xref: /linux/kernel/sched/deadline.c (revision 6c7340a7a8d2b6ecad1ad108f6daa73ba1dc082f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 #include <linux/cpuset.h>
20 #include <linux/sched/clock.h>
21 #include <uapi/linux/sched/types.h>
22 #include "sched.h"
23 #include "pelt.h"
24 
25 /*
26  * Default limits for DL period; on the top end we guard against small util
27  * tasks still getting ridiculously long effective runtimes, on the bottom end we
28  * guard against timer DoS.
29  */
30 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
31 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
32 #ifdef CONFIG_SYSCTL
33 static const struct ctl_table sched_dl_sysctls[] = {
34 	{
35 		.procname       = "sched_deadline_period_max_us",
36 		.data           = &sysctl_sched_dl_period_max,
37 		.maxlen         = sizeof(unsigned int),
38 		.mode           = 0644,
39 		.proc_handler   = proc_douintvec_minmax,
40 		.extra1         = (void *)&sysctl_sched_dl_period_min,
41 	},
42 	{
43 		.procname       = "sched_deadline_period_min_us",
44 		.data           = &sysctl_sched_dl_period_min,
45 		.maxlen         = sizeof(unsigned int),
46 		.mode           = 0644,
47 		.proc_handler   = proc_douintvec_minmax,
48 		.extra2         = (void *)&sysctl_sched_dl_period_max,
49 	},
50 };
51 
sched_dl_sysctl_init(void)52 static int __init sched_dl_sysctl_init(void)
53 {
54 	register_sysctl_init("kernel", sched_dl_sysctls);
55 	return 0;
56 }
57 late_initcall(sched_dl_sysctl_init);
58 #endif /* CONFIG_SYSCTL */
59 
dl_server(struct sched_dl_entity * dl_se)60 static bool dl_server(struct sched_dl_entity *dl_se)
61 {
62 	return dl_se->dl_server;
63 }
64 
dl_task_of(struct sched_dl_entity * dl_se)65 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
66 {
67 	BUG_ON(dl_server(dl_se));
68 	return container_of(dl_se, struct task_struct, dl);
69 }
70 
rq_of_dl_rq(struct dl_rq * dl_rq)71 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
72 {
73 	return container_of(dl_rq, struct rq, dl);
74 }
75 
rq_of_dl_se(struct sched_dl_entity * dl_se)76 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
77 {
78 	struct rq *rq = dl_se->rq;
79 
80 	if (!dl_server(dl_se))
81 		rq = task_rq(dl_task_of(dl_se));
82 
83 	return rq;
84 }
85 
dl_rq_of_se(struct sched_dl_entity * dl_se)86 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
87 {
88 	return &rq_of_dl_se(dl_se)->dl;
89 }
90 
on_dl_rq(struct sched_dl_entity * dl_se)91 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
92 {
93 	return !RB_EMPTY_NODE(&dl_se->rb_node);
94 }
95 
96 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)97 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
98 {
99 	return dl_se->pi_se;
100 }
101 
is_dl_boosted(struct sched_dl_entity * dl_se)102 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
103 {
104 	return pi_of(dl_se) != dl_se;
105 }
106 #else /* !CONFIG_RT_MUTEXES: */
pi_of(struct sched_dl_entity * dl_se)107 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
108 {
109 	return dl_se;
110 }
111 
is_dl_boosted(struct sched_dl_entity * dl_se)112 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
113 {
114 	return false;
115 }
116 #endif /* !CONFIG_RT_MUTEXES */
117 
dl_bw_of(int i)118 static inline struct dl_bw *dl_bw_of(int i)
119 {
120 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
121 			 "sched RCU must be held");
122 	return &cpu_rq(i)->rd->dl_bw;
123 }
124 
dl_bw_cpus(int i)125 static inline int dl_bw_cpus(int i)
126 {
127 	struct root_domain *rd = cpu_rq(i)->rd;
128 	int cpus;
129 
130 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
131 			 "sched RCU must be held");
132 
133 	if (cpumask_subset(rd->span, cpu_active_mask))
134 		return cpumask_weight(rd->span);
135 
136 	cpus = 0;
137 
138 	for_each_cpu_and(i, rd->span, cpu_active_mask)
139 		cpus++;
140 
141 	return cpus;
142 }
143 
__dl_bw_capacity(const struct cpumask * mask)144 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
145 {
146 	unsigned long cap = 0;
147 	int i;
148 
149 	for_each_cpu_and(i, mask, cpu_active_mask)
150 		cap += arch_scale_cpu_capacity(i);
151 
152 	return cap;
153 }
154 
155 /*
156  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
157  * of the CPU the task is running on rather rd's \Sum CPU capacity.
158  */
dl_bw_capacity(int i)159 static inline unsigned long dl_bw_capacity(int i)
160 {
161 	if (!sched_asym_cpucap_active() &&
162 	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
163 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
164 	} else {
165 		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
166 				 "sched RCU must be held");
167 
168 		return __dl_bw_capacity(cpu_rq(i)->rd->span);
169 	}
170 }
171 
dl_bw_visited(int cpu,u64 cookie)172 bool dl_bw_visited(int cpu, u64 cookie)
173 {
174 	struct root_domain *rd = cpu_rq(cpu)->rd;
175 
176 	if (rd->visit_cookie == cookie)
177 		return true;
178 
179 	rd->visit_cookie = cookie;
180 	return false;
181 }
182 
183 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)184 void __dl_update(struct dl_bw *dl_b, s64 bw)
185 {
186 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
187 	int i;
188 
189 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
190 			 "sched RCU must be held");
191 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
192 		struct rq *rq = cpu_rq(i);
193 
194 		rq->dl.extra_bw += bw;
195 	}
196 }
197 
198 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)199 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
200 {
201 	dl_b->total_bw -= tsk_bw;
202 	__dl_update(dl_b, (s32)tsk_bw / cpus);
203 }
204 
205 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)206 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
207 {
208 	dl_b->total_bw += tsk_bw;
209 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
210 }
211 
212 static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)213 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
214 {
215 	return dl_b->bw != -1 &&
216 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
217 }
218 
219 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)220 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
221 {
222 	u64 old = dl_rq->running_bw;
223 
224 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
225 	dl_rq->running_bw += dl_bw;
226 	WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */
227 	WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
228 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
229 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
230 }
231 
232 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)233 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
234 {
235 	u64 old = dl_rq->running_bw;
236 
237 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
238 	dl_rq->running_bw -= dl_bw;
239 	WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */
240 	if (dl_rq->running_bw > old)
241 		dl_rq->running_bw = 0;
242 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
243 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
244 }
245 
246 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)247 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
248 {
249 	u64 old = dl_rq->this_bw;
250 
251 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
252 	dl_rq->this_bw += dl_bw;
253 	WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */
254 }
255 
256 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)257 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
258 {
259 	u64 old = dl_rq->this_bw;
260 
261 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
262 	dl_rq->this_bw -= dl_bw;
263 	WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */
264 	if (dl_rq->this_bw > old)
265 		dl_rq->this_bw = 0;
266 	WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
267 }
268 
269 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)270 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
271 {
272 	if (!dl_entity_is_special(dl_se))
273 		__add_rq_bw(dl_se->dl_bw, dl_rq);
274 }
275 
276 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)277 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
278 {
279 	if (!dl_entity_is_special(dl_se))
280 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
281 }
282 
283 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)284 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
285 {
286 	if (!dl_entity_is_special(dl_se))
287 		__add_running_bw(dl_se->dl_bw, dl_rq);
288 }
289 
290 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)291 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
292 {
293 	if (!dl_entity_is_special(dl_se))
294 		__sub_running_bw(dl_se->dl_bw, dl_rq);
295 }
296 
dl_rq_change_utilization(struct rq * rq,struct sched_dl_entity * dl_se,u64 new_bw)297 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
298 {
299 	if (dl_se->dl_non_contending) {
300 		sub_running_bw(dl_se, &rq->dl);
301 		dl_se->dl_non_contending = 0;
302 
303 		/*
304 		 * If the timer handler is currently running and the
305 		 * timer cannot be canceled, inactive_task_timer()
306 		 * will see that dl_not_contending is not set, and
307 		 * will not touch the rq's active utilization,
308 		 * so we are still safe.
309 		 */
310 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
311 			if (!dl_server(dl_se))
312 				put_task_struct(dl_task_of(dl_se));
313 		}
314 	}
315 	__sub_rq_bw(dl_se->dl_bw, &rq->dl);
316 	__add_rq_bw(new_bw, &rq->dl);
317 }
318 
319 static __always_inline
cancel_dl_timer(struct sched_dl_entity * dl_se,struct hrtimer * timer)320 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer)
321 {
322 	/*
323 	 * If the timer callback was running (hrtimer_try_to_cancel == -1),
324 	 * it will eventually call put_task_struct().
325 	 */
326 	if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se))
327 		put_task_struct(dl_task_of(dl_se));
328 }
329 
330 static __always_inline
cancel_replenish_timer(struct sched_dl_entity * dl_se)331 void cancel_replenish_timer(struct sched_dl_entity *dl_se)
332 {
333 	cancel_dl_timer(dl_se, &dl_se->dl_timer);
334 }
335 
336 static __always_inline
cancel_inactive_timer(struct sched_dl_entity * dl_se)337 void cancel_inactive_timer(struct sched_dl_entity *dl_se)
338 {
339 	cancel_dl_timer(dl_se, &dl_se->inactive_timer);
340 }
341 
dl_change_utilization(struct task_struct * p,u64 new_bw)342 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
343 {
344 	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
345 
346 	if (task_on_rq_queued(p))
347 		return;
348 
349 	dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
350 }
351 
352 static void __dl_clear_params(struct sched_dl_entity *dl_se);
353 
354 /*
355  * The utilization of a task cannot be immediately removed from
356  * the rq active utilization (running_bw) when the task blocks.
357  * Instead, we have to wait for the so called "0-lag time".
358  *
359  * If a task blocks before the "0-lag time", a timer (the inactive
360  * timer) is armed, and running_bw is decreased when the timer
361  * fires.
362  *
363  * If the task wakes up again before the inactive timer fires,
364  * the timer is canceled, whereas if the task wakes up after the
365  * inactive timer fired (and running_bw has been decreased) the
366  * task's utilization has to be added to running_bw again.
367  * A flag in the deadline scheduling entity (dl_non_contending)
368  * is used to avoid race conditions between the inactive timer handler
369  * and task wakeups.
370  *
371  * The following diagram shows how running_bw is updated. A task is
372  * "ACTIVE" when its utilization contributes to running_bw; an
373  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
374  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
375  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
376  * time already passed, which does not contribute to running_bw anymore.
377  *                              +------------------+
378  *             wakeup           |    ACTIVE        |
379  *          +------------------>+   contending     |
380  *          | add_running_bw    |                  |
381  *          |                   +----+------+------+
382  *          |                        |      ^
383  *          |                dequeue |      |
384  * +--------+-------+                |      |
385  * |                |   t >= 0-lag   |      | wakeup
386  * |    INACTIVE    |<---------------+      |
387  * |                | sub_running_bw |      |
388  * +--------+-------+                |      |
389  *          ^                        |      |
390  *          |              t < 0-lag |      |
391  *          |                        |      |
392  *          |                        V      |
393  *          |                   +----+------+------+
394  *          | sub_running_bw    |    ACTIVE        |
395  *          +-------------------+                  |
396  *            inactive timer    |  non contending  |
397  *            fired             +------------------+
398  *
399  * The task_non_contending() function is invoked when a task
400  * blocks, and checks if the 0-lag time already passed or
401  * not (in the first case, it directly updates running_bw;
402  * in the second case, it arms the inactive timer).
403  *
404  * The task_contending() function is invoked when a task wakes
405  * up, and checks if the task is still in the "ACTIVE non contending"
406  * state or not (in the second case, it updates running_bw).
407  */
task_non_contending(struct sched_dl_entity * dl_se)408 static void task_non_contending(struct sched_dl_entity *dl_se)
409 {
410 	struct hrtimer *timer = &dl_se->inactive_timer;
411 	struct rq *rq = rq_of_dl_se(dl_se);
412 	struct dl_rq *dl_rq = &rq->dl;
413 	s64 zerolag_time;
414 
415 	/*
416 	 * If this is a non-deadline task that has been boosted,
417 	 * do nothing
418 	 */
419 	if (dl_se->dl_runtime == 0)
420 		return;
421 
422 	if (dl_entity_is_special(dl_se))
423 		return;
424 
425 	WARN_ON(dl_se->dl_non_contending);
426 
427 	zerolag_time = dl_se->deadline -
428 		 div64_long((dl_se->runtime * dl_se->dl_period),
429 			dl_se->dl_runtime);
430 
431 	/*
432 	 * Using relative times instead of the absolute "0-lag time"
433 	 * allows to simplify the code
434 	 */
435 	zerolag_time -= rq_clock(rq);
436 
437 	/*
438 	 * If the "0-lag time" already passed, decrease the active
439 	 * utilization now, instead of starting a timer
440 	 */
441 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
442 		if (dl_server(dl_se)) {
443 			sub_running_bw(dl_se, dl_rq);
444 		} else {
445 			struct task_struct *p = dl_task_of(dl_se);
446 
447 			if (dl_task(p))
448 				sub_running_bw(dl_se, dl_rq);
449 
450 			if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
451 				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
452 
453 				if (READ_ONCE(p->__state) == TASK_DEAD)
454 					sub_rq_bw(dl_se, &rq->dl);
455 				raw_spin_lock(&dl_b->lock);
456 				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
457 				raw_spin_unlock(&dl_b->lock);
458 				__dl_clear_params(dl_se);
459 			}
460 		}
461 
462 		return;
463 	}
464 
465 	dl_se->dl_non_contending = 1;
466 	if (!dl_server(dl_se))
467 		get_task_struct(dl_task_of(dl_se));
468 
469 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
470 }
471 
task_contending(struct sched_dl_entity * dl_se,int flags)472 static void task_contending(struct sched_dl_entity *dl_se, int flags)
473 {
474 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
475 
476 	/*
477 	 * If this is a non-deadline task that has been boosted,
478 	 * do nothing
479 	 */
480 	if (dl_se->dl_runtime == 0)
481 		return;
482 
483 	if (flags & ENQUEUE_MIGRATED)
484 		add_rq_bw(dl_se, dl_rq);
485 
486 	if (dl_se->dl_non_contending) {
487 		dl_se->dl_non_contending = 0;
488 		/*
489 		 * If the timer handler is currently running and the
490 		 * timer cannot be canceled, inactive_task_timer()
491 		 * will see that dl_not_contending is not set, and
492 		 * will not touch the rq's active utilization,
493 		 * so we are still safe.
494 		 */
495 		cancel_inactive_timer(dl_se);
496 	} else {
497 		/*
498 		 * Since "dl_non_contending" is not set, the
499 		 * task's utilization has already been removed from
500 		 * active utilization (either when the task blocked,
501 		 * when the "inactive timer" fired).
502 		 * So, add it back.
503 		 */
504 		add_running_bw(dl_se, dl_rq);
505 	}
506 }
507 
is_leftmost(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)508 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
509 {
510 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
511 }
512 
513 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
514 
init_dl_bw(struct dl_bw * dl_b)515 void init_dl_bw(struct dl_bw *dl_b)
516 {
517 	raw_spin_lock_init(&dl_b->lock);
518 	if (global_rt_runtime() == RUNTIME_INF)
519 		dl_b->bw = -1;
520 	else
521 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
522 	dl_b->total_bw = 0;
523 }
524 
init_dl_rq(struct dl_rq * dl_rq)525 void init_dl_rq(struct dl_rq *dl_rq)
526 {
527 	dl_rq->root = RB_ROOT_CACHED;
528 
529 	/* zero means no -deadline tasks */
530 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
531 
532 	dl_rq->overloaded = 0;
533 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
534 
535 	dl_rq->running_bw = 0;
536 	dl_rq->this_bw = 0;
537 	init_dl_rq_bw_ratio(dl_rq);
538 }
539 
dl_overloaded(struct rq * rq)540 static inline int dl_overloaded(struct rq *rq)
541 {
542 	return atomic_read(&rq->rd->dlo_count);
543 }
544 
dl_set_overload(struct rq * rq)545 static inline void dl_set_overload(struct rq *rq)
546 {
547 	if (!rq->online)
548 		return;
549 
550 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
551 	/*
552 	 * Must be visible before the overload count is
553 	 * set (as in sched_rt.c).
554 	 *
555 	 * Matched by the barrier in pull_dl_task().
556 	 */
557 	smp_wmb();
558 	atomic_inc(&rq->rd->dlo_count);
559 }
560 
dl_clear_overload(struct rq * rq)561 static inline void dl_clear_overload(struct rq *rq)
562 {
563 	if (!rq->online)
564 		return;
565 
566 	atomic_dec(&rq->rd->dlo_count);
567 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
568 }
569 
570 #define __node_2_pdl(node) \
571 	rb_entry((node), struct task_struct, pushable_dl_tasks)
572 
__pushable_less(struct rb_node * a,const struct rb_node * b)573 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
574 {
575 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
576 }
577 
has_pushable_dl_tasks(struct rq * rq)578 static inline int has_pushable_dl_tasks(struct rq *rq)
579 {
580 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
581 }
582 
583 /*
584  * The list of pushable -deadline task is not a plist, like in
585  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
586  */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)587 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
588 {
589 	struct rb_node *leftmost;
590 
591 	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
592 
593 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
594 				 &rq->dl.pushable_dl_tasks_root,
595 				 __pushable_less);
596 	if (leftmost)
597 		rq->dl.earliest_dl.next = p->dl.deadline;
598 
599 	if (!rq->dl.overloaded) {
600 		dl_set_overload(rq);
601 		rq->dl.overloaded = 1;
602 	}
603 }
604 
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)605 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
606 {
607 	struct dl_rq *dl_rq = &rq->dl;
608 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
609 	struct rb_node *leftmost;
610 
611 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
612 		return;
613 
614 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
615 	if (leftmost)
616 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
617 
618 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
619 
620 	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
621 		dl_clear_overload(rq);
622 		rq->dl.overloaded = 0;
623 	}
624 }
625 
626 static int push_dl_task(struct rq *rq);
627 
need_pull_dl_task(struct rq * rq,struct task_struct * prev)628 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
629 {
630 	return rq->online && dl_task(prev);
631 }
632 
633 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
634 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
635 
636 static void push_dl_tasks(struct rq *);
637 static void pull_dl_task(struct rq *);
638 
deadline_queue_push_tasks(struct rq * rq)639 static inline void deadline_queue_push_tasks(struct rq *rq)
640 {
641 	if (!has_pushable_dl_tasks(rq))
642 		return;
643 
644 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
645 }
646 
deadline_queue_pull_task(struct rq * rq)647 static inline void deadline_queue_pull_task(struct rq *rq)
648 {
649 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
650 }
651 
652 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
653 
dl_task_offline_migration(struct rq * rq,struct task_struct * p)654 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
655 {
656 	struct rq *later_rq = NULL;
657 	struct dl_bw *dl_b;
658 
659 	later_rq = find_lock_later_rq(p, rq);
660 	if (!later_rq) {
661 		int cpu;
662 
663 		/*
664 		 * If we cannot preempt any rq, fall back to pick any
665 		 * online CPU:
666 		 */
667 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
668 		if (cpu >= nr_cpu_ids) {
669 			/*
670 			 * Failed to find any suitable CPU.
671 			 * The task will never come back!
672 			 */
673 			WARN_ON_ONCE(dl_bandwidth_enabled());
674 
675 			/*
676 			 * If admission control is disabled we
677 			 * try a little harder to let the task
678 			 * run.
679 			 */
680 			cpu = cpumask_any(cpu_active_mask);
681 		}
682 		later_rq = cpu_rq(cpu);
683 		double_lock_balance(rq, later_rq);
684 	}
685 
686 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
687 		/*
688 		 * Inactive timer is armed (or callback is running, but
689 		 * waiting for us to release rq locks). In any case, when it
690 		 * will fire (or continue), it will see running_bw of this
691 		 * task migrated to later_rq (and correctly handle it).
692 		 */
693 		sub_running_bw(&p->dl, &rq->dl);
694 		sub_rq_bw(&p->dl, &rq->dl);
695 
696 		add_rq_bw(&p->dl, &later_rq->dl);
697 		add_running_bw(&p->dl, &later_rq->dl);
698 	} else {
699 		sub_rq_bw(&p->dl, &rq->dl);
700 		add_rq_bw(&p->dl, &later_rq->dl);
701 	}
702 
703 	/*
704 	 * And we finally need to fix up root_domain(s) bandwidth accounting,
705 	 * since p is still hanging out in the old (now moved to default) root
706 	 * domain.
707 	 */
708 	dl_b = &rq->rd->dl_bw;
709 	raw_spin_lock(&dl_b->lock);
710 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
711 	raw_spin_unlock(&dl_b->lock);
712 
713 	dl_b = &later_rq->rd->dl_bw;
714 	raw_spin_lock(&dl_b->lock);
715 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
716 	raw_spin_unlock(&dl_b->lock);
717 
718 	set_task_cpu(p, later_rq->cpu);
719 	double_unlock_balance(later_rq, rq);
720 
721 	return later_rq;
722 }
723 
724 static void
725 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
726 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
727 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
728 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
729 
replenish_dl_new_period(struct sched_dl_entity * dl_se,struct rq * rq)730 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
731 					    struct rq *rq)
732 {
733 	/* for non-boosted task, pi_of(dl_se) == dl_se */
734 	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
735 	dl_se->runtime = pi_of(dl_se)->dl_runtime;
736 
737 	/*
738 	 * If it is a deferred reservation, and the server
739 	 * is not handling an starvation case, defer it.
740 	 */
741 	if (dl_se->dl_defer && !dl_se->dl_defer_running) {
742 		dl_se->dl_throttled = 1;
743 		dl_se->dl_defer_armed = 1;
744 	}
745 }
746 
747 /*
748  * We are being explicitly informed that a new instance is starting,
749  * and this means that:
750  *  - the absolute deadline of the entity has to be placed at
751  *    current time + relative deadline;
752  *  - the runtime of the entity has to be set to the maximum value.
753  *
754  * The capability of specifying such event is useful whenever a -deadline
755  * entity wants to (try to!) synchronize its behaviour with the scheduler's
756  * one, and to (try to!) reconcile itself with its own scheduling
757  * parameters.
758  */
setup_new_dl_entity(struct sched_dl_entity * dl_se)759 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
760 {
761 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
762 	struct rq *rq = rq_of_dl_rq(dl_rq);
763 
764 	update_rq_clock(rq);
765 
766 	WARN_ON(is_dl_boosted(dl_se));
767 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
768 
769 	/*
770 	 * We are racing with the deadline timer. So, do nothing because
771 	 * the deadline timer handler will take care of properly recharging
772 	 * the runtime and postponing the deadline
773 	 */
774 	if (dl_se->dl_throttled)
775 		return;
776 
777 	/*
778 	 * We use the regular wall clock time to set deadlines in the
779 	 * future; in fact, we must consider execution overheads (time
780 	 * spent on hardirq context, etc.).
781 	 */
782 	replenish_dl_new_period(dl_se, rq);
783 }
784 
785 static int start_dl_timer(struct sched_dl_entity *dl_se);
786 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
787 
788 /*
789  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
790  * possibility of a entity lasting more than what it declared, and thus
791  * exhausting its runtime.
792  *
793  * Here we are interested in making runtime overrun possible, but we do
794  * not want a entity which is misbehaving to affect the scheduling of all
795  * other entities.
796  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
797  * is used, in order to confine each entity within its own bandwidth.
798  *
799  * This function deals exactly with that, and ensures that when the runtime
800  * of a entity is replenished, its deadline is also postponed. That ensures
801  * the overrunning entity can't interfere with other entity in the system and
802  * can't make them miss their deadlines. Reasons why this kind of overruns
803  * could happen are, typically, a entity voluntarily trying to overcome its
804  * runtime, or it just underestimated it during sched_setattr().
805  */
replenish_dl_entity(struct sched_dl_entity * dl_se)806 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
807 {
808 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
809 	struct rq *rq = rq_of_dl_rq(dl_rq);
810 
811 	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
812 
813 	/*
814 	 * This could be the case for a !-dl task that is boosted.
815 	 * Just go with full inherited parameters.
816 	 *
817 	 * Or, it could be the case of a deferred reservation that
818 	 * was not able to consume its runtime in background and
819 	 * reached this point with current u > U.
820 	 *
821 	 * In both cases, set a new period.
822 	 */
823 	if (dl_se->dl_deadline == 0 ||
824 	    (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
825 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
826 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
827 	}
828 
829 	if (dl_se->dl_yielded && dl_se->runtime > 0)
830 		dl_se->runtime = 0;
831 
832 	/*
833 	 * We keep moving the deadline away until we get some
834 	 * available runtime for the entity. This ensures correct
835 	 * handling of situations where the runtime overrun is
836 	 * arbitrary large.
837 	 */
838 	while (dl_se->runtime <= 0) {
839 		dl_se->deadline += pi_of(dl_se)->dl_period;
840 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
841 	}
842 
843 	/*
844 	 * At this point, the deadline really should be "in
845 	 * the future" with respect to rq->clock. If it's
846 	 * not, we are, for some reason, lagging too much!
847 	 * Anyway, after having warn userspace abut that,
848 	 * we still try to keep the things running by
849 	 * resetting the deadline and the budget of the
850 	 * entity.
851 	 */
852 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
853 		printk_deferred_once("sched: DL replenish lagged too much\n");
854 		replenish_dl_new_period(dl_se, rq);
855 	}
856 
857 	if (dl_se->dl_yielded)
858 		dl_se->dl_yielded = 0;
859 	if (dl_se->dl_throttled)
860 		dl_se->dl_throttled = 0;
861 
862 	/*
863 	 * If this is the replenishment of a deferred reservation,
864 	 * clear the flag and return.
865 	 */
866 	if (dl_se->dl_defer_armed) {
867 		dl_se->dl_defer_armed = 0;
868 		return;
869 	}
870 
871 	/*
872 	 * A this point, if the deferred server is not armed, and the deadline
873 	 * is in the future, if it is not running already, throttle the server
874 	 * and arm the defer timer.
875 	 */
876 	if (dl_se->dl_defer && !dl_se->dl_defer_running &&
877 	    dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
878 		if (!is_dl_boosted(dl_se)) {
879 
880 			/*
881 			 * Set dl_se->dl_defer_armed and dl_throttled variables to
882 			 * inform the start_dl_timer() that this is a deferred
883 			 * activation.
884 			 */
885 			dl_se->dl_defer_armed = 1;
886 			dl_se->dl_throttled = 1;
887 			if (!start_dl_timer(dl_se)) {
888 				/*
889 				 * If for whatever reason (delays), a previous timer was
890 				 * queued but not serviced, cancel it and clean the
891 				 * deferrable server variables intended for start_dl_timer().
892 				 */
893 				hrtimer_try_to_cancel(&dl_se->dl_timer);
894 				dl_se->dl_defer_armed = 0;
895 				dl_se->dl_throttled = 0;
896 			}
897 		}
898 	}
899 }
900 
901 /*
902  * Here we check if --at time t-- an entity (which is probably being
903  * [re]activated or, in general, enqueued) can use its remaining runtime
904  * and its current deadline _without_ exceeding the bandwidth it is
905  * assigned (function returns true if it can't). We are in fact applying
906  * one of the CBS rules: when a task wakes up, if the residual runtime
907  * over residual deadline fits within the allocated bandwidth, then we
908  * can keep the current (absolute) deadline and residual budget without
909  * disrupting the schedulability of the system. Otherwise, we should
910  * refill the runtime and set the deadline a period in the future,
911  * because keeping the current (absolute) deadline of the task would
912  * result in breaking guarantees promised to other tasks (refer to
913  * Documentation/scheduler/sched-deadline.rst for more information).
914  *
915  * This function returns true if:
916  *
917  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
918  *
919  * IOW we can't recycle current parameters.
920  *
921  * Notice that the bandwidth check is done against the deadline. For
922  * task with deadline equal to period this is the same of using
923  * dl_period instead of dl_deadline in the equation above.
924  */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)925 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
926 {
927 	u64 left, right;
928 
929 	/*
930 	 * left and right are the two sides of the equation above,
931 	 * after a bit of shuffling to use multiplications instead
932 	 * of divisions.
933 	 *
934 	 * Note that none of the time values involved in the two
935 	 * multiplications are absolute: dl_deadline and dl_runtime
936 	 * are the relative deadline and the maximum runtime of each
937 	 * instance, runtime is the runtime left for the last instance
938 	 * and (deadline - t), since t is rq->clock, is the time left
939 	 * to the (absolute) deadline. Even if overflowing the u64 type
940 	 * is very unlikely to occur in both cases, here we scale down
941 	 * as we want to avoid that risk at all. Scaling down by 10
942 	 * means that we reduce granularity to 1us. We are fine with it,
943 	 * since this is only a true/false check and, anyway, thinking
944 	 * of anything below microseconds resolution is actually fiction
945 	 * (but still we want to give the user that illusion >;).
946 	 */
947 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
948 	right = ((dl_se->deadline - t) >> DL_SCALE) *
949 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
950 
951 	return dl_time_before(right, left);
952 }
953 
954 /*
955  * Revised wakeup rule [1]: For self-suspending tasks, rather then
956  * re-initializing task's runtime and deadline, the revised wakeup
957  * rule adjusts the task's runtime to avoid the task to overrun its
958  * density.
959  *
960  * Reasoning: a task may overrun the density if:
961  *    runtime / (deadline - t) > dl_runtime / dl_deadline
962  *
963  * Therefore, runtime can be adjusted to:
964  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
965  *
966  * In such way that runtime will be equal to the maximum density
967  * the task can use without breaking any rule.
968  *
969  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
970  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
971  */
972 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)973 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
974 {
975 	u64 laxity = dl_se->deadline - rq_clock(rq);
976 
977 	/*
978 	 * If the task has deadline < period, and the deadline is in the past,
979 	 * it should already be throttled before this check.
980 	 *
981 	 * See update_dl_entity() comments for further details.
982 	 */
983 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
984 
985 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
986 }
987 
988 /*
989  * Regarding the deadline, a task with implicit deadline has a relative
990  * deadline == relative period. A task with constrained deadline has a
991  * relative deadline <= relative period.
992  *
993  * We support constrained deadline tasks. However, there are some restrictions
994  * applied only for tasks which do not have an implicit deadline. See
995  * update_dl_entity() to know more about such restrictions.
996  *
997  * The dl_is_implicit() returns true if the task has an implicit deadline.
998  */
dl_is_implicit(struct sched_dl_entity * dl_se)999 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
1000 {
1001 	return dl_se->dl_deadline == dl_se->dl_period;
1002 }
1003 
1004 /*
1005  * When a deadline entity is placed in the runqueue, its runtime and deadline
1006  * might need to be updated. This is done by a CBS wake up rule. There are two
1007  * different rules: 1) the original CBS; and 2) the Revisited CBS.
1008  *
1009  * When the task is starting a new period, the Original CBS is used. In this
1010  * case, the runtime is replenished and a new absolute deadline is set.
1011  *
1012  * When a task is queued before the begin of the next period, using the
1013  * remaining runtime and deadline could make the entity to overflow, see
1014  * dl_entity_overflow() to find more about runtime overflow. When such case
1015  * is detected, the runtime and deadline need to be updated.
1016  *
1017  * If the task has an implicit deadline, i.e., deadline == period, the Original
1018  * CBS is applied. The runtime is replenished and a new absolute deadline is
1019  * set, as in the previous cases.
1020  *
1021  * However, the Original CBS does not work properly for tasks with
1022  * deadline < period, which are said to have a constrained deadline. By
1023  * applying the Original CBS, a constrained deadline task would be able to run
1024  * runtime/deadline in a period. With deadline < period, the task would
1025  * overrun the runtime/period allowed bandwidth, breaking the admission test.
1026  *
1027  * In order to prevent this misbehave, the Revisited CBS is used for
1028  * constrained deadline tasks when a runtime overflow is detected. In the
1029  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1030  * the remaining runtime of the task is reduced to avoid runtime overflow.
1031  * Please refer to the comments update_dl_revised_wakeup() function to find
1032  * more about the Revised CBS rule.
1033  */
update_dl_entity(struct sched_dl_entity * dl_se)1034 static void update_dl_entity(struct sched_dl_entity *dl_se)
1035 {
1036 	struct rq *rq = rq_of_dl_se(dl_se);
1037 
1038 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1039 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1040 
1041 		if (unlikely(!dl_is_implicit(dl_se) &&
1042 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1043 			     !is_dl_boosted(dl_se))) {
1044 			update_dl_revised_wakeup(dl_se, rq);
1045 			return;
1046 		}
1047 
1048 		replenish_dl_new_period(dl_se, rq);
1049 	} else if (dl_server(dl_se) && dl_se->dl_defer) {
1050 		/*
1051 		 * The server can still use its previous deadline, so check if
1052 		 * it left the dl_defer_running state.
1053 		 */
1054 		if (!dl_se->dl_defer_running) {
1055 			dl_se->dl_defer_armed = 1;
1056 			dl_se->dl_throttled = 1;
1057 		}
1058 	}
1059 }
1060 
dl_next_period(struct sched_dl_entity * dl_se)1061 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1062 {
1063 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1064 }
1065 
1066 /*
1067  * If the entity depleted all its runtime, and if we want it to sleep
1068  * while waiting for some new execution time to become available, we
1069  * set the bandwidth replenishment timer to the replenishment instant
1070  * and try to activate it.
1071  *
1072  * Notice that it is important for the caller to know if the timer
1073  * actually started or not (i.e., the replenishment instant is in
1074  * the future or in the past).
1075  */
start_dl_timer(struct sched_dl_entity * dl_se)1076 static int start_dl_timer(struct sched_dl_entity *dl_se)
1077 {
1078 	struct hrtimer *timer = &dl_se->dl_timer;
1079 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1080 	struct rq *rq = rq_of_dl_rq(dl_rq);
1081 	ktime_t now, act;
1082 	s64 delta;
1083 
1084 	lockdep_assert_rq_held(rq);
1085 
1086 	/*
1087 	 * We want the timer to fire at the deadline, but considering
1088 	 * that it is actually coming from rq->clock and not from
1089 	 * hrtimer's time base reading.
1090 	 *
1091 	 * The deferred reservation will have its timer set to
1092 	 * (deadline - runtime). At that point, the CBS rule will decide
1093 	 * if the current deadline can be used, or if a replenishment is
1094 	 * required to avoid add too much pressure on the system
1095 	 * (current u > U).
1096 	 */
1097 	if (dl_se->dl_defer_armed) {
1098 		WARN_ON_ONCE(!dl_se->dl_throttled);
1099 		act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1100 	} else {
1101 		/* act = deadline - rel-deadline + period */
1102 		act = ns_to_ktime(dl_next_period(dl_se));
1103 	}
1104 
1105 	now = hrtimer_cb_get_time(timer);
1106 	delta = ktime_to_ns(now) - rq_clock(rq);
1107 	act = ktime_add_ns(act, delta);
1108 
1109 	/*
1110 	 * If the expiry time already passed, e.g., because the value
1111 	 * chosen as the deadline is too small, don't even try to
1112 	 * start the timer in the past!
1113 	 */
1114 	if (ktime_us_delta(act, now) < 0)
1115 		return 0;
1116 
1117 	/*
1118 	 * !enqueued will guarantee another callback; even if one is already in
1119 	 * progress. This ensures a balanced {get,put}_task_struct().
1120 	 *
1121 	 * The race against __run_timer() clearing the enqueued state is
1122 	 * harmless because we're holding task_rq()->lock, therefore the timer
1123 	 * expiring after we've done the check will wait on its task_rq_lock()
1124 	 * and observe our state.
1125 	 */
1126 	if (!hrtimer_is_queued(timer)) {
1127 		if (!dl_server(dl_se))
1128 			get_task_struct(dl_task_of(dl_se));
1129 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1130 	}
1131 
1132 	return 1;
1133 }
1134 
__push_dl_task(struct rq * rq,struct rq_flags * rf)1135 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1136 {
1137 	/*
1138 	 * Queueing this task back might have overloaded rq, check if we need
1139 	 * to kick someone away.
1140 	 */
1141 	if (has_pushable_dl_tasks(rq)) {
1142 		/*
1143 		 * Nothing relies on rq->lock after this, so its safe to drop
1144 		 * rq->lock.
1145 		 */
1146 		rq_unpin_lock(rq, rf);
1147 		push_dl_task(rq);
1148 		rq_repin_lock(rq, rf);
1149 	}
1150 }
1151 
1152 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1153 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1154 
dl_server_timer(struct hrtimer * timer,struct sched_dl_entity * dl_se)1155 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1156 {
1157 	struct rq *rq = rq_of_dl_se(dl_se);
1158 	u64 fw;
1159 
1160 	scoped_guard (rq_lock, rq) {
1161 		struct rq_flags *rf = &scope.rf;
1162 
1163 		if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1164 			return HRTIMER_NORESTART;
1165 
1166 		sched_clock_tick();
1167 		update_rq_clock(rq);
1168 
1169 		if (!dl_se->dl_runtime)
1170 			return HRTIMER_NORESTART;
1171 
1172 		if (dl_se->dl_defer_armed) {
1173 			/*
1174 			 * First check if the server could consume runtime in background.
1175 			 * If so, it is possible to push the defer timer for this amount
1176 			 * of time. The dl_server_min_res serves as a limit to avoid
1177 			 * forwarding the timer for a too small amount of time.
1178 			 */
1179 			if (dl_time_before(rq_clock(dl_se->rq),
1180 					   (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1181 
1182 				/* reset the defer timer */
1183 				fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1184 
1185 				hrtimer_forward_now(timer, ns_to_ktime(fw));
1186 				return HRTIMER_RESTART;
1187 			}
1188 
1189 			dl_se->dl_defer_running = 1;
1190 		}
1191 
1192 		enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1193 
1194 		if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1195 			resched_curr(rq);
1196 
1197 		__push_dl_task(rq, rf);
1198 	}
1199 
1200 	return HRTIMER_NORESTART;
1201 }
1202 
1203 /*
1204  * This is the bandwidth enforcement timer callback. If here, we know
1205  * a task is not on its dl_rq, since the fact that the timer was running
1206  * means the task is throttled and needs a runtime replenishment.
1207  *
1208  * However, what we actually do depends on the fact the task is active,
1209  * (it is on its rq) or has been removed from there by a call to
1210  * dequeue_task_dl(). In the former case we must issue the runtime
1211  * replenishment and add the task back to the dl_rq; in the latter, we just
1212  * do nothing but clearing dl_throttled, so that runtime and deadline
1213  * updating (and the queueing back to dl_rq) will be done by the
1214  * next call to enqueue_task_dl().
1215  */
dl_task_timer(struct hrtimer * timer)1216 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1217 {
1218 	struct sched_dl_entity *dl_se = container_of(timer,
1219 						     struct sched_dl_entity,
1220 						     dl_timer);
1221 	struct task_struct *p;
1222 	struct rq_flags rf;
1223 	struct rq *rq;
1224 
1225 	if (dl_server(dl_se))
1226 		return dl_server_timer(timer, dl_se);
1227 
1228 	p = dl_task_of(dl_se);
1229 	rq = task_rq_lock(p, &rf);
1230 
1231 	/*
1232 	 * The task might have changed its scheduling policy to something
1233 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1234 	 */
1235 	if (!dl_task(p))
1236 		goto unlock;
1237 
1238 	/*
1239 	 * The task might have been boosted by someone else and might be in the
1240 	 * boosting/deboosting path, its not throttled.
1241 	 */
1242 	if (is_dl_boosted(dl_se))
1243 		goto unlock;
1244 
1245 	/*
1246 	 * Spurious timer due to start_dl_timer() race; or we already received
1247 	 * a replenishment from rt_mutex_setprio().
1248 	 */
1249 	if (!dl_se->dl_throttled)
1250 		goto unlock;
1251 
1252 	sched_clock_tick();
1253 	update_rq_clock(rq);
1254 
1255 	/*
1256 	 * If the throttle happened during sched-out; like:
1257 	 *
1258 	 *   schedule()
1259 	 *     deactivate_task()
1260 	 *       dequeue_task_dl()
1261 	 *         update_curr_dl()
1262 	 *           start_dl_timer()
1263 	 *         __dequeue_task_dl()
1264 	 *     prev->on_rq = 0;
1265 	 *
1266 	 * We can be both throttled and !queued. Replenish the counter
1267 	 * but do not enqueue -- wait for our wakeup to do that.
1268 	 */
1269 	if (!task_on_rq_queued(p)) {
1270 		replenish_dl_entity(dl_se);
1271 		goto unlock;
1272 	}
1273 
1274 	if (unlikely(!rq->online)) {
1275 		/*
1276 		 * If the runqueue is no longer available, migrate the
1277 		 * task elsewhere. This necessarily changes rq.
1278 		 */
1279 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1280 		rq = dl_task_offline_migration(rq, p);
1281 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1282 		update_rq_clock(rq);
1283 
1284 		/*
1285 		 * Now that the task has been migrated to the new RQ and we
1286 		 * have that locked, proceed as normal and enqueue the task
1287 		 * there.
1288 		 */
1289 	}
1290 
1291 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1292 	if (dl_task(rq->donor))
1293 		wakeup_preempt_dl(rq, p, 0);
1294 	else
1295 		resched_curr(rq);
1296 
1297 	__push_dl_task(rq, &rf);
1298 
1299 unlock:
1300 	task_rq_unlock(rq, p, &rf);
1301 
1302 	/*
1303 	 * This can free the task_struct, including this hrtimer, do not touch
1304 	 * anything related to that after this.
1305 	 */
1306 	put_task_struct(p);
1307 
1308 	return HRTIMER_NORESTART;
1309 }
1310 
init_dl_task_timer(struct sched_dl_entity * dl_se)1311 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1312 {
1313 	struct hrtimer *timer = &dl_se->dl_timer;
1314 
1315 	hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1316 }
1317 
1318 /*
1319  * During the activation, CBS checks if it can reuse the current task's
1320  * runtime and period. If the deadline of the task is in the past, CBS
1321  * cannot use the runtime, and so it replenishes the task. This rule
1322  * works fine for implicit deadline tasks (deadline == period), and the
1323  * CBS was designed for implicit deadline tasks. However, a task with
1324  * constrained deadline (deadline < period) might be awakened after the
1325  * deadline, but before the next period. In this case, replenishing the
1326  * task would allow it to run for runtime / deadline. As in this case
1327  * deadline < period, CBS enables a task to run for more than the
1328  * runtime / period. In a very loaded system, this can cause a domino
1329  * effect, making other tasks miss their deadlines.
1330  *
1331  * To avoid this problem, in the activation of a constrained deadline
1332  * task after the deadline but before the next period, throttle the
1333  * task and set the replenishing timer to the begin of the next period,
1334  * unless it is boosted.
1335  */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1336 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1337 {
1338 	struct rq *rq = rq_of_dl_se(dl_se);
1339 
1340 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1341 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1342 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1343 			return;
1344 		dl_se->dl_throttled = 1;
1345 		if (dl_se->runtime > 0)
1346 			dl_se->runtime = 0;
1347 	}
1348 }
1349 
1350 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1351 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1352 {
1353 	return (dl_se->runtime <= 0);
1354 }
1355 
1356 /*
1357  * This function implements the GRUB accounting rule. According to the
1358  * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1359  * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1360  * where u is the utilization of the task, Umax is the maximum reclaimable
1361  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1362  * as the difference between the "total runqueue utilization" and the
1363  * "runqueue active utilization", and Uextra is the (per runqueue) extra
1364  * reclaimable utilization.
1365  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1366  * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1367  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1368  * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1369  * Since delta is a 64 bit variable, to have an overflow its value should be
1370  * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1371  * not an issue here.
1372  */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1373 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1374 {
1375 	u64 u_act;
1376 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1377 
1378 	/*
1379 	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1380 	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1381 	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1382 	 * negative leading to wrong results.
1383 	 */
1384 	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1385 		u_act = dl_se->dl_bw;
1386 	else
1387 		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1388 
1389 	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1390 	return (delta * u_act) >> BW_SHIFT;
1391 }
1392 
dl_scaled_delta_exec(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1393 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1394 {
1395 	s64 scaled_delta_exec;
1396 
1397 	/*
1398 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1399 	 * spare reclaimed bandwidth is used to clock down frequency.
1400 	 *
1401 	 * For the others, we still need to scale reservation parameters
1402 	 * according to current frequency and CPU maximum capacity.
1403 	 */
1404 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1405 		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1406 	} else {
1407 		int cpu = cpu_of(rq);
1408 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1409 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1410 
1411 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1412 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1413 	}
1414 
1415 	return scaled_delta_exec;
1416 }
1417 
1418 static inline void
1419 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1420 			int flags);
update_curr_dl_se(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1421 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1422 {
1423 	s64 scaled_delta_exec;
1424 
1425 	if (unlikely(delta_exec <= 0)) {
1426 		if (unlikely(dl_se->dl_yielded))
1427 			goto throttle;
1428 		return;
1429 	}
1430 
1431 	if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1432 		return;
1433 
1434 	if (dl_entity_is_special(dl_se))
1435 		return;
1436 
1437 	scaled_delta_exec = delta_exec;
1438 	if (!dl_server(dl_se))
1439 		scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1440 
1441 	dl_se->runtime -= scaled_delta_exec;
1442 
1443 	/*
1444 	 * The fair server can consume its runtime while throttled (not queued/
1445 	 * running as regular CFS).
1446 	 *
1447 	 * If the server consumes its entire runtime in this state. The server
1448 	 * is not required for the current period. Thus, reset the server by
1449 	 * starting a new period, pushing the activation.
1450 	 */
1451 	if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1452 		/*
1453 		 * If the server was previously activated - the starving condition
1454 		 * took place, it this point it went away because the fair scheduler
1455 		 * was able to get runtime in background. So return to the initial
1456 		 * state.
1457 		 */
1458 		dl_se->dl_defer_running = 0;
1459 
1460 		hrtimer_try_to_cancel(&dl_se->dl_timer);
1461 
1462 		replenish_dl_new_period(dl_se, dl_se->rq);
1463 
1464 		/*
1465 		 * Not being able to start the timer seems problematic. If it could not
1466 		 * be started for whatever reason, we need to "unthrottle" the DL server
1467 		 * and queue right away. Otherwise nothing might queue it. That's similar
1468 		 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1469 		 */
1470 		WARN_ON_ONCE(!start_dl_timer(dl_se));
1471 
1472 		return;
1473 	}
1474 
1475 throttle:
1476 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1477 		dl_se->dl_throttled = 1;
1478 
1479 		/* If requested, inform the user about runtime overruns. */
1480 		if (dl_runtime_exceeded(dl_se) &&
1481 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1482 			dl_se->dl_overrun = 1;
1483 
1484 		dequeue_dl_entity(dl_se, 0);
1485 		if (!dl_server(dl_se)) {
1486 			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1487 			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1488 		}
1489 
1490 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1491 			if (dl_server(dl_se)) {
1492 				replenish_dl_new_period(dl_se, rq);
1493 				start_dl_timer(dl_se);
1494 			} else {
1495 				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1496 			}
1497 		}
1498 
1499 		if (!is_leftmost(dl_se, &rq->dl))
1500 			resched_curr(rq);
1501 	}
1502 
1503 	/*
1504 	 * The fair server (sole dl_server) does not account for real-time
1505 	 * workload because it is running fair work.
1506 	 */
1507 	if (dl_se == &rq->fair_server)
1508 		return;
1509 
1510 #ifdef CONFIG_RT_GROUP_SCHED
1511 	/*
1512 	 * Because -- for now -- we share the rt bandwidth, we need to
1513 	 * account our runtime there too, otherwise actual rt tasks
1514 	 * would be able to exceed the shared quota.
1515 	 *
1516 	 * Account to the root rt group for now.
1517 	 *
1518 	 * The solution we're working towards is having the RT groups scheduled
1519 	 * using deadline servers -- however there's a few nasties to figure
1520 	 * out before that can happen.
1521 	 */
1522 	if (rt_bandwidth_enabled()) {
1523 		struct rt_rq *rt_rq = &rq->rt;
1524 
1525 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1526 		/*
1527 		 * We'll let actual RT tasks worry about the overflow here, we
1528 		 * have our own CBS to keep us inline; only account when RT
1529 		 * bandwidth is relevant.
1530 		 */
1531 		if (sched_rt_bandwidth_account(rt_rq))
1532 			rt_rq->rt_time += delta_exec;
1533 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1534 	}
1535 #endif /* CONFIG_RT_GROUP_SCHED */
1536 }
1537 
1538 /*
1539  * In the non-defer mode, the idle time is not accounted, as the
1540  * server provides a guarantee.
1541  *
1542  * If the dl_server is in defer mode, the idle time is also considered
1543  * as time available for the fair server, avoiding a penalty for the
1544  * rt scheduler that did not consumed that time.
1545  */
dl_server_update_idle_time(struct rq * rq,struct task_struct * p)1546 void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
1547 {
1548 	s64 delta_exec;
1549 
1550 	if (!rq->fair_server.dl_defer)
1551 		return;
1552 
1553 	/* no need to discount more */
1554 	if (rq->fair_server.runtime < 0)
1555 		return;
1556 
1557 	delta_exec = rq_clock_task(rq) - p->se.exec_start;
1558 	if (delta_exec < 0)
1559 		return;
1560 
1561 	rq->fair_server.runtime -= delta_exec;
1562 
1563 	if (rq->fair_server.runtime < 0) {
1564 		rq->fair_server.dl_defer_running = 0;
1565 		rq->fair_server.runtime = 0;
1566 	}
1567 
1568 	p->se.exec_start = rq_clock_task(rq);
1569 }
1570 
dl_server_update(struct sched_dl_entity * dl_se,s64 delta_exec)1571 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1572 {
1573 	/* 0 runtime = fair server disabled */
1574 	if (dl_se->dl_runtime)
1575 		update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1576 }
1577 
dl_server_start(struct sched_dl_entity * dl_se)1578 void dl_server_start(struct sched_dl_entity *dl_se)
1579 {
1580 	struct rq *rq = dl_se->rq;
1581 
1582 	if (!dl_server(dl_se) || dl_se->dl_server_active)
1583 		return;
1584 
1585 	dl_se->dl_server_active = 1;
1586 	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1587 	if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1588 		resched_curr(dl_se->rq);
1589 }
1590 
dl_server_stop(struct sched_dl_entity * dl_se)1591 void dl_server_stop(struct sched_dl_entity *dl_se)
1592 {
1593 	if (!dl_server(dl_se) || !dl_server_active(dl_se))
1594 		return;
1595 
1596 	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1597 	hrtimer_try_to_cancel(&dl_se->dl_timer);
1598 	dl_se->dl_defer_armed = 0;
1599 	dl_se->dl_throttled = 0;
1600 	dl_se->dl_server_active = 0;
1601 }
1602 
dl_server_init(struct sched_dl_entity * dl_se,struct rq * rq,dl_server_pick_f pick_task)1603 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1604 		    dl_server_pick_f pick_task)
1605 {
1606 	dl_se->rq = rq;
1607 	dl_se->server_pick_task = pick_task;
1608 }
1609 
sched_init_dl_servers(void)1610 void sched_init_dl_servers(void)
1611 {
1612 	int cpu;
1613 	struct rq *rq;
1614 	struct sched_dl_entity *dl_se;
1615 
1616 	for_each_online_cpu(cpu) {
1617 		u64 runtime =  50 * NSEC_PER_MSEC;
1618 		u64 period = 1000 * NSEC_PER_MSEC;
1619 
1620 		rq = cpu_rq(cpu);
1621 
1622 		guard(rq_lock_irq)(rq);
1623 
1624 		dl_se = &rq->fair_server;
1625 
1626 		WARN_ON(dl_server(dl_se));
1627 
1628 		dl_server_apply_params(dl_se, runtime, period, 1);
1629 
1630 		dl_se->dl_server = 1;
1631 		dl_se->dl_defer = 1;
1632 		setup_new_dl_entity(dl_se);
1633 	}
1634 }
1635 
__dl_server_attach_root(struct sched_dl_entity * dl_se,struct rq * rq)1636 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1637 {
1638 	u64 new_bw = dl_se->dl_bw;
1639 	int cpu = cpu_of(rq);
1640 	struct dl_bw *dl_b;
1641 
1642 	dl_b = dl_bw_of(cpu_of(rq));
1643 	guard(raw_spinlock)(&dl_b->lock);
1644 
1645 	if (!dl_bw_cpus(cpu))
1646 		return;
1647 
1648 	__dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1649 }
1650 
dl_server_apply_params(struct sched_dl_entity * dl_se,u64 runtime,u64 period,bool init)1651 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1652 {
1653 	u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1654 	u64 new_bw = to_ratio(period, runtime);
1655 	struct rq *rq = dl_se->rq;
1656 	int cpu = cpu_of(rq);
1657 	struct dl_bw *dl_b;
1658 	unsigned long cap;
1659 	int retval = 0;
1660 	int cpus;
1661 
1662 	dl_b = dl_bw_of(cpu);
1663 	guard(raw_spinlock)(&dl_b->lock);
1664 
1665 	cpus = dl_bw_cpus(cpu);
1666 	cap = dl_bw_capacity(cpu);
1667 
1668 	if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1669 		return -EBUSY;
1670 
1671 	if (init) {
1672 		__add_rq_bw(new_bw, &rq->dl);
1673 		__dl_add(dl_b, new_bw, cpus);
1674 	} else {
1675 		__dl_sub(dl_b, dl_se->dl_bw, cpus);
1676 		__dl_add(dl_b, new_bw, cpus);
1677 
1678 		dl_rq_change_utilization(rq, dl_se, new_bw);
1679 	}
1680 
1681 	dl_se->dl_runtime = runtime;
1682 	dl_se->dl_deadline = period;
1683 	dl_se->dl_period = period;
1684 
1685 	dl_se->runtime = 0;
1686 	dl_se->deadline = 0;
1687 
1688 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1689 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1690 
1691 	return retval;
1692 }
1693 
1694 /*
1695  * Update the current task's runtime statistics (provided it is still
1696  * a -deadline task and has not been removed from the dl_rq).
1697  */
update_curr_dl(struct rq * rq)1698 static void update_curr_dl(struct rq *rq)
1699 {
1700 	struct task_struct *donor = rq->donor;
1701 	struct sched_dl_entity *dl_se = &donor->dl;
1702 	s64 delta_exec;
1703 
1704 	if (!dl_task(donor) || !on_dl_rq(dl_se))
1705 		return;
1706 
1707 	/*
1708 	 * Consumed budget is computed considering the time as
1709 	 * observed by schedulable tasks (excluding time spent
1710 	 * in hardirq context, etc.). Deadlines are instead
1711 	 * computed using hard walltime. This seems to be the more
1712 	 * natural solution, but the full ramifications of this
1713 	 * approach need further study.
1714 	 */
1715 	delta_exec = update_curr_common(rq);
1716 	update_curr_dl_se(rq, dl_se, delta_exec);
1717 }
1718 
inactive_task_timer(struct hrtimer * timer)1719 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1720 {
1721 	struct sched_dl_entity *dl_se = container_of(timer,
1722 						     struct sched_dl_entity,
1723 						     inactive_timer);
1724 	struct task_struct *p = NULL;
1725 	struct rq_flags rf;
1726 	struct rq *rq;
1727 
1728 	if (!dl_server(dl_se)) {
1729 		p = dl_task_of(dl_se);
1730 		rq = task_rq_lock(p, &rf);
1731 	} else {
1732 		rq = dl_se->rq;
1733 		rq_lock(rq, &rf);
1734 	}
1735 
1736 	sched_clock_tick();
1737 	update_rq_clock(rq);
1738 
1739 	if (dl_server(dl_se))
1740 		goto no_task;
1741 
1742 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1743 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1744 
1745 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1746 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1747 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1748 			dl_se->dl_non_contending = 0;
1749 		}
1750 
1751 		raw_spin_lock(&dl_b->lock);
1752 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1753 		raw_spin_unlock(&dl_b->lock);
1754 		__dl_clear_params(dl_se);
1755 
1756 		goto unlock;
1757 	}
1758 
1759 no_task:
1760 	if (dl_se->dl_non_contending == 0)
1761 		goto unlock;
1762 
1763 	sub_running_bw(dl_se, &rq->dl);
1764 	dl_se->dl_non_contending = 0;
1765 unlock:
1766 
1767 	if (!dl_server(dl_se)) {
1768 		task_rq_unlock(rq, p, &rf);
1769 		put_task_struct(p);
1770 	} else {
1771 		rq_unlock(rq, &rf);
1772 	}
1773 
1774 	return HRTIMER_NORESTART;
1775 }
1776 
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1777 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1778 {
1779 	struct hrtimer *timer = &dl_se->inactive_timer;
1780 
1781 	hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1782 }
1783 
1784 #define __node_2_dle(node) \
1785 	rb_entry((node), struct sched_dl_entity, rb_node)
1786 
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1787 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1788 {
1789 	struct rq *rq = rq_of_dl_rq(dl_rq);
1790 
1791 	if (dl_rq->earliest_dl.curr == 0 ||
1792 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1793 		if (dl_rq->earliest_dl.curr == 0)
1794 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1795 		dl_rq->earliest_dl.curr = deadline;
1796 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1797 	}
1798 }
1799 
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1800 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1801 {
1802 	struct rq *rq = rq_of_dl_rq(dl_rq);
1803 
1804 	/*
1805 	 * Since we may have removed our earliest (and/or next earliest)
1806 	 * task we must recompute them.
1807 	 */
1808 	if (!dl_rq->dl_nr_running) {
1809 		dl_rq->earliest_dl.curr = 0;
1810 		dl_rq->earliest_dl.next = 0;
1811 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1812 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1813 	} else {
1814 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1815 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1816 
1817 		dl_rq->earliest_dl.curr = entry->deadline;
1818 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1819 	}
1820 }
1821 
1822 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1823 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1824 {
1825 	u64 deadline = dl_se->deadline;
1826 
1827 	dl_rq->dl_nr_running++;
1828 
1829 	if (!dl_server(dl_se))
1830 		add_nr_running(rq_of_dl_rq(dl_rq), 1);
1831 
1832 	inc_dl_deadline(dl_rq, deadline);
1833 }
1834 
1835 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1836 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1837 {
1838 	WARN_ON(!dl_rq->dl_nr_running);
1839 	dl_rq->dl_nr_running--;
1840 
1841 	if (!dl_server(dl_se))
1842 		sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1843 
1844 	dec_dl_deadline(dl_rq, dl_se->deadline);
1845 }
1846 
__dl_less(struct rb_node * a,const struct rb_node * b)1847 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1848 {
1849 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1850 }
1851 
1852 static __always_inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)1853 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1854 {
1855 	if (!schedstat_enabled())
1856 		return NULL;
1857 
1858 	if (dl_server(dl_se))
1859 		return NULL;
1860 
1861 	return &dl_task_of(dl_se)->stats;
1862 }
1863 
1864 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1865 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1866 {
1867 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1868 	if (stats)
1869 		__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1870 }
1871 
1872 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1873 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1874 {
1875 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1876 	if (stats)
1877 		__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1878 }
1879 
1880 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1881 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1882 {
1883 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1884 	if (stats)
1885 		__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1886 }
1887 
1888 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1889 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1890 			int flags)
1891 {
1892 	if (!schedstat_enabled())
1893 		return;
1894 
1895 	if (flags & ENQUEUE_WAKEUP)
1896 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1897 }
1898 
1899 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1900 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1901 			int flags)
1902 {
1903 	struct task_struct *p = dl_task_of(dl_se);
1904 
1905 	if (!schedstat_enabled())
1906 		return;
1907 
1908 	if ((flags & DEQUEUE_SLEEP)) {
1909 		unsigned int state;
1910 
1911 		state = READ_ONCE(p->__state);
1912 		if (state & TASK_INTERRUPTIBLE)
1913 			__schedstat_set(p->stats.sleep_start,
1914 					rq_clock(rq_of_dl_rq(dl_rq)));
1915 
1916 		if (state & TASK_UNINTERRUPTIBLE)
1917 			__schedstat_set(p->stats.block_start,
1918 					rq_clock(rq_of_dl_rq(dl_rq)));
1919 	}
1920 }
1921 
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1922 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1923 {
1924 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1925 
1926 	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1927 
1928 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1929 
1930 	inc_dl_tasks(dl_se, dl_rq);
1931 }
1932 
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1933 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1934 {
1935 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1936 
1937 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1938 		return;
1939 
1940 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1941 
1942 	RB_CLEAR_NODE(&dl_se->rb_node);
1943 
1944 	dec_dl_tasks(dl_se, dl_rq);
1945 }
1946 
1947 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1948 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1949 {
1950 	WARN_ON_ONCE(on_dl_rq(dl_se));
1951 
1952 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1953 
1954 	/*
1955 	 * Check if a constrained deadline task was activated
1956 	 * after the deadline but before the next period.
1957 	 * If that is the case, the task will be throttled and
1958 	 * the replenishment timer will be set to the next period.
1959 	 */
1960 	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
1961 		dl_check_constrained_dl(dl_se);
1962 
1963 	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
1964 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1965 
1966 		add_rq_bw(dl_se, dl_rq);
1967 		add_running_bw(dl_se, dl_rq);
1968 	}
1969 
1970 	/*
1971 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1972 	 * its budget it needs a replenishment and, since it now is on
1973 	 * its rq, the bandwidth timer callback (which clearly has not
1974 	 * run yet) will take care of this.
1975 	 * However, the active utilization does not depend on the fact
1976 	 * that the task is on the runqueue or not (but depends on the
1977 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1978 	 * In other words, even if a task is throttled its utilization must
1979 	 * be counted in the active utilization; hence, we need to call
1980 	 * add_running_bw().
1981 	 */
1982 	if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1983 		if (flags & ENQUEUE_WAKEUP)
1984 			task_contending(dl_se, flags);
1985 
1986 		return;
1987 	}
1988 
1989 	/*
1990 	 * If this is a wakeup or a new instance, the scheduling
1991 	 * parameters of the task might need updating. Otherwise,
1992 	 * we want a replenishment of its runtime.
1993 	 */
1994 	if (flags & ENQUEUE_WAKEUP) {
1995 		task_contending(dl_se, flags);
1996 		update_dl_entity(dl_se);
1997 	} else if (flags & ENQUEUE_REPLENISH) {
1998 		replenish_dl_entity(dl_se);
1999 	} else if ((flags & ENQUEUE_RESTORE) &&
2000 		   !is_dl_boosted(dl_se) &&
2001 		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2002 		setup_new_dl_entity(dl_se);
2003 	}
2004 
2005 	/*
2006 	 * If the reservation is still throttled, e.g., it got replenished but is a
2007 	 * deferred task and still got to wait, don't enqueue.
2008 	 */
2009 	if (dl_se->dl_throttled && start_dl_timer(dl_se))
2010 		return;
2011 
2012 	/*
2013 	 * We're about to enqueue, make sure we're not ->dl_throttled!
2014 	 * In case the timer was not started, say because the defer time
2015 	 * has passed, mark as not throttled and mark unarmed.
2016 	 * Also cancel earlier timers, since letting those run is pointless.
2017 	 */
2018 	if (dl_se->dl_throttled) {
2019 		hrtimer_try_to_cancel(&dl_se->dl_timer);
2020 		dl_se->dl_defer_armed = 0;
2021 		dl_se->dl_throttled = 0;
2022 	}
2023 
2024 	__enqueue_dl_entity(dl_se);
2025 }
2026 
dequeue_dl_entity(struct sched_dl_entity * dl_se,int flags)2027 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2028 {
2029 	__dequeue_dl_entity(dl_se);
2030 
2031 	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2032 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2033 
2034 		sub_running_bw(dl_se, dl_rq);
2035 		sub_rq_bw(dl_se, dl_rq);
2036 	}
2037 
2038 	/*
2039 	 * This check allows to start the inactive timer (or to immediately
2040 	 * decrease the active utilization, if needed) in two cases:
2041 	 * when the task blocks and when it is terminating
2042 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
2043 	 * way, because from GRUB's point of view the same thing is happening
2044 	 * (the task moves from "active contending" to "active non contending"
2045 	 * or "inactive")
2046 	 */
2047 	if (flags & DEQUEUE_SLEEP)
2048 		task_non_contending(dl_se);
2049 }
2050 
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)2051 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2052 {
2053 	if (is_dl_boosted(&p->dl)) {
2054 		/*
2055 		 * Because of delays in the detection of the overrun of a
2056 		 * thread's runtime, it might be the case that a thread
2057 		 * goes to sleep in a rt mutex with negative runtime. As
2058 		 * a consequence, the thread will be throttled.
2059 		 *
2060 		 * While waiting for the mutex, this thread can also be
2061 		 * boosted via PI, resulting in a thread that is throttled
2062 		 * and boosted at the same time.
2063 		 *
2064 		 * In this case, the boost overrides the throttle.
2065 		 */
2066 		if (p->dl.dl_throttled) {
2067 			/*
2068 			 * The replenish timer needs to be canceled. No
2069 			 * problem if it fires concurrently: boosted threads
2070 			 * are ignored in dl_task_timer().
2071 			 */
2072 			cancel_replenish_timer(&p->dl);
2073 			p->dl.dl_throttled = 0;
2074 		}
2075 	} else if (!dl_prio(p->normal_prio)) {
2076 		/*
2077 		 * Special case in which we have a !SCHED_DEADLINE task that is going
2078 		 * to be deboosted, but exceeds its runtime while doing so. No point in
2079 		 * replenishing it, as it's going to return back to its original
2080 		 * scheduling class after this. If it has been throttled, we need to
2081 		 * clear the flag, otherwise the task may wake up as throttled after
2082 		 * being boosted again with no means to replenish the runtime and clear
2083 		 * the throttle.
2084 		 */
2085 		p->dl.dl_throttled = 0;
2086 		if (!(flags & ENQUEUE_REPLENISH))
2087 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2088 					     task_pid_nr(p));
2089 
2090 		return;
2091 	}
2092 
2093 	check_schedstat_required();
2094 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2095 
2096 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2097 		flags |= ENQUEUE_MIGRATING;
2098 
2099 	enqueue_dl_entity(&p->dl, flags);
2100 
2101 	if (dl_server(&p->dl))
2102 		return;
2103 
2104 	if (task_is_blocked(p))
2105 		return;
2106 
2107 	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2108 		enqueue_pushable_dl_task(rq, p);
2109 }
2110 
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)2111 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2112 {
2113 	update_curr_dl(rq);
2114 
2115 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2116 		flags |= DEQUEUE_MIGRATING;
2117 
2118 	dequeue_dl_entity(&p->dl, flags);
2119 	if (!p->dl.dl_throttled && !dl_server(&p->dl))
2120 		dequeue_pushable_dl_task(rq, p);
2121 
2122 	return true;
2123 }
2124 
2125 /*
2126  * Yield task semantic for -deadline tasks is:
2127  *
2128  *   get off from the CPU until our next instance, with
2129  *   a new runtime. This is of little use now, since we
2130  *   don't have a bandwidth reclaiming mechanism. Anyway,
2131  *   bandwidth reclaiming is planned for the future, and
2132  *   yield_task_dl will indicate that some spare budget
2133  *   is available for other task instances to use it.
2134  */
yield_task_dl(struct rq * rq)2135 static void yield_task_dl(struct rq *rq)
2136 {
2137 	/*
2138 	 * We make the task go to sleep until its current deadline by
2139 	 * forcing its runtime to zero. This way, update_curr_dl() stops
2140 	 * it and the bandwidth timer will wake it up and will give it
2141 	 * new scheduling parameters (thanks to dl_yielded=1).
2142 	 */
2143 	rq->curr->dl.dl_yielded = 1;
2144 
2145 	update_rq_clock(rq);
2146 	update_curr_dl(rq);
2147 	/*
2148 	 * Tell update_rq_clock() that we've just updated,
2149 	 * so we don't do microscopic update in schedule()
2150 	 * and double the fastpath cost.
2151 	 */
2152 	rq_clock_skip_update(rq);
2153 }
2154 
dl_task_is_earliest_deadline(struct task_struct * p,struct rq * rq)2155 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2156 						 struct rq *rq)
2157 {
2158 	return (!rq->dl.dl_nr_running ||
2159 		dl_time_before(p->dl.deadline,
2160 			       rq->dl.earliest_dl.curr));
2161 }
2162 
2163 static int find_later_rq(struct task_struct *task);
2164 
2165 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)2166 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2167 {
2168 	struct task_struct *curr, *donor;
2169 	bool select_rq;
2170 	struct rq *rq;
2171 
2172 	if (!(flags & WF_TTWU))
2173 		goto out;
2174 
2175 	rq = cpu_rq(cpu);
2176 
2177 	rcu_read_lock();
2178 	curr = READ_ONCE(rq->curr); /* unlocked access */
2179 	donor = READ_ONCE(rq->donor);
2180 
2181 	/*
2182 	 * If we are dealing with a -deadline task, we must
2183 	 * decide where to wake it up.
2184 	 * If it has a later deadline and the current task
2185 	 * on this rq can't move (provided the waking task
2186 	 * can!) we prefer to send it somewhere else. On the
2187 	 * other hand, if it has a shorter deadline, we
2188 	 * try to make it stay here, it might be important.
2189 	 */
2190 	select_rq = unlikely(dl_task(donor)) &&
2191 		    (curr->nr_cpus_allowed < 2 ||
2192 		     !dl_entity_preempt(&p->dl, &donor->dl)) &&
2193 		    p->nr_cpus_allowed > 1;
2194 
2195 	/*
2196 	 * Take the capacity of the CPU into account to
2197 	 * ensure it fits the requirement of the task.
2198 	 */
2199 	if (sched_asym_cpucap_active())
2200 		select_rq |= !dl_task_fits_capacity(p, cpu);
2201 
2202 	if (select_rq) {
2203 		int target = find_later_rq(p);
2204 
2205 		if (target != -1 &&
2206 		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
2207 			cpu = target;
2208 	}
2209 	rcu_read_unlock();
2210 
2211 out:
2212 	return cpu;
2213 }
2214 
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)2215 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2216 {
2217 	struct rq_flags rf;
2218 	struct rq *rq;
2219 
2220 	if (READ_ONCE(p->__state) != TASK_WAKING)
2221 		return;
2222 
2223 	rq = task_rq(p);
2224 	/*
2225 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2226 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2227 	 * rq->lock is not... So, lock it
2228 	 */
2229 	rq_lock(rq, &rf);
2230 	if (p->dl.dl_non_contending) {
2231 		update_rq_clock(rq);
2232 		sub_running_bw(&p->dl, &rq->dl);
2233 		p->dl.dl_non_contending = 0;
2234 		/*
2235 		 * If the timer handler is currently running and the
2236 		 * timer cannot be canceled, inactive_task_timer()
2237 		 * will see that dl_not_contending is not set, and
2238 		 * will not touch the rq's active utilization,
2239 		 * so we are still safe.
2240 		 */
2241 		cancel_inactive_timer(&p->dl);
2242 	}
2243 	sub_rq_bw(&p->dl, &rq->dl);
2244 	rq_unlock(rq, &rf);
2245 }
2246 
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)2247 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2248 {
2249 	/*
2250 	 * Current can't be migrated, useless to reschedule,
2251 	 * let's hope p can move out.
2252 	 */
2253 	if (rq->curr->nr_cpus_allowed == 1 ||
2254 	    !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
2255 		return;
2256 
2257 	/*
2258 	 * p is migratable, so let's not schedule it and
2259 	 * see if it is pushed or pulled somewhere else.
2260 	 */
2261 	if (p->nr_cpus_allowed != 1 &&
2262 	    cpudl_find(&rq->rd->cpudl, p, NULL))
2263 		return;
2264 
2265 	resched_curr(rq);
2266 }
2267 
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)2268 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2269 {
2270 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2271 		/*
2272 		 * This is OK, because current is on_cpu, which avoids it being
2273 		 * picked for load-balance and preemption/IRQs are still
2274 		 * disabled avoiding further scheduler activity on it and we've
2275 		 * not yet started the picking loop.
2276 		 */
2277 		rq_unpin_lock(rq, rf);
2278 		pull_dl_task(rq);
2279 		rq_repin_lock(rq, rf);
2280 	}
2281 
2282 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2283 }
2284 
2285 /*
2286  * Only called when both the current and waking task are -deadline
2287  * tasks.
2288  */
wakeup_preempt_dl(struct rq * rq,struct task_struct * p,int flags)2289 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2290 				  int flags)
2291 {
2292 	if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
2293 		resched_curr(rq);
2294 		return;
2295 	}
2296 
2297 	/*
2298 	 * In the unlikely case current and p have the same deadline
2299 	 * let us try to decide what's the best thing to do...
2300 	 */
2301 	if ((p->dl.deadline == rq->donor->dl.deadline) &&
2302 	    !test_tsk_need_resched(rq->curr))
2303 		check_preempt_equal_dl(rq, p);
2304 }
2305 
2306 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2307 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2308 {
2309 	hrtick_start(rq, dl_se->runtime);
2310 }
2311 #else /* !CONFIG_SCHED_HRTICK: */
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2312 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2313 {
2314 }
2315 #endif /* !CONFIG_SCHED_HRTICK */
2316 
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)2317 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2318 {
2319 	struct sched_dl_entity *dl_se = &p->dl;
2320 	struct dl_rq *dl_rq = &rq->dl;
2321 
2322 	p->se.exec_start = rq_clock_task(rq);
2323 	if (on_dl_rq(&p->dl))
2324 		update_stats_wait_end_dl(dl_rq, dl_se);
2325 
2326 	/* You can't push away the running task */
2327 	dequeue_pushable_dl_task(rq, p);
2328 
2329 	if (!first)
2330 		return;
2331 
2332 	if (rq->donor->sched_class != &dl_sched_class)
2333 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2334 
2335 	deadline_queue_push_tasks(rq);
2336 
2337 	if (hrtick_enabled_dl(rq))
2338 		start_hrtick_dl(rq, &p->dl);
2339 }
2340 
pick_next_dl_entity(struct dl_rq * dl_rq)2341 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2342 {
2343 	struct rb_node *left = rb_first_cached(&dl_rq->root);
2344 
2345 	if (!left)
2346 		return NULL;
2347 
2348 	return __node_2_dle(left);
2349 }
2350 
2351 /*
2352  * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2353  * @rq: The runqueue to pick the next task from.
2354  */
__pick_task_dl(struct rq * rq)2355 static struct task_struct *__pick_task_dl(struct rq *rq)
2356 {
2357 	struct sched_dl_entity *dl_se;
2358 	struct dl_rq *dl_rq = &rq->dl;
2359 	struct task_struct *p;
2360 
2361 again:
2362 	if (!sched_dl_runnable(rq))
2363 		return NULL;
2364 
2365 	dl_se = pick_next_dl_entity(dl_rq);
2366 	WARN_ON_ONCE(!dl_se);
2367 
2368 	if (dl_server(dl_se)) {
2369 		p = dl_se->server_pick_task(dl_se);
2370 		if (!p) {
2371 			dl_server_stop(dl_se);
2372 			goto again;
2373 		}
2374 		rq->dl_server = dl_se;
2375 	} else {
2376 		p = dl_task_of(dl_se);
2377 	}
2378 
2379 	return p;
2380 }
2381 
pick_task_dl(struct rq * rq)2382 static struct task_struct *pick_task_dl(struct rq *rq)
2383 {
2384 	return __pick_task_dl(rq);
2385 }
2386 
put_prev_task_dl(struct rq * rq,struct task_struct * p,struct task_struct * next)2387 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2388 {
2389 	struct sched_dl_entity *dl_se = &p->dl;
2390 	struct dl_rq *dl_rq = &rq->dl;
2391 
2392 	if (on_dl_rq(&p->dl))
2393 		update_stats_wait_start_dl(dl_rq, dl_se);
2394 
2395 	update_curr_dl(rq);
2396 
2397 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2398 
2399 	if (task_is_blocked(p))
2400 		return;
2401 
2402 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2403 		enqueue_pushable_dl_task(rq, p);
2404 }
2405 
2406 /*
2407  * scheduler tick hitting a task of our scheduling class.
2408  *
2409  * NOTE: This function can be called remotely by the tick offload that
2410  * goes along full dynticks. Therefore no local assumption can be made
2411  * and everything must be accessed through the @rq and @curr passed in
2412  * parameters.
2413  */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2414 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2415 {
2416 	update_curr_dl(rq);
2417 
2418 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2419 	/*
2420 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2421 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2422 	 * be set and schedule() will start a new hrtick for the next task.
2423 	 */
2424 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2425 	    is_leftmost(&p->dl, &rq->dl))
2426 		start_hrtick_dl(rq, &p->dl);
2427 }
2428 
task_fork_dl(struct task_struct * p)2429 static void task_fork_dl(struct task_struct *p)
2430 {
2431 	/*
2432 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2433 	 * sched_fork()
2434 	 */
2435 }
2436 
2437 /* Only try algorithms three times */
2438 #define DL_MAX_TRIES 3
2439 
2440 /*
2441  * Return the earliest pushable rq's task, which is suitable to be executed
2442  * on the CPU, NULL otherwise:
2443  */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2444 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2445 {
2446 	struct task_struct *p = NULL;
2447 	struct rb_node *next_node;
2448 
2449 	if (!has_pushable_dl_tasks(rq))
2450 		return NULL;
2451 
2452 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2453 	while (next_node) {
2454 		p = __node_2_pdl(next_node);
2455 
2456 		if (task_is_pushable(rq, p, cpu))
2457 			return p;
2458 
2459 		next_node = rb_next(next_node);
2460 	}
2461 
2462 	return NULL;
2463 }
2464 
2465 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2466 
find_later_rq(struct task_struct * task)2467 static int find_later_rq(struct task_struct *task)
2468 {
2469 	struct sched_domain *sd;
2470 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2471 	int this_cpu = smp_processor_id();
2472 	int cpu = task_cpu(task);
2473 
2474 	/* Make sure the mask is initialized first */
2475 	if (unlikely(!later_mask))
2476 		return -1;
2477 
2478 	if (task->nr_cpus_allowed == 1)
2479 		return -1;
2480 
2481 	/*
2482 	 * We have to consider system topology and task affinity
2483 	 * first, then we can look for a suitable CPU.
2484 	 */
2485 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2486 		return -1;
2487 
2488 	/*
2489 	 * If we are here, some targets have been found, including
2490 	 * the most suitable which is, among the runqueues where the
2491 	 * current tasks have later deadlines than the task's one, the
2492 	 * rq with the latest possible one.
2493 	 *
2494 	 * Now we check how well this matches with task's
2495 	 * affinity and system topology.
2496 	 *
2497 	 * The last CPU where the task run is our first
2498 	 * guess, since it is most likely cache-hot there.
2499 	 */
2500 	if (cpumask_test_cpu(cpu, later_mask))
2501 		return cpu;
2502 	/*
2503 	 * Check if this_cpu is to be skipped (i.e., it is
2504 	 * not in the mask) or not.
2505 	 */
2506 	if (!cpumask_test_cpu(this_cpu, later_mask))
2507 		this_cpu = -1;
2508 
2509 	rcu_read_lock();
2510 	for_each_domain(cpu, sd) {
2511 		if (sd->flags & SD_WAKE_AFFINE) {
2512 			int best_cpu;
2513 
2514 			/*
2515 			 * If possible, preempting this_cpu is
2516 			 * cheaper than migrating.
2517 			 */
2518 			if (this_cpu != -1 &&
2519 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2520 				rcu_read_unlock();
2521 				return this_cpu;
2522 			}
2523 
2524 			best_cpu = cpumask_any_and_distribute(later_mask,
2525 							      sched_domain_span(sd));
2526 			/*
2527 			 * Last chance: if a CPU being in both later_mask
2528 			 * and current sd span is valid, that becomes our
2529 			 * choice. Of course, the latest possible CPU is
2530 			 * already under consideration through later_mask.
2531 			 */
2532 			if (best_cpu < nr_cpu_ids) {
2533 				rcu_read_unlock();
2534 				return best_cpu;
2535 			}
2536 		}
2537 	}
2538 	rcu_read_unlock();
2539 
2540 	/*
2541 	 * At this point, all our guesses failed, we just return
2542 	 * 'something', and let the caller sort the things out.
2543 	 */
2544 	if (this_cpu != -1)
2545 		return this_cpu;
2546 
2547 	cpu = cpumask_any_distribute(later_mask);
2548 	if (cpu < nr_cpu_ids)
2549 		return cpu;
2550 
2551 	return -1;
2552 }
2553 
pick_next_pushable_dl_task(struct rq * rq)2554 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2555 {
2556 	struct task_struct *p;
2557 
2558 	if (!has_pushable_dl_tasks(rq))
2559 		return NULL;
2560 
2561 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2562 
2563 	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2564 	WARN_ON_ONCE(task_current(rq, p));
2565 	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2566 
2567 	WARN_ON_ONCE(!task_on_rq_queued(p));
2568 	WARN_ON_ONCE(!dl_task(p));
2569 
2570 	return p;
2571 }
2572 
2573 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2574 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2575 {
2576 	struct rq *later_rq = NULL;
2577 	int tries;
2578 	int cpu;
2579 
2580 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2581 		cpu = find_later_rq(task);
2582 
2583 		if ((cpu == -1) || (cpu == rq->cpu))
2584 			break;
2585 
2586 		later_rq = cpu_rq(cpu);
2587 
2588 		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2589 			/*
2590 			 * Target rq has tasks of equal or earlier deadline,
2591 			 * retrying does not release any lock and is unlikely
2592 			 * to yield a different result.
2593 			 */
2594 			later_rq = NULL;
2595 			break;
2596 		}
2597 
2598 		/* Retry if something changed. */
2599 		if (double_lock_balance(rq, later_rq)) {
2600 			/*
2601 			 * double_lock_balance had to release rq->lock, in the
2602 			 * meantime, task may no longer be fit to be migrated.
2603 			 * Check the following to ensure that the task is
2604 			 * still suitable for migration:
2605 			 * 1. It is possible the task was scheduled,
2606 			 *    migrate_disabled was set and then got preempted,
2607 			 *    so we must check the task migration disable
2608 			 *    flag.
2609 			 * 2. The CPU picked is in the task's affinity.
2610 			 * 3. For throttled task (dl_task_offline_migration),
2611 			 *    check the following:
2612 			 *    - the task is not on the rq anymore (it was
2613 			 *      migrated)
2614 			 *    - the task is not on CPU anymore
2615 			 *    - the task is still a dl task
2616 			 *    - the task is not queued on the rq anymore
2617 			 * 4. For the non-throttled task (push_dl_task), the
2618 			 *    check to ensure that this task is still at the
2619 			 *    head of the pushable tasks list is enough.
2620 			 */
2621 			if (unlikely(is_migration_disabled(task) ||
2622 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2623 				     (task->dl.dl_throttled &&
2624 				      (task_rq(task) != rq ||
2625 				       task_on_cpu(rq, task) ||
2626 				       !dl_task(task) ||
2627 				       !task_on_rq_queued(task))) ||
2628 				     (!task->dl.dl_throttled &&
2629 				      task != pick_next_pushable_dl_task(rq)))) {
2630 
2631 				double_unlock_balance(rq, later_rq);
2632 				later_rq = NULL;
2633 				break;
2634 			}
2635 		}
2636 
2637 		/*
2638 		 * If the rq we found has no -deadline task, or
2639 		 * its earliest one has a later deadline than our
2640 		 * task, the rq is a good one.
2641 		 */
2642 		if (dl_task_is_earliest_deadline(task, later_rq))
2643 			break;
2644 
2645 		/* Otherwise we try again. */
2646 		double_unlock_balance(rq, later_rq);
2647 		later_rq = NULL;
2648 	}
2649 
2650 	return later_rq;
2651 }
2652 
2653 /*
2654  * See if the non running -deadline tasks on this rq
2655  * can be sent to some other CPU where they can preempt
2656  * and start executing.
2657  */
push_dl_task(struct rq * rq)2658 static int push_dl_task(struct rq *rq)
2659 {
2660 	struct task_struct *next_task;
2661 	struct rq *later_rq;
2662 	int ret = 0;
2663 
2664 	next_task = pick_next_pushable_dl_task(rq);
2665 	if (!next_task)
2666 		return 0;
2667 
2668 retry:
2669 	/*
2670 	 * If next_task preempts rq->curr, and rq->curr
2671 	 * can move away, it makes sense to just reschedule
2672 	 * without going further in pushing next_task.
2673 	 */
2674 	if (dl_task(rq->donor) &&
2675 	    dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
2676 	    rq->curr->nr_cpus_allowed > 1) {
2677 		resched_curr(rq);
2678 		return 0;
2679 	}
2680 
2681 	if (is_migration_disabled(next_task))
2682 		return 0;
2683 
2684 	if (WARN_ON(next_task == rq->curr))
2685 		return 0;
2686 
2687 	/* We might release rq lock */
2688 	get_task_struct(next_task);
2689 
2690 	/* Will lock the rq it'll find */
2691 	later_rq = find_lock_later_rq(next_task, rq);
2692 	if (!later_rq) {
2693 		struct task_struct *task;
2694 
2695 		/*
2696 		 * We must check all this again, since
2697 		 * find_lock_later_rq releases rq->lock and it is
2698 		 * then possible that next_task has migrated.
2699 		 */
2700 		task = pick_next_pushable_dl_task(rq);
2701 		if (task == next_task) {
2702 			/*
2703 			 * The task is still there. We don't try
2704 			 * again, some other CPU will pull it when ready.
2705 			 */
2706 			goto out;
2707 		}
2708 
2709 		if (!task)
2710 			/* No more tasks */
2711 			goto out;
2712 
2713 		put_task_struct(next_task);
2714 		next_task = task;
2715 		goto retry;
2716 	}
2717 
2718 	move_queued_task_locked(rq, later_rq, next_task);
2719 	ret = 1;
2720 
2721 	resched_curr(later_rq);
2722 
2723 	double_unlock_balance(rq, later_rq);
2724 
2725 out:
2726 	put_task_struct(next_task);
2727 
2728 	return ret;
2729 }
2730 
push_dl_tasks(struct rq * rq)2731 static void push_dl_tasks(struct rq *rq)
2732 {
2733 	/* push_dl_task() will return true if it moved a -deadline task */
2734 	while (push_dl_task(rq))
2735 		;
2736 }
2737 
pull_dl_task(struct rq * this_rq)2738 static void pull_dl_task(struct rq *this_rq)
2739 {
2740 	int this_cpu = this_rq->cpu, cpu;
2741 	struct task_struct *p, *push_task;
2742 	bool resched = false;
2743 	struct rq *src_rq;
2744 	u64 dmin = LONG_MAX;
2745 
2746 	if (likely(!dl_overloaded(this_rq)))
2747 		return;
2748 
2749 	/*
2750 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2751 	 * see overloaded we must also see the dlo_mask bit.
2752 	 */
2753 	smp_rmb();
2754 
2755 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2756 		if (this_cpu == cpu)
2757 			continue;
2758 
2759 		src_rq = cpu_rq(cpu);
2760 
2761 		/*
2762 		 * It looks racy, and it is! However, as in sched_rt.c,
2763 		 * we are fine with this.
2764 		 */
2765 		if (this_rq->dl.dl_nr_running &&
2766 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2767 				   src_rq->dl.earliest_dl.next))
2768 			continue;
2769 
2770 		/* Might drop this_rq->lock */
2771 		push_task = NULL;
2772 		double_lock_balance(this_rq, src_rq);
2773 
2774 		/*
2775 		 * If there are no more pullable tasks on the
2776 		 * rq, we're done with it.
2777 		 */
2778 		if (src_rq->dl.dl_nr_running <= 1)
2779 			goto skip;
2780 
2781 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2782 
2783 		/*
2784 		 * We found a task to be pulled if:
2785 		 *  - it preempts our current (if there's one),
2786 		 *  - it will preempt the last one we pulled (if any).
2787 		 */
2788 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2789 		    dl_task_is_earliest_deadline(p, this_rq)) {
2790 			WARN_ON(p == src_rq->curr);
2791 			WARN_ON(!task_on_rq_queued(p));
2792 
2793 			/*
2794 			 * Then we pull iff p has actually an earlier
2795 			 * deadline than the current task of its runqueue.
2796 			 */
2797 			if (dl_time_before(p->dl.deadline,
2798 					   src_rq->donor->dl.deadline))
2799 				goto skip;
2800 
2801 			if (is_migration_disabled(p)) {
2802 				push_task = get_push_task(src_rq);
2803 			} else {
2804 				move_queued_task_locked(src_rq, this_rq, p);
2805 				dmin = p->dl.deadline;
2806 				resched = true;
2807 			}
2808 
2809 			/* Is there any other task even earlier? */
2810 		}
2811 skip:
2812 		double_unlock_balance(this_rq, src_rq);
2813 
2814 		if (push_task) {
2815 			preempt_disable();
2816 			raw_spin_rq_unlock(this_rq);
2817 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2818 					    push_task, &src_rq->push_work);
2819 			preempt_enable();
2820 			raw_spin_rq_lock(this_rq);
2821 		}
2822 	}
2823 
2824 	if (resched)
2825 		resched_curr(this_rq);
2826 }
2827 
2828 /*
2829  * Since the task is not running and a reschedule is not going to happen
2830  * anytime soon on its runqueue, we try pushing it away now.
2831  */
task_woken_dl(struct rq * rq,struct task_struct * p)2832 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2833 {
2834 	if (!task_on_cpu(rq, p) &&
2835 	    !test_tsk_need_resched(rq->curr) &&
2836 	    p->nr_cpus_allowed > 1 &&
2837 	    dl_task(rq->donor) &&
2838 	    (rq->curr->nr_cpus_allowed < 2 ||
2839 	     !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
2840 		push_dl_tasks(rq);
2841 	}
2842 }
2843 
set_cpus_allowed_dl(struct task_struct * p,struct affinity_context * ctx)2844 static void set_cpus_allowed_dl(struct task_struct *p,
2845 				struct affinity_context *ctx)
2846 {
2847 	struct root_domain *src_rd;
2848 	struct rq *rq;
2849 
2850 	WARN_ON_ONCE(!dl_task(p));
2851 
2852 	rq = task_rq(p);
2853 	src_rd = rq->rd;
2854 	/*
2855 	 * Migrating a SCHED_DEADLINE task between exclusive
2856 	 * cpusets (different root_domains) entails a bandwidth
2857 	 * update. We already made space for us in the destination
2858 	 * domain (see cpuset_can_attach()).
2859 	 */
2860 	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2861 		struct dl_bw *src_dl_b;
2862 
2863 		src_dl_b = dl_bw_of(cpu_of(rq));
2864 		/*
2865 		 * We now free resources of the root_domain we are migrating
2866 		 * off. In the worst case, sched_setattr() may temporary fail
2867 		 * until we complete the update.
2868 		 */
2869 		raw_spin_lock(&src_dl_b->lock);
2870 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2871 		raw_spin_unlock(&src_dl_b->lock);
2872 	}
2873 
2874 	set_cpus_allowed_common(p, ctx);
2875 }
2876 
2877 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2878 static void rq_online_dl(struct rq *rq)
2879 {
2880 	if (rq->dl.overloaded)
2881 		dl_set_overload(rq);
2882 
2883 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2884 	if (rq->dl.dl_nr_running > 0)
2885 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2886 }
2887 
2888 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2889 static void rq_offline_dl(struct rq *rq)
2890 {
2891 	if (rq->dl.overloaded)
2892 		dl_clear_overload(rq);
2893 
2894 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2895 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2896 }
2897 
init_sched_dl_class(void)2898 void __init init_sched_dl_class(void)
2899 {
2900 	unsigned int i;
2901 
2902 	for_each_possible_cpu(i)
2903 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2904 					GFP_KERNEL, cpu_to_node(i));
2905 }
2906 
dl_add_task_root_domain(struct task_struct * p)2907 void dl_add_task_root_domain(struct task_struct *p)
2908 {
2909 	struct rq_flags rf;
2910 	struct rq *rq;
2911 	struct dl_bw *dl_b;
2912 
2913 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2914 	if (!dl_task(p) || dl_entity_is_special(&p->dl)) {
2915 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2916 		return;
2917 	}
2918 
2919 	rq = __task_rq_lock(p, &rf);
2920 
2921 	dl_b = &rq->rd->dl_bw;
2922 	raw_spin_lock(&dl_b->lock);
2923 
2924 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2925 
2926 	raw_spin_unlock(&dl_b->lock);
2927 
2928 	task_rq_unlock(rq, p, &rf);
2929 }
2930 
dl_clear_root_domain(struct root_domain * rd)2931 void dl_clear_root_domain(struct root_domain *rd)
2932 {
2933 	int i;
2934 
2935 	guard(raw_spinlock_irqsave)(&rd->dl_bw.lock);
2936 
2937 	/*
2938 	 * Reset total_bw to zero and extra_bw to max_bw so that next
2939 	 * loop will add dl-servers contributions back properly,
2940 	 */
2941 	rd->dl_bw.total_bw = 0;
2942 	for_each_cpu(i, rd->span)
2943 		cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw;
2944 
2945 	/*
2946 	 * dl_servers are not tasks. Since dl_add_task_root_domain ignores
2947 	 * them, we need to account for them here explicitly.
2948 	 */
2949 	for_each_cpu(i, rd->span) {
2950 		struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server;
2951 
2952 		if (dl_server(dl_se) && cpu_active(i))
2953 			__dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i));
2954 	}
2955 }
2956 
dl_clear_root_domain_cpu(int cpu)2957 void dl_clear_root_domain_cpu(int cpu)
2958 {
2959 	dl_clear_root_domain(cpu_rq(cpu)->rd);
2960 }
2961 
switched_from_dl(struct rq * rq,struct task_struct * p)2962 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2963 {
2964 	/*
2965 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2966 	 * time is in the future). If the task switches back to dl before
2967 	 * the "inactive timer" fires, it can continue to consume its current
2968 	 * runtime using its current deadline. If it stays outside of
2969 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2970 	 * will reset the task parameters.
2971 	 */
2972 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2973 		task_non_contending(&p->dl);
2974 
2975 	/*
2976 	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2977 	 * keep track of that on its cpuset (for correct bandwidth tracking).
2978 	 */
2979 	dec_dl_tasks_cs(p);
2980 
2981 	if (!task_on_rq_queued(p)) {
2982 		/*
2983 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2984 		 * might migrate away from this rq while continuing to run on
2985 		 * some other class. We need to remove its contribution from
2986 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2987 		 */
2988 		if (p->dl.dl_non_contending)
2989 			sub_running_bw(&p->dl, &rq->dl);
2990 		sub_rq_bw(&p->dl, &rq->dl);
2991 	}
2992 
2993 	/*
2994 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2995 	 * at the 0-lag time, because the task could have been migrated
2996 	 * while SCHED_OTHER in the meanwhile.
2997 	 */
2998 	if (p->dl.dl_non_contending)
2999 		p->dl.dl_non_contending = 0;
3000 
3001 	/*
3002 	 * Since this might be the only -deadline task on the rq,
3003 	 * this is the right place to try to pull some other one
3004 	 * from an overloaded CPU, if any.
3005 	 */
3006 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3007 		return;
3008 
3009 	deadline_queue_pull_task(rq);
3010 }
3011 
3012 /*
3013  * When switching to -deadline, we may overload the rq, then
3014  * we try to push someone off, if possible.
3015  */
switched_to_dl(struct rq * rq,struct task_struct * p)3016 static void switched_to_dl(struct rq *rq, struct task_struct *p)
3017 {
3018 	cancel_inactive_timer(&p->dl);
3019 
3020 	/*
3021 	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3022 	 * track of that on its cpuset (for correct bandwidth tracking).
3023 	 */
3024 	inc_dl_tasks_cs(p);
3025 
3026 	/* If p is not queued we will update its parameters at next wakeup. */
3027 	if (!task_on_rq_queued(p)) {
3028 		add_rq_bw(&p->dl, &rq->dl);
3029 
3030 		return;
3031 	}
3032 
3033 	if (rq->donor != p) {
3034 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3035 			deadline_queue_push_tasks(rq);
3036 		if (dl_task(rq->donor))
3037 			wakeup_preempt_dl(rq, p, 0);
3038 		else
3039 			resched_curr(rq);
3040 	} else {
3041 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3042 	}
3043 }
3044 
3045 /*
3046  * If the scheduling parameters of a -deadline task changed,
3047  * a push or pull operation might be needed.
3048  */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)3049 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
3050 			    int oldprio)
3051 {
3052 	if (!task_on_rq_queued(p))
3053 		return;
3054 
3055 	/*
3056 	 * This might be too much, but unfortunately
3057 	 * we don't have the old deadline value, and
3058 	 * we can't argue if the task is increasing
3059 	 * or lowering its prio, so...
3060 	 */
3061 	if (!rq->dl.overloaded)
3062 		deadline_queue_pull_task(rq);
3063 
3064 	if (task_current_donor(rq, p)) {
3065 		/*
3066 		 * If we now have a earlier deadline task than p,
3067 		 * then reschedule, provided p is still on this
3068 		 * runqueue.
3069 		 */
3070 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3071 			resched_curr(rq);
3072 	} else {
3073 		/*
3074 		 * Current may not be deadline in case p was throttled but we
3075 		 * have just replenished it (e.g. rt_mutex_setprio()).
3076 		 *
3077 		 * Otherwise, if p was given an earlier deadline, reschedule.
3078 		 */
3079 		if (!dl_task(rq->curr) ||
3080 		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3081 			resched_curr(rq);
3082 	}
3083 }
3084 
3085 #ifdef CONFIG_SCHED_CORE
task_is_throttled_dl(struct task_struct * p,int cpu)3086 static int task_is_throttled_dl(struct task_struct *p, int cpu)
3087 {
3088 	return p->dl.dl_throttled;
3089 }
3090 #endif
3091 
3092 DEFINE_SCHED_CLASS(dl) = {
3093 
3094 	.enqueue_task		= enqueue_task_dl,
3095 	.dequeue_task		= dequeue_task_dl,
3096 	.yield_task		= yield_task_dl,
3097 
3098 	.wakeup_preempt		= wakeup_preempt_dl,
3099 
3100 	.pick_task		= pick_task_dl,
3101 	.put_prev_task		= put_prev_task_dl,
3102 	.set_next_task		= set_next_task_dl,
3103 
3104 	.balance		= balance_dl,
3105 	.select_task_rq		= select_task_rq_dl,
3106 	.migrate_task_rq	= migrate_task_rq_dl,
3107 	.set_cpus_allowed       = set_cpus_allowed_dl,
3108 	.rq_online              = rq_online_dl,
3109 	.rq_offline             = rq_offline_dl,
3110 	.task_woken		= task_woken_dl,
3111 	.find_lock_rq		= find_lock_later_rq,
3112 
3113 	.task_tick		= task_tick_dl,
3114 	.task_fork              = task_fork_dl,
3115 
3116 	.prio_changed           = prio_changed_dl,
3117 	.switched_from		= switched_from_dl,
3118 	.switched_to		= switched_to_dl,
3119 
3120 	.update_curr		= update_curr_dl,
3121 #ifdef CONFIG_SCHED_CORE
3122 	.task_is_throttled	= task_is_throttled_dl,
3123 #endif
3124 };
3125 
3126 /*
3127  * Used for dl_bw check and update, used under sched_rt_handler()::mutex and
3128  * sched_domains_mutex.
3129  */
3130 u64 dl_cookie;
3131 
sched_dl_global_validate(void)3132 int sched_dl_global_validate(void)
3133 {
3134 	u64 runtime = global_rt_runtime();
3135 	u64 period = global_rt_period();
3136 	u64 new_bw = to_ratio(period, runtime);
3137 	u64 cookie = ++dl_cookie;
3138 	struct dl_bw *dl_b;
3139 	int cpu, cpus, ret = 0;
3140 	unsigned long flags;
3141 
3142 	/*
3143 	 * Here we want to check the bandwidth not being set to some
3144 	 * value smaller than the currently allocated bandwidth in
3145 	 * any of the root_domains.
3146 	 */
3147 	for_each_online_cpu(cpu) {
3148 		rcu_read_lock_sched();
3149 
3150 		if (dl_bw_visited(cpu, cookie))
3151 			goto next;
3152 
3153 		dl_b = dl_bw_of(cpu);
3154 		cpus = dl_bw_cpus(cpu);
3155 
3156 		raw_spin_lock_irqsave(&dl_b->lock, flags);
3157 		if (new_bw * cpus < dl_b->total_bw)
3158 			ret = -EBUSY;
3159 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3160 
3161 next:
3162 		rcu_read_unlock_sched();
3163 
3164 		if (ret)
3165 			break;
3166 	}
3167 
3168 	return ret;
3169 }
3170 
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)3171 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3172 {
3173 	if (global_rt_runtime() == RUNTIME_INF) {
3174 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3175 		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3176 	} else {
3177 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3178 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3179 		dl_rq->max_bw = dl_rq->extra_bw =
3180 			to_ratio(global_rt_period(), global_rt_runtime());
3181 	}
3182 }
3183 
sched_dl_do_global(void)3184 void sched_dl_do_global(void)
3185 {
3186 	u64 new_bw = -1;
3187 	u64 cookie = ++dl_cookie;
3188 	struct dl_bw *dl_b;
3189 	int cpu;
3190 	unsigned long flags;
3191 
3192 	if (global_rt_runtime() != RUNTIME_INF)
3193 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3194 
3195 	for_each_possible_cpu(cpu)
3196 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3197 
3198 	for_each_possible_cpu(cpu) {
3199 		rcu_read_lock_sched();
3200 
3201 		if (dl_bw_visited(cpu, cookie)) {
3202 			rcu_read_unlock_sched();
3203 			continue;
3204 		}
3205 
3206 		dl_b = dl_bw_of(cpu);
3207 
3208 		raw_spin_lock_irqsave(&dl_b->lock, flags);
3209 		dl_b->bw = new_bw;
3210 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3211 
3212 		rcu_read_unlock_sched();
3213 	}
3214 }
3215 
3216 /*
3217  * We must be sure that accepting a new task (or allowing changing the
3218  * parameters of an existing one) is consistent with the bandwidth
3219  * constraints. If yes, this function also accordingly updates the currently
3220  * allocated bandwidth to reflect the new situation.
3221  *
3222  * This function is called while holding p's rq->lock.
3223  */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)3224 int sched_dl_overflow(struct task_struct *p, int policy,
3225 		      const struct sched_attr *attr)
3226 {
3227 	u64 period = attr->sched_period ?: attr->sched_deadline;
3228 	u64 runtime = attr->sched_runtime;
3229 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3230 	int cpus, err = -1, cpu = task_cpu(p);
3231 	struct dl_bw *dl_b = dl_bw_of(cpu);
3232 	unsigned long cap;
3233 
3234 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3235 		return 0;
3236 
3237 	/* !deadline task may carry old deadline bandwidth */
3238 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3239 		return 0;
3240 
3241 	/*
3242 	 * Either if a task, enters, leave, or stays -deadline but changes
3243 	 * its parameters, we may need to update accordingly the total
3244 	 * allocated bandwidth of the container.
3245 	 */
3246 	raw_spin_lock(&dl_b->lock);
3247 	cpus = dl_bw_cpus(cpu);
3248 	cap = dl_bw_capacity(cpu);
3249 
3250 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
3251 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
3252 		if (hrtimer_active(&p->dl.inactive_timer))
3253 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
3254 		__dl_add(dl_b, new_bw, cpus);
3255 		err = 0;
3256 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
3257 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3258 		/*
3259 		 * XXX this is slightly incorrect: when the task
3260 		 * utilization decreases, we should delay the total
3261 		 * utilization change until the task's 0-lag point.
3262 		 * But this would require to set the task's "inactive
3263 		 * timer" when the task is not inactive.
3264 		 */
3265 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
3266 		__dl_add(dl_b, new_bw, cpus);
3267 		dl_change_utilization(p, new_bw);
3268 		err = 0;
3269 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3270 		/*
3271 		 * Do not decrease the total deadline utilization here,
3272 		 * switched_from_dl() will take care to do it at the correct
3273 		 * (0-lag) time.
3274 		 */
3275 		err = 0;
3276 	}
3277 	raw_spin_unlock(&dl_b->lock);
3278 
3279 	return err;
3280 }
3281 
3282 /*
3283  * This function initializes the sched_dl_entity of a newly becoming
3284  * SCHED_DEADLINE task.
3285  *
3286  * Only the static values are considered here, the actual runtime and the
3287  * absolute deadline will be properly calculated when the task is enqueued
3288  * for the first time with its new policy.
3289  */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3290 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3291 {
3292 	struct sched_dl_entity *dl_se = &p->dl;
3293 
3294 	dl_se->dl_runtime = attr->sched_runtime;
3295 	dl_se->dl_deadline = attr->sched_deadline;
3296 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3297 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3298 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3299 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3300 }
3301 
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3302 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3303 {
3304 	struct sched_dl_entity *dl_se = &p->dl;
3305 
3306 	attr->sched_priority = p->rt_priority;
3307 	attr->sched_runtime = dl_se->dl_runtime;
3308 	attr->sched_deadline = dl_se->dl_deadline;
3309 	attr->sched_period = dl_se->dl_period;
3310 	attr->sched_flags &= ~SCHED_DL_FLAGS;
3311 	attr->sched_flags |= dl_se->flags;
3312 }
3313 
3314 /*
3315  * This function validates the new parameters of a -deadline task.
3316  * We ask for the deadline not being zero, and greater or equal
3317  * than the runtime, as well as the period of being zero or
3318  * greater than deadline. Furthermore, we have to be sure that
3319  * user parameters are above the internal resolution of 1us (we
3320  * check sched_runtime only since it is always the smaller one) and
3321  * below 2^63 ns (we have to check both sched_deadline and
3322  * sched_period, as the latter can be zero).
3323  */
__checkparam_dl(const struct sched_attr * attr)3324 bool __checkparam_dl(const struct sched_attr *attr)
3325 {
3326 	u64 period, max, min;
3327 
3328 	/* special dl tasks don't actually use any parameter */
3329 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3330 		return true;
3331 
3332 	/* deadline != 0 */
3333 	if (attr->sched_deadline == 0)
3334 		return false;
3335 
3336 	/*
3337 	 * Since we truncate DL_SCALE bits, make sure we're at least
3338 	 * that big.
3339 	 */
3340 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3341 		return false;
3342 
3343 	/*
3344 	 * Since we use the MSB for wrap-around and sign issues, make
3345 	 * sure it's not set (mind that period can be equal to zero).
3346 	 */
3347 	if (attr->sched_deadline & (1ULL << 63) ||
3348 	    attr->sched_period & (1ULL << 63))
3349 		return false;
3350 
3351 	period = attr->sched_period;
3352 	if (!period)
3353 		period = attr->sched_deadline;
3354 
3355 	/* runtime <= deadline <= period (if period != 0) */
3356 	if (period < attr->sched_deadline ||
3357 	    attr->sched_deadline < attr->sched_runtime)
3358 		return false;
3359 
3360 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3361 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3362 
3363 	if (period < min || period > max)
3364 		return false;
3365 
3366 	return true;
3367 }
3368 
3369 /*
3370  * This function clears the sched_dl_entity static params.
3371  */
__dl_clear_params(struct sched_dl_entity * dl_se)3372 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3373 {
3374 	dl_se->dl_runtime		= 0;
3375 	dl_se->dl_deadline		= 0;
3376 	dl_se->dl_period		= 0;
3377 	dl_se->flags			= 0;
3378 	dl_se->dl_bw			= 0;
3379 	dl_se->dl_density		= 0;
3380 
3381 	dl_se->dl_throttled		= 0;
3382 	dl_se->dl_yielded		= 0;
3383 	dl_se->dl_non_contending	= 0;
3384 	dl_se->dl_overrun		= 0;
3385 	dl_se->dl_server		= 0;
3386 
3387 #ifdef CONFIG_RT_MUTEXES
3388 	dl_se->pi_se			= dl_se;
3389 #endif
3390 }
3391 
init_dl_entity(struct sched_dl_entity * dl_se)3392 void init_dl_entity(struct sched_dl_entity *dl_se)
3393 {
3394 	RB_CLEAR_NODE(&dl_se->rb_node);
3395 	init_dl_task_timer(dl_se);
3396 	init_dl_inactive_task_timer(dl_se);
3397 	__dl_clear_params(dl_se);
3398 }
3399 
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3400 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3401 {
3402 	struct sched_dl_entity *dl_se = &p->dl;
3403 
3404 	if (dl_se->dl_runtime != attr->sched_runtime ||
3405 	    dl_se->dl_deadline != attr->sched_deadline ||
3406 	    dl_se->dl_period != attr->sched_period ||
3407 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3408 		return true;
3409 
3410 	return false;
3411 }
3412 
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3413 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3414 				 const struct cpumask *trial)
3415 {
3416 	unsigned long flags, cap;
3417 	struct dl_bw *cur_dl_b;
3418 	int ret = 1;
3419 
3420 	rcu_read_lock_sched();
3421 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3422 	cap = __dl_bw_capacity(trial);
3423 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3424 	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3425 		ret = 0;
3426 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3427 	rcu_read_unlock_sched();
3428 
3429 	return ret;
3430 }
3431 
3432 enum dl_bw_request {
3433 	dl_bw_req_deactivate = 0,
3434 	dl_bw_req_alloc,
3435 	dl_bw_req_free
3436 };
3437 
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)3438 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3439 {
3440 	unsigned long flags, cap;
3441 	struct dl_bw *dl_b;
3442 	bool overflow = 0;
3443 	u64 fair_server_bw = 0;
3444 
3445 	rcu_read_lock_sched();
3446 	dl_b = dl_bw_of(cpu);
3447 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3448 
3449 	cap = dl_bw_capacity(cpu);
3450 	switch (req) {
3451 	case dl_bw_req_free:
3452 		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3453 		break;
3454 	case dl_bw_req_alloc:
3455 		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3456 
3457 		if (!overflow) {
3458 			/*
3459 			 * We reserve space in the destination
3460 			 * root_domain, as we can't fail after this point.
3461 			 * We will free resources in the source root_domain
3462 			 * later on (see set_cpus_allowed_dl()).
3463 			 */
3464 			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3465 		}
3466 		break;
3467 	case dl_bw_req_deactivate:
3468 		/*
3469 		 * cpu is not off yet, but we need to do the math by
3470 		 * considering it off already (i.e., what would happen if we
3471 		 * turn cpu off?).
3472 		 */
3473 		cap -= arch_scale_cpu_capacity(cpu);
3474 
3475 		/*
3476 		 * cpu is going offline and NORMAL tasks will be moved away
3477 		 * from it. We can thus discount dl_server bandwidth
3478 		 * contribution as it won't need to be servicing tasks after
3479 		 * the cpu is off.
3480 		 */
3481 		if (cpu_rq(cpu)->fair_server.dl_server)
3482 			fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw;
3483 
3484 		/*
3485 		 * Not much to check if no DEADLINE bandwidth is present.
3486 		 * dl_servers we can discount, as tasks will be moved out the
3487 		 * offlined CPUs anyway.
3488 		 */
3489 		if (dl_b->total_bw - fair_server_bw > 0) {
3490 			/*
3491 			 * Leaving at least one CPU for DEADLINE tasks seems a
3492 			 * wise thing to do. As said above, cpu is not offline
3493 			 * yet, so account for that.
3494 			 */
3495 			if (dl_bw_cpus(cpu) - 1)
3496 				overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0);
3497 			else
3498 				overflow = 1;
3499 		}
3500 
3501 		break;
3502 	}
3503 
3504 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3505 	rcu_read_unlock_sched();
3506 
3507 	return overflow ? -EBUSY : 0;
3508 }
3509 
dl_bw_deactivate(int cpu)3510 int dl_bw_deactivate(int cpu)
3511 {
3512 	return dl_bw_manage(dl_bw_req_deactivate, cpu, 0);
3513 }
3514 
dl_bw_alloc(int cpu,u64 dl_bw)3515 int dl_bw_alloc(int cpu, u64 dl_bw)
3516 {
3517 	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3518 }
3519 
dl_bw_free(int cpu,u64 dl_bw)3520 void dl_bw_free(int cpu, u64 dl_bw)
3521 {
3522 	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3523 }
3524 
print_dl_stats(struct seq_file * m,int cpu)3525 void print_dl_stats(struct seq_file *m, int cpu)
3526 {
3527 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3528 }
3529