzp, add_perm, 0, B_FALSE, cr, mnt_ns);
2673
2674 return (error);
2675 }
2676