1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common code for the NVMe target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #include <generated/utsrelease.h>
14
15 #define CREATE_TRACE_POINTS
16 #include "trace.h"
17
18 #include "nvmet.h"
19 #include "debugfs.h"
20
21 struct kmem_cache *nvmet_bvec_cache;
22 struct workqueue_struct *buffered_io_wq;
23 struct workqueue_struct *zbd_wq;
24 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
25 static DEFINE_IDA(cntlid_ida);
26
27 struct workqueue_struct *nvmet_wq;
28 EXPORT_SYMBOL_GPL(nvmet_wq);
29
30 /*
31 * This read/write semaphore is used to synchronize access to configuration
32 * information on a target system that will result in discovery log page
33 * information change for at least one host.
34 * The full list of resources to protected by this semaphore is:
35 *
36 * - subsystems list
37 * - per-subsystem allowed hosts list
38 * - allow_any_host subsystem attribute
39 * - nvmet_genctr
40 * - the nvmet_transports array
41 *
42 * When updating any of those lists/structures write lock should be obtained,
43 * while when reading (popolating discovery log page or checking host-subsystem
44 * link) read lock is obtained to allow concurrent reads.
45 */
46 DECLARE_RWSEM(nvmet_config_sem);
47
48 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
49 u64 nvmet_ana_chgcnt;
50 DECLARE_RWSEM(nvmet_ana_sem);
51
errno_to_nvme_status(struct nvmet_req * req,int errno)52 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
53 {
54 switch (errno) {
55 case 0:
56 return NVME_SC_SUCCESS;
57 case -ENOSPC:
58 req->error_loc = offsetof(struct nvme_rw_command, length);
59 return NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR;
60 case -EREMOTEIO:
61 req->error_loc = offsetof(struct nvme_rw_command, slba);
62 return NVME_SC_LBA_RANGE | NVME_STATUS_DNR;
63 case -EOPNOTSUPP:
64 req->error_loc = offsetof(struct nvme_common_command, opcode);
65 switch (req->cmd->common.opcode) {
66 case nvme_cmd_dsm:
67 case nvme_cmd_write_zeroes:
68 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_STATUS_DNR;
69 default:
70 return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
71 }
72 break;
73 case -ENODATA:
74 req->error_loc = offsetof(struct nvme_rw_command, nsid);
75 return NVME_SC_ACCESS_DENIED;
76 case -EIO:
77 fallthrough;
78 default:
79 req->error_loc = offsetof(struct nvme_common_command, opcode);
80 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
81 }
82 }
83
nvmet_report_invalid_opcode(struct nvmet_req * req)84 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
85 {
86 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
87 req->sq->qid);
88
89 req->error_loc = offsetof(struct nvme_common_command, opcode);
90 return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
91 }
92
93 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
94 const char *subsysnqn);
95
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)96 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
97 size_t len)
98 {
99 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
100 req->error_loc = offsetof(struct nvme_common_command, dptr);
101 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
102 }
103 return 0;
104 }
105
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)106 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
107 {
108 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
109 req->error_loc = offsetof(struct nvme_common_command, dptr);
110 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
111 }
112 return 0;
113 }
114
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)115 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
116 {
117 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
118 req->error_loc = offsetof(struct nvme_common_command, dptr);
119 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
120 }
121 return 0;
122 }
123
nvmet_max_nsid(struct nvmet_subsys * subsys)124 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
125 {
126 struct nvmet_ns *cur;
127 unsigned long idx;
128 u32 nsid = 0;
129
130 nvmet_for_each_enabled_ns(&subsys->namespaces, idx, cur)
131 nsid = cur->nsid;
132
133 return nsid;
134 }
135
nvmet_async_event_result(struct nvmet_async_event * aen)136 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
137 {
138 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
139 }
140
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)141 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
142 {
143 struct nvmet_req *req;
144
145 mutex_lock(&ctrl->lock);
146 while (ctrl->nr_async_event_cmds) {
147 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
148 mutex_unlock(&ctrl->lock);
149 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_STATUS_DNR);
150 mutex_lock(&ctrl->lock);
151 }
152 mutex_unlock(&ctrl->lock);
153 }
154
nvmet_async_events_process(struct nvmet_ctrl * ctrl)155 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
156 {
157 struct nvmet_async_event *aen;
158 struct nvmet_req *req;
159
160 mutex_lock(&ctrl->lock);
161 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
162 aen = list_first_entry(&ctrl->async_events,
163 struct nvmet_async_event, entry);
164 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
165 nvmet_set_result(req, nvmet_async_event_result(aen));
166
167 list_del(&aen->entry);
168 kfree(aen);
169
170 mutex_unlock(&ctrl->lock);
171 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
172 nvmet_req_complete(req, 0);
173 mutex_lock(&ctrl->lock);
174 }
175 mutex_unlock(&ctrl->lock);
176 }
177
nvmet_async_events_free(struct nvmet_ctrl * ctrl)178 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
179 {
180 struct nvmet_async_event *aen, *tmp;
181
182 mutex_lock(&ctrl->lock);
183 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
184 list_del(&aen->entry);
185 kfree(aen);
186 }
187 mutex_unlock(&ctrl->lock);
188 }
189
nvmet_async_event_work(struct work_struct * work)190 static void nvmet_async_event_work(struct work_struct *work)
191 {
192 struct nvmet_ctrl *ctrl =
193 container_of(work, struct nvmet_ctrl, async_event_work);
194
195 nvmet_async_events_process(ctrl);
196 }
197
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)198 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
199 u8 event_info, u8 log_page)
200 {
201 struct nvmet_async_event *aen;
202
203 aen = kmalloc(sizeof(*aen), GFP_KERNEL);
204 if (!aen)
205 return;
206
207 aen->event_type = event_type;
208 aen->event_info = event_info;
209 aen->log_page = log_page;
210
211 mutex_lock(&ctrl->lock);
212 list_add_tail(&aen->entry, &ctrl->async_events);
213 mutex_unlock(&ctrl->lock);
214
215 queue_work(nvmet_wq, &ctrl->async_event_work);
216 }
217
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)218 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
219 {
220 u32 i;
221
222 mutex_lock(&ctrl->lock);
223 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
224 goto out_unlock;
225
226 for (i = 0; i < ctrl->nr_changed_ns; i++) {
227 if (ctrl->changed_ns_list[i] == nsid)
228 goto out_unlock;
229 }
230
231 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
232 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
233 ctrl->nr_changed_ns = U32_MAX;
234 goto out_unlock;
235 }
236
237 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
238 out_unlock:
239 mutex_unlock(&ctrl->lock);
240 }
241
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)242 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
243 {
244 struct nvmet_ctrl *ctrl;
245
246 lockdep_assert_held(&subsys->lock);
247
248 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
249 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
250 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
251 continue;
252 nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
253 NVME_AER_NOTICE_NS_CHANGED,
254 NVME_LOG_CHANGED_NS);
255 }
256 }
257
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)258 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
259 struct nvmet_port *port)
260 {
261 struct nvmet_ctrl *ctrl;
262
263 mutex_lock(&subsys->lock);
264 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
265 if (port && ctrl->port != port)
266 continue;
267 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
268 continue;
269 nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
270 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
271 }
272 mutex_unlock(&subsys->lock);
273 }
274
nvmet_port_send_ana_event(struct nvmet_port * port)275 void nvmet_port_send_ana_event(struct nvmet_port *port)
276 {
277 struct nvmet_subsys_link *p;
278
279 down_read(&nvmet_config_sem);
280 list_for_each_entry(p, &port->subsystems, entry)
281 nvmet_send_ana_event(p->subsys, port);
282 up_read(&nvmet_config_sem);
283 }
284
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)285 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
286 {
287 int ret = 0;
288
289 down_write(&nvmet_config_sem);
290 if (nvmet_transports[ops->type])
291 ret = -EINVAL;
292 else
293 nvmet_transports[ops->type] = ops;
294 up_write(&nvmet_config_sem);
295
296 return ret;
297 }
298 EXPORT_SYMBOL_GPL(nvmet_register_transport);
299
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)300 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
301 {
302 down_write(&nvmet_config_sem);
303 nvmet_transports[ops->type] = NULL;
304 up_write(&nvmet_config_sem);
305 }
306 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
307
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)308 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
309 {
310 struct nvmet_ctrl *ctrl;
311
312 mutex_lock(&subsys->lock);
313 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
314 if (ctrl->port == port)
315 ctrl->ops->delete_ctrl(ctrl);
316 }
317 mutex_unlock(&subsys->lock);
318 }
319
nvmet_enable_port(struct nvmet_port * port)320 int nvmet_enable_port(struct nvmet_port *port)
321 {
322 const struct nvmet_fabrics_ops *ops;
323 int ret;
324
325 lockdep_assert_held(&nvmet_config_sem);
326
327 ops = nvmet_transports[port->disc_addr.trtype];
328 if (!ops) {
329 up_write(&nvmet_config_sem);
330 request_module("nvmet-transport-%d", port->disc_addr.trtype);
331 down_write(&nvmet_config_sem);
332 ops = nvmet_transports[port->disc_addr.trtype];
333 if (!ops) {
334 pr_err("transport type %d not supported\n",
335 port->disc_addr.trtype);
336 return -EINVAL;
337 }
338 }
339
340 if (!try_module_get(ops->owner))
341 return -EINVAL;
342
343 /*
344 * If the user requested PI support and the transport isn't pi capable,
345 * don't enable the port.
346 */
347 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
348 pr_err("T10-PI is not supported by transport type %d\n",
349 port->disc_addr.trtype);
350 ret = -EINVAL;
351 goto out_put;
352 }
353
354 ret = ops->add_port(port);
355 if (ret)
356 goto out_put;
357
358 /* If the transport didn't set inline_data_size, then disable it. */
359 if (port->inline_data_size < 0)
360 port->inline_data_size = 0;
361
362 /*
363 * If the transport didn't set the max_queue_size properly, then clamp
364 * it to the target limits. Also set default values in case the
365 * transport didn't set it at all.
366 */
367 if (port->max_queue_size < 0)
368 port->max_queue_size = NVMET_MAX_QUEUE_SIZE;
369 else
370 port->max_queue_size = clamp_t(int, port->max_queue_size,
371 NVMET_MIN_QUEUE_SIZE,
372 NVMET_MAX_QUEUE_SIZE);
373
374 port->enabled = true;
375 port->tr_ops = ops;
376 return 0;
377
378 out_put:
379 module_put(ops->owner);
380 return ret;
381 }
382
nvmet_disable_port(struct nvmet_port * port)383 void nvmet_disable_port(struct nvmet_port *port)
384 {
385 const struct nvmet_fabrics_ops *ops;
386
387 lockdep_assert_held(&nvmet_config_sem);
388
389 port->enabled = false;
390 port->tr_ops = NULL;
391
392 ops = nvmet_transports[port->disc_addr.trtype];
393 ops->remove_port(port);
394 module_put(ops->owner);
395 }
396
nvmet_keep_alive_timer(struct work_struct * work)397 static void nvmet_keep_alive_timer(struct work_struct *work)
398 {
399 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
400 struct nvmet_ctrl, ka_work);
401 bool reset_tbkas = ctrl->reset_tbkas;
402
403 ctrl->reset_tbkas = false;
404 if (reset_tbkas) {
405 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
406 ctrl->cntlid);
407 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
408 return;
409 }
410
411 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
412 ctrl->cntlid, ctrl->kato);
413
414 nvmet_ctrl_fatal_error(ctrl);
415 }
416
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)417 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
418 {
419 if (unlikely(ctrl->kato == 0))
420 return;
421
422 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
423 ctrl->cntlid, ctrl->kato);
424
425 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
426 }
427
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)428 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
429 {
430 if (unlikely(ctrl->kato == 0))
431 return;
432
433 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
434
435 cancel_delayed_work_sync(&ctrl->ka_work);
436 }
437
nvmet_req_find_ns(struct nvmet_req * req)438 u16 nvmet_req_find_ns(struct nvmet_req *req)
439 {
440 u32 nsid = le32_to_cpu(req->cmd->common.nsid);
441 struct nvmet_subsys *subsys = nvmet_req_subsys(req);
442
443 req->ns = xa_load(&subsys->namespaces, nsid);
444 if (unlikely(!req->ns || !req->ns->enabled)) {
445 req->error_loc = offsetof(struct nvme_common_command, nsid);
446 if (!req->ns) /* ns doesn't exist! */
447 return NVME_SC_INVALID_NS | NVME_STATUS_DNR;
448
449 /* ns exists but it's disabled */
450 req->ns = NULL;
451 return NVME_SC_INTERNAL_PATH_ERROR;
452 }
453
454 percpu_ref_get(&req->ns->ref);
455 return NVME_SC_SUCCESS;
456 }
457
nvmet_destroy_namespace(struct percpu_ref * ref)458 static void nvmet_destroy_namespace(struct percpu_ref *ref)
459 {
460 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
461
462 complete(&ns->disable_done);
463 }
464
nvmet_put_namespace(struct nvmet_ns * ns)465 void nvmet_put_namespace(struct nvmet_ns *ns)
466 {
467 percpu_ref_put(&ns->ref);
468 }
469
nvmet_ns_dev_disable(struct nvmet_ns * ns)470 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
471 {
472 nvmet_bdev_ns_disable(ns);
473 nvmet_file_ns_disable(ns);
474 }
475
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)476 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
477 {
478 int ret;
479 struct pci_dev *p2p_dev;
480
481 if (!ns->use_p2pmem)
482 return 0;
483
484 if (!ns->bdev) {
485 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
486 return -EINVAL;
487 }
488
489 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
490 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
491 ns->device_path);
492 return -EINVAL;
493 }
494
495 if (ns->p2p_dev) {
496 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
497 if (ret < 0)
498 return -EINVAL;
499 } else {
500 /*
501 * Right now we just check that there is p2pmem available so
502 * we can report an error to the user right away if there
503 * is not. We'll find the actual device to use once we
504 * setup the controller when the port's device is available.
505 */
506
507 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
508 if (!p2p_dev) {
509 pr_err("no peer-to-peer memory is available for %s\n",
510 ns->device_path);
511 return -EINVAL;
512 }
513
514 pci_dev_put(p2p_dev);
515 }
516
517 return 0;
518 }
519
520 /*
521 * Note: ctrl->subsys->lock should be held when calling this function
522 */
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)523 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
524 struct nvmet_ns *ns)
525 {
526 struct device *clients[2];
527 struct pci_dev *p2p_dev;
528 int ret;
529
530 if (!ctrl->p2p_client || !ns->use_p2pmem)
531 return;
532
533 if (ns->p2p_dev) {
534 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
535 if (ret < 0)
536 return;
537
538 p2p_dev = pci_dev_get(ns->p2p_dev);
539 } else {
540 clients[0] = ctrl->p2p_client;
541 clients[1] = nvmet_ns_dev(ns);
542
543 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
544 if (!p2p_dev) {
545 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
546 dev_name(ctrl->p2p_client), ns->device_path);
547 return;
548 }
549 }
550
551 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
552 if (ret < 0)
553 pci_dev_put(p2p_dev);
554
555 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
556 ns->nsid);
557 }
558
nvmet_ns_revalidate(struct nvmet_ns * ns)559 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
560 {
561 loff_t oldsize = ns->size;
562
563 if (ns->bdev)
564 nvmet_bdev_ns_revalidate(ns);
565 else
566 nvmet_file_ns_revalidate(ns);
567
568 return oldsize != ns->size;
569 }
570
nvmet_ns_enable(struct nvmet_ns * ns)571 int nvmet_ns_enable(struct nvmet_ns *ns)
572 {
573 struct nvmet_subsys *subsys = ns->subsys;
574 struct nvmet_ctrl *ctrl;
575 int ret;
576
577 mutex_lock(&subsys->lock);
578 ret = 0;
579
580 if (nvmet_is_passthru_subsys(subsys)) {
581 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
582 goto out_unlock;
583 }
584
585 if (ns->enabled)
586 goto out_unlock;
587
588 ret = -EMFILE;
589
590 ret = nvmet_bdev_ns_enable(ns);
591 if (ret == -ENOTBLK)
592 ret = nvmet_file_ns_enable(ns);
593 if (ret)
594 goto out_unlock;
595
596 ret = nvmet_p2pmem_ns_enable(ns);
597 if (ret)
598 goto out_dev_disable;
599
600 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
601 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
602
603 if (ns->pr.enable) {
604 ret = nvmet_pr_init_ns(ns);
605 if (ret)
606 goto out_dev_put;
607 }
608
609 if (percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 0, GFP_KERNEL))
610 goto out_pr_exit;
611
612 nvmet_ns_changed(subsys, ns->nsid);
613 ns->enabled = true;
614 xa_set_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
615 ret = 0;
616 out_unlock:
617 mutex_unlock(&subsys->lock);
618 return ret;
619 out_pr_exit:
620 if (ns->pr.enable)
621 nvmet_pr_exit_ns(ns);
622 out_dev_put:
623 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
624 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
625 out_dev_disable:
626 nvmet_ns_dev_disable(ns);
627 goto out_unlock;
628 }
629
nvmet_ns_disable(struct nvmet_ns * ns)630 void nvmet_ns_disable(struct nvmet_ns *ns)
631 {
632 struct nvmet_subsys *subsys = ns->subsys;
633 struct nvmet_ctrl *ctrl;
634
635 mutex_lock(&subsys->lock);
636 if (!ns->enabled)
637 goto out_unlock;
638
639 ns->enabled = false;
640 xa_clear_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
641
642 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
643 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
644
645 mutex_unlock(&subsys->lock);
646
647 /*
648 * Now that we removed the namespaces from the lookup list, we
649 * can kill the per_cpu ref and wait for any remaining references
650 * to be dropped, as well as a RCU grace period for anyone only
651 * using the namepace under rcu_read_lock(). Note that we can't
652 * use call_rcu here as we need to ensure the namespaces have
653 * been fully destroyed before unloading the module.
654 */
655 percpu_ref_kill(&ns->ref);
656 synchronize_rcu();
657 wait_for_completion(&ns->disable_done);
658 percpu_ref_exit(&ns->ref);
659
660 if (ns->pr.enable)
661 nvmet_pr_exit_ns(ns);
662
663 mutex_lock(&subsys->lock);
664 nvmet_ns_changed(subsys, ns->nsid);
665 nvmet_ns_dev_disable(ns);
666 out_unlock:
667 mutex_unlock(&subsys->lock);
668 }
669
nvmet_ns_free(struct nvmet_ns * ns)670 void nvmet_ns_free(struct nvmet_ns *ns)
671 {
672 struct nvmet_subsys *subsys = ns->subsys;
673
674 nvmet_ns_disable(ns);
675
676 mutex_lock(&subsys->lock);
677
678 xa_erase(&subsys->namespaces, ns->nsid);
679 if (ns->nsid == subsys->max_nsid)
680 subsys->max_nsid = nvmet_max_nsid(subsys);
681
682 subsys->nr_namespaces--;
683 mutex_unlock(&subsys->lock);
684
685 down_write(&nvmet_ana_sem);
686 nvmet_ana_group_enabled[ns->anagrpid]--;
687 up_write(&nvmet_ana_sem);
688
689 kfree(ns->device_path);
690 kfree(ns);
691 }
692
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)693 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
694 {
695 struct nvmet_ns *ns;
696
697 mutex_lock(&subsys->lock);
698
699 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
700 goto out_unlock;
701
702 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
703 if (!ns)
704 goto out_unlock;
705
706 init_completion(&ns->disable_done);
707
708 ns->nsid = nsid;
709 ns->subsys = subsys;
710
711 if (ns->nsid > subsys->max_nsid)
712 subsys->max_nsid = nsid;
713
714 if (xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL))
715 goto out_exit;
716
717 subsys->nr_namespaces++;
718
719 mutex_unlock(&subsys->lock);
720
721 down_write(&nvmet_ana_sem);
722 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
723 nvmet_ana_group_enabled[ns->anagrpid]++;
724 up_write(&nvmet_ana_sem);
725
726 uuid_gen(&ns->uuid);
727 ns->buffered_io = false;
728 ns->csi = NVME_CSI_NVM;
729
730 return ns;
731 out_exit:
732 subsys->max_nsid = nvmet_max_nsid(subsys);
733 kfree(ns);
734 out_unlock:
735 mutex_unlock(&subsys->lock);
736 return NULL;
737 }
738
nvmet_update_sq_head(struct nvmet_req * req)739 static void nvmet_update_sq_head(struct nvmet_req *req)
740 {
741 if (req->sq->size) {
742 u32 old_sqhd, new_sqhd;
743
744 old_sqhd = READ_ONCE(req->sq->sqhd);
745 do {
746 new_sqhd = (old_sqhd + 1) % req->sq->size;
747 } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
748 }
749 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
750 }
751
nvmet_set_error(struct nvmet_req * req,u16 status)752 static void nvmet_set_error(struct nvmet_req *req, u16 status)
753 {
754 struct nvmet_ctrl *ctrl = req->sq->ctrl;
755 struct nvme_error_slot *new_error_slot;
756 unsigned long flags;
757
758 req->cqe->status = cpu_to_le16(status << 1);
759
760 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
761 return;
762
763 spin_lock_irqsave(&ctrl->error_lock, flags);
764 ctrl->err_counter++;
765 new_error_slot =
766 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
767
768 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
769 new_error_slot->sqid = cpu_to_le16(req->sq->qid);
770 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
771 new_error_slot->status_field = cpu_to_le16(status << 1);
772 new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
773 new_error_slot->lba = cpu_to_le64(req->error_slba);
774 new_error_slot->nsid = req->cmd->common.nsid;
775 spin_unlock_irqrestore(&ctrl->error_lock, flags);
776
777 /* set the more bit for this request */
778 req->cqe->status |= cpu_to_le16(1 << 14);
779 }
780
__nvmet_req_complete(struct nvmet_req * req,u16 status)781 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
782 {
783 struct nvmet_ns *ns = req->ns;
784 struct nvmet_pr_per_ctrl_ref *pc_ref = req->pc_ref;
785
786 if (!req->sq->sqhd_disabled)
787 nvmet_update_sq_head(req);
788 req->cqe->sq_id = cpu_to_le16(req->sq->qid);
789 req->cqe->command_id = req->cmd->common.command_id;
790
791 if (unlikely(status))
792 nvmet_set_error(req, status);
793
794 trace_nvmet_req_complete(req);
795
796 req->ops->queue_response(req);
797
798 if (pc_ref)
799 nvmet_pr_put_ns_pc_ref(pc_ref);
800 if (ns)
801 nvmet_put_namespace(ns);
802 }
803
nvmet_req_complete(struct nvmet_req * req,u16 status)804 void nvmet_req_complete(struct nvmet_req *req, u16 status)
805 {
806 struct nvmet_sq *sq = req->sq;
807
808 __nvmet_req_complete(req, status);
809 percpu_ref_put(&sq->ref);
810 }
811 EXPORT_SYMBOL_GPL(nvmet_req_complete);
812
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)813 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
814 u16 qid, u16 size)
815 {
816 cq->qid = qid;
817 cq->size = size;
818 }
819
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)820 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
821 u16 qid, u16 size)
822 {
823 sq->sqhd = 0;
824 sq->qid = qid;
825 sq->size = size;
826
827 ctrl->sqs[qid] = sq;
828 }
829
nvmet_confirm_sq(struct percpu_ref * ref)830 static void nvmet_confirm_sq(struct percpu_ref *ref)
831 {
832 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
833
834 complete(&sq->confirm_done);
835 }
836
nvmet_check_cqid(struct nvmet_ctrl * ctrl,u16 cqid)837 u16 nvmet_check_cqid(struct nvmet_ctrl *ctrl, u16 cqid)
838 {
839 if (!ctrl->sqs)
840 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
841
842 if (cqid > ctrl->subsys->max_qid)
843 return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
844
845 /*
846 * Note: For PCI controllers, the NVMe specifications allows multiple
847 * SQs to share a single CQ. However, we do not support this yet, so
848 * check that there is no SQ defined for a CQ. If one exist, then the
849 * CQ ID is invalid for creation as well as when the CQ is being
850 * deleted (as that would mean that the SQ was not deleted before the
851 * CQ).
852 */
853 if (ctrl->sqs[cqid])
854 return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
855
856 return NVME_SC_SUCCESS;
857 }
858
nvmet_cq_create(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)859 u16 nvmet_cq_create(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
860 u16 qid, u16 size)
861 {
862 u16 status;
863
864 status = nvmet_check_cqid(ctrl, qid);
865 if (status != NVME_SC_SUCCESS)
866 return status;
867
868 nvmet_cq_setup(ctrl, cq, qid, size);
869
870 return NVME_SC_SUCCESS;
871 }
872 EXPORT_SYMBOL_GPL(nvmet_cq_create);
873
nvmet_check_sqid(struct nvmet_ctrl * ctrl,u16 sqid,bool create)874 u16 nvmet_check_sqid(struct nvmet_ctrl *ctrl, u16 sqid,
875 bool create)
876 {
877 if (!ctrl->sqs)
878 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
879
880 if (sqid > ctrl->subsys->max_qid)
881 return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
882
883 if ((create && ctrl->sqs[sqid]) ||
884 (!create && !ctrl->sqs[sqid]))
885 return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
886
887 return NVME_SC_SUCCESS;
888 }
889
nvmet_sq_create(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 sqid,u16 size)890 u16 nvmet_sq_create(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
891 u16 sqid, u16 size)
892 {
893 u16 status;
894 int ret;
895
896 if (!kref_get_unless_zero(&ctrl->ref))
897 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
898
899 status = nvmet_check_sqid(ctrl, sqid, true);
900 if (status != NVME_SC_SUCCESS)
901 return status;
902
903 ret = nvmet_sq_init(sq);
904 if (ret) {
905 status = NVME_SC_INTERNAL | NVME_STATUS_DNR;
906 goto ctrl_put;
907 }
908
909 nvmet_sq_setup(ctrl, sq, sqid, size);
910 sq->ctrl = ctrl;
911
912 return NVME_SC_SUCCESS;
913
914 ctrl_put:
915 nvmet_ctrl_put(ctrl);
916 return status;
917 }
918 EXPORT_SYMBOL_GPL(nvmet_sq_create);
919
nvmet_sq_destroy(struct nvmet_sq * sq)920 void nvmet_sq_destroy(struct nvmet_sq *sq)
921 {
922 struct nvmet_ctrl *ctrl = sq->ctrl;
923
924 /*
925 * If this is the admin queue, complete all AERs so that our
926 * queue doesn't have outstanding requests on it.
927 */
928 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
929 nvmet_async_events_failall(ctrl);
930 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
931 wait_for_completion(&sq->confirm_done);
932 wait_for_completion(&sq->free_done);
933 percpu_ref_exit(&sq->ref);
934 nvmet_auth_sq_free(sq);
935
936 /*
937 * we must reference the ctrl again after waiting for inflight IO
938 * to complete. Because admin connect may have sneaked in after we
939 * store sq->ctrl locally, but before we killed the percpu_ref. the
940 * admin connect allocates and assigns sq->ctrl, which now needs a
941 * final ref put, as this ctrl is going away.
942 */
943 ctrl = sq->ctrl;
944
945 if (ctrl) {
946 /*
947 * The teardown flow may take some time, and the host may not
948 * send us keep-alive during this period, hence reset the
949 * traffic based keep-alive timer so we don't trigger a
950 * controller teardown as a result of a keep-alive expiration.
951 */
952 ctrl->reset_tbkas = true;
953 sq->ctrl->sqs[sq->qid] = NULL;
954 nvmet_ctrl_put(ctrl);
955 sq->ctrl = NULL; /* allows reusing the queue later */
956 }
957 }
958 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
959
nvmet_sq_free(struct percpu_ref * ref)960 static void nvmet_sq_free(struct percpu_ref *ref)
961 {
962 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
963
964 complete(&sq->free_done);
965 }
966
nvmet_sq_init(struct nvmet_sq * sq)967 int nvmet_sq_init(struct nvmet_sq *sq)
968 {
969 int ret;
970
971 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
972 if (ret) {
973 pr_err("percpu_ref init failed!\n");
974 return ret;
975 }
976 init_completion(&sq->free_done);
977 init_completion(&sq->confirm_done);
978 nvmet_auth_sq_init(sq);
979
980 return 0;
981 }
982 EXPORT_SYMBOL_GPL(nvmet_sq_init);
983
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)984 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
985 struct nvmet_ns *ns)
986 {
987 enum nvme_ana_state state = port->ana_state[ns->anagrpid];
988
989 if (unlikely(state == NVME_ANA_INACCESSIBLE))
990 return NVME_SC_ANA_INACCESSIBLE;
991 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
992 return NVME_SC_ANA_PERSISTENT_LOSS;
993 if (unlikely(state == NVME_ANA_CHANGE))
994 return NVME_SC_ANA_TRANSITION;
995 return 0;
996 }
997
nvmet_io_cmd_check_access(struct nvmet_req * req)998 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
999 {
1000 if (unlikely(req->ns->readonly)) {
1001 switch (req->cmd->common.opcode) {
1002 case nvme_cmd_read:
1003 case nvme_cmd_flush:
1004 break;
1005 default:
1006 return NVME_SC_NS_WRITE_PROTECTED;
1007 }
1008 }
1009
1010 return 0;
1011 }
1012
nvmet_io_cmd_transfer_len(struct nvmet_req * req)1013 static u32 nvmet_io_cmd_transfer_len(struct nvmet_req *req)
1014 {
1015 struct nvme_command *cmd = req->cmd;
1016 u32 metadata_len = 0;
1017
1018 if (nvme_is_fabrics(cmd))
1019 return nvmet_fabrics_io_cmd_data_len(req);
1020
1021 if (!req->ns)
1022 return 0;
1023
1024 switch (req->cmd->common.opcode) {
1025 case nvme_cmd_read:
1026 case nvme_cmd_write:
1027 case nvme_cmd_zone_append:
1028 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
1029 metadata_len = nvmet_rw_metadata_len(req);
1030 return nvmet_rw_data_len(req) + metadata_len;
1031 case nvme_cmd_dsm:
1032 return nvmet_dsm_len(req);
1033 case nvme_cmd_zone_mgmt_recv:
1034 return (le32_to_cpu(req->cmd->zmr.numd) + 1) << 2;
1035 default:
1036 return 0;
1037 }
1038 }
1039
nvmet_parse_io_cmd(struct nvmet_req * req)1040 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
1041 {
1042 struct nvme_command *cmd = req->cmd;
1043 u16 ret;
1044
1045 if (nvme_is_fabrics(cmd))
1046 return nvmet_parse_fabrics_io_cmd(req);
1047
1048 if (unlikely(!nvmet_check_auth_status(req)))
1049 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1050
1051 ret = nvmet_check_ctrl_status(req);
1052 if (unlikely(ret))
1053 return ret;
1054
1055 if (nvmet_is_passthru_req(req))
1056 return nvmet_parse_passthru_io_cmd(req);
1057
1058 ret = nvmet_req_find_ns(req);
1059 if (unlikely(ret))
1060 return ret;
1061
1062 ret = nvmet_check_ana_state(req->port, req->ns);
1063 if (unlikely(ret)) {
1064 req->error_loc = offsetof(struct nvme_common_command, nsid);
1065 return ret;
1066 }
1067 ret = nvmet_io_cmd_check_access(req);
1068 if (unlikely(ret)) {
1069 req->error_loc = offsetof(struct nvme_common_command, nsid);
1070 return ret;
1071 }
1072
1073 if (req->ns->pr.enable) {
1074 ret = nvmet_parse_pr_cmd(req);
1075 if (!ret)
1076 return ret;
1077 }
1078
1079 switch (req->ns->csi) {
1080 case NVME_CSI_NVM:
1081 if (req->ns->file)
1082 ret = nvmet_file_parse_io_cmd(req);
1083 else
1084 ret = nvmet_bdev_parse_io_cmd(req);
1085 break;
1086 case NVME_CSI_ZNS:
1087 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
1088 ret = nvmet_bdev_zns_parse_io_cmd(req);
1089 else
1090 ret = NVME_SC_INVALID_IO_CMD_SET;
1091 break;
1092 default:
1093 ret = NVME_SC_INVALID_IO_CMD_SET;
1094 }
1095 if (ret)
1096 return ret;
1097
1098 if (req->ns->pr.enable) {
1099 ret = nvmet_pr_check_cmd_access(req);
1100 if (ret)
1101 return ret;
1102
1103 ret = nvmet_pr_get_ns_pc_ref(req);
1104 }
1105 return ret;
1106 }
1107
nvmet_req_init(struct nvmet_req * req,struct nvmet_cq * cq,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)1108 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
1109 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
1110 {
1111 u8 flags = req->cmd->common.flags;
1112 u16 status;
1113
1114 req->cq = cq;
1115 req->sq = sq;
1116 req->ops = ops;
1117 req->sg = NULL;
1118 req->metadata_sg = NULL;
1119 req->sg_cnt = 0;
1120 req->metadata_sg_cnt = 0;
1121 req->transfer_len = 0;
1122 req->metadata_len = 0;
1123 req->cqe->result.u64 = 0;
1124 req->cqe->status = 0;
1125 req->cqe->sq_head = 0;
1126 req->ns = NULL;
1127 req->error_loc = NVMET_NO_ERROR_LOC;
1128 req->error_slba = 0;
1129 req->pc_ref = NULL;
1130
1131 /* no support for fused commands yet */
1132 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
1133 req->error_loc = offsetof(struct nvme_common_command, flags);
1134 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1135 goto fail;
1136 }
1137
1138 /*
1139 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
1140 * contains an address of a single contiguous physical buffer that is
1141 * byte aligned. For PCI controllers, this is optional so not enforced.
1142 */
1143 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
1144 if (!req->sq->ctrl || !nvmet_is_pci_ctrl(req->sq->ctrl)) {
1145 req->error_loc =
1146 offsetof(struct nvme_common_command, flags);
1147 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1148 goto fail;
1149 }
1150 }
1151
1152 if (unlikely(!req->sq->ctrl))
1153 /* will return an error for any non-connect command: */
1154 status = nvmet_parse_connect_cmd(req);
1155 else if (likely(req->sq->qid != 0))
1156 status = nvmet_parse_io_cmd(req);
1157 else
1158 status = nvmet_parse_admin_cmd(req);
1159
1160 if (status)
1161 goto fail;
1162
1163 trace_nvmet_req_init(req, req->cmd);
1164
1165 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
1166 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1167 goto fail;
1168 }
1169
1170 if (sq->ctrl)
1171 sq->ctrl->reset_tbkas = true;
1172
1173 return true;
1174
1175 fail:
1176 __nvmet_req_complete(req, status);
1177 return false;
1178 }
1179 EXPORT_SYMBOL_GPL(nvmet_req_init);
1180
nvmet_req_uninit(struct nvmet_req * req)1181 void nvmet_req_uninit(struct nvmet_req *req)
1182 {
1183 percpu_ref_put(&req->sq->ref);
1184 if (req->pc_ref)
1185 nvmet_pr_put_ns_pc_ref(req->pc_ref);
1186 if (req->ns)
1187 nvmet_put_namespace(req->ns);
1188 }
1189 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
1190
nvmet_req_transfer_len(struct nvmet_req * req)1191 size_t nvmet_req_transfer_len(struct nvmet_req *req)
1192 {
1193 if (likely(req->sq->qid != 0))
1194 return nvmet_io_cmd_transfer_len(req);
1195 if (unlikely(!req->sq->ctrl))
1196 return nvmet_connect_cmd_data_len(req);
1197 return nvmet_admin_cmd_data_len(req);
1198 }
1199 EXPORT_SYMBOL_GPL(nvmet_req_transfer_len);
1200
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)1201 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
1202 {
1203 if (unlikely(len != req->transfer_len)) {
1204 u16 status;
1205
1206 req->error_loc = offsetof(struct nvme_common_command, dptr);
1207 if (req->cmd->common.flags & NVME_CMD_SGL_ALL)
1208 status = NVME_SC_SGL_INVALID_DATA;
1209 else
1210 status = NVME_SC_INVALID_FIELD;
1211 nvmet_req_complete(req, status | NVME_STATUS_DNR);
1212 return false;
1213 }
1214
1215 return true;
1216 }
1217 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1218
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)1219 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1220 {
1221 if (unlikely(data_len > req->transfer_len)) {
1222 u16 status;
1223
1224 req->error_loc = offsetof(struct nvme_common_command, dptr);
1225 if (req->cmd->common.flags & NVME_CMD_SGL_ALL)
1226 status = NVME_SC_SGL_INVALID_DATA;
1227 else
1228 status = NVME_SC_INVALID_FIELD;
1229 nvmet_req_complete(req, status | NVME_STATUS_DNR);
1230 return false;
1231 }
1232
1233 return true;
1234 }
1235
nvmet_data_transfer_len(struct nvmet_req * req)1236 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1237 {
1238 return req->transfer_len - req->metadata_len;
1239 }
1240
nvmet_req_alloc_p2pmem_sgls(struct pci_dev * p2p_dev,struct nvmet_req * req)1241 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1242 struct nvmet_req *req)
1243 {
1244 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1245 nvmet_data_transfer_len(req));
1246 if (!req->sg)
1247 goto out_err;
1248
1249 if (req->metadata_len) {
1250 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1251 &req->metadata_sg_cnt, req->metadata_len);
1252 if (!req->metadata_sg)
1253 goto out_free_sg;
1254 }
1255
1256 req->p2p_dev = p2p_dev;
1257
1258 return 0;
1259 out_free_sg:
1260 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1261 out_err:
1262 return -ENOMEM;
1263 }
1264
nvmet_req_find_p2p_dev(struct nvmet_req * req)1265 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1266 {
1267 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1268 !req->sq->ctrl || !req->sq->qid || !req->ns)
1269 return NULL;
1270 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1271 }
1272
nvmet_req_alloc_sgls(struct nvmet_req * req)1273 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1274 {
1275 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1276
1277 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1278 return 0;
1279
1280 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1281 &req->sg_cnt);
1282 if (unlikely(!req->sg))
1283 goto out;
1284
1285 if (req->metadata_len) {
1286 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1287 &req->metadata_sg_cnt);
1288 if (unlikely(!req->metadata_sg))
1289 goto out_free;
1290 }
1291
1292 return 0;
1293 out_free:
1294 sgl_free(req->sg);
1295 out:
1296 return -ENOMEM;
1297 }
1298 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1299
nvmet_req_free_sgls(struct nvmet_req * req)1300 void nvmet_req_free_sgls(struct nvmet_req *req)
1301 {
1302 if (req->p2p_dev) {
1303 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1304 if (req->metadata_sg)
1305 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1306 req->p2p_dev = NULL;
1307 } else {
1308 sgl_free(req->sg);
1309 if (req->metadata_sg)
1310 sgl_free(req->metadata_sg);
1311 }
1312
1313 req->sg = NULL;
1314 req->metadata_sg = NULL;
1315 req->sg_cnt = 0;
1316 req->metadata_sg_cnt = 0;
1317 }
1318 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1319
nvmet_css_supported(u8 cc_css)1320 static inline bool nvmet_css_supported(u8 cc_css)
1321 {
1322 switch (cc_css << NVME_CC_CSS_SHIFT) {
1323 case NVME_CC_CSS_NVM:
1324 case NVME_CC_CSS_CSI:
1325 return true;
1326 default:
1327 return false;
1328 }
1329 }
1330
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1331 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1332 {
1333 lockdep_assert_held(&ctrl->lock);
1334
1335 /*
1336 * Only I/O controllers should verify iosqes,iocqes.
1337 * Strictly speaking, the spec says a discovery controller
1338 * should verify iosqes,iocqes are zeroed, however that
1339 * would break backwards compatibility, so don't enforce it.
1340 */
1341 if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1342 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1343 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1344 ctrl->csts = NVME_CSTS_CFS;
1345 return;
1346 }
1347
1348 if (nvmet_cc_mps(ctrl->cc) != 0 ||
1349 nvmet_cc_ams(ctrl->cc) != 0 ||
1350 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1351 ctrl->csts = NVME_CSTS_CFS;
1352 return;
1353 }
1354
1355 ctrl->csts = NVME_CSTS_RDY;
1356
1357 /*
1358 * Controllers that are not yet enabled should not really enforce the
1359 * keep alive timeout, but we still want to track a timeout and cleanup
1360 * in case a host died before it enabled the controller. Hence, simply
1361 * reset the keep alive timer when the controller is enabled.
1362 */
1363 if (ctrl->kato)
1364 mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1365 }
1366
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1367 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1368 {
1369 lockdep_assert_held(&ctrl->lock);
1370
1371 /* XXX: tear down queues? */
1372 ctrl->csts &= ~NVME_CSTS_RDY;
1373 ctrl->cc = 0;
1374 }
1375
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1376 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1377 {
1378 u32 old;
1379
1380 mutex_lock(&ctrl->lock);
1381 old = ctrl->cc;
1382 ctrl->cc = new;
1383
1384 if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1385 nvmet_start_ctrl(ctrl);
1386 if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1387 nvmet_clear_ctrl(ctrl);
1388 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1389 nvmet_clear_ctrl(ctrl);
1390 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1391 }
1392 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1393 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1394 mutex_unlock(&ctrl->lock);
1395 }
1396 EXPORT_SYMBOL_GPL(nvmet_update_cc);
1397
nvmet_init_cap(struct nvmet_ctrl * ctrl)1398 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1399 {
1400 /* command sets supported: NVMe command set: */
1401 ctrl->cap = (1ULL << 37);
1402 /* Controller supports one or more I/O Command Sets */
1403 ctrl->cap |= (1ULL << 43);
1404 /* CC.EN timeout in 500msec units: */
1405 ctrl->cap |= (15ULL << 24);
1406 /* maximum queue entries supported: */
1407 if (ctrl->ops->get_max_queue_size)
1408 ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl),
1409 ctrl->port->max_queue_size) - 1;
1410 else
1411 ctrl->cap |= ctrl->port->max_queue_size - 1;
1412
1413 if (nvmet_is_passthru_subsys(ctrl->subsys))
1414 nvmet_passthrough_override_cap(ctrl);
1415 }
1416
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req)1417 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1418 const char *hostnqn, u16 cntlid,
1419 struct nvmet_req *req)
1420 {
1421 struct nvmet_ctrl *ctrl = NULL;
1422 struct nvmet_subsys *subsys;
1423
1424 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1425 if (!subsys) {
1426 pr_warn("connect request for invalid subsystem %s!\n",
1427 subsysnqn);
1428 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1429 goto out;
1430 }
1431
1432 mutex_lock(&subsys->lock);
1433 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1434 if (ctrl->cntlid == cntlid) {
1435 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1436 pr_warn("hostnqn mismatch.\n");
1437 continue;
1438 }
1439 if (!kref_get_unless_zero(&ctrl->ref))
1440 continue;
1441
1442 /* ctrl found */
1443 goto found;
1444 }
1445 }
1446
1447 ctrl = NULL; /* ctrl not found */
1448 pr_warn("could not find controller %d for subsys %s / host %s\n",
1449 cntlid, subsysnqn, hostnqn);
1450 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1451
1452 found:
1453 mutex_unlock(&subsys->lock);
1454 nvmet_subsys_put(subsys);
1455 out:
1456 return ctrl;
1457 }
1458
nvmet_check_ctrl_status(struct nvmet_req * req)1459 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1460 {
1461 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1462 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1463 req->cmd->common.opcode, req->sq->qid);
1464 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1465 }
1466
1467 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1468 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1469 req->cmd->common.opcode, req->sq->qid);
1470 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1471 }
1472
1473 if (unlikely(!nvmet_check_auth_status(req))) {
1474 pr_warn("qid %d not authenticated\n", req->sq->qid);
1475 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1476 }
1477 return 0;
1478 }
1479
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1480 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1481 {
1482 struct nvmet_host_link *p;
1483
1484 lockdep_assert_held(&nvmet_config_sem);
1485
1486 if (subsys->allow_any_host)
1487 return true;
1488
1489 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1490 return true;
1491
1492 list_for_each_entry(p, &subsys->hosts, entry) {
1493 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1494 return true;
1495 }
1496
1497 return false;
1498 }
1499
1500 /*
1501 * Note: ctrl->subsys->lock should be held when calling this function
1502 */
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct device * p2p_client)1503 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1504 struct device *p2p_client)
1505 {
1506 struct nvmet_ns *ns;
1507 unsigned long idx;
1508
1509 if (!p2p_client)
1510 return;
1511
1512 ctrl->p2p_client = get_device(p2p_client);
1513
1514 nvmet_for_each_enabled_ns(&ctrl->subsys->namespaces, idx, ns)
1515 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1516 }
1517
1518 /*
1519 * Note: ctrl->subsys->lock should be held when calling this function
1520 */
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1521 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1522 {
1523 struct radix_tree_iter iter;
1524 void __rcu **slot;
1525
1526 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1527 pci_dev_put(radix_tree_deref_slot(slot));
1528
1529 put_device(ctrl->p2p_client);
1530 }
1531
nvmet_fatal_error_handler(struct work_struct * work)1532 static void nvmet_fatal_error_handler(struct work_struct *work)
1533 {
1534 struct nvmet_ctrl *ctrl =
1535 container_of(work, struct nvmet_ctrl, fatal_err_work);
1536
1537 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1538 ctrl->ops->delete_ctrl(ctrl);
1539 }
1540
nvmet_alloc_ctrl(struct nvmet_alloc_ctrl_args * args)1541 struct nvmet_ctrl *nvmet_alloc_ctrl(struct nvmet_alloc_ctrl_args *args)
1542 {
1543 struct nvmet_subsys *subsys;
1544 struct nvmet_ctrl *ctrl;
1545 u32 kato = args->kato;
1546 u8 dhchap_status;
1547 int ret;
1548
1549 args->status = NVME_SC_CONNECT_INVALID_PARAM | NVME_STATUS_DNR;
1550 subsys = nvmet_find_get_subsys(args->port, args->subsysnqn);
1551 if (!subsys) {
1552 pr_warn("connect request for invalid subsystem %s!\n",
1553 args->subsysnqn);
1554 args->result = IPO_IATTR_CONNECT_DATA(subsysnqn);
1555 args->error_loc = offsetof(struct nvme_common_command, dptr);
1556 return NULL;
1557 }
1558
1559 down_read(&nvmet_config_sem);
1560 if (!nvmet_host_allowed(subsys, args->hostnqn)) {
1561 pr_info("connect by host %s for subsystem %s not allowed\n",
1562 args->hostnqn, args->subsysnqn);
1563 args->result = IPO_IATTR_CONNECT_DATA(hostnqn);
1564 up_read(&nvmet_config_sem);
1565 args->status = NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1566 args->error_loc = offsetof(struct nvme_common_command, dptr);
1567 goto out_put_subsystem;
1568 }
1569 up_read(&nvmet_config_sem);
1570
1571 args->status = NVME_SC_INTERNAL;
1572 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1573 if (!ctrl)
1574 goto out_put_subsystem;
1575 mutex_init(&ctrl->lock);
1576
1577 ctrl->port = args->port;
1578 ctrl->ops = args->ops;
1579
1580 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1581 /* By default, set loop targets to clear IDS by default */
1582 if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1583 subsys->clear_ids = 1;
1584 #endif
1585
1586 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1587 INIT_LIST_HEAD(&ctrl->async_events);
1588 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1589 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1590 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1591
1592 memcpy(ctrl->subsysnqn, args->subsysnqn, NVMF_NQN_SIZE);
1593 memcpy(ctrl->hostnqn, args->hostnqn, NVMF_NQN_SIZE);
1594
1595 kref_init(&ctrl->ref);
1596 ctrl->subsys = subsys;
1597 ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support;
1598 nvmet_init_cap(ctrl);
1599 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1600
1601 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1602 sizeof(__le32), GFP_KERNEL);
1603 if (!ctrl->changed_ns_list)
1604 goto out_free_ctrl;
1605
1606 ctrl->sqs = kcalloc(subsys->max_qid + 1,
1607 sizeof(struct nvmet_sq *),
1608 GFP_KERNEL);
1609 if (!ctrl->sqs)
1610 goto out_free_changed_ns_list;
1611
1612 ret = ida_alloc_range(&cntlid_ida,
1613 subsys->cntlid_min, subsys->cntlid_max,
1614 GFP_KERNEL);
1615 if (ret < 0) {
1616 args->status = NVME_SC_CONNECT_CTRL_BUSY | NVME_STATUS_DNR;
1617 goto out_free_sqs;
1618 }
1619 ctrl->cntlid = ret;
1620
1621 uuid_copy(&ctrl->hostid, args->hostid);
1622
1623 /*
1624 * Discovery controllers may use some arbitrary high value
1625 * in order to cleanup stale discovery sessions
1626 */
1627 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1628 kato = NVMET_DISC_KATO_MS;
1629
1630 /* keep-alive timeout in seconds */
1631 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1632
1633 ctrl->err_counter = 0;
1634 spin_lock_init(&ctrl->error_lock);
1635
1636 nvmet_start_keep_alive_timer(ctrl);
1637
1638 mutex_lock(&subsys->lock);
1639 ret = nvmet_ctrl_init_pr(ctrl);
1640 if (ret)
1641 goto init_pr_fail;
1642 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1643 nvmet_setup_p2p_ns_map(ctrl, args->p2p_client);
1644 nvmet_debugfs_ctrl_setup(ctrl);
1645 mutex_unlock(&subsys->lock);
1646
1647 if (args->hostid)
1648 uuid_copy(&ctrl->hostid, args->hostid);
1649
1650 dhchap_status = nvmet_setup_auth(ctrl);
1651 if (dhchap_status) {
1652 pr_err("Failed to setup authentication, dhchap status %u\n",
1653 dhchap_status);
1654 nvmet_ctrl_put(ctrl);
1655 if (dhchap_status == NVME_AUTH_DHCHAP_FAILURE_FAILED)
1656 args->status =
1657 NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1658 else
1659 args->status = NVME_SC_INTERNAL;
1660 return NULL;
1661 }
1662
1663 args->status = NVME_SC_SUCCESS;
1664
1665 pr_info("Created %s controller %d for subsystem %s for NQN %s%s%s.\n",
1666 nvmet_is_disc_subsys(ctrl->subsys) ? "discovery" : "nvm",
1667 ctrl->cntlid, ctrl->subsys->subsysnqn, ctrl->hostnqn,
1668 ctrl->pi_support ? " T10-PI is enabled" : "",
1669 nvmet_has_auth(ctrl) ? " with DH-HMAC-CHAP" : "");
1670
1671 return ctrl;
1672
1673 init_pr_fail:
1674 mutex_unlock(&subsys->lock);
1675 nvmet_stop_keep_alive_timer(ctrl);
1676 ida_free(&cntlid_ida, ctrl->cntlid);
1677 out_free_sqs:
1678 kfree(ctrl->sqs);
1679 out_free_changed_ns_list:
1680 kfree(ctrl->changed_ns_list);
1681 out_free_ctrl:
1682 kfree(ctrl);
1683 out_put_subsystem:
1684 nvmet_subsys_put(subsys);
1685 return NULL;
1686 }
1687 EXPORT_SYMBOL_GPL(nvmet_alloc_ctrl);
1688
nvmet_ctrl_free(struct kref * ref)1689 static void nvmet_ctrl_free(struct kref *ref)
1690 {
1691 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1692 struct nvmet_subsys *subsys = ctrl->subsys;
1693
1694 mutex_lock(&subsys->lock);
1695 nvmet_ctrl_destroy_pr(ctrl);
1696 nvmet_release_p2p_ns_map(ctrl);
1697 list_del(&ctrl->subsys_entry);
1698 mutex_unlock(&subsys->lock);
1699
1700 nvmet_stop_keep_alive_timer(ctrl);
1701
1702 flush_work(&ctrl->async_event_work);
1703 cancel_work_sync(&ctrl->fatal_err_work);
1704
1705 nvmet_destroy_auth(ctrl);
1706
1707 nvmet_debugfs_ctrl_free(ctrl);
1708
1709 ida_free(&cntlid_ida, ctrl->cntlid);
1710
1711 nvmet_async_events_free(ctrl);
1712 kfree(ctrl->sqs);
1713 kfree(ctrl->changed_ns_list);
1714 kfree(ctrl);
1715
1716 nvmet_subsys_put(subsys);
1717 }
1718
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1719 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1720 {
1721 kref_put(&ctrl->ref, nvmet_ctrl_free);
1722 }
1723 EXPORT_SYMBOL_GPL(nvmet_ctrl_put);
1724
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1725 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1726 {
1727 mutex_lock(&ctrl->lock);
1728 if (!(ctrl->csts & NVME_CSTS_CFS)) {
1729 ctrl->csts |= NVME_CSTS_CFS;
1730 queue_work(nvmet_wq, &ctrl->fatal_err_work);
1731 }
1732 mutex_unlock(&ctrl->lock);
1733 }
1734 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1735
nvmet_ctrl_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_len)1736 ssize_t nvmet_ctrl_host_traddr(struct nvmet_ctrl *ctrl,
1737 char *traddr, size_t traddr_len)
1738 {
1739 if (!ctrl->ops->host_traddr)
1740 return -EOPNOTSUPP;
1741 return ctrl->ops->host_traddr(ctrl, traddr, traddr_len);
1742 }
1743
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1744 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1745 const char *subsysnqn)
1746 {
1747 struct nvmet_subsys_link *p;
1748
1749 if (!port)
1750 return NULL;
1751
1752 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1753 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1754 return NULL;
1755 return nvmet_disc_subsys;
1756 }
1757
1758 down_read(&nvmet_config_sem);
1759 if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn,
1760 NVMF_NQN_SIZE)) {
1761 if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) {
1762 up_read(&nvmet_config_sem);
1763 return nvmet_disc_subsys;
1764 }
1765 }
1766 list_for_each_entry(p, &port->subsystems, entry) {
1767 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1768 NVMF_NQN_SIZE)) {
1769 if (!kref_get_unless_zero(&p->subsys->ref))
1770 break;
1771 up_read(&nvmet_config_sem);
1772 return p->subsys;
1773 }
1774 }
1775 up_read(&nvmet_config_sem);
1776 return NULL;
1777 }
1778
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1779 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1780 enum nvme_subsys_type type)
1781 {
1782 struct nvmet_subsys *subsys;
1783 char serial[NVMET_SN_MAX_SIZE / 2];
1784 int ret;
1785
1786 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1787 if (!subsys)
1788 return ERR_PTR(-ENOMEM);
1789
1790 subsys->ver = NVMET_DEFAULT_VS;
1791 /* generate a random serial number as our controllers are ephemeral: */
1792 get_random_bytes(&serial, sizeof(serial));
1793 bin2hex(subsys->serial, &serial, sizeof(serial));
1794
1795 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1796 if (!subsys->model_number) {
1797 ret = -ENOMEM;
1798 goto free_subsys;
1799 }
1800
1801 subsys->ieee_oui = 0;
1802
1803 subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1804 if (!subsys->firmware_rev) {
1805 ret = -ENOMEM;
1806 goto free_mn;
1807 }
1808
1809 switch (type) {
1810 case NVME_NQN_NVME:
1811 subsys->max_qid = NVMET_NR_QUEUES;
1812 break;
1813 case NVME_NQN_DISC:
1814 case NVME_NQN_CURR:
1815 subsys->max_qid = 0;
1816 break;
1817 default:
1818 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1819 ret = -EINVAL;
1820 goto free_fr;
1821 }
1822 subsys->type = type;
1823 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1824 GFP_KERNEL);
1825 if (!subsys->subsysnqn) {
1826 ret = -ENOMEM;
1827 goto free_fr;
1828 }
1829 subsys->cntlid_min = NVME_CNTLID_MIN;
1830 subsys->cntlid_max = NVME_CNTLID_MAX;
1831 kref_init(&subsys->ref);
1832
1833 mutex_init(&subsys->lock);
1834 xa_init(&subsys->namespaces);
1835 INIT_LIST_HEAD(&subsys->ctrls);
1836 INIT_LIST_HEAD(&subsys->hosts);
1837
1838 ret = nvmet_debugfs_subsys_setup(subsys);
1839 if (ret)
1840 goto free_subsysnqn;
1841
1842 return subsys;
1843
1844 free_subsysnqn:
1845 kfree(subsys->subsysnqn);
1846 free_fr:
1847 kfree(subsys->firmware_rev);
1848 free_mn:
1849 kfree(subsys->model_number);
1850 free_subsys:
1851 kfree(subsys);
1852 return ERR_PTR(ret);
1853 }
1854
nvmet_subsys_free(struct kref * ref)1855 static void nvmet_subsys_free(struct kref *ref)
1856 {
1857 struct nvmet_subsys *subsys =
1858 container_of(ref, struct nvmet_subsys, ref);
1859
1860 WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1861
1862 nvmet_debugfs_subsys_free(subsys);
1863
1864 xa_destroy(&subsys->namespaces);
1865 nvmet_passthru_subsys_free(subsys);
1866
1867 kfree(subsys->subsysnqn);
1868 kfree(subsys->model_number);
1869 kfree(subsys->firmware_rev);
1870 kfree(subsys);
1871 }
1872
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1873 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1874 {
1875 struct nvmet_ctrl *ctrl;
1876
1877 mutex_lock(&subsys->lock);
1878 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1879 ctrl->ops->delete_ctrl(ctrl);
1880 mutex_unlock(&subsys->lock);
1881 }
1882
nvmet_subsys_put(struct nvmet_subsys * subsys)1883 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1884 {
1885 kref_put(&subsys->ref, nvmet_subsys_free);
1886 }
1887
nvmet_init(void)1888 static int __init nvmet_init(void)
1889 {
1890 int error = -ENOMEM;
1891
1892 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1893
1894 nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1895 NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1896 SLAB_HWCACHE_ALIGN, NULL);
1897 if (!nvmet_bvec_cache)
1898 return -ENOMEM;
1899
1900 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1901 if (!zbd_wq)
1902 goto out_destroy_bvec_cache;
1903
1904 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1905 WQ_MEM_RECLAIM, 0);
1906 if (!buffered_io_wq)
1907 goto out_free_zbd_work_queue;
1908
1909 nvmet_wq = alloc_workqueue("nvmet-wq",
1910 WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_SYSFS, 0);
1911 if (!nvmet_wq)
1912 goto out_free_buffered_work_queue;
1913
1914 error = nvmet_init_discovery();
1915 if (error)
1916 goto out_free_nvmet_work_queue;
1917
1918 error = nvmet_init_debugfs();
1919 if (error)
1920 goto out_exit_discovery;
1921
1922 error = nvmet_init_configfs();
1923 if (error)
1924 goto out_exit_debugfs;
1925
1926 return 0;
1927
1928 out_exit_debugfs:
1929 nvmet_exit_debugfs();
1930 out_exit_discovery:
1931 nvmet_exit_discovery();
1932 out_free_nvmet_work_queue:
1933 destroy_workqueue(nvmet_wq);
1934 out_free_buffered_work_queue:
1935 destroy_workqueue(buffered_io_wq);
1936 out_free_zbd_work_queue:
1937 destroy_workqueue(zbd_wq);
1938 out_destroy_bvec_cache:
1939 kmem_cache_destroy(nvmet_bvec_cache);
1940 return error;
1941 }
1942
nvmet_exit(void)1943 static void __exit nvmet_exit(void)
1944 {
1945 nvmet_exit_configfs();
1946 nvmet_exit_debugfs();
1947 nvmet_exit_discovery();
1948 ida_destroy(&cntlid_ida);
1949 destroy_workqueue(nvmet_wq);
1950 destroy_workqueue(buffered_io_wq);
1951 destroy_workqueue(zbd_wq);
1952 kmem_cache_destroy(nvmet_bvec_cache);
1953
1954 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1955 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1956 }
1957
1958 module_init(nvmet_init);
1959 module_exit(nvmet_exit);
1960
1961 MODULE_DESCRIPTION("NVMe target core framework");
1962 MODULE_LICENSE("GPL v2");
1963