1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD CPU Microcode Update Driver for Linux
4 *
5 * This driver allows to upgrade microcode on F10h AMD
6 * CPUs and later.
7 *
8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9 * 2013-2018 Borislav Petkov <bp@alien8.de>
10 *
11 * Author: Peter Oruba <peter.oruba@amd.com>
12 *
13 * Based on work by:
14 * Tigran Aivazian <aivazian.tigran@gmail.com>
15 *
16 * early loader:
17 * Copyright (C) 2013 Advanced Micro Devices, Inc.
18 *
19 * Author: Jacob Shin <jacob.shin@amd.com>
20 * Fixes: Borislav Petkov <bp@suse.de>
21 */
22 #define pr_fmt(fmt) "microcode: " fmt
23
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/uaccess.h>
27 #include <linux/vmalloc.h>
28 #include <linux/initrd.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31
32 #include <asm/microcode.h>
33 #include <asm/processor.h>
34 #include <asm/setup.h>
35 #include <asm/cpu.h>
36 #include <asm/msr.h>
37 #include <asm/tlb.h>
38
39 #include "internal.h"
40
41 struct ucode_patch {
42 struct list_head plist;
43 void *data;
44 unsigned int size;
45 u32 patch_id;
46 u16 equiv_cpu;
47 };
48
49 static LIST_HEAD(microcode_cache);
50
51 #define UCODE_MAGIC 0x00414d44
52 #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000
53 #define UCODE_UCODE_TYPE 0x00000001
54
55 #define SECTION_HDR_SIZE 8
56 #define CONTAINER_HDR_SZ 12
57
58 struct equiv_cpu_entry {
59 u32 installed_cpu;
60 u32 fixed_errata_mask;
61 u32 fixed_errata_compare;
62 u16 equiv_cpu;
63 u16 res;
64 } __packed;
65
66 struct microcode_header_amd {
67 u32 data_code;
68 u32 patch_id;
69 u16 mc_patch_data_id;
70 u8 mc_patch_data_len;
71 u8 init_flag;
72 u32 mc_patch_data_checksum;
73 u32 nb_dev_id;
74 u32 sb_dev_id;
75 u16 processor_rev_id;
76 u8 nb_rev_id;
77 u8 sb_rev_id;
78 u8 bios_api_rev;
79 u8 reserved1[3];
80 u32 match_reg[8];
81 } __packed;
82
83 struct microcode_amd {
84 struct microcode_header_amd hdr;
85 unsigned int mpb[];
86 };
87
88 static struct equiv_cpu_table {
89 unsigned int num_entries;
90 struct equiv_cpu_entry *entry;
91 } equiv_table;
92
93 union zen_patch_rev {
94 struct {
95 __u32 rev : 8,
96 stepping : 4,
97 model : 4,
98 __reserved : 4,
99 ext_model : 4,
100 ext_fam : 8;
101 };
102 __u32 ucode_rev;
103 };
104
105 union cpuid_1_eax {
106 struct {
107 __u32 stepping : 4,
108 model : 4,
109 family : 4,
110 __reserved0 : 4,
111 ext_model : 4,
112 ext_fam : 8,
113 __reserved1 : 4;
114 };
115 __u32 full;
116 };
117
118 /*
119 * This points to the current valid container of microcode patches which we will
120 * save from the initrd/builtin before jettisoning its contents. @mc is the
121 * microcode patch we found to match.
122 */
123 struct cont_desc {
124 struct microcode_amd *mc;
125 u32 psize;
126 u8 *data;
127 size_t size;
128 };
129
130 /*
131 * Microcode patch container file is prepended to the initrd in cpio
132 * format. See Documentation/arch/x86/microcode.rst
133 */
134 static const char
135 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
136
137 /*
138 * This is CPUID(1).EAX on the BSP. It is used in two ways:
139 *
140 * 1. To ignore the equivalence table on Zen1 and newer.
141 *
142 * 2. To match which patches to load because the patch revision ID
143 * already contains the f/m/s for which the microcode is destined
144 * for.
145 */
146 static u32 bsp_cpuid_1_eax __ro_after_init;
147
ucode_rev_to_cpuid(unsigned int val)148 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
149 {
150 union zen_patch_rev p;
151 union cpuid_1_eax c;
152
153 p.ucode_rev = val;
154 c.full = 0;
155
156 c.stepping = p.stepping;
157 c.model = p.model;
158 c.ext_model = p.ext_model;
159 c.family = 0xf;
160 c.ext_fam = p.ext_fam;
161
162 return c;
163 }
164
find_equiv_id(struct equiv_cpu_table * et,u32 sig)165 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
166 {
167 unsigned int i;
168
169 /* Zen and newer do not need an equivalence table. */
170 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
171 return 0;
172
173 if (!et || !et->num_entries)
174 return 0;
175
176 for (i = 0; i < et->num_entries; i++) {
177 struct equiv_cpu_entry *e = &et->entry[i];
178
179 if (sig == e->installed_cpu)
180 return e->equiv_cpu;
181 }
182 return 0;
183 }
184
185 /*
186 * Check whether there is a valid microcode container file at the beginning
187 * of @buf of size @buf_size.
188 */
verify_container(const u8 * buf,size_t buf_size)189 static bool verify_container(const u8 *buf, size_t buf_size)
190 {
191 u32 cont_magic;
192
193 if (buf_size <= CONTAINER_HDR_SZ) {
194 pr_debug("Truncated microcode container header.\n");
195 return false;
196 }
197
198 cont_magic = *(const u32 *)buf;
199 if (cont_magic != UCODE_MAGIC) {
200 pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
201 return false;
202 }
203
204 return true;
205 }
206
207 /*
208 * Check whether there is a valid, non-truncated CPU equivalence table at the
209 * beginning of @buf of size @buf_size.
210 */
verify_equivalence_table(const u8 * buf,size_t buf_size)211 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
212 {
213 const u32 *hdr = (const u32 *)buf;
214 u32 cont_type, equiv_tbl_len;
215
216 if (!verify_container(buf, buf_size))
217 return false;
218
219 /* Zen and newer do not need an equivalence table. */
220 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
221 return true;
222
223 cont_type = hdr[1];
224 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
225 pr_debug("Wrong microcode container equivalence table type: %u.\n",
226 cont_type);
227 return false;
228 }
229
230 buf_size -= CONTAINER_HDR_SZ;
231
232 equiv_tbl_len = hdr[2];
233 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
234 buf_size < equiv_tbl_len) {
235 pr_debug("Truncated equivalence table.\n");
236 return false;
237 }
238
239 return true;
240 }
241
242 /*
243 * Check whether there is a valid, non-truncated microcode patch section at the
244 * beginning of @buf of size @buf_size.
245 *
246 * On success, @sh_psize returns the patch size according to the section header,
247 * to the caller.
248 */
249 static bool
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize)250 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
251 {
252 u32 p_type, p_size;
253 const u32 *hdr;
254
255 if (buf_size < SECTION_HDR_SIZE) {
256 pr_debug("Truncated patch section.\n");
257 return false;
258 }
259
260 hdr = (const u32 *)buf;
261 p_type = hdr[0];
262 p_size = hdr[1];
263
264 if (p_type != UCODE_UCODE_TYPE) {
265 pr_debug("Invalid type field (0x%x) in container file section header.\n",
266 p_type);
267 return false;
268 }
269
270 if (p_size < sizeof(struct microcode_header_amd)) {
271 pr_debug("Patch of size %u too short.\n", p_size);
272 return false;
273 }
274
275 *sh_psize = p_size;
276
277 return true;
278 }
279
280 /*
281 * Check whether the passed remaining file @buf_size is large enough to contain
282 * a patch of the indicated @sh_psize (and also whether this size does not
283 * exceed the per-family maximum). @sh_psize is the size read from the section
284 * header.
285 */
__verify_patch_size(u32 sh_psize,size_t buf_size)286 static unsigned int __verify_patch_size(u32 sh_psize, size_t buf_size)
287 {
288 u8 family = x86_family(bsp_cpuid_1_eax);
289 u32 max_size;
290
291 if (family >= 0x15)
292 return min_t(u32, sh_psize, buf_size);
293
294 #define F1XH_MPB_MAX_SIZE 2048
295 #define F14H_MPB_MAX_SIZE 1824
296
297 switch (family) {
298 case 0x10 ... 0x12:
299 max_size = F1XH_MPB_MAX_SIZE;
300 break;
301 case 0x14:
302 max_size = F14H_MPB_MAX_SIZE;
303 break;
304 default:
305 WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
306 return 0;
307 }
308
309 if (sh_psize > min_t(u32, buf_size, max_size))
310 return 0;
311
312 return sh_psize;
313 }
314
315 /*
316 * Verify the patch in @buf.
317 *
318 * Returns:
319 * negative: on error
320 * positive: patch is not for this family, skip it
321 * 0: success
322 */
verify_patch(const u8 * buf,size_t buf_size,u32 * patch_size)323 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
324 {
325 u8 family = x86_family(bsp_cpuid_1_eax);
326 struct microcode_header_amd *mc_hdr;
327 unsigned int ret;
328 u32 sh_psize;
329 u16 proc_id;
330 u8 patch_fam;
331
332 if (!__verify_patch_section(buf, buf_size, &sh_psize))
333 return -1;
334
335 /*
336 * The section header length is not included in this indicated size
337 * but is present in the leftover file length so we need to subtract
338 * it before passing this value to the function below.
339 */
340 buf_size -= SECTION_HDR_SIZE;
341
342 /*
343 * Check if the remaining buffer is big enough to contain a patch of
344 * size sh_psize, as the section claims.
345 */
346 if (buf_size < sh_psize) {
347 pr_debug("Patch of size %u truncated.\n", sh_psize);
348 return -1;
349 }
350
351 ret = __verify_patch_size(sh_psize, buf_size);
352 if (!ret) {
353 pr_debug("Per-family patch size mismatch.\n");
354 return -1;
355 }
356
357 *patch_size = sh_psize;
358
359 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
360 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
361 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
362 return -1;
363 }
364
365 proc_id = mc_hdr->processor_rev_id;
366 patch_fam = 0xf + (proc_id >> 12);
367 if (patch_fam != family)
368 return 1;
369
370 return 0;
371 }
372
mc_patch_matches(struct microcode_amd * mc,u16 eq_id)373 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
374 {
375 /* Zen and newer do not need an equivalence table. */
376 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
377 return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
378 else
379 return eq_id == mc->hdr.processor_rev_id;
380 }
381
382 /*
383 * This scans the ucode blob for the proper container as we can have multiple
384 * containers glued together. Returns the equivalence ID from the equivalence
385 * table or 0 if none found.
386 * Returns the amount of bytes consumed while scanning. @desc contains all the
387 * data we're going to use in later stages of the application.
388 */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)389 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
390 {
391 struct equiv_cpu_table table;
392 size_t orig_size = size;
393 u32 *hdr = (u32 *)ucode;
394 u16 eq_id;
395 u8 *buf;
396
397 if (!verify_equivalence_table(ucode, size))
398 return 0;
399
400 buf = ucode;
401
402 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
403 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
404
405 /*
406 * Find the equivalence ID of our CPU in this table. Even if this table
407 * doesn't contain a patch for the CPU, scan through the whole container
408 * so that it can be skipped in case there are other containers appended.
409 */
410 eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
411
412 buf += hdr[2] + CONTAINER_HDR_SZ;
413 size -= hdr[2] + CONTAINER_HDR_SZ;
414
415 /*
416 * Scan through the rest of the container to find where it ends. We do
417 * some basic sanity-checking too.
418 */
419 while (size > 0) {
420 struct microcode_amd *mc;
421 u32 patch_size;
422 int ret;
423
424 ret = verify_patch(buf, size, &patch_size);
425 if (ret < 0) {
426 /*
427 * Patch verification failed, skip to the next container, if
428 * there is one. Before exit, check whether that container has
429 * found a patch already. If so, use it.
430 */
431 goto out;
432 } else if (ret > 0) {
433 goto skip;
434 }
435
436 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
437 if (mc_patch_matches(mc, eq_id)) {
438 desc->psize = patch_size;
439 desc->mc = mc;
440 }
441
442 skip:
443 /* Skip patch section header too: */
444 buf += patch_size + SECTION_HDR_SIZE;
445 size -= patch_size + SECTION_HDR_SIZE;
446 }
447
448 out:
449 /*
450 * If we have found a patch (desc->mc), it means we're looking at the
451 * container which has a patch for this CPU so return 0 to mean, @ucode
452 * already points to the proper container. Otherwise, we return the size
453 * we scanned so that we can advance to the next container in the
454 * buffer.
455 */
456 if (desc->mc) {
457 desc->data = ucode;
458 desc->size = orig_size - size;
459
460 return 0;
461 }
462
463 return orig_size - size;
464 }
465
466 /*
467 * Scan the ucode blob for the proper container as we can have multiple
468 * containers glued together.
469 */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)470 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
471 {
472 while (size) {
473 size_t s = parse_container(ucode, size, desc);
474 if (!s)
475 return;
476
477 /* catch wraparound */
478 if (size >= s) {
479 ucode += s;
480 size -= s;
481 } else {
482 return;
483 }
484 }
485 }
486
__apply_microcode_amd(struct microcode_amd * mc,unsigned int psize)487 static int __apply_microcode_amd(struct microcode_amd *mc, unsigned int psize)
488 {
489 unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
490 u32 rev, dummy;
491
492 native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr);
493
494 if (x86_family(bsp_cpuid_1_eax) == 0x17) {
495 unsigned long p_addr_end = p_addr + psize - 1;
496
497 invlpg(p_addr);
498
499 /*
500 * Flush next page too if patch image is crossing a page
501 * boundary.
502 */
503 if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
504 invlpg(p_addr_end);
505 }
506
507 /* verify patch application was successful */
508 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
509
510 if (rev != mc->hdr.patch_id)
511 return -1;
512
513 return 0;
514 }
515
516 /*
517 * Early load occurs before we can vmalloc(). So we look for the microcode
518 * patch container file in initrd, traverse equivalent cpu table, look for a
519 * matching microcode patch, and update, all in initrd memory in place.
520 * When vmalloc() is available for use later -- on 64-bit during first AP load,
521 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
522 * load_microcode_amd() to save equivalent cpu table and microcode patches in
523 * kernel heap memory.
524 *
525 * Returns true if container found (sets @desc), false otherwise.
526 */
early_apply_microcode(u32 old_rev,void * ucode,size_t size)527 static bool early_apply_microcode(u32 old_rev, void *ucode, size_t size)
528 {
529 struct cont_desc desc = { 0 };
530 struct microcode_amd *mc;
531 bool ret = false;
532
533 scan_containers(ucode, size, &desc);
534
535 mc = desc.mc;
536 if (!mc)
537 return ret;
538
539 /*
540 * Allow application of the same revision to pick up SMT-specific
541 * changes even if the revision of the other SMT thread is already
542 * up-to-date.
543 */
544 if (old_rev > mc->hdr.patch_id)
545 return ret;
546
547 return !__apply_microcode_amd(mc, desc.psize);
548 }
549
get_builtin_microcode(struct cpio_data * cp)550 static bool get_builtin_microcode(struct cpio_data *cp)
551 {
552 char fw_name[36] = "amd-ucode/microcode_amd.bin";
553 u8 family = x86_family(bsp_cpuid_1_eax);
554 struct firmware fw;
555
556 if (IS_ENABLED(CONFIG_X86_32))
557 return false;
558
559 if (family >= 0x15)
560 snprintf(fw_name, sizeof(fw_name),
561 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
562
563 if (firmware_request_builtin(&fw, fw_name)) {
564 cp->size = fw.size;
565 cp->data = (void *)fw.data;
566 return true;
567 }
568
569 return false;
570 }
571
find_blobs_in_containers(struct cpio_data * ret)572 static void __init find_blobs_in_containers(struct cpio_data *ret)
573 {
574 struct cpio_data cp;
575
576 if (!get_builtin_microcode(&cp))
577 cp = find_microcode_in_initrd(ucode_path);
578
579 *ret = cp;
580 }
581
load_ucode_amd_bsp(struct early_load_data * ed,unsigned int cpuid_1_eax)582 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
583 {
584 struct cpio_data cp = { };
585 u32 dummy;
586
587 bsp_cpuid_1_eax = cpuid_1_eax;
588
589 native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->old_rev, dummy);
590
591 /* Needed in load_microcode_amd() */
592 ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
593
594 find_blobs_in_containers(&cp);
595 if (!(cp.data && cp.size))
596 return;
597
598 if (early_apply_microcode(ed->old_rev, cp.data, cp.size))
599 native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->new_rev, dummy);
600 }
601
602 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size);
603
save_microcode_in_initrd(void)604 static int __init save_microcode_in_initrd(void)
605 {
606 unsigned int cpuid_1_eax = native_cpuid_eax(1);
607 struct cpuinfo_x86 *c = &boot_cpu_data;
608 struct cont_desc desc = { 0 };
609 enum ucode_state ret;
610 struct cpio_data cp;
611
612 if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
613 return 0;
614
615 find_blobs_in_containers(&cp);
616 if (!(cp.data && cp.size))
617 return -EINVAL;
618
619 scan_containers(cp.data, cp.size, &desc);
620 if (!desc.mc)
621 return -EINVAL;
622
623 ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
624 if (ret > UCODE_UPDATED)
625 return -EINVAL;
626
627 return 0;
628 }
629 early_initcall(save_microcode_in_initrd);
630
patch_cpus_equivalent(struct ucode_patch * p,struct ucode_patch * n,bool ignore_stepping)631 static inline bool patch_cpus_equivalent(struct ucode_patch *p,
632 struct ucode_patch *n,
633 bool ignore_stepping)
634 {
635 /* Zen and newer hardcode the f/m/s in the patch ID */
636 if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
637 union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
638 union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
639
640 if (ignore_stepping) {
641 p_cid.stepping = 0;
642 n_cid.stepping = 0;
643 }
644
645 return p_cid.full == n_cid.full;
646 } else {
647 return p->equiv_cpu == n->equiv_cpu;
648 }
649 }
650
651 /*
652 * a small, trivial cache of per-family ucode patches
653 */
cache_find_patch(struct ucode_cpu_info * uci,u16 equiv_cpu)654 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
655 {
656 struct ucode_patch *p;
657 struct ucode_patch n;
658
659 n.equiv_cpu = equiv_cpu;
660 n.patch_id = uci->cpu_sig.rev;
661
662 WARN_ON_ONCE(!n.patch_id);
663
664 list_for_each_entry(p, µcode_cache, plist)
665 if (patch_cpus_equivalent(p, &n, false))
666 return p;
667
668 return NULL;
669 }
670
patch_newer(struct ucode_patch * p,struct ucode_patch * n)671 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
672 {
673 /* Zen and newer hardcode the f/m/s in the patch ID */
674 if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
675 union zen_patch_rev zp, zn;
676
677 zp.ucode_rev = p->patch_id;
678 zn.ucode_rev = n->patch_id;
679
680 if (zn.stepping != zp.stepping)
681 return -1;
682
683 return zn.rev > zp.rev;
684 } else {
685 return n->patch_id > p->patch_id;
686 }
687 }
688
update_cache(struct ucode_patch * new_patch)689 static void update_cache(struct ucode_patch *new_patch)
690 {
691 struct ucode_patch *p;
692 int ret;
693
694 list_for_each_entry(p, µcode_cache, plist) {
695 if (patch_cpus_equivalent(p, new_patch, true)) {
696 ret = patch_newer(p, new_patch);
697 if (ret < 0)
698 continue;
699 else if (!ret) {
700 /* we already have the latest patch */
701 kfree(new_patch->data);
702 kfree(new_patch);
703 return;
704 }
705
706 list_replace(&p->plist, &new_patch->plist);
707 kfree(p->data);
708 kfree(p);
709 return;
710 }
711 }
712 /* no patch found, add it */
713 list_add_tail(&new_patch->plist, µcode_cache);
714 }
715
free_cache(void)716 static void free_cache(void)
717 {
718 struct ucode_patch *p, *tmp;
719
720 list_for_each_entry_safe(p, tmp, µcode_cache, plist) {
721 __list_del(p->plist.prev, p->plist.next);
722 kfree(p->data);
723 kfree(p);
724 }
725 }
726
find_patch(unsigned int cpu)727 static struct ucode_patch *find_patch(unsigned int cpu)
728 {
729 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
730 u32 rev, dummy __always_unused;
731 u16 equiv_id = 0;
732
733 /* fetch rev if not populated yet: */
734 if (!uci->cpu_sig.rev) {
735 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
736 uci->cpu_sig.rev = rev;
737 }
738
739 if (x86_family(bsp_cpuid_1_eax) < 0x17) {
740 equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
741 if (!equiv_id)
742 return NULL;
743 }
744
745 return cache_find_patch(uci, equiv_id);
746 }
747
reload_ucode_amd(unsigned int cpu)748 void reload_ucode_amd(unsigned int cpu)
749 {
750 u32 rev, dummy __always_unused;
751 struct microcode_amd *mc;
752 struct ucode_patch *p;
753
754 p = find_patch(cpu);
755 if (!p)
756 return;
757
758 mc = p->data;
759
760 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
761
762 if (rev < mc->hdr.patch_id) {
763 if (!__apply_microcode_amd(mc, p->size))
764 pr_info_once("reload revision: 0x%08x\n", mc->hdr.patch_id);
765 }
766 }
767
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)768 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
769 {
770 struct cpuinfo_x86 *c = &cpu_data(cpu);
771 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
772 struct ucode_patch *p;
773
774 csig->sig = cpuid_eax(0x00000001);
775 csig->rev = c->microcode;
776
777 /*
778 * a patch could have been loaded early, set uci->mc so that
779 * mc_bp_resume() can call apply_microcode()
780 */
781 p = find_patch(cpu);
782 if (p && (p->patch_id == csig->rev))
783 uci->mc = p->data;
784
785 return 0;
786 }
787
apply_microcode_amd(int cpu)788 static enum ucode_state apply_microcode_amd(int cpu)
789 {
790 struct cpuinfo_x86 *c = &cpu_data(cpu);
791 struct microcode_amd *mc_amd;
792 struct ucode_cpu_info *uci;
793 struct ucode_patch *p;
794 enum ucode_state ret;
795 u32 rev;
796
797 BUG_ON(raw_smp_processor_id() != cpu);
798
799 uci = ucode_cpu_info + cpu;
800
801 p = find_patch(cpu);
802 if (!p)
803 return UCODE_NFOUND;
804
805 rev = uci->cpu_sig.rev;
806
807 mc_amd = p->data;
808 uci->mc = p->data;
809
810 /* need to apply patch? */
811 if (rev > mc_amd->hdr.patch_id) {
812 ret = UCODE_OK;
813 goto out;
814 }
815
816 if (__apply_microcode_amd(mc_amd, p->size)) {
817 pr_err("CPU%d: update failed for patch_level=0x%08x\n",
818 cpu, mc_amd->hdr.patch_id);
819 return UCODE_ERROR;
820 }
821
822 rev = mc_amd->hdr.patch_id;
823 ret = UCODE_UPDATED;
824
825 out:
826 uci->cpu_sig.rev = rev;
827 c->microcode = rev;
828
829 /* Update boot_cpu_data's revision too, if we're on the BSP: */
830 if (c->cpu_index == boot_cpu_data.cpu_index)
831 boot_cpu_data.microcode = rev;
832
833 return ret;
834 }
835
load_ucode_amd_ap(unsigned int cpuid_1_eax)836 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
837 {
838 unsigned int cpu = smp_processor_id();
839
840 ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
841 apply_microcode_amd(cpu);
842 }
843
install_equiv_cpu_table(const u8 * buf,size_t buf_size)844 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
845 {
846 u32 equiv_tbl_len;
847 const u32 *hdr;
848
849 if (!verify_equivalence_table(buf, buf_size))
850 return 0;
851
852 hdr = (const u32 *)buf;
853 equiv_tbl_len = hdr[2];
854
855 /* Zen and newer do not need an equivalence table. */
856 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
857 goto out;
858
859 equiv_table.entry = vmalloc(equiv_tbl_len);
860 if (!equiv_table.entry) {
861 pr_err("failed to allocate equivalent CPU table\n");
862 return 0;
863 }
864
865 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
866 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
867
868 out:
869 /* add header length */
870 return equiv_tbl_len + CONTAINER_HDR_SZ;
871 }
872
free_equiv_cpu_table(void)873 static void free_equiv_cpu_table(void)
874 {
875 if (x86_family(bsp_cpuid_1_eax) >= 0x17)
876 return;
877
878 vfree(equiv_table.entry);
879 memset(&equiv_table, 0, sizeof(equiv_table));
880 }
881
cleanup(void)882 static void cleanup(void)
883 {
884 free_equiv_cpu_table();
885 free_cache();
886 }
887
888 /*
889 * Return a non-negative value even if some of the checks failed so that
890 * we can skip over the next patch. If we return a negative value, we
891 * signal a grave error like a memory allocation has failed and the
892 * driver cannot continue functioning normally. In such cases, we tear
893 * down everything we've used up so far and exit.
894 */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)895 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
896 unsigned int *patch_size)
897 {
898 struct microcode_header_amd *mc_hdr;
899 struct ucode_patch *patch;
900 u16 proc_id;
901 int ret;
902
903 ret = verify_patch(fw, leftover, patch_size);
904 if (ret)
905 return ret;
906
907 patch = kzalloc(sizeof(*patch), GFP_KERNEL);
908 if (!patch) {
909 pr_err("Patch allocation failure.\n");
910 return -EINVAL;
911 }
912
913 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
914 if (!patch->data) {
915 pr_err("Patch data allocation failure.\n");
916 kfree(patch);
917 return -EINVAL;
918 }
919 patch->size = *patch_size;
920
921 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
922 proc_id = mc_hdr->processor_rev_id;
923
924 INIT_LIST_HEAD(&patch->plist);
925 patch->patch_id = mc_hdr->patch_id;
926 patch->equiv_cpu = proc_id;
927
928 pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
929 __func__, patch->patch_id, proc_id);
930
931 /* ... and add to cache. */
932 update_cache(patch);
933
934 return 0;
935 }
936
937 /* Scan the blob in @data and add microcode patches to the cache. */
__load_microcode_amd(u8 family,const u8 * data,size_t size)938 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
939 size_t size)
940 {
941 u8 *fw = (u8 *)data;
942 size_t offset;
943
944 offset = install_equiv_cpu_table(data, size);
945 if (!offset)
946 return UCODE_ERROR;
947
948 fw += offset;
949 size -= offset;
950
951 if (*(u32 *)fw != UCODE_UCODE_TYPE) {
952 pr_err("invalid type field in container file section header\n");
953 free_equiv_cpu_table();
954 return UCODE_ERROR;
955 }
956
957 while (size > 0) {
958 unsigned int crnt_size = 0;
959 int ret;
960
961 ret = verify_and_add_patch(family, fw, size, &crnt_size);
962 if (ret < 0)
963 return UCODE_ERROR;
964
965 fw += crnt_size + SECTION_HDR_SIZE;
966 size -= (crnt_size + SECTION_HDR_SIZE);
967 }
968
969 return UCODE_OK;
970 }
971
_load_microcode_amd(u8 family,const u8 * data,size_t size)972 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
973 {
974 enum ucode_state ret;
975
976 /* free old equiv table */
977 free_equiv_cpu_table();
978
979 ret = __load_microcode_amd(family, data, size);
980 if (ret != UCODE_OK)
981 cleanup();
982
983 return ret;
984 }
985
load_microcode_amd(u8 family,const u8 * data,size_t size)986 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
987 {
988 struct cpuinfo_x86 *c;
989 unsigned int nid, cpu;
990 struct ucode_patch *p;
991 enum ucode_state ret;
992
993 ret = _load_microcode_amd(family, data, size);
994 if (ret != UCODE_OK)
995 return ret;
996
997 for_each_node(nid) {
998 cpu = cpumask_first(cpumask_of_node(nid));
999 c = &cpu_data(cpu);
1000
1001 p = find_patch(cpu);
1002 if (!p)
1003 continue;
1004
1005 if (c->microcode >= p->patch_id)
1006 continue;
1007
1008 ret = UCODE_NEW;
1009 }
1010
1011 return ret;
1012 }
1013
1014 /*
1015 * AMD microcode firmware naming convention, up to family 15h they are in
1016 * the legacy file:
1017 *
1018 * amd-ucode/microcode_amd.bin
1019 *
1020 * This legacy file is always smaller than 2K in size.
1021 *
1022 * Beginning with family 15h, they are in family-specific firmware files:
1023 *
1024 * amd-ucode/microcode_amd_fam15h.bin
1025 * amd-ucode/microcode_amd_fam16h.bin
1026 * ...
1027 *
1028 * These might be larger than 2K.
1029 */
request_microcode_amd(int cpu,struct device * device)1030 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1031 {
1032 char fw_name[36] = "amd-ucode/microcode_amd.bin";
1033 struct cpuinfo_x86 *c = &cpu_data(cpu);
1034 enum ucode_state ret = UCODE_NFOUND;
1035 const struct firmware *fw;
1036
1037 if (force_minrev)
1038 return UCODE_NFOUND;
1039
1040 if (c->x86 >= 0x15)
1041 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1042
1043 if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1044 pr_debug("failed to load file %s\n", fw_name);
1045 goto out;
1046 }
1047
1048 ret = UCODE_ERROR;
1049 if (!verify_container(fw->data, fw->size))
1050 goto fw_release;
1051
1052 ret = load_microcode_amd(c->x86, fw->data, fw->size);
1053
1054 fw_release:
1055 release_firmware(fw);
1056
1057 out:
1058 return ret;
1059 }
1060
microcode_fini_cpu_amd(int cpu)1061 static void microcode_fini_cpu_amd(int cpu)
1062 {
1063 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1064
1065 uci->mc = NULL;
1066 }
1067
1068 static struct microcode_ops microcode_amd_ops = {
1069 .request_microcode_fw = request_microcode_amd,
1070 .collect_cpu_info = collect_cpu_info_amd,
1071 .apply_microcode = apply_microcode_amd,
1072 .microcode_fini_cpu = microcode_fini_cpu_amd,
1073 .nmi_safe = true,
1074 };
1075
init_amd_microcode(void)1076 struct microcode_ops * __init init_amd_microcode(void)
1077 {
1078 struct cpuinfo_x86 *c = &boot_cpu_data;
1079
1080 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1081 pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1082 return NULL;
1083 }
1084 return µcode_amd_ops;
1085 }
1086
exit_amd_microcode(void)1087 void __exit exit_amd_microcode(void)
1088 {
1089 cleanup();
1090 }
1091