1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/ptrace.c
4 *
5 * By Ross Biro 1/23/92
6 * edited by Linus Torvalds
7 * ARM modifications Copyright (C) 2000 Russell King
8 * Copyright (C) 2012 ARM Ltd.
9 */
10
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 #include <linux/rseq.h>
32
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/mte.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46
47 struct pt_regs_offset {
48 const char *name;
49 int offset;
50 };
51
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56
57 static const struct pt_regs_offset regoffset_table[] = {
58 GPR_OFFSET_NAME(0),
59 GPR_OFFSET_NAME(1),
60 GPR_OFFSET_NAME(2),
61 GPR_OFFSET_NAME(3),
62 GPR_OFFSET_NAME(4),
63 GPR_OFFSET_NAME(5),
64 GPR_OFFSET_NAME(6),
65 GPR_OFFSET_NAME(7),
66 GPR_OFFSET_NAME(8),
67 GPR_OFFSET_NAME(9),
68 GPR_OFFSET_NAME(10),
69 GPR_OFFSET_NAME(11),
70 GPR_OFFSET_NAME(12),
71 GPR_OFFSET_NAME(13),
72 GPR_OFFSET_NAME(14),
73 GPR_OFFSET_NAME(15),
74 GPR_OFFSET_NAME(16),
75 GPR_OFFSET_NAME(17),
76 GPR_OFFSET_NAME(18),
77 GPR_OFFSET_NAME(19),
78 GPR_OFFSET_NAME(20),
79 GPR_OFFSET_NAME(21),
80 GPR_OFFSET_NAME(22),
81 GPR_OFFSET_NAME(23),
82 GPR_OFFSET_NAME(24),
83 GPR_OFFSET_NAME(25),
84 GPR_OFFSET_NAME(26),
85 GPR_OFFSET_NAME(27),
86 GPR_OFFSET_NAME(28),
87 GPR_OFFSET_NAME(29),
88 GPR_OFFSET_NAME(30),
89 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90 REG_OFFSET_NAME(sp),
91 REG_OFFSET_NAME(pc),
92 REG_OFFSET_NAME(pstate),
93 REG_OFFSET_END,
94 };
95
96 /**
97 * regs_query_register_offset() - query register offset from its name
98 * @name: the name of a register
99 *
100 * regs_query_register_offset() returns the offset of a register in struct
101 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102 */
regs_query_register_offset(const char * name)103 int regs_query_register_offset(const char *name)
104 {
105 const struct pt_regs_offset *roff;
106
107 for (roff = regoffset_table; roff->name != NULL; roff++)
108 if (!strcmp(roff->name, name))
109 return roff->offset;
110 return -EINVAL;
111 }
112
113 /**
114 * regs_within_kernel_stack() - check the address in the stack
115 * @regs: pt_regs which contains kernel stack pointer.
116 * @addr: address which is checked.
117 *
118 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119 * If @addr is within the kernel stack, it returns true. If not, returns false.
120 */
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123 return ((addr & ~(THREAD_SIZE - 1)) ==
124 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125 on_irq_stack(addr, sizeof(unsigned long));
126 }
127
128 /**
129 * regs_get_kernel_stack_nth() - get Nth entry of the stack
130 * @regs: pt_regs which contains kernel stack pointer.
131 * @n: stack entry number.
132 *
133 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135 * this returns 0.
136 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140
141 addr += n;
142 if (regs_within_kernel_stack(regs, (unsigned long)addr))
143 return *addr;
144 else
145 return 0;
146 }
147
148 /*
149 * TODO: does not yet catch signals sent when the child dies.
150 * in exit.c or in signal.c.
151 */
152
153 /*
154 * Called by kernel/ptrace.c when detaching..
155 */
ptrace_disable(struct task_struct * child)156 void ptrace_disable(struct task_struct *child)
157 {
158 /*
159 * This would be better off in core code, but PTRACE_DETACH has
160 * grown its fair share of arch-specific worts and changing it
161 * is likely to cause regressions on obscure architectures.
162 */
163 user_disable_single_step(child);
164 }
165
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168 * Handle hitting a HW-breakpoint.
169 */
ptrace_hbptriggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)170 static void ptrace_hbptriggered(struct perf_event *bp,
171 struct perf_sample_data *data,
172 struct pt_regs *regs)
173 {
174 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175 const char *desc = "Hardware breakpoint trap (ptrace)";
176
177 if (is_compat_task()) {
178 int si_errno = 0;
179 int i;
180
181 for (i = 0; i < ARM_MAX_BRP; ++i) {
182 if (current->thread.debug.hbp_break[i] == bp) {
183 si_errno = (i << 1) + 1;
184 break;
185 }
186 }
187
188 for (i = 0; i < ARM_MAX_WRP; ++i) {
189 if (current->thread.debug.hbp_watch[i] == bp) {
190 si_errno = -((i << 1) + 1);
191 break;
192 }
193 }
194 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195 desc);
196 return;
197 }
198
199 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201
202 /*
203 * Unregister breakpoints from this task and reset the pointers in
204 * the thread_struct.
205 */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 int i;
209 struct thread_struct *t = &tsk->thread;
210
211 for (i = 0; i < ARM_MAX_BRP; i++) {
212 if (t->debug.hbp_break[i]) {
213 unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 t->debug.hbp_break[i] = NULL;
215 }
216 }
217
218 for (i = 0; i < ARM_MAX_WRP; i++) {
219 if (t->debug.hbp_watch[i]) {
220 unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 t->debug.hbp_watch[i] = NULL;
222 }
223 }
224 }
225
ptrace_hw_copy_thread(struct task_struct * tsk)226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230
ptrace_hbp_get_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx)231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 struct task_struct *tsk,
233 unsigned long idx)
234 {
235 struct perf_event *bp = ERR_PTR(-EINVAL);
236
237 switch (note_type) {
238 case NT_ARM_HW_BREAK:
239 if (idx >= ARM_MAX_BRP)
240 goto out;
241 idx = array_index_nospec(idx, ARM_MAX_BRP);
242 bp = tsk->thread.debug.hbp_break[idx];
243 break;
244 case NT_ARM_HW_WATCH:
245 if (idx >= ARM_MAX_WRP)
246 goto out;
247 idx = array_index_nospec(idx, ARM_MAX_WRP);
248 bp = tsk->thread.debug.hbp_watch[idx];
249 break;
250 }
251
252 out:
253 return bp;
254 }
255
ptrace_hbp_set_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx,struct perf_event * bp)256 static int ptrace_hbp_set_event(unsigned int note_type,
257 struct task_struct *tsk,
258 unsigned long idx,
259 struct perf_event *bp)
260 {
261 int err = -EINVAL;
262
263 switch (note_type) {
264 case NT_ARM_HW_BREAK:
265 if (idx >= ARM_MAX_BRP)
266 goto out;
267 idx = array_index_nospec(idx, ARM_MAX_BRP);
268 tsk->thread.debug.hbp_break[idx] = bp;
269 err = 0;
270 break;
271 case NT_ARM_HW_WATCH:
272 if (idx >= ARM_MAX_WRP)
273 goto out;
274 idx = array_index_nospec(idx, ARM_MAX_WRP);
275 tsk->thread.debug.hbp_watch[idx] = bp;
276 err = 0;
277 break;
278 }
279
280 out:
281 return err;
282 }
283
ptrace_hbp_create(unsigned int note_type,struct task_struct * tsk,unsigned long idx)284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 struct task_struct *tsk,
286 unsigned long idx)
287 {
288 struct perf_event *bp;
289 struct perf_event_attr attr;
290 int err, type;
291
292 switch (note_type) {
293 case NT_ARM_HW_BREAK:
294 type = HW_BREAKPOINT_X;
295 break;
296 case NT_ARM_HW_WATCH:
297 type = HW_BREAKPOINT_RW;
298 break;
299 default:
300 return ERR_PTR(-EINVAL);
301 }
302
303 ptrace_breakpoint_init(&attr);
304
305 /*
306 * Initialise fields to sane defaults
307 * (i.e. values that will pass validation).
308 */
309 attr.bp_addr = 0;
310 attr.bp_len = HW_BREAKPOINT_LEN_4;
311 attr.bp_type = type;
312 attr.disabled = 1;
313
314 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 if (IS_ERR(bp))
316 return bp;
317
318 err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 if (err)
320 return ERR_PTR(err);
321
322 return bp;
323 }
324
ptrace_hbp_fill_attr_ctrl(unsigned int note_type,struct arch_hw_breakpoint_ctrl ctrl,struct perf_event_attr * attr)325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 struct arch_hw_breakpoint_ctrl ctrl,
327 struct perf_event_attr *attr)
328 {
329 int err, len, type, offset, disabled = !ctrl.enabled;
330
331 attr->disabled = disabled;
332 if (disabled)
333 return 0;
334
335 err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 if (err)
337 return err;
338
339 switch (note_type) {
340 case NT_ARM_HW_BREAK:
341 if ((type & HW_BREAKPOINT_X) != type)
342 return -EINVAL;
343 break;
344 case NT_ARM_HW_WATCH:
345 if ((type & HW_BREAKPOINT_RW) != type)
346 return -EINVAL;
347 break;
348 default:
349 return -EINVAL;
350 }
351
352 attr->bp_len = len;
353 attr->bp_type = type;
354 attr->bp_addr += offset;
355
356 return 0;
357 }
358
ptrace_hbp_get_resource_info(unsigned int note_type,u32 * info)359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 u8 num;
362 u32 reg = 0;
363
364 switch (note_type) {
365 case NT_ARM_HW_BREAK:
366 num = hw_breakpoint_slots(TYPE_INST);
367 break;
368 case NT_ARM_HW_WATCH:
369 num = hw_breakpoint_slots(TYPE_DATA);
370 break;
371 default:
372 return -EINVAL;
373 }
374
375 reg |= debug_monitors_arch();
376 reg <<= 8;
377 reg |= num;
378
379 *info = reg;
380 return 0;
381 }
382
ptrace_hbp_get_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 * ctrl)383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 struct task_struct *tsk,
385 unsigned long idx,
386 u32 *ctrl)
387 {
388 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389
390 if (IS_ERR(bp))
391 return PTR_ERR(bp);
392
393 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 return 0;
395 }
396
ptrace_hbp_get_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 * addr)397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 struct task_struct *tsk,
399 unsigned long idx,
400 u64 *addr)
401 {
402 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403
404 if (IS_ERR(bp))
405 return PTR_ERR(bp);
406
407 *addr = bp ? counter_arch_bp(bp)->address : 0;
408 return 0;
409 }
410
ptrace_hbp_get_initialised_bp(unsigned int note_type,struct task_struct * tsk,unsigned long idx)411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 struct task_struct *tsk,
413 unsigned long idx)
414 {
415 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416
417 if (!bp)
418 bp = ptrace_hbp_create(note_type, tsk, idx);
419
420 return bp;
421 }
422
ptrace_hbp_set_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 uctrl)423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 struct task_struct *tsk,
425 unsigned long idx,
426 u32 uctrl)
427 {
428 int err;
429 struct perf_event *bp;
430 struct perf_event_attr attr;
431 struct arch_hw_breakpoint_ctrl ctrl;
432
433 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 if (IS_ERR(bp)) {
435 err = PTR_ERR(bp);
436 return err;
437 }
438
439 attr = bp->attr;
440 decode_ctrl_reg(uctrl, &ctrl);
441 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 if (err)
443 return err;
444
445 return modify_user_hw_breakpoint(bp, &attr);
446 }
447
ptrace_hbp_set_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 addr)448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 struct task_struct *tsk,
450 unsigned long idx,
451 u64 addr)
452 {
453 int err;
454 struct perf_event *bp;
455 struct perf_event_attr attr;
456
457 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 if (IS_ERR(bp)) {
459 err = PTR_ERR(bp);
460 return err;
461 }
462
463 attr = bp->attr;
464 attr.bp_addr = addr;
465 err = modify_user_hw_breakpoint(bp, &attr);
466 return err;
467 }
468
469 #define PTRACE_HBP_ADDR_SZ sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ sizeof(u32)
472
hw_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)473 static int hw_break_get(struct task_struct *target,
474 const struct user_regset *regset,
475 struct membuf to)
476 {
477 unsigned int note_type = regset->core_note_type;
478 int ret, idx = 0;
479 u32 info, ctrl;
480 u64 addr;
481
482 /* Resource info */
483 ret = ptrace_hbp_get_resource_info(note_type, &info);
484 if (ret)
485 return ret;
486
487 membuf_write(&to, &info, sizeof(info));
488 membuf_zero(&to, sizeof(u32));
489 /* (address, ctrl) registers */
490 while (to.left) {
491 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 if (ret)
493 return ret;
494 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 if (ret)
496 return ret;
497 membuf_store(&to, addr);
498 membuf_store(&to, ctrl);
499 membuf_zero(&to, sizeof(u32));
500 idx++;
501 }
502 return 0;
503 }
504
hw_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)505 static int hw_break_set(struct task_struct *target,
506 const struct user_regset *regset,
507 unsigned int pos, unsigned int count,
508 const void *kbuf, const void __user *ubuf)
509 {
510 unsigned int note_type = regset->core_note_type;
511 int ret, idx = 0, offset, limit;
512 u32 ctrl;
513 u64 addr;
514
515 /* Resource info and pad */
516 offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518
519 /* (address, ctrl) registers */
520 limit = regset->n * regset->size;
521 while (count && offset < limit) {
522 if (count < PTRACE_HBP_ADDR_SZ)
523 return -EINVAL;
524 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
525 offset, offset + PTRACE_HBP_ADDR_SZ);
526 if (ret)
527 return ret;
528 ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
529 if (ret)
530 return ret;
531 offset += PTRACE_HBP_ADDR_SZ;
532
533 if (!count)
534 break;
535 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
536 offset, offset + PTRACE_HBP_CTRL_SZ);
537 if (ret)
538 return ret;
539 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
540 if (ret)
541 return ret;
542 offset += PTRACE_HBP_CTRL_SZ;
543
544 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
545 offset, offset + PTRACE_HBP_PAD_SZ);
546 offset += PTRACE_HBP_PAD_SZ;
547 idx++;
548 }
549
550 return 0;
551 }
552 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
553
gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)554 static int gpr_get(struct task_struct *target,
555 const struct user_regset *regset,
556 struct membuf to)
557 {
558 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
559 return membuf_write(&to, uregs, sizeof(*uregs));
560 }
561
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)562 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
563 unsigned int pos, unsigned int count,
564 const void *kbuf, const void __user *ubuf)
565 {
566 int ret;
567 struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
568
569 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
570 if (ret)
571 return ret;
572
573 if (!valid_user_regs(&newregs, target))
574 return -EINVAL;
575
576 task_pt_regs(target)->user_regs = newregs;
577 return 0;
578 }
579
fpr_active(struct task_struct * target,const struct user_regset * regset)580 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
581 {
582 if (!system_supports_fpsimd())
583 return -ENODEV;
584 return regset->n;
585 }
586
587 /*
588 * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
589 */
__fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)590 static int __fpr_get(struct task_struct *target,
591 const struct user_regset *regset,
592 struct membuf to)
593 {
594 struct user_fpsimd_state *uregs;
595
596 sve_sync_to_fpsimd(target);
597
598 uregs = &target->thread.uw.fpsimd_state;
599
600 return membuf_write(&to, uregs, sizeof(*uregs));
601 }
602
fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)603 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
604 struct membuf to)
605 {
606 if (!system_supports_fpsimd())
607 return -EINVAL;
608
609 if (target == current)
610 fpsimd_preserve_current_state();
611
612 return __fpr_get(target, regset, to);
613 }
614
__fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,unsigned int start_pos)615 static int __fpr_set(struct task_struct *target,
616 const struct user_regset *regset,
617 unsigned int pos, unsigned int count,
618 const void *kbuf, const void __user *ubuf,
619 unsigned int start_pos)
620 {
621 int ret;
622 struct user_fpsimd_state newstate;
623
624 /*
625 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
626 * short copyin can't resurrect stale data.
627 */
628 sve_sync_to_fpsimd(target);
629
630 newstate = target->thread.uw.fpsimd_state;
631
632 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
633 start_pos, start_pos + sizeof(newstate));
634 if (ret)
635 return ret;
636
637 target->thread.uw.fpsimd_state = newstate;
638
639 return ret;
640 }
641
fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)642 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
643 unsigned int pos, unsigned int count,
644 const void *kbuf, const void __user *ubuf)
645 {
646 int ret;
647
648 if (!system_supports_fpsimd())
649 return -EINVAL;
650
651 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
652 if (ret)
653 return ret;
654
655 sve_sync_from_fpsimd_zeropad(target);
656 fpsimd_flush_task_state(target);
657
658 return ret;
659 }
660
tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)661 static int tls_get(struct task_struct *target, const struct user_regset *regset,
662 struct membuf to)
663 {
664 int ret;
665
666 if (target == current)
667 tls_preserve_current_state();
668
669 ret = membuf_store(&to, target->thread.uw.tp_value);
670 if (system_supports_tpidr2())
671 ret = membuf_store(&to, target->thread.tpidr2_el0);
672 else
673 ret = membuf_zero(&to, sizeof(u64));
674
675 return ret;
676 }
677
tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)678 static int tls_set(struct task_struct *target, const struct user_regset *regset,
679 unsigned int pos, unsigned int count,
680 const void *kbuf, const void __user *ubuf)
681 {
682 int ret;
683 unsigned long tls[2];
684
685 tls[0] = target->thread.uw.tp_value;
686 if (system_supports_tpidr2())
687 tls[1] = target->thread.tpidr2_el0;
688
689 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
690 if (ret)
691 return ret;
692
693 target->thread.uw.tp_value = tls[0];
694 if (system_supports_tpidr2())
695 target->thread.tpidr2_el0 = tls[1];
696
697 return ret;
698 }
699
fpmr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)700 static int fpmr_get(struct task_struct *target, const struct user_regset *regset,
701 struct membuf to)
702 {
703 if (!system_supports_fpmr())
704 return -EINVAL;
705
706 if (target == current)
707 fpsimd_preserve_current_state();
708
709 return membuf_store(&to, target->thread.uw.fpmr);
710 }
711
fpmr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)712 static int fpmr_set(struct task_struct *target, const struct user_regset *regset,
713 unsigned int pos, unsigned int count,
714 const void *kbuf, const void __user *ubuf)
715 {
716 int ret;
717 unsigned long fpmr;
718
719 if (!system_supports_fpmr())
720 return -EINVAL;
721
722 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpmr, 0, count);
723 if (ret)
724 return ret;
725
726 target->thread.uw.fpmr = fpmr;
727
728 fpsimd_flush_task_state(target);
729
730 return 0;
731 }
732
system_call_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)733 static int system_call_get(struct task_struct *target,
734 const struct user_regset *regset,
735 struct membuf to)
736 {
737 return membuf_store(&to, task_pt_regs(target)->syscallno);
738 }
739
system_call_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)740 static int system_call_set(struct task_struct *target,
741 const struct user_regset *regset,
742 unsigned int pos, unsigned int count,
743 const void *kbuf, const void __user *ubuf)
744 {
745 int syscallno = task_pt_regs(target)->syscallno;
746 int ret;
747
748 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
749 if (ret)
750 return ret;
751
752 task_pt_regs(target)->syscallno = syscallno;
753 return ret;
754 }
755
756 #ifdef CONFIG_ARM64_SVE
757
sve_init_header_from_task(struct user_sve_header * header,struct task_struct * target,enum vec_type type)758 static void sve_init_header_from_task(struct user_sve_header *header,
759 struct task_struct *target,
760 enum vec_type type)
761 {
762 unsigned int vq;
763 bool active;
764 enum vec_type task_type;
765
766 memset(header, 0, sizeof(*header));
767
768 /* Check if the requested registers are active for the task */
769 if (thread_sm_enabled(&target->thread))
770 task_type = ARM64_VEC_SME;
771 else
772 task_type = ARM64_VEC_SVE;
773 active = (task_type == type);
774
775 switch (type) {
776 case ARM64_VEC_SVE:
777 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
778 header->flags |= SVE_PT_VL_INHERIT;
779 break;
780 case ARM64_VEC_SME:
781 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
782 header->flags |= SVE_PT_VL_INHERIT;
783 break;
784 default:
785 WARN_ON_ONCE(1);
786 return;
787 }
788
789 if (active) {
790 if (target->thread.fp_type == FP_STATE_FPSIMD) {
791 header->flags |= SVE_PT_REGS_FPSIMD;
792 } else {
793 header->flags |= SVE_PT_REGS_SVE;
794 }
795 }
796
797 header->vl = task_get_vl(target, type);
798 vq = sve_vq_from_vl(header->vl);
799
800 header->max_vl = vec_max_vl(type);
801 header->size = SVE_PT_SIZE(vq, header->flags);
802 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
803 SVE_PT_REGS_SVE);
804 }
805
sve_size_from_header(struct user_sve_header const * header)806 static unsigned int sve_size_from_header(struct user_sve_header const *header)
807 {
808 return ALIGN(header->size, SVE_VQ_BYTES);
809 }
810
sve_get_common(struct task_struct * target,const struct user_regset * regset,struct membuf to,enum vec_type type)811 static int sve_get_common(struct task_struct *target,
812 const struct user_regset *regset,
813 struct membuf to,
814 enum vec_type type)
815 {
816 struct user_sve_header header;
817 unsigned int vq;
818 unsigned long start, end;
819
820 /* Header */
821 sve_init_header_from_task(&header, target, type);
822 vq = sve_vq_from_vl(header.vl);
823
824 membuf_write(&to, &header, sizeof(header));
825
826 if (target == current)
827 fpsimd_preserve_current_state();
828
829 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
830 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
831
832 switch ((header.flags & SVE_PT_REGS_MASK)) {
833 case SVE_PT_REGS_FPSIMD:
834 return __fpr_get(target, regset, to);
835
836 case SVE_PT_REGS_SVE:
837 start = SVE_PT_SVE_OFFSET;
838 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
839 membuf_write(&to, target->thread.sve_state, end - start);
840
841 start = end;
842 end = SVE_PT_SVE_FPSR_OFFSET(vq);
843 membuf_zero(&to, end - start);
844
845 /*
846 * Copy fpsr, and fpcr which must follow contiguously in
847 * struct fpsimd_state:
848 */
849 start = end;
850 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
851 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
852 end - start);
853
854 start = end;
855 end = sve_size_from_header(&header);
856 return membuf_zero(&to, end - start);
857
858 default:
859 return 0;
860 }
861 }
862
sve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)863 static int sve_get(struct task_struct *target,
864 const struct user_regset *regset,
865 struct membuf to)
866 {
867 if (!system_supports_sve())
868 return -EINVAL;
869
870 return sve_get_common(target, regset, to, ARM64_VEC_SVE);
871 }
872
sve_set_common(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,enum vec_type type)873 static int sve_set_common(struct task_struct *target,
874 const struct user_regset *regset,
875 unsigned int pos, unsigned int count,
876 const void *kbuf, const void __user *ubuf,
877 enum vec_type type)
878 {
879 int ret;
880 struct user_sve_header header;
881 unsigned int vq;
882 unsigned long start, end;
883
884 /* Header */
885 if (count < sizeof(header))
886 return -EINVAL;
887 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
888 0, sizeof(header));
889 if (ret)
890 goto out;
891
892 /*
893 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
894 * vec_set_vector_length(), which will also validate them for us:
895 */
896 ret = vec_set_vector_length(target, type, header.vl,
897 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
898 if (ret)
899 goto out;
900
901 /* Actual VL set may be less than the user asked for: */
902 vq = sve_vq_from_vl(task_get_vl(target, type));
903
904 /* Enter/exit streaming mode */
905 if (system_supports_sme()) {
906 u64 old_svcr = target->thread.svcr;
907
908 switch (type) {
909 case ARM64_VEC_SVE:
910 target->thread.svcr &= ~SVCR_SM_MASK;
911 break;
912 case ARM64_VEC_SME:
913 target->thread.svcr |= SVCR_SM_MASK;
914
915 /*
916 * Disable traps and ensure there is SME storage but
917 * preserve any currently set values in ZA/ZT.
918 */
919 sme_alloc(target, false);
920 set_tsk_thread_flag(target, TIF_SME);
921 break;
922 default:
923 WARN_ON_ONCE(1);
924 ret = -EINVAL;
925 goto out;
926 }
927
928 /*
929 * If we switched then invalidate any existing SVE
930 * state and ensure there's storage.
931 */
932 if (target->thread.svcr != old_svcr)
933 sve_alloc(target, true);
934 }
935
936 /* Registers: FPSIMD-only case */
937
938 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
939 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
940 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
941 SVE_PT_FPSIMD_OFFSET);
942 clear_tsk_thread_flag(target, TIF_SVE);
943 target->thread.fp_type = FP_STATE_FPSIMD;
944 goto out;
945 }
946
947 /*
948 * Otherwise: no registers or full SVE case. For backwards
949 * compatibility reasons we treat empty flags as SVE registers.
950 */
951
952 /*
953 * If setting a different VL from the requested VL and there is
954 * register data, the data layout will be wrong: don't even
955 * try to set the registers in this case.
956 */
957 if (count && vq != sve_vq_from_vl(header.vl)) {
958 ret = -EIO;
959 goto out;
960 }
961
962 sve_alloc(target, true);
963 if (!target->thread.sve_state) {
964 ret = -ENOMEM;
965 clear_tsk_thread_flag(target, TIF_SVE);
966 target->thread.fp_type = FP_STATE_FPSIMD;
967 goto out;
968 }
969
970 /*
971 * Ensure target->thread.sve_state is up to date with target's
972 * FPSIMD regs, so that a short copyin leaves trailing
973 * registers unmodified. Only enable SVE if we are
974 * configuring normal SVE, a system with streaming SVE may not
975 * have normal SVE.
976 */
977 fpsimd_sync_to_sve(target);
978 if (type == ARM64_VEC_SVE)
979 set_tsk_thread_flag(target, TIF_SVE);
980 target->thread.fp_type = FP_STATE_SVE;
981
982 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
983 start = SVE_PT_SVE_OFFSET;
984 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
985 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
986 target->thread.sve_state,
987 start, end);
988 if (ret)
989 goto out;
990
991 start = end;
992 end = SVE_PT_SVE_FPSR_OFFSET(vq);
993 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
994
995 /*
996 * Copy fpsr, and fpcr which must follow contiguously in
997 * struct fpsimd_state:
998 */
999 start = end;
1000 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
1001 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1002 &target->thread.uw.fpsimd_state.fpsr,
1003 start, end);
1004
1005 out:
1006 fpsimd_flush_task_state(target);
1007 return ret;
1008 }
1009
sve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1010 static int sve_set(struct task_struct *target,
1011 const struct user_regset *regset,
1012 unsigned int pos, unsigned int count,
1013 const void *kbuf, const void __user *ubuf)
1014 {
1015 if (!system_supports_sve())
1016 return -EINVAL;
1017
1018 return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1019 ARM64_VEC_SVE);
1020 }
1021
1022 #endif /* CONFIG_ARM64_SVE */
1023
1024 #ifdef CONFIG_ARM64_SME
1025
ssve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1026 static int ssve_get(struct task_struct *target,
1027 const struct user_regset *regset,
1028 struct membuf to)
1029 {
1030 if (!system_supports_sme())
1031 return -EINVAL;
1032
1033 return sve_get_common(target, regset, to, ARM64_VEC_SME);
1034 }
1035
ssve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1036 static int ssve_set(struct task_struct *target,
1037 const struct user_regset *regset,
1038 unsigned int pos, unsigned int count,
1039 const void *kbuf, const void __user *ubuf)
1040 {
1041 if (!system_supports_sme())
1042 return -EINVAL;
1043
1044 return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1045 ARM64_VEC_SME);
1046 }
1047
za_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1048 static int za_get(struct task_struct *target,
1049 const struct user_regset *regset,
1050 struct membuf to)
1051 {
1052 struct user_za_header header;
1053 unsigned int vq;
1054 unsigned long start, end;
1055
1056 if (!system_supports_sme())
1057 return -EINVAL;
1058
1059 /* Header */
1060 memset(&header, 0, sizeof(header));
1061
1062 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1063 header.flags |= ZA_PT_VL_INHERIT;
1064
1065 header.vl = task_get_sme_vl(target);
1066 vq = sve_vq_from_vl(header.vl);
1067 header.max_vl = sme_max_vl();
1068 header.max_size = ZA_PT_SIZE(vq);
1069
1070 /* If ZA is not active there is only the header */
1071 if (thread_za_enabled(&target->thread))
1072 header.size = ZA_PT_SIZE(vq);
1073 else
1074 header.size = ZA_PT_ZA_OFFSET;
1075
1076 membuf_write(&to, &header, sizeof(header));
1077
1078 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1079 end = ZA_PT_ZA_OFFSET;
1080
1081 if (target == current)
1082 fpsimd_preserve_current_state();
1083
1084 /* Any register data to include? */
1085 if (thread_za_enabled(&target->thread)) {
1086 start = end;
1087 end = ZA_PT_SIZE(vq);
1088 membuf_write(&to, target->thread.sme_state, end - start);
1089 }
1090
1091 /* Zero any trailing padding */
1092 start = end;
1093 end = ALIGN(header.size, SVE_VQ_BYTES);
1094 return membuf_zero(&to, end - start);
1095 }
1096
za_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1097 static int za_set(struct task_struct *target,
1098 const struct user_regset *regset,
1099 unsigned int pos, unsigned int count,
1100 const void *kbuf, const void __user *ubuf)
1101 {
1102 int ret;
1103 struct user_za_header header;
1104 unsigned int vq;
1105 unsigned long start, end;
1106
1107 if (!system_supports_sme())
1108 return -EINVAL;
1109
1110 /* Header */
1111 if (count < sizeof(header))
1112 return -EINVAL;
1113 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1114 0, sizeof(header));
1115 if (ret)
1116 goto out;
1117
1118 /*
1119 * All current ZA_PT_* flags are consumed by
1120 * vec_set_vector_length(), which will also validate them for
1121 * us:
1122 */
1123 ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1124 ((unsigned long)header.flags) << 16);
1125 if (ret)
1126 goto out;
1127
1128 /* Actual VL set may be less than the user asked for: */
1129 vq = sve_vq_from_vl(task_get_sme_vl(target));
1130
1131 /* Ensure there is some SVE storage for streaming mode */
1132 if (!target->thread.sve_state) {
1133 sve_alloc(target, false);
1134 if (!target->thread.sve_state) {
1135 ret = -ENOMEM;
1136 goto out;
1137 }
1138 }
1139
1140 /*
1141 * Only flush the storage if PSTATE.ZA was not already set,
1142 * otherwise preserve any existing data.
1143 */
1144 sme_alloc(target, !thread_za_enabled(&target->thread));
1145 if (!target->thread.sme_state)
1146 return -ENOMEM;
1147
1148 /* If there is no data then disable ZA */
1149 if (!count) {
1150 target->thread.svcr &= ~SVCR_ZA_MASK;
1151 goto out;
1152 }
1153
1154 /*
1155 * If setting a different VL from the requested VL and there is
1156 * register data, the data layout will be wrong: don't even
1157 * try to set the registers in this case.
1158 */
1159 if (vq != sve_vq_from_vl(header.vl)) {
1160 ret = -EIO;
1161 goto out;
1162 }
1163
1164 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1165 start = ZA_PT_ZA_OFFSET;
1166 end = ZA_PT_SIZE(vq);
1167 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1168 target->thread.sme_state,
1169 start, end);
1170 if (ret)
1171 goto out;
1172
1173 /* Mark ZA as active and let userspace use it */
1174 set_tsk_thread_flag(target, TIF_SME);
1175 target->thread.svcr |= SVCR_ZA_MASK;
1176
1177 out:
1178 fpsimd_flush_task_state(target);
1179 return ret;
1180 }
1181
zt_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1182 static int zt_get(struct task_struct *target,
1183 const struct user_regset *regset,
1184 struct membuf to)
1185 {
1186 if (!system_supports_sme2())
1187 return -EINVAL;
1188
1189 /*
1190 * If PSTATE.ZA is not set then ZT will be zeroed when it is
1191 * enabled so report the current register value as zero.
1192 */
1193 if (thread_za_enabled(&target->thread))
1194 membuf_write(&to, thread_zt_state(&target->thread),
1195 ZT_SIG_REG_BYTES);
1196 else
1197 membuf_zero(&to, ZT_SIG_REG_BYTES);
1198
1199 return 0;
1200 }
1201
zt_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1202 static int zt_set(struct task_struct *target,
1203 const struct user_regset *regset,
1204 unsigned int pos, unsigned int count,
1205 const void *kbuf, const void __user *ubuf)
1206 {
1207 int ret;
1208
1209 if (!system_supports_sme2())
1210 return -EINVAL;
1211
1212 /* Ensure SVE storage in case this is first use of SME */
1213 sve_alloc(target, false);
1214 if (!target->thread.sve_state)
1215 return -ENOMEM;
1216
1217 if (!thread_za_enabled(&target->thread)) {
1218 sme_alloc(target, true);
1219 if (!target->thread.sme_state)
1220 return -ENOMEM;
1221 }
1222
1223 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1224 thread_zt_state(&target->thread),
1225 0, ZT_SIG_REG_BYTES);
1226 if (ret == 0) {
1227 target->thread.svcr |= SVCR_ZA_MASK;
1228 set_tsk_thread_flag(target, TIF_SME);
1229 }
1230
1231 fpsimd_flush_task_state(target);
1232
1233 return ret;
1234 }
1235
1236 #endif /* CONFIG_ARM64_SME */
1237
1238 #ifdef CONFIG_ARM64_PTR_AUTH
pac_mask_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1239 static int pac_mask_get(struct task_struct *target,
1240 const struct user_regset *regset,
1241 struct membuf to)
1242 {
1243 /*
1244 * The PAC bits can differ across data and instruction pointers
1245 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1246 * we expose separate masks.
1247 */
1248 unsigned long mask = ptrauth_user_pac_mask();
1249 struct user_pac_mask uregs = {
1250 .data_mask = mask,
1251 .insn_mask = mask,
1252 };
1253
1254 if (!system_supports_address_auth())
1255 return -EINVAL;
1256
1257 return membuf_write(&to, &uregs, sizeof(uregs));
1258 }
1259
pac_enabled_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1260 static int pac_enabled_keys_get(struct task_struct *target,
1261 const struct user_regset *regset,
1262 struct membuf to)
1263 {
1264 long enabled_keys = ptrauth_get_enabled_keys(target);
1265
1266 if (IS_ERR_VALUE(enabled_keys))
1267 return enabled_keys;
1268
1269 return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1270 }
1271
pac_enabled_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1272 static int pac_enabled_keys_set(struct task_struct *target,
1273 const struct user_regset *regset,
1274 unsigned int pos, unsigned int count,
1275 const void *kbuf, const void __user *ubuf)
1276 {
1277 int ret;
1278 long enabled_keys = ptrauth_get_enabled_keys(target);
1279
1280 if (IS_ERR_VALUE(enabled_keys))
1281 return enabled_keys;
1282
1283 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1284 sizeof(long));
1285 if (ret)
1286 return ret;
1287
1288 return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1289 enabled_keys);
1290 }
1291
1292 #ifdef CONFIG_CHECKPOINT_RESTORE
pac_key_to_user(const struct ptrauth_key * key)1293 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1294 {
1295 return (__uint128_t)key->hi << 64 | key->lo;
1296 }
1297
pac_key_from_user(__uint128_t ukey)1298 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1299 {
1300 struct ptrauth_key key = {
1301 .lo = (unsigned long)ukey,
1302 .hi = (unsigned long)(ukey >> 64),
1303 };
1304
1305 return key;
1306 }
1307
pac_address_keys_to_user(struct user_pac_address_keys * ukeys,const struct ptrauth_keys_user * keys)1308 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1309 const struct ptrauth_keys_user *keys)
1310 {
1311 ukeys->apiakey = pac_key_to_user(&keys->apia);
1312 ukeys->apibkey = pac_key_to_user(&keys->apib);
1313 ukeys->apdakey = pac_key_to_user(&keys->apda);
1314 ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1315 }
1316
pac_address_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_address_keys * ukeys)1317 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1318 const struct user_pac_address_keys *ukeys)
1319 {
1320 keys->apia = pac_key_from_user(ukeys->apiakey);
1321 keys->apib = pac_key_from_user(ukeys->apibkey);
1322 keys->apda = pac_key_from_user(ukeys->apdakey);
1323 keys->apdb = pac_key_from_user(ukeys->apdbkey);
1324 }
1325
pac_address_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1326 static int pac_address_keys_get(struct task_struct *target,
1327 const struct user_regset *regset,
1328 struct membuf to)
1329 {
1330 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1331 struct user_pac_address_keys user_keys;
1332
1333 if (!system_supports_address_auth())
1334 return -EINVAL;
1335
1336 pac_address_keys_to_user(&user_keys, keys);
1337
1338 return membuf_write(&to, &user_keys, sizeof(user_keys));
1339 }
1340
pac_address_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1341 static int pac_address_keys_set(struct task_struct *target,
1342 const struct user_regset *regset,
1343 unsigned int pos, unsigned int count,
1344 const void *kbuf, const void __user *ubuf)
1345 {
1346 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1347 struct user_pac_address_keys user_keys;
1348 int ret;
1349
1350 if (!system_supports_address_auth())
1351 return -EINVAL;
1352
1353 pac_address_keys_to_user(&user_keys, keys);
1354 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1355 &user_keys, 0, -1);
1356 if (ret)
1357 return ret;
1358 pac_address_keys_from_user(keys, &user_keys);
1359
1360 return 0;
1361 }
1362
pac_generic_keys_to_user(struct user_pac_generic_keys * ukeys,const struct ptrauth_keys_user * keys)1363 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1364 const struct ptrauth_keys_user *keys)
1365 {
1366 ukeys->apgakey = pac_key_to_user(&keys->apga);
1367 }
1368
pac_generic_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_generic_keys * ukeys)1369 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1370 const struct user_pac_generic_keys *ukeys)
1371 {
1372 keys->apga = pac_key_from_user(ukeys->apgakey);
1373 }
1374
pac_generic_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1375 static int pac_generic_keys_get(struct task_struct *target,
1376 const struct user_regset *regset,
1377 struct membuf to)
1378 {
1379 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1380 struct user_pac_generic_keys user_keys;
1381
1382 if (!system_supports_generic_auth())
1383 return -EINVAL;
1384
1385 pac_generic_keys_to_user(&user_keys, keys);
1386
1387 return membuf_write(&to, &user_keys, sizeof(user_keys));
1388 }
1389
pac_generic_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1390 static int pac_generic_keys_set(struct task_struct *target,
1391 const struct user_regset *regset,
1392 unsigned int pos, unsigned int count,
1393 const void *kbuf, const void __user *ubuf)
1394 {
1395 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1396 struct user_pac_generic_keys user_keys;
1397 int ret;
1398
1399 if (!system_supports_generic_auth())
1400 return -EINVAL;
1401
1402 pac_generic_keys_to_user(&user_keys, keys);
1403 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1404 &user_keys, 0, -1);
1405 if (ret)
1406 return ret;
1407 pac_generic_keys_from_user(keys, &user_keys);
1408
1409 return 0;
1410 }
1411 #endif /* CONFIG_CHECKPOINT_RESTORE */
1412 #endif /* CONFIG_ARM64_PTR_AUTH */
1413
1414 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
tagged_addr_ctrl_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1415 static int tagged_addr_ctrl_get(struct task_struct *target,
1416 const struct user_regset *regset,
1417 struct membuf to)
1418 {
1419 long ctrl = get_tagged_addr_ctrl(target);
1420
1421 if (IS_ERR_VALUE(ctrl))
1422 return ctrl;
1423
1424 return membuf_write(&to, &ctrl, sizeof(ctrl));
1425 }
1426
tagged_addr_ctrl_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1427 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1428 user_regset *regset, unsigned int pos,
1429 unsigned int count, const void *kbuf, const
1430 void __user *ubuf)
1431 {
1432 int ret;
1433 long ctrl;
1434
1435 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1436 if (ret)
1437 return ret;
1438
1439 return set_tagged_addr_ctrl(target, ctrl);
1440 }
1441 #endif
1442
1443 #ifdef CONFIG_ARM64_POE
poe_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1444 static int poe_get(struct task_struct *target,
1445 const struct user_regset *regset,
1446 struct membuf to)
1447 {
1448 if (!system_supports_poe())
1449 return -EINVAL;
1450
1451 return membuf_write(&to, &target->thread.por_el0,
1452 sizeof(target->thread.por_el0));
1453 }
1454
poe_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1455 static int poe_set(struct task_struct *target, const struct
1456 user_regset *regset, unsigned int pos,
1457 unsigned int count, const void *kbuf, const
1458 void __user *ubuf)
1459 {
1460 int ret;
1461 long ctrl;
1462
1463 if (!system_supports_poe())
1464 return -EINVAL;
1465
1466 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1467 if (ret)
1468 return ret;
1469
1470 target->thread.por_el0 = ctrl;
1471
1472 return 0;
1473 }
1474 #endif
1475
1476 enum aarch64_regset {
1477 REGSET_GPR,
1478 REGSET_FPR,
1479 REGSET_TLS,
1480 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1481 REGSET_HW_BREAK,
1482 REGSET_HW_WATCH,
1483 #endif
1484 REGSET_FPMR,
1485 REGSET_SYSTEM_CALL,
1486 #ifdef CONFIG_ARM64_SVE
1487 REGSET_SVE,
1488 #endif
1489 #ifdef CONFIG_ARM64_SME
1490 REGSET_SSVE,
1491 REGSET_ZA,
1492 REGSET_ZT,
1493 #endif
1494 #ifdef CONFIG_ARM64_PTR_AUTH
1495 REGSET_PAC_MASK,
1496 REGSET_PAC_ENABLED_KEYS,
1497 #ifdef CONFIG_CHECKPOINT_RESTORE
1498 REGSET_PACA_KEYS,
1499 REGSET_PACG_KEYS,
1500 #endif
1501 #endif
1502 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1503 REGSET_TAGGED_ADDR_CTRL,
1504 #endif
1505 #ifdef CONFIG_ARM64_POE
1506 REGSET_POE
1507 #endif
1508 };
1509
1510 static const struct user_regset aarch64_regsets[] = {
1511 [REGSET_GPR] = {
1512 .core_note_type = NT_PRSTATUS,
1513 .n = sizeof(struct user_pt_regs) / sizeof(u64),
1514 .size = sizeof(u64),
1515 .align = sizeof(u64),
1516 .regset_get = gpr_get,
1517 .set = gpr_set
1518 },
1519 [REGSET_FPR] = {
1520 .core_note_type = NT_PRFPREG,
1521 .n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1522 /*
1523 * We pretend we have 32-bit registers because the fpsr and
1524 * fpcr are 32-bits wide.
1525 */
1526 .size = sizeof(u32),
1527 .align = sizeof(u32),
1528 .active = fpr_active,
1529 .regset_get = fpr_get,
1530 .set = fpr_set
1531 },
1532 [REGSET_TLS] = {
1533 .core_note_type = NT_ARM_TLS,
1534 .n = 2,
1535 .size = sizeof(void *),
1536 .align = sizeof(void *),
1537 .regset_get = tls_get,
1538 .set = tls_set,
1539 },
1540 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1541 [REGSET_HW_BREAK] = {
1542 .core_note_type = NT_ARM_HW_BREAK,
1543 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1544 .size = sizeof(u32),
1545 .align = sizeof(u32),
1546 .regset_get = hw_break_get,
1547 .set = hw_break_set,
1548 },
1549 [REGSET_HW_WATCH] = {
1550 .core_note_type = NT_ARM_HW_WATCH,
1551 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1552 .size = sizeof(u32),
1553 .align = sizeof(u32),
1554 .regset_get = hw_break_get,
1555 .set = hw_break_set,
1556 },
1557 #endif
1558 [REGSET_SYSTEM_CALL] = {
1559 .core_note_type = NT_ARM_SYSTEM_CALL,
1560 .n = 1,
1561 .size = sizeof(int),
1562 .align = sizeof(int),
1563 .regset_get = system_call_get,
1564 .set = system_call_set,
1565 },
1566 [REGSET_FPMR] = {
1567 .core_note_type = NT_ARM_FPMR,
1568 .n = 1,
1569 .size = sizeof(u64),
1570 .align = sizeof(u64),
1571 .regset_get = fpmr_get,
1572 .set = fpmr_set,
1573 },
1574 #ifdef CONFIG_ARM64_SVE
1575 [REGSET_SVE] = { /* Scalable Vector Extension */
1576 .core_note_type = NT_ARM_SVE,
1577 .n = DIV_ROUND_UP(SVE_PT_SIZE(ARCH_SVE_VQ_MAX,
1578 SVE_PT_REGS_SVE),
1579 SVE_VQ_BYTES),
1580 .size = SVE_VQ_BYTES,
1581 .align = SVE_VQ_BYTES,
1582 .regset_get = sve_get,
1583 .set = sve_set,
1584 },
1585 #endif
1586 #ifdef CONFIG_ARM64_SME
1587 [REGSET_SSVE] = { /* Streaming mode SVE */
1588 .core_note_type = NT_ARM_SSVE,
1589 .n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1590 SVE_VQ_BYTES),
1591 .size = SVE_VQ_BYTES,
1592 .align = SVE_VQ_BYTES,
1593 .regset_get = ssve_get,
1594 .set = ssve_set,
1595 },
1596 [REGSET_ZA] = { /* SME ZA */
1597 .core_note_type = NT_ARM_ZA,
1598 /*
1599 * ZA is a single register but it's variably sized and
1600 * the ptrace core requires that the size of any data
1601 * be an exact multiple of the configured register
1602 * size so report as though we had SVE_VQ_BYTES
1603 * registers. These values aren't exposed to
1604 * userspace.
1605 */
1606 .n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1607 .size = SVE_VQ_BYTES,
1608 .align = SVE_VQ_BYTES,
1609 .regset_get = za_get,
1610 .set = za_set,
1611 },
1612 [REGSET_ZT] = { /* SME ZT */
1613 .core_note_type = NT_ARM_ZT,
1614 .n = 1,
1615 .size = ZT_SIG_REG_BYTES,
1616 .align = sizeof(u64),
1617 .regset_get = zt_get,
1618 .set = zt_set,
1619 },
1620 #endif
1621 #ifdef CONFIG_ARM64_PTR_AUTH
1622 [REGSET_PAC_MASK] = {
1623 .core_note_type = NT_ARM_PAC_MASK,
1624 .n = sizeof(struct user_pac_mask) / sizeof(u64),
1625 .size = sizeof(u64),
1626 .align = sizeof(u64),
1627 .regset_get = pac_mask_get,
1628 /* this cannot be set dynamically */
1629 },
1630 [REGSET_PAC_ENABLED_KEYS] = {
1631 .core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1632 .n = 1,
1633 .size = sizeof(long),
1634 .align = sizeof(long),
1635 .regset_get = pac_enabled_keys_get,
1636 .set = pac_enabled_keys_set,
1637 },
1638 #ifdef CONFIG_CHECKPOINT_RESTORE
1639 [REGSET_PACA_KEYS] = {
1640 .core_note_type = NT_ARM_PACA_KEYS,
1641 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1642 .size = sizeof(__uint128_t),
1643 .align = sizeof(__uint128_t),
1644 .regset_get = pac_address_keys_get,
1645 .set = pac_address_keys_set,
1646 },
1647 [REGSET_PACG_KEYS] = {
1648 .core_note_type = NT_ARM_PACG_KEYS,
1649 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1650 .size = sizeof(__uint128_t),
1651 .align = sizeof(__uint128_t),
1652 .regset_get = pac_generic_keys_get,
1653 .set = pac_generic_keys_set,
1654 },
1655 #endif
1656 #endif
1657 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1658 [REGSET_TAGGED_ADDR_CTRL] = {
1659 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1660 .n = 1,
1661 .size = sizeof(long),
1662 .align = sizeof(long),
1663 .regset_get = tagged_addr_ctrl_get,
1664 .set = tagged_addr_ctrl_set,
1665 },
1666 #endif
1667 #ifdef CONFIG_ARM64_POE
1668 [REGSET_POE] = {
1669 .core_note_type = NT_ARM_POE,
1670 .n = 1,
1671 .size = sizeof(long),
1672 .align = sizeof(long),
1673 .regset_get = poe_get,
1674 .set = poe_set,
1675 },
1676 #endif
1677 };
1678
1679 static const struct user_regset_view user_aarch64_view = {
1680 .name = "aarch64", .e_machine = EM_AARCH64,
1681 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1682 };
1683
1684 enum compat_regset {
1685 REGSET_COMPAT_GPR,
1686 REGSET_COMPAT_VFP,
1687 };
1688
compat_get_user_reg(struct task_struct * task,int idx)1689 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1690 {
1691 struct pt_regs *regs = task_pt_regs(task);
1692
1693 switch (idx) {
1694 case 15:
1695 return regs->pc;
1696 case 16:
1697 return pstate_to_compat_psr(regs->pstate);
1698 case 17:
1699 return regs->orig_x0;
1700 default:
1701 return regs->regs[idx];
1702 }
1703 }
1704
compat_gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1705 static int compat_gpr_get(struct task_struct *target,
1706 const struct user_regset *regset,
1707 struct membuf to)
1708 {
1709 int i = 0;
1710
1711 while (to.left)
1712 membuf_store(&to, compat_get_user_reg(target, i++));
1713 return 0;
1714 }
1715
compat_gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1716 static int compat_gpr_set(struct task_struct *target,
1717 const struct user_regset *regset,
1718 unsigned int pos, unsigned int count,
1719 const void *kbuf, const void __user *ubuf)
1720 {
1721 struct pt_regs newregs;
1722 int ret = 0;
1723 unsigned int i, start, num_regs;
1724
1725 /* Calculate the number of AArch32 registers contained in count */
1726 num_regs = count / regset->size;
1727
1728 /* Convert pos into an register number */
1729 start = pos / regset->size;
1730
1731 if (start + num_regs > regset->n)
1732 return -EIO;
1733
1734 newregs = *task_pt_regs(target);
1735
1736 for (i = 0; i < num_regs; ++i) {
1737 unsigned int idx = start + i;
1738 compat_ulong_t reg;
1739
1740 if (kbuf) {
1741 memcpy(®, kbuf, sizeof(reg));
1742 kbuf += sizeof(reg);
1743 } else {
1744 ret = copy_from_user(®, ubuf, sizeof(reg));
1745 if (ret) {
1746 ret = -EFAULT;
1747 break;
1748 }
1749
1750 ubuf += sizeof(reg);
1751 }
1752
1753 switch (idx) {
1754 case 15:
1755 newregs.pc = reg;
1756 break;
1757 case 16:
1758 reg = compat_psr_to_pstate(reg);
1759 newregs.pstate = reg;
1760 break;
1761 case 17:
1762 newregs.orig_x0 = reg;
1763 break;
1764 default:
1765 newregs.regs[idx] = reg;
1766 }
1767
1768 }
1769
1770 if (valid_user_regs(&newregs.user_regs, target))
1771 *task_pt_regs(target) = newregs;
1772 else
1773 ret = -EINVAL;
1774
1775 return ret;
1776 }
1777
compat_vfp_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1778 static int compat_vfp_get(struct task_struct *target,
1779 const struct user_regset *regset,
1780 struct membuf to)
1781 {
1782 struct user_fpsimd_state *uregs;
1783 compat_ulong_t fpscr;
1784
1785 if (!system_supports_fpsimd())
1786 return -EINVAL;
1787
1788 uregs = &target->thread.uw.fpsimd_state;
1789
1790 if (target == current)
1791 fpsimd_preserve_current_state();
1792
1793 /*
1794 * The VFP registers are packed into the fpsimd_state, so they all sit
1795 * nicely together for us. We just need to create the fpscr separately.
1796 */
1797 membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1798 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1799 (uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1800 return membuf_store(&to, fpscr);
1801 }
1802
compat_vfp_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1803 static int compat_vfp_set(struct task_struct *target,
1804 const struct user_regset *regset,
1805 unsigned int pos, unsigned int count,
1806 const void *kbuf, const void __user *ubuf)
1807 {
1808 struct user_fpsimd_state *uregs;
1809 compat_ulong_t fpscr;
1810 int ret, vregs_end_pos;
1811
1812 if (!system_supports_fpsimd())
1813 return -EINVAL;
1814
1815 uregs = &target->thread.uw.fpsimd_state;
1816
1817 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1818 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1819 vregs_end_pos);
1820
1821 if (count && !ret) {
1822 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1823 vregs_end_pos, VFP_STATE_SIZE);
1824 if (!ret) {
1825 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1826 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1827 }
1828 }
1829
1830 fpsimd_flush_task_state(target);
1831 return ret;
1832 }
1833
compat_tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1834 static int compat_tls_get(struct task_struct *target,
1835 const struct user_regset *regset,
1836 struct membuf to)
1837 {
1838 return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1839 }
1840
compat_tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1841 static int compat_tls_set(struct task_struct *target,
1842 const struct user_regset *regset, unsigned int pos,
1843 unsigned int count, const void *kbuf,
1844 const void __user *ubuf)
1845 {
1846 int ret;
1847 compat_ulong_t tls = target->thread.uw.tp_value;
1848
1849 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1850 if (ret)
1851 return ret;
1852
1853 target->thread.uw.tp_value = tls;
1854 return ret;
1855 }
1856
1857 static const struct user_regset aarch32_regsets[] = {
1858 [REGSET_COMPAT_GPR] = {
1859 .core_note_type = NT_PRSTATUS,
1860 .n = COMPAT_ELF_NGREG,
1861 .size = sizeof(compat_elf_greg_t),
1862 .align = sizeof(compat_elf_greg_t),
1863 .regset_get = compat_gpr_get,
1864 .set = compat_gpr_set
1865 },
1866 [REGSET_COMPAT_VFP] = {
1867 .core_note_type = NT_ARM_VFP,
1868 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1869 .size = sizeof(compat_ulong_t),
1870 .align = sizeof(compat_ulong_t),
1871 .active = fpr_active,
1872 .regset_get = compat_vfp_get,
1873 .set = compat_vfp_set
1874 },
1875 };
1876
1877 static const struct user_regset_view user_aarch32_view = {
1878 .name = "aarch32", .e_machine = EM_ARM,
1879 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1880 };
1881
1882 static const struct user_regset aarch32_ptrace_regsets[] = {
1883 [REGSET_GPR] = {
1884 .core_note_type = NT_PRSTATUS,
1885 .n = COMPAT_ELF_NGREG,
1886 .size = sizeof(compat_elf_greg_t),
1887 .align = sizeof(compat_elf_greg_t),
1888 .regset_get = compat_gpr_get,
1889 .set = compat_gpr_set
1890 },
1891 [REGSET_FPR] = {
1892 .core_note_type = NT_ARM_VFP,
1893 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1894 .size = sizeof(compat_ulong_t),
1895 .align = sizeof(compat_ulong_t),
1896 .regset_get = compat_vfp_get,
1897 .set = compat_vfp_set
1898 },
1899 [REGSET_TLS] = {
1900 .core_note_type = NT_ARM_TLS,
1901 .n = 1,
1902 .size = sizeof(compat_ulong_t),
1903 .align = sizeof(compat_ulong_t),
1904 .regset_get = compat_tls_get,
1905 .set = compat_tls_set,
1906 },
1907 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1908 [REGSET_HW_BREAK] = {
1909 .core_note_type = NT_ARM_HW_BREAK,
1910 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1911 .size = sizeof(u32),
1912 .align = sizeof(u32),
1913 .regset_get = hw_break_get,
1914 .set = hw_break_set,
1915 },
1916 [REGSET_HW_WATCH] = {
1917 .core_note_type = NT_ARM_HW_WATCH,
1918 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1919 .size = sizeof(u32),
1920 .align = sizeof(u32),
1921 .regset_get = hw_break_get,
1922 .set = hw_break_set,
1923 },
1924 #endif
1925 [REGSET_SYSTEM_CALL] = {
1926 .core_note_type = NT_ARM_SYSTEM_CALL,
1927 .n = 1,
1928 .size = sizeof(int),
1929 .align = sizeof(int),
1930 .regset_get = system_call_get,
1931 .set = system_call_set,
1932 },
1933 };
1934
1935 static const struct user_regset_view user_aarch32_ptrace_view = {
1936 .name = "aarch32", .e_machine = EM_ARM,
1937 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1938 };
1939
1940 #ifdef CONFIG_COMPAT
compat_ptrace_read_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t __user * ret)1941 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1942 compat_ulong_t __user *ret)
1943 {
1944 compat_ulong_t tmp;
1945
1946 if (off & 3)
1947 return -EIO;
1948
1949 if (off == COMPAT_PT_TEXT_ADDR)
1950 tmp = tsk->mm->start_code;
1951 else if (off == COMPAT_PT_DATA_ADDR)
1952 tmp = tsk->mm->start_data;
1953 else if (off == COMPAT_PT_TEXT_END_ADDR)
1954 tmp = tsk->mm->end_code;
1955 else if (off < sizeof(compat_elf_gregset_t))
1956 tmp = compat_get_user_reg(tsk, off >> 2);
1957 else if (off >= COMPAT_USER_SZ)
1958 return -EIO;
1959 else
1960 tmp = 0;
1961
1962 return put_user(tmp, ret);
1963 }
1964
compat_ptrace_write_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t val)1965 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1966 compat_ulong_t val)
1967 {
1968 struct pt_regs newregs = *task_pt_regs(tsk);
1969 unsigned int idx = off / 4;
1970
1971 if (off & 3 || off >= COMPAT_USER_SZ)
1972 return -EIO;
1973
1974 if (off >= sizeof(compat_elf_gregset_t))
1975 return 0;
1976
1977 switch (idx) {
1978 case 15:
1979 newregs.pc = val;
1980 break;
1981 case 16:
1982 newregs.pstate = compat_psr_to_pstate(val);
1983 break;
1984 case 17:
1985 newregs.orig_x0 = val;
1986 break;
1987 default:
1988 newregs.regs[idx] = val;
1989 }
1990
1991 if (!valid_user_regs(&newregs.user_regs, tsk))
1992 return -EINVAL;
1993
1994 *task_pt_regs(tsk) = newregs;
1995 return 0;
1996 }
1997
1998 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1999
2000 /*
2001 * Convert a virtual register number into an index for a thread_info
2002 * breakpoint array. Breakpoints are identified using positive numbers
2003 * whilst watchpoints are negative. The registers are laid out as pairs
2004 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
2005 * Register 0 is reserved for describing resource information.
2006 */
compat_ptrace_hbp_num_to_idx(compat_long_t num)2007 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
2008 {
2009 return (abs(num) - 1) >> 1;
2010 }
2011
compat_ptrace_hbp_get_resource_info(u32 * kdata)2012 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
2013 {
2014 u8 num_brps, num_wrps, debug_arch, wp_len;
2015 u32 reg = 0;
2016
2017 num_brps = hw_breakpoint_slots(TYPE_INST);
2018 num_wrps = hw_breakpoint_slots(TYPE_DATA);
2019
2020 debug_arch = debug_monitors_arch();
2021 wp_len = 8;
2022 reg |= debug_arch;
2023 reg <<= 8;
2024 reg |= wp_len;
2025 reg <<= 8;
2026 reg |= num_wrps;
2027 reg <<= 8;
2028 reg |= num_brps;
2029
2030 *kdata = reg;
2031 return 0;
2032 }
2033
compat_ptrace_hbp_get(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)2034 static int compat_ptrace_hbp_get(unsigned int note_type,
2035 struct task_struct *tsk,
2036 compat_long_t num,
2037 u32 *kdata)
2038 {
2039 u64 addr = 0;
2040 u32 ctrl = 0;
2041
2042 int err, idx = compat_ptrace_hbp_num_to_idx(num);
2043
2044 if (num & 1) {
2045 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
2046 *kdata = (u32)addr;
2047 } else {
2048 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
2049 *kdata = ctrl;
2050 }
2051
2052 return err;
2053 }
2054
compat_ptrace_hbp_set(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)2055 static int compat_ptrace_hbp_set(unsigned int note_type,
2056 struct task_struct *tsk,
2057 compat_long_t num,
2058 u32 *kdata)
2059 {
2060 u64 addr;
2061 u32 ctrl;
2062
2063 int err, idx = compat_ptrace_hbp_num_to_idx(num);
2064
2065 if (num & 1) {
2066 addr = *kdata;
2067 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
2068 } else {
2069 ctrl = *kdata;
2070 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
2071 }
2072
2073 return err;
2074 }
2075
compat_ptrace_gethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)2076 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
2077 compat_ulong_t __user *data)
2078 {
2079 int ret;
2080 u32 kdata;
2081
2082 /* Watchpoint */
2083 if (num < 0) {
2084 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
2085 /* Resource info */
2086 } else if (num == 0) {
2087 ret = compat_ptrace_hbp_get_resource_info(&kdata);
2088 /* Breakpoint */
2089 } else {
2090 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
2091 }
2092
2093 if (!ret)
2094 ret = put_user(kdata, data);
2095
2096 return ret;
2097 }
2098
compat_ptrace_sethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)2099 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
2100 compat_ulong_t __user *data)
2101 {
2102 int ret;
2103 u32 kdata = 0;
2104
2105 if (num == 0)
2106 return 0;
2107
2108 ret = get_user(kdata, data);
2109 if (ret)
2110 return ret;
2111
2112 if (num < 0)
2113 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
2114 else
2115 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
2116
2117 return ret;
2118 }
2119 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2120
compat_arch_ptrace(struct task_struct * child,compat_long_t request,compat_ulong_t caddr,compat_ulong_t cdata)2121 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
2122 compat_ulong_t caddr, compat_ulong_t cdata)
2123 {
2124 unsigned long addr = caddr;
2125 unsigned long data = cdata;
2126 void __user *datap = compat_ptr(data);
2127 int ret;
2128
2129 switch (request) {
2130 case PTRACE_PEEKUSR:
2131 ret = compat_ptrace_read_user(child, addr, datap);
2132 break;
2133
2134 case PTRACE_POKEUSR:
2135 ret = compat_ptrace_write_user(child, addr, data);
2136 break;
2137
2138 case COMPAT_PTRACE_GETREGS:
2139 ret = copy_regset_to_user(child,
2140 &user_aarch32_view,
2141 REGSET_COMPAT_GPR,
2142 0, sizeof(compat_elf_gregset_t),
2143 datap);
2144 break;
2145
2146 case COMPAT_PTRACE_SETREGS:
2147 ret = copy_regset_from_user(child,
2148 &user_aarch32_view,
2149 REGSET_COMPAT_GPR,
2150 0, sizeof(compat_elf_gregset_t),
2151 datap);
2152 break;
2153
2154 case COMPAT_PTRACE_GET_THREAD_AREA:
2155 ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2156 (compat_ulong_t __user *)datap);
2157 break;
2158
2159 case COMPAT_PTRACE_SET_SYSCALL:
2160 task_pt_regs(child)->syscallno = data;
2161 ret = 0;
2162 break;
2163
2164 case COMPAT_PTRACE_GETVFPREGS:
2165 ret = copy_regset_to_user(child,
2166 &user_aarch32_view,
2167 REGSET_COMPAT_VFP,
2168 0, VFP_STATE_SIZE,
2169 datap);
2170 break;
2171
2172 case COMPAT_PTRACE_SETVFPREGS:
2173 ret = copy_regset_from_user(child,
2174 &user_aarch32_view,
2175 REGSET_COMPAT_VFP,
2176 0, VFP_STATE_SIZE,
2177 datap);
2178 break;
2179
2180 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2181 case COMPAT_PTRACE_GETHBPREGS:
2182 ret = compat_ptrace_gethbpregs(child, addr, datap);
2183 break;
2184
2185 case COMPAT_PTRACE_SETHBPREGS:
2186 ret = compat_ptrace_sethbpregs(child, addr, datap);
2187 break;
2188 #endif
2189
2190 default:
2191 ret = compat_ptrace_request(child, request, addr,
2192 data);
2193 break;
2194 }
2195
2196 return ret;
2197 }
2198 #endif /* CONFIG_COMPAT */
2199
task_user_regset_view(struct task_struct * task)2200 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2201 {
2202 /*
2203 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2204 * user_aarch32_view compatible with arm32. Native ptrace requests on
2205 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2206 * access to the TLS register.
2207 */
2208 if (is_compat_task())
2209 return &user_aarch32_view;
2210 else if (is_compat_thread(task_thread_info(task)))
2211 return &user_aarch32_ptrace_view;
2212
2213 return &user_aarch64_view;
2214 }
2215
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)2216 long arch_ptrace(struct task_struct *child, long request,
2217 unsigned long addr, unsigned long data)
2218 {
2219 switch (request) {
2220 case PTRACE_PEEKMTETAGS:
2221 case PTRACE_POKEMTETAGS:
2222 return mte_ptrace_copy_tags(child, request, addr, data);
2223 }
2224
2225 return ptrace_request(child, request, addr, data);
2226 }
2227
2228 enum ptrace_syscall_dir {
2229 PTRACE_SYSCALL_ENTER = 0,
2230 PTRACE_SYSCALL_EXIT,
2231 };
2232
report_syscall(struct pt_regs * regs,enum ptrace_syscall_dir dir)2233 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2234 {
2235 int regno;
2236 unsigned long saved_reg;
2237
2238 /*
2239 * We have some ABI weirdness here in the way that we handle syscall
2240 * exit stops because we indicate whether or not the stop has been
2241 * signalled from syscall entry or syscall exit by clobbering a general
2242 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2243 * and restoring its old value after the stop. This means that:
2244 *
2245 * - Any writes by the tracer to this register during the stop are
2246 * ignored/discarded.
2247 *
2248 * - The actual value of the register is not available during the stop,
2249 * so the tracer cannot save it and restore it later.
2250 *
2251 * - Syscall stops behave differently to seccomp and pseudo-step traps
2252 * (the latter do not nobble any registers).
2253 */
2254 regno = (is_compat_task() ? 12 : 7);
2255 saved_reg = regs->regs[regno];
2256 regs->regs[regno] = dir;
2257
2258 if (dir == PTRACE_SYSCALL_ENTER) {
2259 if (ptrace_report_syscall_entry(regs))
2260 forget_syscall(regs);
2261 regs->regs[regno] = saved_reg;
2262 } else if (!test_thread_flag(TIF_SINGLESTEP)) {
2263 ptrace_report_syscall_exit(regs, 0);
2264 regs->regs[regno] = saved_reg;
2265 } else {
2266 regs->regs[regno] = saved_reg;
2267
2268 /*
2269 * Signal a pseudo-step exception since we are stepping but
2270 * tracer modifications to the registers may have rewound the
2271 * state machine.
2272 */
2273 ptrace_report_syscall_exit(regs, 1);
2274 }
2275 }
2276
syscall_trace_enter(struct pt_regs * regs)2277 int syscall_trace_enter(struct pt_regs *regs)
2278 {
2279 unsigned long flags = read_thread_flags();
2280
2281 if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2282 report_syscall(regs, PTRACE_SYSCALL_ENTER);
2283 if (flags & _TIF_SYSCALL_EMU)
2284 return NO_SYSCALL;
2285 }
2286
2287 /* Do the secure computing after ptrace; failures should be fast. */
2288 if (secure_computing() == -1)
2289 return NO_SYSCALL;
2290
2291 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2292 trace_sys_enter(regs, regs->syscallno);
2293
2294 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2295 regs->regs[2], regs->regs[3]);
2296
2297 return regs->syscallno;
2298 }
2299
syscall_trace_exit(struct pt_regs * regs)2300 void syscall_trace_exit(struct pt_regs *regs)
2301 {
2302 unsigned long flags = read_thread_flags();
2303
2304 audit_syscall_exit(regs);
2305
2306 if (flags & _TIF_SYSCALL_TRACEPOINT)
2307 trace_sys_exit(regs, syscall_get_return_value(current, regs));
2308
2309 if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2310 report_syscall(regs, PTRACE_SYSCALL_EXIT);
2311
2312 rseq_syscall(regs);
2313 }
2314
2315 /*
2316 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2317 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2318 * not described in ARM DDI 0487D.a.
2319 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2320 * be allocated an EL0 meaning in future.
2321 * Userspace cannot use these until they have an architectural meaning.
2322 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2323 * We also reserve IL for the kernel; SS is handled dynamically.
2324 */
2325 #define SPSR_EL1_AARCH64_RES0_BITS \
2326 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2327 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2328 #define SPSR_EL1_AARCH32_RES0_BITS \
2329 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2330
valid_compat_regs(struct user_pt_regs * regs)2331 static int valid_compat_regs(struct user_pt_regs *regs)
2332 {
2333 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2334
2335 if (!system_supports_mixed_endian_el0()) {
2336 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2337 regs->pstate |= PSR_AA32_E_BIT;
2338 else
2339 regs->pstate &= ~PSR_AA32_E_BIT;
2340 }
2341
2342 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2343 (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2344 (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2345 (regs->pstate & PSR_AA32_F_BIT) == 0) {
2346 return 1;
2347 }
2348
2349 /*
2350 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2351 * arch/arm.
2352 */
2353 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2354 PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2355 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2356 PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2357 PSR_AA32_T_BIT;
2358 regs->pstate |= PSR_MODE32_BIT;
2359
2360 return 0;
2361 }
2362
valid_native_regs(struct user_pt_regs * regs)2363 static int valid_native_regs(struct user_pt_regs *regs)
2364 {
2365 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2366
2367 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2368 (regs->pstate & PSR_D_BIT) == 0 &&
2369 (regs->pstate & PSR_A_BIT) == 0 &&
2370 (regs->pstate & PSR_I_BIT) == 0 &&
2371 (regs->pstate & PSR_F_BIT) == 0) {
2372 return 1;
2373 }
2374
2375 /* Force PSR to a valid 64-bit EL0t */
2376 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2377
2378 return 0;
2379 }
2380
2381 /*
2382 * Are the current registers suitable for user mode? (used to maintain
2383 * security in signal handlers)
2384 */
valid_user_regs(struct user_pt_regs * regs,struct task_struct * task)2385 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2386 {
2387 /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2388 user_regs_reset_single_step(regs, task);
2389
2390 if (is_compat_thread(task_thread_info(task)))
2391 return valid_compat_regs(regs);
2392 else
2393 return valid_native_regs(regs);
2394 }
2395