1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* ZD1211 USB-WLAN driver for Linux
3 *
4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/firmware.h>
12 #include <linux/device.h>
13 #include <linux/errno.h>
14 #include <linux/slab.h>
15 #include <linux/skbuff.h>
16 #include <linux/usb.h>
17 #include <linux/workqueue.h>
18 #include <linux/module.h>
19 #include <net/mac80211.h>
20 #include <linux/unaligned.h>
21
22 #include "zd_def.h"
23 #include "zd_mac.h"
24 #include "zd_usb.h"
25
26 static const struct usb_device_id usb_ids[] = {
27 /* ZD1211 */
28 { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
29 { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
30 { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
31 { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
32 { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
33 { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
34 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
35 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
36 { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
37 { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
38 { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
39 { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
40 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
41 { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
42 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
43 { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
44 { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
45 { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
46 { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
47 { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
48 { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
49 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
50 { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
51 { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
52 { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
53 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
54 /* ZD1211B */
55 { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
56 { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
57 { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
58 { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
59 { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
60 { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
61 { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
62 { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
63 { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
64 { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
65 { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
66 { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
67 { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
68 { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
69 { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
70 { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
71 { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
72 { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
73 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
74 { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
75 { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
76 { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
77 { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
78 { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
79 { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
80 { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
81 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
82 { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
83 { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
84 { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
85 /* "Driverless" devices that need ejecting */
86 { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
87 { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
88 {}
89 };
90
91 MODULE_LICENSE("GPL");
92 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
93 MODULE_AUTHOR("Ulrich Kunitz");
94 MODULE_AUTHOR("Daniel Drake");
95 MODULE_VERSION("1.0");
96 MODULE_DEVICE_TABLE(usb, usb_ids);
97
98 #define FW_ZD1211_PREFIX "zd1211/zd1211_"
99 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
100
101 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
102 unsigned int count);
103
104 /* USB device initialization */
105 static void int_urb_complete(struct urb *urb);
106
request_fw_file(const struct firmware ** fw,const char * name,struct device * device)107 static int request_fw_file(
108 const struct firmware **fw, const char *name, struct device *device)
109 {
110 int r;
111
112 dev_dbg_f(device, "fw name %s\n", name);
113
114 r = request_firmware(fw, name, device);
115 if (r)
116 dev_err(device,
117 "Could not load firmware file %s. Error number %d\n",
118 name, r);
119 return r;
120 }
121
get_bcdDevice(const struct usb_device * udev)122 static inline u16 get_bcdDevice(const struct usb_device *udev)
123 {
124 return le16_to_cpu(udev->descriptor.bcdDevice);
125 }
126
127 enum upload_code_flags {
128 REBOOT = 1,
129 };
130
131 /* Ensures that MAX_TRANSFER_SIZE is even. */
132 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
133
upload_code(struct usb_device * udev,const u8 * data,size_t size,u16 code_offset,int flags)134 static int upload_code(struct usb_device *udev,
135 const u8 *data, size_t size, u16 code_offset, int flags)
136 {
137 u8 *p;
138 int r;
139
140 /* USB request blocks need "kmalloced" buffers.
141 */
142 p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
143 if (!p) {
144 r = -ENOMEM;
145 goto error;
146 }
147
148 size &= ~1;
149 while (size > 0) {
150 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
151 size : MAX_TRANSFER_SIZE;
152
153 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
154
155 memcpy(p, data, transfer_size);
156 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
157 USB_REQ_FIRMWARE_DOWNLOAD,
158 USB_DIR_OUT | USB_TYPE_VENDOR,
159 code_offset, 0, p, transfer_size, 1000 /* ms */);
160 if (r < 0) {
161 dev_err(&udev->dev,
162 "USB control request for firmware upload"
163 " failed. Error number %d\n", r);
164 goto error;
165 }
166 transfer_size = r & ~1;
167
168 size -= transfer_size;
169 data += transfer_size;
170 code_offset += transfer_size/sizeof(u16);
171 }
172
173 if (flags & REBOOT) {
174 u8 ret;
175
176 /* Use "DMA-aware" buffer. */
177 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
178 USB_REQ_FIRMWARE_CONFIRM,
179 USB_DIR_IN | USB_TYPE_VENDOR,
180 0, 0, p, sizeof(ret), 5000 /* ms */);
181 if (r != sizeof(ret)) {
182 dev_err(&udev->dev,
183 "control request firmware confirmation failed."
184 " Return value %d\n", r);
185 if (r >= 0)
186 r = -ENODEV;
187 goto error;
188 }
189 ret = p[0];
190 if (ret & 0x80) {
191 dev_err(&udev->dev,
192 "Internal error while downloading."
193 " Firmware confirm return value %#04x\n",
194 (unsigned int)ret);
195 r = -ENODEV;
196 goto error;
197 }
198 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
199 (unsigned int)ret);
200 }
201
202 r = 0;
203 error:
204 kfree(p);
205 return r;
206 }
207
get_word(const void * data,u16 offset)208 static u16 get_word(const void *data, u16 offset)
209 {
210 const __le16 *p = data;
211 return le16_to_cpu(p[offset]);
212 }
213
get_fw_name(struct zd_usb * usb,char * buffer,size_t size,const char * postfix)214 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
215 const char* postfix)
216 {
217 scnprintf(buffer, size, "%s%s",
218 usb->is_zd1211b ?
219 FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
220 postfix);
221 return buffer;
222 }
223
handle_version_mismatch(struct zd_usb * usb,const struct firmware * ub_fw)224 static int handle_version_mismatch(struct zd_usb *usb,
225 const struct firmware *ub_fw)
226 {
227 struct usb_device *udev = zd_usb_to_usbdev(usb);
228 const struct firmware *ur_fw = NULL;
229 int offset;
230 int r = 0;
231 char fw_name[128];
232
233 r = request_fw_file(&ur_fw,
234 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
235 &udev->dev);
236 if (r)
237 goto error;
238
239 r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
240 if (r)
241 goto error;
242
243 offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
244 r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
245 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
246
247 /* At this point, the vendor driver downloads the whole firmware
248 * image, hacks around with version IDs, and uploads it again,
249 * completely overwriting the boot code. We do not do this here as
250 * it is not required on any tested devices, and it is suspected to
251 * cause problems. */
252 error:
253 release_firmware(ur_fw);
254 return r;
255 }
256
upload_firmware(struct zd_usb * usb)257 static int upload_firmware(struct zd_usb *usb)
258 {
259 int r;
260 u16 fw_bcdDevice;
261 u16 bcdDevice;
262 struct usb_device *udev = zd_usb_to_usbdev(usb);
263 const struct firmware *ub_fw = NULL;
264 const struct firmware *uph_fw = NULL;
265 char fw_name[128];
266
267 bcdDevice = get_bcdDevice(udev);
268
269 r = request_fw_file(&ub_fw,
270 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
271 &udev->dev);
272 if (r)
273 goto error;
274
275 fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
276
277 if (fw_bcdDevice != bcdDevice) {
278 dev_info(&udev->dev,
279 "firmware version %#06x and device bootcode version "
280 "%#06x differ\n", fw_bcdDevice, bcdDevice);
281 if (bcdDevice <= 0x4313)
282 dev_warn(&udev->dev, "device has old bootcode, please "
283 "report success or failure\n");
284
285 r = handle_version_mismatch(usb, ub_fw);
286 if (r)
287 goto error;
288 } else {
289 dev_dbg_f(&udev->dev,
290 "firmware device id %#06x is equal to the "
291 "actual device id\n", fw_bcdDevice);
292 }
293
294
295 r = request_fw_file(&uph_fw,
296 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
297 &udev->dev);
298 if (r)
299 goto error;
300
301 r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
302 if (r) {
303 dev_err(&udev->dev,
304 "Could not upload firmware code uph. Error number %d\n",
305 r);
306 }
307
308 /* FALL-THROUGH */
309 error:
310 release_firmware(ub_fw);
311 release_firmware(uph_fw);
312 return r;
313 }
314
315 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur");
316 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur");
317 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub");
318 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub");
319 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr");
320 MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr");
321
322 /* Read data from device address space using "firmware interface" which does
323 * not require firmware to be loaded. */
zd_usb_read_fw(struct zd_usb * usb,zd_addr_t addr,u8 * data,u16 len)324 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
325 {
326 int r;
327 struct usb_device *udev = zd_usb_to_usbdev(usb);
328 u8 *buf;
329
330 /* Use "DMA-aware" buffer. */
331 buf = kmalloc(len, GFP_KERNEL);
332 if (!buf)
333 return -ENOMEM;
334 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
335 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
336 buf, len, 5000);
337 if (r < 0) {
338 dev_err(&udev->dev,
339 "read over firmware interface failed: %d\n", r);
340 goto exit;
341 } else if (r != len) {
342 dev_err(&udev->dev,
343 "incomplete read over firmware interface: %d/%d\n",
344 r, len);
345 r = -EIO;
346 goto exit;
347 }
348 r = 0;
349 memcpy(data, buf, len);
350 exit:
351 kfree(buf);
352 return r;
353 }
354
355 #define urb_dev(urb) (&(urb)->dev->dev)
356
handle_regs_int_override(struct urb * urb)357 static inline void handle_regs_int_override(struct urb *urb)
358 {
359 struct zd_usb *usb = urb->context;
360 struct zd_usb_interrupt *intr = &usb->intr;
361 unsigned long flags;
362
363 spin_lock_irqsave(&intr->lock, flags);
364 if (atomic_read(&intr->read_regs_enabled)) {
365 atomic_set(&intr->read_regs_enabled, 0);
366 intr->read_regs_int_overridden = 1;
367 complete(&intr->read_regs.completion);
368 }
369 spin_unlock_irqrestore(&intr->lock, flags);
370 }
371
handle_regs_int(struct urb * urb)372 static inline void handle_regs_int(struct urb *urb)
373 {
374 struct zd_usb *usb = urb->context;
375 struct zd_usb_interrupt *intr = &usb->intr;
376 unsigned long flags;
377 int len;
378 u16 int_num;
379
380 spin_lock_irqsave(&intr->lock, flags);
381
382 int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
383 if (int_num == (u16)CR_INTERRUPT) {
384 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
385 spin_lock(&mac->lock);
386 memcpy(&mac->intr_buffer, urb->transfer_buffer,
387 USB_MAX_EP_INT_BUFFER);
388 spin_unlock(&mac->lock);
389 schedule_work(&mac->process_intr);
390 } else if (atomic_read(&intr->read_regs_enabled)) {
391 len = urb->actual_length;
392 intr->read_regs.length = urb->actual_length;
393 if (len > sizeof(intr->read_regs.buffer))
394 len = sizeof(intr->read_regs.buffer);
395
396 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
397
398 /* Sometimes USB_INT_ID_REGS is not overridden, but comes after
399 * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
400 * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
401 * retry unhandled. Next read-reg command then might catch
402 * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
403 */
404 if (!check_read_regs(usb, intr->read_regs.req,
405 intr->read_regs.req_count))
406 goto out;
407
408 atomic_set(&intr->read_regs_enabled, 0);
409 intr->read_regs_int_overridden = 0;
410 complete(&intr->read_regs.completion);
411
412 goto out;
413 }
414
415 out:
416 spin_unlock_irqrestore(&intr->lock, flags);
417
418 /* CR_INTERRUPT might override read_reg too. */
419 if (int_num == (u16)CR_INTERRUPT &&
420 atomic_read(&intr->read_regs_enabled))
421 handle_regs_int_override(urb);
422 }
423
int_urb_complete(struct urb * urb)424 static void int_urb_complete(struct urb *urb)
425 {
426 int r;
427 struct usb_int_header *hdr;
428 struct zd_usb *usb;
429 struct zd_usb_interrupt *intr;
430
431 switch (urb->status) {
432 case 0:
433 break;
434 case -ESHUTDOWN:
435 case -EINVAL:
436 case -ENODEV:
437 case -ENOENT:
438 case -ECONNRESET:
439 case -EPIPE:
440 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
441 return;
442 default:
443 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
444 goto resubmit;
445 }
446
447 if (urb->actual_length < sizeof(hdr)) {
448 dev_dbg_f(urb_dev(urb), "error: urb %p too small\n", urb);
449 goto resubmit;
450 }
451
452 hdr = urb->transfer_buffer;
453 if (hdr->type != USB_INT_TYPE) {
454 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
455 goto resubmit;
456 }
457
458 /* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
459 * pending USB_INT_ID_REGS causing read command timeout.
460 */
461 usb = urb->context;
462 intr = &usb->intr;
463 if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
464 handle_regs_int_override(urb);
465
466 switch (hdr->id) {
467 case USB_INT_ID_REGS:
468 handle_regs_int(urb);
469 break;
470 case USB_INT_ID_RETRY_FAILED:
471 zd_mac_tx_failed(urb);
472 break;
473 default:
474 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
475 (unsigned int)hdr->id);
476 goto resubmit;
477 }
478
479 resubmit:
480 r = usb_submit_urb(urb, GFP_ATOMIC);
481 if (r) {
482 dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
483 urb, r);
484 /* TODO: add worker to reset intr->urb */
485 }
486 return;
487 }
488
int_urb_interval(struct usb_device * udev)489 static inline int int_urb_interval(struct usb_device *udev)
490 {
491 switch (udev->speed) {
492 case USB_SPEED_HIGH:
493 return 4;
494 case USB_SPEED_LOW:
495 return 10;
496 case USB_SPEED_FULL:
497 default:
498 return 1;
499 }
500 }
501
usb_int_enabled(struct zd_usb * usb)502 static inline int usb_int_enabled(struct zd_usb *usb)
503 {
504 unsigned long flags;
505 struct zd_usb_interrupt *intr = &usb->intr;
506 struct urb *urb;
507
508 spin_lock_irqsave(&intr->lock, flags);
509 urb = intr->urb;
510 spin_unlock_irqrestore(&intr->lock, flags);
511 return urb != NULL;
512 }
513
zd_usb_enable_int(struct zd_usb * usb)514 int zd_usb_enable_int(struct zd_usb *usb)
515 {
516 int r;
517 struct usb_device *udev = zd_usb_to_usbdev(usb);
518 struct zd_usb_interrupt *intr = &usb->intr;
519 struct urb *urb;
520
521 dev_dbg_f(zd_usb_dev(usb), "\n");
522
523 urb = usb_alloc_urb(0, GFP_KERNEL);
524 if (!urb) {
525 r = -ENOMEM;
526 goto out;
527 }
528
529 ZD_ASSERT(!irqs_disabled());
530 spin_lock_irq(&intr->lock);
531 if (intr->urb) {
532 spin_unlock_irq(&intr->lock);
533 r = 0;
534 goto error_free_urb;
535 }
536 intr->urb = urb;
537 spin_unlock_irq(&intr->lock);
538
539 r = -ENOMEM;
540 intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
541 GFP_KERNEL, &intr->buffer_dma);
542 if (!intr->buffer) {
543 dev_dbg_f(zd_usb_dev(usb),
544 "couldn't allocate transfer_buffer\n");
545 goto error_set_urb_null;
546 }
547
548 usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
549 intr->buffer, USB_MAX_EP_INT_BUFFER,
550 int_urb_complete, usb,
551 intr->interval);
552 urb->transfer_dma = intr->buffer_dma;
553 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
554
555 dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
556 r = usb_submit_urb(urb, GFP_KERNEL);
557 if (r) {
558 dev_dbg_f(zd_usb_dev(usb),
559 "Couldn't submit urb. Error number %d\n", r);
560 goto error;
561 }
562
563 return 0;
564 error:
565 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
566 intr->buffer, intr->buffer_dma);
567 error_set_urb_null:
568 spin_lock_irq(&intr->lock);
569 intr->urb = NULL;
570 spin_unlock_irq(&intr->lock);
571 error_free_urb:
572 usb_free_urb(urb);
573 out:
574 return r;
575 }
576
zd_usb_disable_int(struct zd_usb * usb)577 void zd_usb_disable_int(struct zd_usb *usb)
578 {
579 unsigned long flags;
580 struct usb_device *udev = zd_usb_to_usbdev(usb);
581 struct zd_usb_interrupt *intr = &usb->intr;
582 struct urb *urb;
583 void *buffer;
584 dma_addr_t buffer_dma;
585
586 spin_lock_irqsave(&intr->lock, flags);
587 urb = intr->urb;
588 if (!urb) {
589 spin_unlock_irqrestore(&intr->lock, flags);
590 return;
591 }
592 intr->urb = NULL;
593 buffer = intr->buffer;
594 buffer_dma = intr->buffer_dma;
595 intr->buffer = NULL;
596 spin_unlock_irqrestore(&intr->lock, flags);
597
598 usb_kill_urb(urb);
599 dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
600 usb_free_urb(urb);
601
602 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER, buffer, buffer_dma);
603 }
604
handle_rx_packet(struct zd_usb * usb,const u8 * buffer,unsigned int length)605 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
606 unsigned int length)
607 {
608 int i;
609 const struct rx_length_info *length_info;
610
611 if (length < sizeof(struct rx_length_info)) {
612 /* It's not a complete packet anyhow. */
613 dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
614 length);
615 return;
616 }
617 length_info = (struct rx_length_info *)
618 (buffer + length - sizeof(struct rx_length_info));
619
620 /* It might be that three frames are merged into a single URB
621 * transaction. We have to check for the length info tag.
622 *
623 * While testing we discovered that length_info might be unaligned,
624 * because if USB transactions are merged, the last packet will not
625 * be padded. Unaligned access might also happen if the length_info
626 * structure is not present.
627 */
628 if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
629 {
630 unsigned int l, k, n;
631 for (i = 0, l = 0;; i++) {
632 k = get_unaligned_le16(&length_info->length[i]);
633 if (k == 0)
634 return;
635 n = l+k;
636 if (n > length)
637 return;
638 zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
639 if (i >= 2)
640 return;
641 l = (n+3) & ~3;
642 }
643 } else {
644 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
645 }
646 }
647
rx_urb_complete(struct urb * urb)648 static void rx_urb_complete(struct urb *urb)
649 {
650 int r;
651 struct zd_usb *usb;
652 struct zd_usb_rx *rx;
653 const u8 *buffer;
654 unsigned int length;
655 unsigned long flags;
656
657 switch (urb->status) {
658 case 0:
659 break;
660 case -ESHUTDOWN:
661 case -EINVAL:
662 case -ENODEV:
663 case -ENOENT:
664 case -ECONNRESET:
665 case -EPIPE:
666 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
667 return;
668 default:
669 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
670 goto resubmit;
671 }
672
673 buffer = urb->transfer_buffer;
674 length = urb->actual_length;
675 usb = urb->context;
676 rx = &usb->rx;
677
678 tasklet_schedule(&rx->reset_timer_tasklet);
679
680 if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
681 /* If there is an old first fragment, we don't care. */
682 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
683 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
684 spin_lock_irqsave(&rx->lock, flags);
685 memcpy(rx->fragment, buffer, length);
686 rx->fragment_length = length;
687 spin_unlock_irqrestore(&rx->lock, flags);
688 goto resubmit;
689 }
690
691 spin_lock_irqsave(&rx->lock, flags);
692 if (rx->fragment_length > 0) {
693 /* We are on a second fragment, we believe */
694 ZD_ASSERT(length + rx->fragment_length <=
695 ARRAY_SIZE(rx->fragment));
696 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
697 memcpy(rx->fragment+rx->fragment_length, buffer, length);
698 handle_rx_packet(usb, rx->fragment,
699 rx->fragment_length + length);
700 rx->fragment_length = 0;
701 spin_unlock_irqrestore(&rx->lock, flags);
702 } else {
703 spin_unlock_irqrestore(&rx->lock, flags);
704 handle_rx_packet(usb, buffer, length);
705 }
706
707 resubmit:
708 r = usb_submit_urb(urb, GFP_ATOMIC);
709 if (r)
710 dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
711 }
712
alloc_rx_urb(struct zd_usb * usb)713 static struct urb *alloc_rx_urb(struct zd_usb *usb)
714 {
715 struct usb_device *udev = zd_usb_to_usbdev(usb);
716 struct urb *urb;
717 void *buffer;
718
719 urb = usb_alloc_urb(0, GFP_KERNEL);
720 if (!urb)
721 return NULL;
722 buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
723 &urb->transfer_dma);
724 if (!buffer) {
725 usb_free_urb(urb);
726 return NULL;
727 }
728
729 usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
730 buffer, USB_MAX_RX_SIZE,
731 rx_urb_complete, usb);
732 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
733
734 return urb;
735 }
736
free_rx_urb(struct urb * urb)737 static void free_rx_urb(struct urb *urb)
738 {
739 if (!urb)
740 return;
741 usb_free_coherent(urb->dev, urb->transfer_buffer_length,
742 urb->transfer_buffer, urb->transfer_dma);
743 usb_free_urb(urb);
744 }
745
__zd_usb_enable_rx(struct zd_usb * usb)746 static int __zd_usb_enable_rx(struct zd_usb *usb)
747 {
748 int i, r;
749 struct zd_usb_rx *rx = &usb->rx;
750 struct urb **urbs;
751
752 dev_dbg_f(zd_usb_dev(usb), "\n");
753
754 r = -ENOMEM;
755 urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
756 if (!urbs)
757 goto error;
758 for (i = 0; i < RX_URBS_COUNT; i++) {
759 urbs[i] = alloc_rx_urb(usb);
760 if (!urbs[i])
761 goto error;
762 }
763
764 ZD_ASSERT(!irqs_disabled());
765 spin_lock_irq(&rx->lock);
766 if (rx->urbs) {
767 spin_unlock_irq(&rx->lock);
768 r = 0;
769 goto error;
770 }
771 rx->urbs = urbs;
772 rx->urbs_count = RX_URBS_COUNT;
773 spin_unlock_irq(&rx->lock);
774
775 for (i = 0; i < RX_URBS_COUNT; i++) {
776 r = usb_submit_urb(urbs[i], GFP_KERNEL);
777 if (r)
778 goto error_submit;
779 }
780
781 return 0;
782 error_submit:
783 for (i = 0; i < RX_URBS_COUNT; i++) {
784 usb_kill_urb(urbs[i]);
785 }
786 spin_lock_irq(&rx->lock);
787 rx->urbs = NULL;
788 rx->urbs_count = 0;
789 spin_unlock_irq(&rx->lock);
790 error:
791 if (urbs) {
792 for (i = 0; i < RX_URBS_COUNT; i++)
793 free_rx_urb(urbs[i]);
794 kfree(urbs);
795 }
796 return r;
797 }
798
zd_usb_enable_rx(struct zd_usb * usb)799 int zd_usb_enable_rx(struct zd_usb *usb)
800 {
801 int r;
802 struct zd_usb_rx *rx = &usb->rx;
803
804 mutex_lock(&rx->setup_mutex);
805 r = __zd_usb_enable_rx(usb);
806 mutex_unlock(&rx->setup_mutex);
807
808 zd_usb_reset_rx_idle_timer(usb);
809
810 return r;
811 }
812
__zd_usb_disable_rx(struct zd_usb * usb)813 static void __zd_usb_disable_rx(struct zd_usb *usb)
814 {
815 int i;
816 unsigned long flags;
817 struct urb **urbs;
818 unsigned int count;
819 struct zd_usb_rx *rx = &usb->rx;
820
821 spin_lock_irqsave(&rx->lock, flags);
822 urbs = rx->urbs;
823 count = rx->urbs_count;
824 spin_unlock_irqrestore(&rx->lock, flags);
825 if (!urbs)
826 return;
827
828 for (i = 0; i < count; i++) {
829 usb_kill_urb(urbs[i]);
830 free_rx_urb(urbs[i]);
831 }
832 kfree(urbs);
833
834 spin_lock_irqsave(&rx->lock, flags);
835 rx->urbs = NULL;
836 rx->urbs_count = 0;
837 spin_unlock_irqrestore(&rx->lock, flags);
838 }
839
zd_usb_disable_rx(struct zd_usb * usb)840 void zd_usb_disable_rx(struct zd_usb *usb)
841 {
842 struct zd_usb_rx *rx = &usb->rx;
843
844 mutex_lock(&rx->setup_mutex);
845 __zd_usb_disable_rx(usb);
846 mutex_unlock(&rx->setup_mutex);
847
848 tasklet_kill(&rx->reset_timer_tasklet);
849 cancel_delayed_work_sync(&rx->idle_work);
850 }
851
zd_usb_reset_rx(struct zd_usb * usb)852 static void zd_usb_reset_rx(struct zd_usb *usb)
853 {
854 bool do_reset;
855 struct zd_usb_rx *rx = &usb->rx;
856 unsigned long flags;
857
858 mutex_lock(&rx->setup_mutex);
859
860 spin_lock_irqsave(&rx->lock, flags);
861 do_reset = rx->urbs != NULL;
862 spin_unlock_irqrestore(&rx->lock, flags);
863
864 if (do_reset) {
865 __zd_usb_disable_rx(usb);
866 __zd_usb_enable_rx(usb);
867 }
868
869 mutex_unlock(&rx->setup_mutex);
870
871 if (do_reset)
872 zd_usb_reset_rx_idle_timer(usb);
873 }
874
875 /**
876 * zd_usb_disable_tx - disable transmission
877 * @usb: the zd1211rw-private USB structure
878 *
879 * Frees all URBs in the free list and marks the transmission as disabled.
880 */
zd_usb_disable_tx(struct zd_usb * usb)881 void zd_usb_disable_tx(struct zd_usb *usb)
882 {
883 struct zd_usb_tx *tx = &usb->tx;
884 unsigned long flags;
885
886 atomic_set(&tx->enabled, 0);
887
888 /* kill all submitted tx-urbs */
889 usb_kill_anchored_urbs(&tx->submitted);
890
891 spin_lock_irqsave(&tx->lock, flags);
892 WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
893 WARN_ON(tx->submitted_urbs != 0);
894 tx->submitted_urbs = 0;
895 spin_unlock_irqrestore(&tx->lock, flags);
896
897 /* The stopped state is ignored, relying on ieee80211_wake_queues()
898 * in a potentionally following zd_usb_enable_tx().
899 */
900 }
901
902 /**
903 * zd_usb_enable_tx - enables transmission
904 * @usb: a &struct zd_usb pointer
905 *
906 * This function enables transmission and prepares the &zd_usb_tx data
907 * structure.
908 */
zd_usb_enable_tx(struct zd_usb * usb)909 void zd_usb_enable_tx(struct zd_usb *usb)
910 {
911 unsigned long flags;
912 struct zd_usb_tx *tx = &usb->tx;
913
914 spin_lock_irqsave(&tx->lock, flags);
915 atomic_set(&tx->enabled, 1);
916 tx->submitted_urbs = 0;
917 ieee80211_wake_queues(zd_usb_to_hw(usb));
918 tx->stopped = 0;
919 spin_unlock_irqrestore(&tx->lock, flags);
920 }
921
tx_dec_submitted_urbs(struct zd_usb * usb)922 static void tx_dec_submitted_urbs(struct zd_usb *usb)
923 {
924 struct zd_usb_tx *tx = &usb->tx;
925 unsigned long flags;
926
927 spin_lock_irqsave(&tx->lock, flags);
928 --tx->submitted_urbs;
929 if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
930 ieee80211_wake_queues(zd_usb_to_hw(usb));
931 tx->stopped = 0;
932 }
933 spin_unlock_irqrestore(&tx->lock, flags);
934 }
935
tx_inc_submitted_urbs(struct zd_usb * usb)936 static void tx_inc_submitted_urbs(struct zd_usb *usb)
937 {
938 struct zd_usb_tx *tx = &usb->tx;
939 unsigned long flags;
940
941 spin_lock_irqsave(&tx->lock, flags);
942 ++tx->submitted_urbs;
943 if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
944 ieee80211_stop_queues(zd_usb_to_hw(usb));
945 tx->stopped = 1;
946 }
947 spin_unlock_irqrestore(&tx->lock, flags);
948 }
949
950 /**
951 * tx_urb_complete - completes the execution of an URB
952 * @urb: a URB
953 *
954 * This function is called if the URB has been transferred to a device or an
955 * error has happened.
956 */
tx_urb_complete(struct urb * urb)957 static void tx_urb_complete(struct urb *urb)
958 {
959 int r;
960 struct sk_buff *skb;
961 struct ieee80211_tx_info *info;
962 struct zd_usb *usb;
963 struct zd_usb_tx *tx;
964
965 skb = (struct sk_buff *)urb->context;
966 info = IEEE80211_SKB_CB(skb);
967 /*
968 * grab 'usb' pointer before handing off the skb (since
969 * it might be freed by zd_mac_tx_to_dev or mac80211)
970 */
971 usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
972 tx = &usb->tx;
973
974 switch (urb->status) {
975 case 0:
976 break;
977 case -ESHUTDOWN:
978 case -EINVAL:
979 case -ENODEV:
980 case -ENOENT:
981 case -ECONNRESET:
982 case -EPIPE:
983 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
984 break;
985 default:
986 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
987 goto resubmit;
988 }
989 free_urb:
990 skb_unlink(skb, &usb->tx.submitted_skbs);
991 zd_mac_tx_to_dev(skb, urb->status);
992 usb_free_urb(urb);
993 tx_dec_submitted_urbs(usb);
994 return;
995 resubmit:
996 usb_anchor_urb(urb, &tx->submitted);
997 r = usb_submit_urb(urb, GFP_ATOMIC);
998 if (r) {
999 usb_unanchor_urb(urb);
1000 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
1001 goto free_urb;
1002 }
1003 }
1004
1005 /**
1006 * zd_usb_tx: initiates transfer of a frame of the device
1007 *
1008 * @usb: the zd1211rw-private USB structure
1009 * @skb: a &struct sk_buff pointer
1010 *
1011 * This function transmits a frame to the device. It doesn't wait for
1012 * completion. The frame must contain the control set and have all the
1013 * control set information available.
1014 *
1015 * The function returns 0 if the transfer has been successfully initiated.
1016 */
zd_usb_tx(struct zd_usb * usb,struct sk_buff * skb)1017 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
1018 {
1019 int r;
1020 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1021 struct usb_device *udev = zd_usb_to_usbdev(usb);
1022 struct urb *urb;
1023 struct zd_usb_tx *tx = &usb->tx;
1024
1025 if (!atomic_read(&tx->enabled)) {
1026 r = -ENOENT;
1027 goto out;
1028 }
1029
1030 urb = usb_alloc_urb(0, GFP_ATOMIC);
1031 if (!urb) {
1032 r = -ENOMEM;
1033 goto out;
1034 }
1035
1036 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1037 skb->data, skb->len, tx_urb_complete, skb);
1038
1039 info->rate_driver_data[1] = (void *)jiffies;
1040 skb_queue_tail(&tx->submitted_skbs, skb);
1041 usb_anchor_urb(urb, &tx->submitted);
1042
1043 r = usb_submit_urb(urb, GFP_ATOMIC);
1044 if (r) {
1045 dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1046 usb_unanchor_urb(urb);
1047 skb_unlink(skb, &tx->submitted_skbs);
1048 goto error;
1049 }
1050 tx_inc_submitted_urbs(usb);
1051 return 0;
1052 error:
1053 usb_free_urb(urb);
1054 out:
1055 return r;
1056 }
1057
zd_tx_timeout(struct zd_usb * usb)1058 static bool zd_tx_timeout(struct zd_usb *usb)
1059 {
1060 struct zd_usb_tx *tx = &usb->tx;
1061 struct sk_buff_head *q = &tx->submitted_skbs;
1062 struct sk_buff *skb, *skbnext;
1063 struct ieee80211_tx_info *info;
1064 unsigned long flags, trans_start;
1065 bool have_timedout = false;
1066
1067 spin_lock_irqsave(&q->lock, flags);
1068 skb_queue_walk_safe(q, skb, skbnext) {
1069 info = IEEE80211_SKB_CB(skb);
1070 trans_start = (unsigned long)info->rate_driver_data[1];
1071
1072 if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1073 have_timedout = true;
1074 break;
1075 }
1076 }
1077 spin_unlock_irqrestore(&q->lock, flags);
1078
1079 return have_timedout;
1080 }
1081
zd_tx_watchdog_handler(struct work_struct * work)1082 static void zd_tx_watchdog_handler(struct work_struct *work)
1083 {
1084 struct zd_usb *usb =
1085 container_of(work, struct zd_usb, tx.watchdog_work.work);
1086 struct zd_usb_tx *tx = &usb->tx;
1087
1088 if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1089 goto out;
1090 if (!zd_tx_timeout(usb))
1091 goto out;
1092
1093 /* TX halted, try reset */
1094 dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device...");
1095
1096 usb_queue_reset_device(usb->intf);
1097
1098 /* reset will stop this worker, don't rearm */
1099 return;
1100 out:
1101 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1102 ZD_TX_WATCHDOG_INTERVAL);
1103 }
1104
zd_tx_watchdog_enable(struct zd_usb * usb)1105 void zd_tx_watchdog_enable(struct zd_usb *usb)
1106 {
1107 struct zd_usb_tx *tx = &usb->tx;
1108
1109 if (!tx->watchdog_enabled) {
1110 dev_dbg_f(zd_usb_dev(usb), "\n");
1111 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1112 ZD_TX_WATCHDOG_INTERVAL);
1113 tx->watchdog_enabled = 1;
1114 }
1115 }
1116
zd_tx_watchdog_disable(struct zd_usb * usb)1117 void zd_tx_watchdog_disable(struct zd_usb *usb)
1118 {
1119 struct zd_usb_tx *tx = &usb->tx;
1120
1121 if (tx->watchdog_enabled) {
1122 dev_dbg_f(zd_usb_dev(usb), "\n");
1123 tx->watchdog_enabled = 0;
1124 cancel_delayed_work_sync(&tx->watchdog_work);
1125 }
1126 }
1127
zd_rx_idle_timer_handler(struct work_struct * work)1128 static void zd_rx_idle_timer_handler(struct work_struct *work)
1129 {
1130 struct zd_usb *usb =
1131 container_of(work, struct zd_usb, rx.idle_work.work);
1132 struct zd_mac *mac = zd_usb_to_mac(usb);
1133
1134 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1135 return;
1136
1137 dev_dbg_f(zd_usb_dev(usb), "\n");
1138
1139 /* 30 seconds since last rx, reset rx */
1140 zd_usb_reset_rx(usb);
1141 }
1142
zd_usb_reset_rx_idle_timer_tasklet(struct tasklet_struct * t)1143 static void zd_usb_reset_rx_idle_timer_tasklet(struct tasklet_struct *t)
1144 {
1145 struct zd_usb *usb = from_tasklet(usb, t, rx.reset_timer_tasklet);
1146
1147 zd_usb_reset_rx_idle_timer(usb);
1148 }
1149
zd_usb_reset_rx_idle_timer(struct zd_usb * usb)1150 void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
1151 {
1152 struct zd_usb_rx *rx = &usb->rx;
1153
1154 mod_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
1155 }
1156
init_usb_interrupt(struct zd_usb * usb)1157 static inline void init_usb_interrupt(struct zd_usb *usb)
1158 {
1159 struct zd_usb_interrupt *intr = &usb->intr;
1160
1161 spin_lock_init(&intr->lock);
1162 intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1163 init_completion(&intr->read_regs.completion);
1164 atomic_set(&intr->read_regs_enabled, 0);
1165 intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1166 }
1167
init_usb_rx(struct zd_usb * usb)1168 static inline void init_usb_rx(struct zd_usb *usb)
1169 {
1170 struct zd_usb_rx *rx = &usb->rx;
1171
1172 spin_lock_init(&rx->lock);
1173 mutex_init(&rx->setup_mutex);
1174 if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1175 rx->usb_packet_size = 512;
1176 } else {
1177 rx->usb_packet_size = 64;
1178 }
1179 ZD_ASSERT(rx->fragment_length == 0);
1180 INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1181 rx->reset_timer_tasklet.func = (void (*))
1182 zd_usb_reset_rx_idle_timer_tasklet;
1183 rx->reset_timer_tasklet.data = (unsigned long)&rx->reset_timer_tasklet;
1184 }
1185
init_usb_tx(struct zd_usb * usb)1186 static inline void init_usb_tx(struct zd_usb *usb)
1187 {
1188 struct zd_usb_tx *tx = &usb->tx;
1189
1190 spin_lock_init(&tx->lock);
1191 atomic_set(&tx->enabled, 0);
1192 tx->stopped = 0;
1193 skb_queue_head_init(&tx->submitted_skbs);
1194 init_usb_anchor(&tx->submitted);
1195 tx->submitted_urbs = 0;
1196 tx->watchdog_enabled = 0;
1197 INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1198 }
1199
zd_usb_init(struct zd_usb * usb,struct ieee80211_hw * hw,struct usb_interface * intf)1200 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1201 struct usb_interface *intf)
1202 {
1203 memset(usb, 0, sizeof(*usb));
1204 usb->intf = usb_get_intf(intf);
1205 usb_set_intfdata(usb->intf, hw);
1206 init_usb_anchor(&usb->submitted_cmds);
1207 init_usb_interrupt(usb);
1208 init_usb_tx(usb);
1209 init_usb_rx(usb);
1210 }
1211
zd_usb_clear(struct zd_usb * usb)1212 void zd_usb_clear(struct zd_usb *usb)
1213 {
1214 usb_set_intfdata(usb->intf, NULL);
1215 usb_put_intf(usb->intf);
1216 ZD_MEMCLEAR(usb, sizeof(*usb));
1217 /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1218 }
1219
speed(enum usb_device_speed speed)1220 static const char *speed(enum usb_device_speed speed)
1221 {
1222 switch (speed) {
1223 case USB_SPEED_LOW:
1224 return "low";
1225 case USB_SPEED_FULL:
1226 return "full";
1227 case USB_SPEED_HIGH:
1228 return "high";
1229 default:
1230 return "unknown speed";
1231 }
1232 }
1233
scnprint_id(struct usb_device * udev,char * buffer,size_t size)1234 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1235 {
1236 return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1237 le16_to_cpu(udev->descriptor.idVendor),
1238 le16_to_cpu(udev->descriptor.idProduct),
1239 get_bcdDevice(udev),
1240 speed(udev->speed));
1241 }
1242
zd_usb_scnprint_id(struct zd_usb * usb,char * buffer,size_t size)1243 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1244 {
1245 struct usb_device *udev = interface_to_usbdev(usb->intf);
1246 return scnprint_id(udev, buffer, size);
1247 }
1248
1249 #ifdef DEBUG
print_id(struct usb_device * udev)1250 static void print_id(struct usb_device *udev)
1251 {
1252 char buffer[40];
1253
1254 scnprint_id(udev, buffer, sizeof(buffer));
1255 buffer[sizeof(buffer)-1] = 0;
1256 dev_dbg_f(&udev->dev, "%s\n", buffer);
1257 }
1258 #else
1259 #define print_id(udev) do { } while (0)
1260 #endif
1261
eject_installer(struct usb_interface * intf)1262 static int eject_installer(struct usb_interface *intf)
1263 {
1264 struct usb_device *udev = interface_to_usbdev(intf);
1265 struct usb_host_interface *iface_desc = intf->cur_altsetting;
1266 struct usb_endpoint_descriptor *endpoint;
1267 unsigned char *cmd;
1268 u8 bulk_out_ep;
1269 int r;
1270
1271 if (iface_desc->desc.bNumEndpoints < 2)
1272 return -ENODEV;
1273
1274 /* Find bulk out endpoint */
1275 for (r = 1; r >= 0; r--) {
1276 endpoint = &iface_desc->endpoint[r].desc;
1277 if (usb_endpoint_dir_out(endpoint) &&
1278 usb_endpoint_xfer_bulk(endpoint)) {
1279 bulk_out_ep = endpoint->bEndpointAddress;
1280 break;
1281 }
1282 }
1283 if (r == -1) {
1284 dev_err(&udev->dev,
1285 "zd1211rw: Could not find bulk out endpoint\n");
1286 return -ENODEV;
1287 }
1288
1289 cmd = kzalloc(31, GFP_KERNEL);
1290 if (cmd == NULL)
1291 return -ENODEV;
1292
1293 /* USB bulk command block */
1294 cmd[0] = 0x55; /* bulk command signature */
1295 cmd[1] = 0x53; /* bulk command signature */
1296 cmd[2] = 0x42; /* bulk command signature */
1297 cmd[3] = 0x43; /* bulk command signature */
1298 cmd[14] = 6; /* command length */
1299
1300 cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1301 cmd[19] = 0x2; /* eject disc */
1302
1303 dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1304 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1305 cmd, 31, NULL, 2000);
1306 kfree(cmd);
1307 if (r)
1308 return r;
1309
1310 /* At this point, the device disconnects and reconnects with the real
1311 * ID numbers. */
1312
1313 usb_set_intfdata(intf, NULL);
1314 return 0;
1315 }
1316
zd_usb_init_hw(struct zd_usb * usb)1317 int zd_usb_init_hw(struct zd_usb *usb)
1318 {
1319 int r;
1320 struct zd_mac *mac = zd_usb_to_mac(usb);
1321
1322 dev_dbg_f(zd_usb_dev(usb), "\n");
1323
1324 r = upload_firmware(usb);
1325 if (r) {
1326 dev_err(zd_usb_dev(usb),
1327 "couldn't load firmware. Error number %d\n", r);
1328 return r;
1329 }
1330
1331 r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1332 if (r) {
1333 dev_dbg_f(zd_usb_dev(usb),
1334 "couldn't reset configuration. Error number %d\n", r);
1335 return r;
1336 }
1337
1338 r = zd_mac_init_hw(mac->hw);
1339 if (r) {
1340 dev_dbg_f(zd_usb_dev(usb),
1341 "couldn't initialize mac. Error number %d\n", r);
1342 return r;
1343 }
1344
1345 usb->initialized = 1;
1346 return 0;
1347 }
1348
probe(struct usb_interface * intf,const struct usb_device_id * id)1349 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1350 {
1351 int r;
1352 struct usb_device *udev = interface_to_usbdev(intf);
1353 struct zd_usb *usb;
1354 struct ieee80211_hw *hw = NULL;
1355
1356 print_id(udev);
1357
1358 if (id->driver_info & DEVICE_INSTALLER)
1359 return eject_installer(intf);
1360
1361 switch (udev->speed) {
1362 case USB_SPEED_LOW:
1363 case USB_SPEED_FULL:
1364 case USB_SPEED_HIGH:
1365 break;
1366 default:
1367 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1368 r = -ENODEV;
1369 goto error;
1370 }
1371
1372 r = usb_reset_device(udev);
1373 if (r) {
1374 dev_err(&intf->dev,
1375 "couldn't reset usb device. Error number %d\n", r);
1376 goto error;
1377 }
1378
1379 hw = zd_mac_alloc_hw(intf);
1380 if (hw == NULL) {
1381 r = -ENOMEM;
1382 goto error;
1383 }
1384
1385 usb = &zd_hw_mac(hw)->chip.usb;
1386 usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1387
1388 r = zd_mac_preinit_hw(hw);
1389 if (r) {
1390 dev_dbg_f(&intf->dev,
1391 "couldn't initialize mac. Error number %d\n", r);
1392 goto error;
1393 }
1394
1395 r = ieee80211_register_hw(hw);
1396 if (r) {
1397 dev_dbg_f(&intf->dev,
1398 "couldn't register device. Error number %d\n", r);
1399 goto error;
1400 }
1401
1402 dev_dbg_f(&intf->dev, "successful\n");
1403 dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1404 return 0;
1405 error:
1406 usb_reset_device(interface_to_usbdev(intf));
1407 if (hw) {
1408 zd_mac_clear(zd_hw_mac(hw));
1409 ieee80211_free_hw(hw);
1410 }
1411 return r;
1412 }
1413
disconnect(struct usb_interface * intf)1414 static void disconnect(struct usb_interface *intf)
1415 {
1416 struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1417 struct zd_mac *mac;
1418 struct zd_usb *usb;
1419
1420 /* Either something really bad happened, or we're just dealing with
1421 * a DEVICE_INSTALLER. */
1422 if (hw == NULL)
1423 return;
1424
1425 mac = zd_hw_mac(hw);
1426 usb = &mac->chip.usb;
1427
1428 dev_dbg_f(zd_usb_dev(usb), "\n");
1429
1430 ieee80211_unregister_hw(hw);
1431
1432 /* Just in case something has gone wrong! */
1433 zd_usb_disable_tx(usb);
1434 zd_usb_disable_rx(usb);
1435 zd_usb_disable_int(usb);
1436
1437 /* If the disconnect has been caused by a removal of the
1438 * driver module, the reset allows reloading of the driver. If the
1439 * reset will not be executed here, the upload of the firmware in the
1440 * probe function caused by the reloading of the driver will fail.
1441 */
1442 usb_reset_device(interface_to_usbdev(intf));
1443
1444 zd_mac_clear(mac);
1445 ieee80211_free_hw(hw);
1446 dev_dbg(&intf->dev, "disconnected\n");
1447 }
1448
zd_usb_resume(struct zd_usb * usb)1449 static void zd_usb_resume(struct zd_usb *usb)
1450 {
1451 struct zd_mac *mac = zd_usb_to_mac(usb);
1452 int r;
1453
1454 dev_dbg_f(zd_usb_dev(usb), "\n");
1455
1456 r = zd_op_start(zd_usb_to_hw(usb));
1457 if (r < 0) {
1458 dev_warn(zd_usb_dev(usb), "Device resume failed "
1459 "with error code %d. Retrying...\n", r);
1460 if (usb->was_running)
1461 set_bit(ZD_DEVICE_RUNNING, &mac->flags);
1462 usb_queue_reset_device(usb->intf);
1463 return;
1464 }
1465
1466 if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1467 r = zd_restore_settings(mac);
1468 if (r < 0) {
1469 dev_dbg(zd_usb_dev(usb),
1470 "failed to restore settings, %d\n", r);
1471 return;
1472 }
1473 }
1474 }
1475
zd_usb_stop(struct zd_usb * usb)1476 static void zd_usb_stop(struct zd_usb *usb)
1477 {
1478 dev_dbg_f(zd_usb_dev(usb), "\n");
1479
1480 zd_op_stop(zd_usb_to_hw(usb), false);
1481
1482 zd_usb_disable_tx(usb);
1483 zd_usb_disable_rx(usb);
1484 zd_usb_disable_int(usb);
1485
1486 usb->initialized = 0;
1487 }
1488
pre_reset(struct usb_interface * intf)1489 static int pre_reset(struct usb_interface *intf)
1490 {
1491 struct ieee80211_hw *hw = usb_get_intfdata(intf);
1492 struct zd_mac *mac;
1493 struct zd_usb *usb;
1494
1495 if (!hw || intf->condition != USB_INTERFACE_BOUND)
1496 return 0;
1497
1498 mac = zd_hw_mac(hw);
1499 usb = &mac->chip.usb;
1500
1501 usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
1502
1503 zd_usb_stop(usb);
1504
1505 mutex_lock(&mac->chip.mutex);
1506 return 0;
1507 }
1508
post_reset(struct usb_interface * intf)1509 static int post_reset(struct usb_interface *intf)
1510 {
1511 struct ieee80211_hw *hw = usb_get_intfdata(intf);
1512 struct zd_mac *mac;
1513 struct zd_usb *usb;
1514
1515 if (!hw || intf->condition != USB_INTERFACE_BOUND)
1516 return 0;
1517
1518 mac = zd_hw_mac(hw);
1519 usb = &mac->chip.usb;
1520
1521 mutex_unlock(&mac->chip.mutex);
1522
1523 if (usb->was_running)
1524 zd_usb_resume(usb);
1525 return 0;
1526 }
1527
1528 static struct usb_driver driver = {
1529 .name = KBUILD_MODNAME,
1530 .id_table = usb_ids,
1531 .probe = probe,
1532 .disconnect = disconnect,
1533 .pre_reset = pre_reset,
1534 .post_reset = post_reset,
1535 .disable_hub_initiated_lpm = 1,
1536 };
1537
1538 struct workqueue_struct *zd_workqueue;
1539
usb_init(void)1540 static int __init usb_init(void)
1541 {
1542 int r;
1543
1544 pr_debug("%s usb_init()\n", driver.name);
1545
1546 zd_workqueue = create_singlethread_workqueue(driver.name);
1547 if (zd_workqueue == NULL) {
1548 pr_err("%s couldn't create workqueue\n", driver.name);
1549 return -ENOMEM;
1550 }
1551
1552 r = usb_register(&driver);
1553 if (r) {
1554 destroy_workqueue(zd_workqueue);
1555 pr_err("%s usb_register() failed. Error number %d\n",
1556 driver.name, r);
1557 return r;
1558 }
1559
1560 pr_debug("%s initialized\n", driver.name);
1561 return 0;
1562 }
1563
usb_exit(void)1564 static void __exit usb_exit(void)
1565 {
1566 pr_debug("%s usb_exit()\n", driver.name);
1567 usb_deregister(&driver);
1568 destroy_workqueue(zd_workqueue);
1569 }
1570
1571 module_init(usb_init);
1572 module_exit(usb_exit);
1573
zd_ep_regs_out_msg(struct usb_device * udev,void * data,int len,int * actual_length,int timeout)1574 static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
1575 int *actual_length, int timeout)
1576 {
1577 /* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
1578 * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
1579 * descriptor.
1580 */
1581 struct usb_host_endpoint *ep;
1582 unsigned int pipe;
1583
1584 pipe = usb_sndintpipe(udev, EP_REGS_OUT);
1585 ep = usb_pipe_endpoint(udev, pipe);
1586 if (!ep)
1587 return -EINVAL;
1588
1589 if (usb_endpoint_xfer_int(&ep->desc)) {
1590 return usb_interrupt_msg(udev, pipe, data, len,
1591 actual_length, timeout);
1592 } else {
1593 pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
1594 return usb_bulk_msg(udev, pipe, data, len, actual_length,
1595 timeout);
1596 }
1597 }
1598
prepare_read_regs_int(struct zd_usb * usb,struct usb_req_read_regs * req,unsigned int count)1599 static void prepare_read_regs_int(struct zd_usb *usb,
1600 struct usb_req_read_regs *req,
1601 unsigned int count)
1602 {
1603 struct zd_usb_interrupt *intr = &usb->intr;
1604
1605 spin_lock_irq(&intr->lock);
1606 atomic_set(&intr->read_regs_enabled, 1);
1607 intr->read_regs.req = req;
1608 intr->read_regs.req_count = count;
1609 reinit_completion(&intr->read_regs.completion);
1610 spin_unlock_irq(&intr->lock);
1611 }
1612
disable_read_regs_int(struct zd_usb * usb)1613 static void disable_read_regs_int(struct zd_usb *usb)
1614 {
1615 struct zd_usb_interrupt *intr = &usb->intr;
1616
1617 spin_lock_irq(&intr->lock);
1618 atomic_set(&intr->read_regs_enabled, 0);
1619 spin_unlock_irq(&intr->lock);
1620 }
1621
check_read_regs(struct zd_usb * usb,struct usb_req_read_regs * req,unsigned int count)1622 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
1623 unsigned int count)
1624 {
1625 int i;
1626 struct zd_usb_interrupt *intr = &usb->intr;
1627 struct read_regs_int *rr = &intr->read_regs;
1628 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1629
1630 /* The created block size seems to be larger than expected.
1631 * However results appear to be correct.
1632 */
1633 if (rr->length < struct_size(regs, regs, count)) {
1634 dev_dbg_f(zd_usb_dev(usb),
1635 "error: actual length %d less than expected %zu\n",
1636 rr->length, struct_size(regs, regs, count));
1637 return false;
1638 }
1639
1640 if (rr->length > sizeof(rr->buffer)) {
1641 dev_dbg_f(zd_usb_dev(usb),
1642 "error: actual length %d exceeds buffer size %zu\n",
1643 rr->length, sizeof(rr->buffer));
1644 return false;
1645 }
1646
1647 for (i = 0; i < count; i++) {
1648 struct reg_data *rd = ®s->regs[i];
1649 if (rd->addr != req->addr[i]) {
1650 dev_dbg_f(zd_usb_dev(usb),
1651 "rd[%d] addr %#06hx expected %#06hx\n", i,
1652 le16_to_cpu(rd->addr),
1653 le16_to_cpu(req->addr[i]));
1654 return false;
1655 }
1656 }
1657
1658 return true;
1659 }
1660
get_results(struct zd_usb * usb,u16 * values,struct usb_req_read_regs * req,unsigned int count,bool * retry)1661 static int get_results(struct zd_usb *usb, u16 *values,
1662 struct usb_req_read_regs *req, unsigned int count,
1663 bool *retry)
1664 {
1665 int r;
1666 int i;
1667 struct zd_usb_interrupt *intr = &usb->intr;
1668 struct read_regs_int *rr = &intr->read_regs;
1669 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1670
1671 spin_lock_irq(&intr->lock);
1672
1673 r = -EIO;
1674
1675 /* Read failed because firmware bug? */
1676 *retry = !!intr->read_regs_int_overridden;
1677 if (*retry)
1678 goto error_unlock;
1679
1680 if (!check_read_regs(usb, req, count)) {
1681 dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
1682 goto error_unlock;
1683 }
1684
1685 for (i = 0; i < count; i++) {
1686 struct reg_data *rd = ®s->regs[i];
1687 values[i] = le16_to_cpu(rd->value);
1688 }
1689
1690 r = 0;
1691 error_unlock:
1692 spin_unlock_irq(&intr->lock);
1693 return r;
1694 }
1695
zd_usb_ioread16v(struct zd_usb * usb,u16 * values,const zd_addr_t * addresses,unsigned int count)1696 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1697 const zd_addr_t *addresses, unsigned int count)
1698 {
1699 int r, i, req_len, actual_req_len, try_count = 0;
1700 struct usb_device *udev;
1701 struct usb_req_read_regs *req = NULL;
1702 unsigned long time_left;
1703 bool retry = false;
1704
1705 if (count < 1) {
1706 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1707 return -EINVAL;
1708 }
1709 if (count > USB_MAX_IOREAD16_COUNT) {
1710 dev_dbg_f(zd_usb_dev(usb),
1711 "error: count %u exceeds possible max %u\n",
1712 count, USB_MAX_IOREAD16_COUNT);
1713 return -EINVAL;
1714 }
1715 if (!usb_int_enabled(usb)) {
1716 dev_dbg_f(zd_usb_dev(usb),
1717 "error: usb interrupt not enabled\n");
1718 return -EWOULDBLOCK;
1719 }
1720
1721 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1722 BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
1723 sizeof(__le16) > sizeof(usb->req_buf));
1724 BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1725 sizeof(usb->req_buf));
1726
1727 req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1728 req = (void *)usb->req_buf;
1729
1730 req->id = cpu_to_le16(USB_REQ_READ_REGS);
1731 for (i = 0; i < count; i++)
1732 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1733
1734 retry_read:
1735 try_count++;
1736 udev = zd_usb_to_usbdev(usb);
1737 prepare_read_regs_int(usb, req, count);
1738 r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
1739 if (r) {
1740 dev_dbg_f(zd_usb_dev(usb),
1741 "error in zd_ep_regs_out_msg(). Error number %d\n", r);
1742 goto error;
1743 }
1744 if (req_len != actual_req_len) {
1745 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
1746 " req_len %d != actual_req_len %d\n",
1747 req_len, actual_req_len);
1748 r = -EIO;
1749 goto error;
1750 }
1751
1752 time_left = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1753 msecs_to_jiffies(50));
1754 if (!time_left) {
1755 disable_read_regs_int(usb);
1756 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1757 r = -ETIMEDOUT;
1758 goto error;
1759 }
1760
1761 r = get_results(usb, values, req, count, &retry);
1762 if (retry && try_count < 20) {
1763 dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
1764 try_count);
1765 goto retry_read;
1766 }
1767 error:
1768 return r;
1769 }
1770
iowrite16v_urb_complete(struct urb * urb)1771 static void iowrite16v_urb_complete(struct urb *urb)
1772 {
1773 struct zd_usb *usb = urb->context;
1774
1775 if (urb->status && !usb->cmd_error)
1776 usb->cmd_error = urb->status;
1777
1778 if (!usb->cmd_error &&
1779 urb->actual_length != urb->transfer_buffer_length)
1780 usb->cmd_error = -EIO;
1781 }
1782
zd_submit_waiting_urb(struct zd_usb * usb,bool last)1783 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1784 {
1785 int r = 0;
1786 struct urb *urb = usb->urb_async_waiting;
1787
1788 if (!urb)
1789 return 0;
1790
1791 usb->urb_async_waiting = NULL;
1792
1793 if (!last)
1794 urb->transfer_flags |= URB_NO_INTERRUPT;
1795
1796 usb_anchor_urb(urb, &usb->submitted_cmds);
1797 r = usb_submit_urb(urb, GFP_KERNEL);
1798 if (r) {
1799 usb_unanchor_urb(urb);
1800 dev_dbg_f(zd_usb_dev(usb),
1801 "error in usb_submit_urb(). Error number %d\n", r);
1802 goto error;
1803 }
1804
1805 /* fall-through with r == 0 */
1806 error:
1807 usb_free_urb(urb);
1808 return r;
1809 }
1810
zd_usb_iowrite16v_async_start(struct zd_usb * usb)1811 void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
1812 {
1813 ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
1814 ZD_ASSERT(usb->urb_async_waiting == NULL);
1815 ZD_ASSERT(!usb->in_async);
1816
1817 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1818
1819 usb->in_async = 1;
1820 usb->cmd_error = 0;
1821 usb->urb_async_waiting = NULL;
1822 }
1823
zd_usb_iowrite16v_async_end(struct zd_usb * usb,unsigned int timeout)1824 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1825 {
1826 int r;
1827
1828 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1829 ZD_ASSERT(usb->in_async);
1830
1831 /* Submit last iowrite16v URB */
1832 r = zd_submit_waiting_urb(usb, true);
1833 if (r) {
1834 dev_dbg_f(zd_usb_dev(usb),
1835 "error in zd_submit_waiting_usb(). "
1836 "Error number %d\n", r);
1837
1838 usb_kill_anchored_urbs(&usb->submitted_cmds);
1839 goto error;
1840 }
1841
1842 if (timeout)
1843 timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
1844 timeout);
1845 if (!timeout) {
1846 usb_kill_anchored_urbs(&usb->submitted_cmds);
1847 if (usb->cmd_error == -ENOENT) {
1848 dev_dbg_f(zd_usb_dev(usb), "timed out");
1849 r = -ETIMEDOUT;
1850 goto error;
1851 }
1852 }
1853
1854 r = usb->cmd_error;
1855 error:
1856 usb->in_async = 0;
1857 return r;
1858 }
1859
zd_usb_iowrite16v_async(struct zd_usb * usb,const struct zd_ioreq16 * ioreqs,unsigned int count)1860 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1861 unsigned int count)
1862 {
1863 int r;
1864 struct usb_device *udev;
1865 struct usb_req_write_regs *req = NULL;
1866 int i, req_len;
1867 struct urb *urb;
1868 struct usb_host_endpoint *ep;
1869
1870 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1871 ZD_ASSERT(usb->in_async);
1872
1873 if (count == 0)
1874 return 0;
1875 if (count > USB_MAX_IOWRITE16_COUNT) {
1876 dev_dbg_f(zd_usb_dev(usb),
1877 "error: count %u exceeds possible max %u\n",
1878 count, USB_MAX_IOWRITE16_COUNT);
1879 return -EINVAL;
1880 }
1881
1882 udev = zd_usb_to_usbdev(usb);
1883
1884 ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1885 if (!ep)
1886 return -ENOENT;
1887
1888 urb = usb_alloc_urb(0, GFP_KERNEL);
1889 if (!urb)
1890 return -ENOMEM;
1891
1892 req_len = struct_size(req, reg_writes, count);
1893 req = kmalloc(req_len, GFP_KERNEL);
1894 if (!req) {
1895 r = -ENOMEM;
1896 goto error;
1897 }
1898
1899 req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1900 for (i = 0; i < count; i++) {
1901 struct reg_data *rw = &req->reg_writes[i];
1902 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1903 rw->value = cpu_to_le16(ioreqs[i].value);
1904 }
1905
1906 /* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
1907 * endpoint is bulk. Select correct type URB by endpoint descriptor.
1908 */
1909 if (usb_endpoint_xfer_int(&ep->desc))
1910 usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1911 req, req_len, iowrite16v_urb_complete, usb,
1912 ep->desc.bInterval);
1913 else
1914 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1915 req, req_len, iowrite16v_urb_complete, usb);
1916
1917 urb->transfer_flags |= URB_FREE_BUFFER;
1918
1919 /* Submit previous URB */
1920 r = zd_submit_waiting_urb(usb, false);
1921 if (r) {
1922 dev_dbg_f(zd_usb_dev(usb),
1923 "error in zd_submit_waiting_usb(). "
1924 "Error number %d\n", r);
1925 goto error;
1926 }
1927
1928 /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1929 * of currect batch except for very last.
1930 */
1931 usb->urb_async_waiting = urb;
1932 return 0;
1933 error:
1934 usb_free_urb(urb);
1935 return r;
1936 }
1937
zd_usb_iowrite16v(struct zd_usb * usb,const struct zd_ioreq16 * ioreqs,unsigned int count)1938 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1939 unsigned int count)
1940 {
1941 int r;
1942
1943 zd_usb_iowrite16v_async_start(usb);
1944 r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1945 if (r) {
1946 zd_usb_iowrite16v_async_end(usb, 0);
1947 return r;
1948 }
1949 return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1950 }
1951
zd_usb_rfwrite(struct zd_usb * usb,u32 value,u8 bits)1952 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1953 {
1954 int r;
1955 struct usb_device *udev;
1956 struct usb_req_rfwrite *req = NULL;
1957 int i, req_len, actual_req_len;
1958 u16 bit_value_template;
1959
1960 if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1961 dev_dbg_f(zd_usb_dev(usb),
1962 "error: bits %d are smaller than"
1963 " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1964 bits, USB_MIN_RFWRITE_BIT_COUNT);
1965 return -EINVAL;
1966 }
1967 if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1968 dev_dbg_f(zd_usb_dev(usb),
1969 "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1970 bits, USB_MAX_RFWRITE_BIT_COUNT);
1971 return -EINVAL;
1972 }
1973 #ifdef DEBUG
1974 if (value & (~0UL << bits)) {
1975 dev_dbg_f(zd_usb_dev(usb),
1976 "error: value %#09x has bits >= %d set\n",
1977 value, bits);
1978 return -EINVAL;
1979 }
1980 #endif /* DEBUG */
1981
1982 dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1983
1984 r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
1985 if (r) {
1986 dev_dbg_f(zd_usb_dev(usb),
1987 "error %d: Couldn't read ZD_CR203\n", r);
1988 return r;
1989 }
1990 bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1991
1992 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1993 BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
1994 USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
1995 sizeof(usb->req_buf));
1996 BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
1997 sizeof(usb->req_buf));
1998
1999 req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
2000 req = (void *)usb->req_buf;
2001
2002 req->id = cpu_to_le16(USB_REQ_WRITE_RF);
2003 /* 1: 3683a, but not used in ZYDAS driver */
2004 req->value = cpu_to_le16(2);
2005 req->bits = cpu_to_le16(bits);
2006
2007 for (i = 0; i < bits; i++) {
2008 u16 bv = bit_value_template;
2009 if (value & (1 << (bits-1-i)))
2010 bv |= RF_DATA;
2011 req->bit_values[i] = cpu_to_le16(bv);
2012 }
2013
2014 udev = zd_usb_to_usbdev(usb);
2015 r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
2016 if (r) {
2017 dev_dbg_f(zd_usb_dev(usb),
2018 "error in zd_ep_regs_out_msg(). Error number %d\n", r);
2019 goto out;
2020 }
2021 if (req_len != actual_req_len) {
2022 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
2023 " req_len %d != actual_req_len %d\n",
2024 req_len, actual_req_len);
2025 r = -EIO;
2026 goto out;
2027 }
2028
2029 /* FALL-THROUGH with r == 0 */
2030 out:
2031 return r;
2032 }
2033